
Apache Drill

0

Apache Drill

1

About the Tutorial

Apache Drill is first schema-free SQL engine. Unlike Hive, it does not use MR job internally and

compared to most distributed query engines, it does not depend on Hadoop. Apache Drill is

observed as the upgraded version of Apache Sqoop. Drill is inspired by Google Dremel concept

called BigQuery and later became an open source Apache project.

This tutorial will explore the fundamentals of Drill, setup and then walk through with query

operations using JSON, querying data with Big Data technologies and finally conclude with some

real-time applications.

Audience

This tutorial has been prepared for professionals aspiring to make a career in Big Data Analytics.

This tutorial will give you enough understanding on Drill process, about how to install it on your

system and its other operations.

Prerequisites

Before proceeding with this tutorial, you must have a good understanding of Java, JSON and any

of the Linux operating system.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.

Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any

contents or a part of contents of this e-book in any manner without written consent of the

publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.

provides no guarantee regarding the accuracy, timeliness or completeness of our website or its

contents including this tutorial. If you discover any errors on our website or in this tutorial,

please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Apache Drill

2

Table of Contents

About the Tutorial .. 1

Audience... 1

Prerequisites .. 1

Copyright & Disclaimer ... 1

Table of Contents .. 2

1. APACHE DRILL – INTRODUCTION .. 5

Overview of Google Dremel/BigQuery .. 5

What is Drill? .. 5

Need for Drill .. 6

Drill Integration .. 7

2. APACHE DRILL – FUNDAMENTALS .. 8

Drill Nested Data Model .. 8

JSON ... 8

Apache Avro .. 9

Nested Query Language ... 10

Drill File Format ... 10

Scalable Data Sources .. 13

Drill Clients ... 13

3. APACHE DRILL – ARCHITECTURE ... 14

Query Execution Diagram... 15

4. APACHE DRILL – INSTALLATION ... 16

Embedded Mode Installation .. 16

Distributed Mode Installation ... 17

Apache Drill

3

5. APACHE DRILL – SQL OPERATIONS ... 20

Primitive Data Types ... 20

Date, Time and Timestamp ... 21

Interval .. 21

Operators.. 22

Drill Scalar Functions .. 23

Trig Functions .. 28

Data Type Conversion ... 31

Date - Time Functions ... 32

String Manipulation Function ... 36

Null Handling Function ... 43

6. APACHE DRILL – QUERY USING JSON .. 45

Querying JSON File ... 45

Storage Plugin Configuration .. 46

Create JSON file .. 47

SQL Operators ... 51

Aggregate Functions ... 53

7. APACHE DRILL – WINDOW FUNCTIONS USING JSON ... 57

Aggregate Window Functions .. 57

Ranking Window Functions ... 60

8. APACHE DRILL – QUERYING COMPLEX DATA ... 65

FLATTEN .. 65

KVGEN .. 66

REPEATED_COUNT .. 67

REPEATED CONTAINS ... 67

Apache Drill

4

9. APACHE DRILL – DATA DEFINITION STATEMENTS ... 68

Create Statement ... 68

Alter Statement .. 71

Create View Statement .. 72

Drop Table .. 74

10. APACHE DRILL – QUERYING DATA ... 75

CSV File .. 75

TSV File... 78

PSV (Pipe Separated Value) File .. 80

11. APACHE DRILL – QUERYING DATA USING HBASE .. 81

How to Start Hadoop and HBase? ... 81

Creating a Table Using HBase Shell .. 82

12. APACHE DRILL – QUERYING DATA USING HIVE .. 85

How to Query Hive Data in Apache Drill? ... 85

13. APACHE DRILL – QUERYING PARQUET FILES ... 87

Create a Table .. 87

14. APACHE DRILL – JDBC INTERFACE .. 89

Java Application .. 89

15. APACHE DRILL – CUSTOM FUNCTION .. 92

IsPass Custom Function ... 92

16. APACHE DRILL – CONTRIBUTORS ... 97

Apache Drill

5

In this chapter, we will discuss about the basic overview of Apache Drill, its benefits and key

features. Apart from this, we will also get some basic knowledge on Google Dremel.

Overview of Google Dremel/BigQuery

Google manages big data every second of every day to provide services like Search, YouTube,

Gmail and Google Docs. Google uses an efficient technology to scan big data at a blazing speed

which is called as “Dremel”. Well, Dremel is a query service that allows you to run SQL-like

queries against very large data sets and return accurate results in seconds.

Dremel can scan 35 billion rows without an index within ten-seconds. Dremel stores data in a

columnar storage model, which means that it separates a record into column values and then

stores each value on a different storage volume. But at the same time, traditional databases

store the whole record on one volume. This columnar approach is the main reason that it makes

Dremel drastically fast.

Google has been using Dremel in production since year 2006 and has been continuously evolving

it for the applications like Spam analysis, Debugging of map tiles on Google Maps, etc. For this

reason, Drill is inspired by Dremel. Recently, Google released BigQuery and it is the public

implementation of Dremel that was launched for general businesses or developers to use.

What is Drill?

Apache Drill is a low latency schema-free query engine for big data. Drill uses a JSON document

model internally which allows it to query data of any structure. Drill works with a variety of non-

relational data stores, including Hadoop, NoSQL databases (MongoDB, HBase) and cloud storage

like Amazon S3, Azure Blob Storage, etc. Users can query the data using a standard SQL and BI

Tools, which doesn’t require to create and manage schemas.

Benefits

Following are some of the most important benefits of Apache Drill:

 Drill can scale data from a single node to thousands of nodes and query petabytes of data

within seconds.

 Drill supports user defined functions.

 Drill's symmetrical architecture and simple installation makes it easy to deploy and

operate very large clusters.

 Drill has flexible data model and extensible architecture.

 Drill columnar execution model performs SQL processing on complex data without

flattening into rows.

 Supports large datasets

1. Apache Drill – Introduction

Apache Drill

6

Key Features

Following are some of the most significant key features of Apache Drill:

 Drill’s pluggable architecture enables connectivity to multiple datastores.

 Drill has a distributed execution engine for processing queries. Users can submit requests

to any node in the cluster.

 Drill supports complex/multi-structured data types.

 Drill uses self-describing data where a schema is specified as a part of the data itself, so

no need for centralized schema definitions or management.

 Flexible deployment options either local node or cluster.

 Specialized memory management that reduces the amount of main memory that a

program uses or references while running and eliminates garbage collections.

 Decentralized data management.

Use Cases

Apache Drill can work along with a few other softwares, some of which are:

 Cloud JSON and Sensor Analytics: Drill’s columnar approach leverages to access JSON

data and expose those data via REST API to apply sensor analytics information.

 Works well with Hive: Apache Drill serves as a complement to Hive deployments with

low latency queries. Drill’s hive metastore integration exposes existing datasets at

interactive speeds.

 SQL for NoSQL: Drill’s ODBC driver and powerful parallelization capabilities provide

interactive query capabilities.

Need for Drill

Apache Drill comes with a flexible JSON-like data model to natively query and process

complex/multi-structured data. The data does not need to be flattened or transformed either at

the design time or runtime, which provides high performance for queries. Drill exposes an easy

and high performance Java API to build custom functions. Apache Drill is built to scale to big

data needs and is not restricted by memory available on the cluster nodes.

Apache Drill

7

Drill Integration

Drill has to integrate with a variety of data stores like relational data stores or non-relational

data stores. It has the flexibility to add new data stores.

Integration with File Systems

 Traditional file system: Local files and NAS (Network Attached Storage)

 Hadoop: HDFS and MAPR-FS (MAPR-File System)

 Cloud storage: Amazon S3, Google Cloud Storage, Azure Blob Storage

Integration with NoSQL Databases

 MongoDB

 HBase

 HIVE

 MapR-DB

Apache Drill

8

In this chapter, we will discuss about the nested data model, JSON, Apache Avro, nested query

language along with some other components in detail.

Drill Nested Data Model

Apache Drill supports various data models. The initial goal is to support the column-based format

used by Dremel, then it is designed to support schema less models such as JSON, BSON (Binary

JSON) and schema based models like Avro and CSV.

JSON

JSON (JavaScript Object Notation) is a lightweight text-based open standard designed for

human-readable data interchange. JSON format is used for serializing and transmitting

structured data over network connection. It is primarily used to transmit data between a server

and web applications. JSON is typically perceived as a format whose main advantage is that it is

simple and lean. It can be used without knowing or caring about any underlying schema.

Following is a basic JSON schema, which covers a classical product catalog description −

{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "title": "Product",

 "description": “Classical product catalog",

 "type": "object",

 "properties": {

 "id": {

 "description": "The unique identifier for a product",

 "type": "integer"

 },

 "name": {

 "description": "Name of the product",

 "type": "string"

 },

2. Apache Drill – Fundamentals

Apache Drill

9

 "price": {

 "type": "number",

 "minimum": 0,

 "exclusiveMinimum": true

 }

 },

 "required": ["id", "name", "price"]

}

The JSON Schema has the capability to express basic definitions and constraints for data types

contained in objects, and it also supports some more advanced features such as properties typed

as other objects, inheritance, and links.

Apache Avro

Avro is an Apache open source project that provides data serialization and data exchange

services for Hadoop. These services can be used together or independently. Avro is a schema-

based system. A language-independent schema is associated with its read and write operations.

Using Avro, big data can be exchanged between programs written in any language. Avro

supports a rich set of primitive data types including numeric, binary data and strings, and a

number of complex types including arrays, maps, enumerations and records. A key feature of

Avro is the robust support for data schemas that change over time.

Simple Avro Schema

Avro schema is created in JavaScript Object Notation (JSON) document format, which is a

lightweight text-based data interchange format.

For example:

The given schema defines a (record type) document within "AvroSample" namespace. The name

of document is "Employee" which contains two "Fields" → Name and Age.

{

 " type " : "record",

 " namespace " : "AvroSample",

 " name " : "Employee",

 " fields " : [

 { "name" : " Name" , "type" : "string" },

 { "name" : "age" , "type" : "int" }

]

}

Apache Drill

10

The above schema contains four attributes, they have been briefly described here:

 type − Describes document type, in this case a “record"

 namespace − Describes the name of the namespace in which the object resides

 name − Describes the schema name

 fields − This is an attribute array which contains the following

 name − Describes the name of field

 type − Describes data type of field

Nested Query Language

Apache Drill supports various query languages. The initial goal is to support the SQL-like

language used by Dremel and Google BigQuery. DrQL and Mongo query languages are an

examples of Drill nested query languages.

DrQL

The DrQL (Drill Query Language) is a nested query language. DrQL is SQL like query language

for nested data. It is designed to support efficient column-based processing.

Mongo Query Language

The MongoDB is an open-source document database, and leading NoSQL database. MongoDB is

written in C++ and it is a cross-platform, document-oriented database that provides, high

performance, high availability, and easy scalability. MongoDB works on the concept of collection

and documenting.

Wherein, collection is a group of MongoDB documents. It is the equivalent of an RDBMS table.

A collection exists within a single database. A document is a set of key-value pairs.

Drill File Format

Drill supports various file formats such as CSV, TSV, PSV, JSON and Parquet. Wherein,

“Parquet” is the special file format which helps Drill to run faster and its data representation is

almost identical to Drill data representation.

Parquet

Parquet is a columnar storage format in the Hadoop ecosystem. Compared to a traditional row-

oriented format, it is much more efficient in storage and has better query performance. Parquet

stores binary data in a column-oriented way, where the values of each column are organized so

that they are all adjacent, enabling better compression.

Apache Drill

11

It has the following important characteristics:

 Self-describing data format

 Columnar format

 Flexible compression options

 Large file size

Flat Files Format

The Apache Drill allows access to structured file types and plain text files (flat files). It consists

of the following types –

 CSV files (comma-separated values)

 TSV files (tab-separated values)

 PSV files (pipe-separated values)

CSV file format: A CSV is a comma separated values file, which allows data to be saved in a

table structured format. CSV data fields are often separated or delimited by comma (,). The

following example refers to a CSV format.

firstname, age

Alice,21

Peter,34

This CSV format can be defined as follows in a drill configuration.

"formats": {

 "csv": {

 "type": "text",

 "extensions": [

 “csv2"

],

 "delimiter": “,”

 }

}

Apache Drill

12

TSV file format: The TSV data fields are often separated or delimited by a tab and saved with

an extension of “.tsv" format. The following example refers to a TSV format.

firstname age

Alice 21

Peter 34

The TSV format can be defined as follows in a drill configuration.

"tsv": {

 "type": "text",

 "extensions": [

 "tsv"

],

 "delimiter": “\t"

},

PSV file format: The PSV data fields are separated or delimited by a pipe (|) symbol. The

following example refers to a PSV format.

firstname|age

Alice|21

Peter|34

The PSV format can be defined as follows in a drill configuration.

"formats": {

 "psv": {

 "type": "text",

 "extensions": [

 "tbl"

],

 "delimiter": "|"

 }

}

These PSV files are saved with an extension of “.tbl” format.

Apache Drill

13

Scalable Data Sources

Managing millions of data from multiple data sources requires a great deal of planning. When

creating your data model, you need to consider the key goals such as the impact on speed of

processing, how you can optimize memory usage and performance, scalability when handling

growing volumes of data and requests.

Apache Drill provides the flexibility to immediately query complex data in native formats, such

as schema-less data, nested data, and data with rapidly evolving schemas.

Following are its key benefits:

 High-performance analysis of data in its native format including self-describing data such

as Parquet, JSON files and HBase tables.

 Direct querying of data in HBase tables without defining and maintaining a schema in the

Hive metastore.

 SQL to query and work with semi-structured/nested data, such as data from NoSQL stores

like MongoDB and online REST APIs.

Drill Clients

Apache Drill can connect to the following clients –

 Multiple interfaces such as JDBC, ODBC, C++ API, REST using JSON

 Drill shell

 Drill web console (http://localhost:8047)

 BI tools such as Tableau, MicroStrategy, etc.

 Excel

http://localhost:8047/

Apache Drill

14

As of now, you are aware of the Apache Drill fundamentals. This chapter will explain about its

architecture in detail. Following is a diagram that illustrates the Apache Drill core module.

The above diagram consists of different components. Let’s take a look at each of these

components in detail.

 DrillBit: Apache Drill consists of a Daemon service called the DrillBit. It is responsible

for accepting requests from the client, processing queries, and returning results to

the client. There is no master-slave concept in DrillBit.

 SQL Parser: The SQL parser parses all the incoming queries based on the open

source framework called Calcite.

 Logical Plan: A Logical plan describes the abstract data flow of a query. Once a query

is parsed into a logical plan, the Drill optimizer determines the most efficient execution

plan using a variety of rule-based and cost-based techniques, translating the logical

plan into a physical plan.

 Optimizer: Apache Drill uses various database optimizations such as rule based/cost

based, as well as other optimization rules exposed by the storage engine to re-write

and split the query. The output of the optimizer is a distributed physical query plan.

Optimization in Drill is pluggable so you can provide rules for optimization at various

parts of the query execution.

 Physical Plan: A Physical plan is also called as the execution plan. It represents the

most efficient and fastest way to execute the query across the different nodes in the

cluster. The physical plan is a DAG (directed acyclic graph) of physical operators, and

each parent-child relationship implies how data flows through the graph.

 Storage Engine interface: A Storage plugin interfaces in Drill represent the

abstractions that Drill uses to interact with the data sources. The plugins are

extensible, allowing you to write new plugins for any additional data sources.

3. Apache Drill – Architecture

Apache Drill

15

Query Execution Diagram

The following image shows a DrillBit query execution diagram:

The above diagram involves the following steps –

 The Drill client issues a query. Any Drillbit in the cluster can accept queries from

clients.

 A Drillbit then parses the query, optimizes it, and generates an optimized distributed

query plan for fast and efficient execution.

 The Drillbit that accepts the initial query becomes the Foreman (driving Drillbit) for

the request. It gets a list of available Drillbit nodes in the cluster from ZooKeeper.

 The foreman gets a list of available Drillbit nodes in the cluster from ZooKeeper and

schedules the execution of query fragments on individual nodes according to the

execution plan.

 The individual nodes finish their execution and return data to the foreman.

 The foreman finally returns the results back to the client.

Apache Drill

16

This chapter will cover how to install Apache Drill on your machine. We have two modes of

installation in Drill.

 Embedded mode: This mode refers to install Drill on a single node (local) on your

machine. It doesn’t require ZooKeeper setup.

 Distributed mode: Install Apache Drill on a distributed environment. ZooKeeper is

mandatory for this mode because it co-ordinates clusters. Once you installed

successfully, then you will be able to connect and query Hive, HBase or any other

distributed data sources.

Now let’s continue with the embedded mode steps for installation.

Embedded Mode Installation

Embedded mode is a quick way to install. You can install Apache Drill in the embedded mode on

Linux, Mac OS or Windows Operating System.

Step 1: Verify Java Installation

Hopefully, you have already installed java on your machine, so you just verify it using the

following command.

$ java -version

If Java is successfully installed on your machine, you could see the version of installed Java.

Otherwise download the latest version of JDK by visiting the following link –

 http://www.oracle.com/technetwork/java/javase/downloads/index.html

After downloading the latest version, extract those files, move to the directory after setting the

path and add Java alternatives. Then Java will be installed on your machine.

Step 2: Apache Drill Installation

Download the latest version of Apache Drill by visiting the following link –

http://www.apache.org/dyn/closer.cgi/drill/drill-1.6.0/apache-drill-1.6.0.tar.gz

Now apache-drill-1.6.0.tar.gz will be downloaded on your machine.

You can then extract the tar file using the following program –

$ cd opt/

$ tar apache-drill-1.6.0.tar.gz

$ cd apache-drill-1.6.0

4. Apache Drill – Installation

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.apache.org/dyn/closer.cgi/drill/drill-1.6.0/apache-drill-1.6.0.tar.gz

Apache Drill

17

Step 3: Start Drill

To start the Drill shell in the embedded mode, use the following command. Internally, the

command uses a jdbc connection string and identifies the local node as the ZooKeeper node.

$ bin/drill-embedded

After the command, you can see the following response:

$ 0: jdbc:drill:zk=local>

Where,

 0 - is the number of connections to Drill, which can be only one in embedded node

 jdbc - is the connection type

 zk=local - means the local node substitutes for the ZooKeeper node

Once you get this prompt, you will be able to run your queries on Drill.

Step 4: Exit Drill

To exit the Drill shell, issue the following command:

$!quit

Distributed Mode Installation

You will have to follow the subsequent steps to ensure a proper Distributed Mode Installation on

your system.

Step 1: Verify Java installation

$ java -version

If java is successfully installed on your machine, you could see the version of installed Java.

Otherwise download latest version of JDK by visiting the following link –

 http://www.oracle.com/technetwork/java/javase/downloads/index.html

After downloading the latest version, extract those files and move them to the directory after

setting the path and adding Java alternatives. Then Java will be installed on your machine.

Step 2: Verify ZooKeeper Installation

Hopefully, you have installed Apache ZooKeeper on your machine. To verify the installation, you

can issue the following command –

$ bin/zkServer.sh start

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Apache Drill

18

Then you will get the following program on your screen –

$ JMX enabled by default

$ Using config: /Users/../zookeeper-3.4.6/bin/../conf/zoo.cfg

$ Starting zookeeper ... STARTED

Step 3: Apache Drill Installation

You can start with downloading the latest version of Apache Drill by visiting the following link –

http://www.apache.org/dyn/closer.cgi/drill/drill-1.6.0/apache-drill-1.6.0.tar.gz

Now apache-drill-1.6.0.tar.gz will be downloaded on your machine.

The next step is to extract the tar file by issuing the following command –

$ cd opt/

$ tar apache-drill-1.6.0.tar.gz

$ cd apache-drill-1.6.0

Step 4: Configuration Settings

Open the drill-override file by using the following command.

$ vi conf/drill-override.conf

Then you will see the following response:

drill.exec: {

 cluster-id: "drillbits1",

 zk.connect: "localhost:2181"

}

Here cluster-id: “drillbits1” indicates we have one instance running. If two or more instances are

running, then drillbits also increases.

Step 5: Start Drillbit shell

To start the drillbit shell you can use the following command.

$ bin/drillbit.sh start

Then you will see the following response:

$ 0: jdbc:drill:zk=<zk1host>:

http://www.apache.org/dyn/closer.cgi/drill/drill-1.6.0/apache-drill-1.6.0.tar.gz

Apache Drill

19

Step 6: Exit the Drill Shell

To exit the Drill shell, you can issue the following command:

$ 0: jdbc:drill:zk=<zk1host>: !quit

Step 7: Stop Drill

Navigate to the Drill installation directory, and issue the following command to stop a Drillbit.

$ bin/drillbit.sh stop

Step 8: Start Drill in Web Console

Apache Drill Web Console is one of the client interfaces to access Drill.

To open this Drill Web Console, launch a web browser, and then type the following URL –

http://localhost:8047

Now you will see the following screen which is similar to the Query option.

http://localhost:8047/

Apache Drill

20

Apache Drill is an open-source SQL-On-Everything engine. It allows SQL queries to be executed

on any kind of data source, ranging from a simple CSV file to an advanced SQL and NoSQL

database servers.

To execute a query in a Drill shell, open your terminal move to the Drill installed directory and

then type the following command.

$ bin/drill-embedded

Then you will see the response as shown in the following program.

0: jdbc:drill:zk=local>

Now you can execute your queries. Otherwise you can run your queries through web console

application to the url of http://localhost:8047. If you need any help info type the following

command.

$ 0: jdbc:drill:zk=local> !help

Primitive Data Types

Apache Drill supports the following list of data types.

Datatype Description

BIGINT
8-byte signed integer in the range -9,223,372,036,854,775,808

to 9,223,372,036,854,775,807

BINARY Variable-length byte string

BOOLEAN True or false

DATE Years, months, and days in YYYY-MM-DD format since 4713 BC

DECIMAL(p,s), DEC(p,s),

or NUMERIC(p,s)*
38-digit precision number, precision is p, and scale is s

INTEGER or INT
4-byte signed integer in the range -2,147,483,648 to

2,147,483,647

INTERVAL A day-time or year-month interval

5. Apache Drill – SQL Operations

http://localhost:8047/

Apache Drill

21

SMALLINT 2-byte signed integer in the range -32,768 to 32,767

FLOAT 4-byte floating point number

DOUBLE 8-byte floating point number

TIME 24-hour based time in hours, minutes, seconds format: HH:mm:ss

TIMESTAMP
JDBC timestamp in year, month, date hour, minute, second, and

optional milliseconds format: yyyy-MM-dd HH:mm:ss.SSS

CHARACTER VARYING,

CHAR or VARCHAR

variable-length string. The default limit is 1 character. The

maximum character limit is 2,147,483,647.

Let us continue with simple examples on the data types.

Date, Time and Timestamp

Apache Drill supports time functions in the range from 1971 to 2037. The processing logic of

data types can be easily tested by “VALUES()” statement. The following query returns date, time

and timestamp for the given values.

Query:

0: jdbc:drill:zk=local> select DATE '2016-04-07',TIME '12:12:23',TIMESTAMP '2016-04-

07 12:12:23' from (values(1));

Result:

+-------------+-----------+------------------------+

| EXPR$0 | EXPR$1 | EXPR$2 |

+-------------+-----------+------------------------+

| 2016-04-07 | 12:12:23 | 2016-04-07 12:12:23.0 |

+-------------+-----------+------------------------+

Interval

 The INTERVALYEAR and INTERVALDAY internal types represent a period of time.

 The INTERVALYEAR type specifies values from a year to a month.

 The INTERVALDAY type specifies values from a day to seconds.

Apache Drill

22

INTERVALYEAR Query

0: jdbc:drill:zk=local> select timestamp '2016-04-07 12:45:50' + interval '10'

year(2) from (values(1));

Result:

+------------------------+

| EXPR$0 |

+------------------------+

| 2026-04-07 12:45:50.0 |

+———————————————————————-+

1 row selected (0.251 seconds)

In the above query, INTERVAL keyword followed by 10 adds 10 years to the timestamp. The 2

in parentheses in YEAR(2) specifies the precision of the year interval, 2 digits in this case to

support the ten interval.

INTERVALDAY Query

0: jdbc:drill:zk=local> select timestamp '2016-04-07 12:45:52' + interval '1' day(1)

from (values(1));

Result:

+------------------------+

| EXPR$0 |

+------------------------+

| 2016-04-08 12:45:52.0 |

+———————————————————————-+

Here INTERVAL ‘1’ indicates that two days will be added from that specified day.

Operators

The following operators are used in Apache Drill to perform the desired operations.

Operators Description

Logical Operators AND, BETWEEN, IN , LIKE , NOT , OR

Comparison Operators

<, > , <= , >= , = , <> , IS NULL , IS NOT NULL , IS FALSE , IS

NOT FALSE , IS TRUE , IS NOT TRUE,

Pattern Matching Operator - LIKE

Apache Drill

23

Math Operators +,-,*,/

Subquery Operators EXISTS, IN

Drill Scalar Functions

Apache Drill scalar functions supports Math and Trig functions. Most scalar functions use data

types such as INTEGER, BIGINT, FLOAT and DOUBLE.

Math Functions

The following table describes the list of “Math functions” in Apache Drill.

Function Description

ABS(x) Returns the absolute value of the input argument x.

CBRT(x) Returns the cubic root of x.

CEIL(x) Returns the smallest integer not less than x.

CEILING(x) Same as CEIL.

DEGREES(x) Converts x radians to degrees.

E() Returns 2.718281828459045.

EXP(x) Returns e (Euler's number) to the power of x.

FLOOR(x) Returns the largest integer not greater than x.

LOG(x) Returns the natural log (base e) of x.

LOG(x, y) Returns log base x to the y power.

LOG10(x) Returns the common log of x.

Apache Drill

24

LSHIFT(x, y) Shifts the binary x by y times to the left.

MOD(x, y) Returns the remainder of x divided by y.

NEGATIVE(x) Returns x as a negative number.

PI Returns pi.

POW(x, y) Returns the value of x to the y power.

RADIANS Converts x degrees to radians.

RAND Returns a random number from 0-1.

ROUND(x) Rounds to the nearest integer.

ROUND(x, y) Rounds x to y decimal places. Return type is decimal

RSHIFT(x, y) Shifts the binary x by y times to the right.

SIGN(x) Returns the sign of x.

SQRT(x) Returns the square root of x.

TRUNC(x, y)
Truncates x to y decimal places. Specifying y is optional. Default

is 1.

TRUNC(x, y)
Truncates x to y decimal places.

Now let’s run queries for the scalar functions. The Drill scalar functions can be easily tested by

the values() statement, otherwise you can also use the select statement.

Apache Drill

25

ABS(x)

The output of this function type is the same as the same input type.

Query:

0: jdbc:drill:zk=local> values(ABS(1.899));

or

0: jdbc:drill:zk=local> select ABS(1.899) from (values(1));

The result will be as shown in the following program:

+---------+

| EXPR$0 |

+---------+

| 1.899 |

+————————-+

CBRT(x)

This cubic root returns the output type as a float type.

Query:

0: jdbc:drill:zk=local> values(CBRT(125));

Result:

+---------+

| EXPR$0 |

+---------+

| 5.0 |

+---------+

Apache Drill

26

CEIL(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> values(ceil(4.6));

Result:

+---------+

| EXPR$0 |

+---------+

| 5.0 |

+---------+

The output is returned as the largest following value.

Degrees(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> values(degrees(30));

Result:

+---------------------+

| EXPR$0 |

+---------------------+

| 1718.8733853924698 |

+---------------------+

The deg(30) value is returned as the output.

Exp(x)

This function returns the floating point value.

Query:

0: jdbc:drill:zk=local> values(Exp(3));

Result:

+---------------------+

| EXPR$0 |

+---------------------+

| 20.085536923187668 |

+—————————————————————+

Apache Drill

27

The output result is the exponential value of 3.

floor(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> values(floor(3.9));

Result:

+---------+

| EXPR$0 |

+---------+

| 3.0 |

+---------+

The given input value 3.9 is changed to the floor value which is 3.0.

log(x,y)

This function returns a floating type value.

Query:

0: jdbc:drill:zk=local> values(log(2,10));

Result:

+---------------------+

| EXPR$0 |

+---------------------+

| 3.3219280948873626 |

+———————————-+

The output is a logarithmic value for the given input.

Apache Drill

28

Round(x)

The following program shows the query for this function:

Query:

0: jdbc:drill:zk=local> values(round(2.7));

Result:

+---------+

| EXPR$0 |

+---------+

| 3.0 |

+---------+

The output value is rounded to the next integer or a floating point value.

trunc(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> values(trunc(4.99));

Result:

+---------+

| EXPR$0 |

+---------+

| 4.0 |

+————————-+

Here the input 4.99 is truncated to 4.0.

Similarly, you can try to run the other functions from the above given table.

Trig Functions

Apache Drill supports the following trig functions and these functions’ return type is a floating

point value.

Function Description

SIN(x) Sine of angle x in radians

COS(x) Cosine of angle x in radians

Apache Drill

29

TAN(x) Tangent of angle x in radians

ASIN(x) Inverse sine of angle x in radians

ACOS(x) Inverse cosine of angle x in radians

ATAN(x) Inverse tangent of angle x in radians

SINH() Hyperbolic sine of hyperbolic angle x in radians

COSH() Hyperbolic cosine of hyperbolic angle x in radians

TANH() Hyperbolic tangent of hyperbolic angle x in radians

Let’s go through some simple examples on the above mentioned Trig functions.

sin(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> values(sin(45));

Result:

+---------------------+

| EXPR$0 |

+---------------------+

| 0.8509035245341184 |

+---------------------+

Here the sin 45 value is returned as the output.

Apache Drill

30

cosh(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> values(cosh(90));

Result:

+-----------------------+

| EXPR$0 |

+-----------------------+

| 6.102016471589204E38 |

+-----------------------+

The output result is a hyperbolic cosine value for the angle 90.

Acos(x)

This acos(x) function returns the Inverse Cosine of the elements of x.

Query:

0: jdbc:drill:zk=local> select acos(0.3) as inversecosine from (values(1));

Result:

+---------------------+

| inversecosine |

+---------------------+

| 1.2661036727794992 |

+---------------------+

The output is inverse cosine for the given value.

Apache Drill

31

Data Type Conversion

In Apache Drill, you can cast or convert data to the required type for moving data from one data

source to another. Drill also supports the following functions for casting and converting data

types:

Function Return type Description

CAST(x AS y) Data type of y Converts the data type of x to y

CONVERT_TO(x,y) Data type of y

Converts binary data (x) to Drill internal types (y)

based on the little or big endian encoding of the

data.

CONVERT_FROM(x,y) Data type of y

Converts binary data (x) from Drill internal types

(y) based on the little or big endian encoding of the

data.

CAST(x AS y)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select cast('3' as double) from (values(1));

Result:

+———————-+

| EXPR$0 |

+———————-+

| 3.0 |

+———————-+

Here the input value integer 3 is casting as double 3.0.

CONVERT_FROM()

The following program shows the query for this function:

0: jdbc:drill:zk=local> Select CONVERT_FROM ('{x:1, y:2}' ,'JSON') AS Convertion from

(values(1));

Apache Drill

32

Result:

+--------------------+

| Conversion |

+--------------------+

| {"x":1,"y":2} |

+--------------------+

The above query converts varchar data to JSON format. Similarly, you can use other data types

to Drill supported data format. For naming columns, you can use the alias method.

CONVERT_TO()

The following program shows the query for this function:

0: jdbc:drill:zk=local> select CONVERT_TO(2,'int') as conversion from (values(1));

Result:

+—————————————+

| conversion |

+————————————-+

| 00000040 |

+————————————-+

Here the output is returned as the hexadecimal value for 2.

Date - Time Functions

Apache Drill supports time functions based on the Gregorian calendar and in the range from

1971 to 2037. The following table describes the list of Date/Time functions.

Function
Return

Type
Description

AGE(x [, y])

INTERVALD

AY or

INTERVALYE

AR

Returns interval between two timestamps or

subtracts a timestamp from midnight of the

current date.

CURRENT_DATE DATE Returns current date

CURRENT_TIME TIME Returns current time

CURRENT_TIMESTAMP TIMESTAMP Returns current timestamp

Apache Drill

33

DATE_ADD(x,y)
DATE,

TIMESTAMP

Returns the sum of the sum of a date/time and a

number of days/hours, or of a date/time and

date/time interval.

Where,

x- date,time or timestamp

y - integer or an interval expression.

DATE_SUB(x,y)
DATE,

TIMESTAMP

Subtracts an interval (y) from a date or timestamp

expression (x).

DATE_PART(x,y) DOUBLE

Returns a field of a date, time, timestamp, or

interval.

where,

x-year, month, day, hour, minute, or second

y-date, time, timestamp, or interval literal

EXTRACT(x FROM y) DOUBLE

Extracts a time unit from a date or timestamp

expression (y).

This must be one of the following values: SECOND,

MINUTE, HOUR, DAY, MONTH, and YEAR.

LOCALTIME TIME Returns the local current time.

LOCALTIMESTAMP TIMESTAMP Returns the local current timestamp.

NOW() TIMESTAMP Returns current timestamp

TIMEOFDAY() VARCHAR Returns current timestamp for UTC time zone.

UNIX_TIMESTAMP ([x]) BIGINT

If x is specified as timestamp then the number of

seconds since the UNIX epoch and the timestamp

x is returned.

If x is not specified then it returns the number of

seconds since the UNIX epoch (January 1, 1970 at

00:00:00).

Apache Drill

34

Age(x, [,y]) function

The following program shows the query for this function:

0: jdbc:drill:zk=local> select age('2000-04-13') from (values(1));

Result:

+-----------------+

| EXPR$0 |

+-----------------+

| P195M4DT66600S |

+—————————————————+

The output result is the interval limit from the specified year to midnight of the current day.

CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP Function

The following program shows the query for this function:

0: jdbc:drill:zk=local> select CURRENT_DATE,CURRENT_TIME,CURRENT_TIMESTAMP from

(values(1));

Result:

+---------------+---------------+--------------------------+

| current_date | current_time | current_timestamp |

+---------------+---------------+--------------------------+

| 2016-04-07 | 11:50:34.384 | 2016-04-24 11:50:34.384 |

+———————+———————+——+

The output returns current date, time, and timestamp for the day.

LOCALTIME, LOCALTIMESTAMP Functions

The following program shows the query for this function:

0: jdbc:drill:zk=local> select LOCALTIME,LOCALTIMESTAMP from (values(1));

Result:

+---------------+--------------------------+

| LOCALTIME | LOCALTIMESTAMP |

+---------------+--------------------------+

| 15:17:46.333 | 2016-04-24 15:17:46.333 |

+---------------+--------------------------+

Apache Drill

35

NOW(),TIMEOFDAY()

The following program shows the query for this function:

0: jdbc:drill:zk=local> select NOW(),TIMEOFDAY() from (values(1));

Result:

+--------------------------+---------------------------------------+

| EXPR$0 | EXPR$1 |

+--------------------------+---------------------------------------+

| 2016-04-24 15:19:23.975 | 2016-04-24 15:19:24.243 Asia/Kolkata |

+--------------------------+---------------------------------------+

Here, TIMEOFDAY() returns the result for UTC time zone.

DATE_ADD(x, integer)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select DATE_ADD('2016-04-07',3) FROM (VALUES(1));

Result:

+—————————-+

| EXPR$0

+——————————+

| 2016-04-10

+——————————+

From this result, 3 days will be added.

DATE_ADD(x, interval)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select date_add(‘2016-04-07',6-2) from (values(1));

Result:

+———————————+

| EXPR$0

+——————————-+

| 2016-04-11

+——————————-+

Here the interval limit 6-2 gives the result as 4, then the result 4 will be added to the given date.

Apache Drill

36

DATE_SUB(x,y)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select date_sub('2016-04-07',2) from (values(1));

Result:

+————————————-+

| EXPR$0 |

+————————————-+

| 2016-04-05 |

+————————————-+

The output indicates 2 days subtracted from the specified day.

EXTRACT(x from y)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select EXTRACT(SECOND FROM TIME '12:20:40') from(values(1));

Result:

+————————-+

| EXPR$0

+————————-+

| 40.0

+————————-+

The seconds extracted from the given time.

String Manipulation Function

Apache Drill supports the following list of string functions.

Function Return type Description

BYTE_SUBSTR(x,y [, z]) BINARY or

VARCHAR

Returns in binary format a substring y of the

string x.

CHAR_LENGTH(x)
INTEGER

Returns the length of the alphanumeric

argument x.

CONCAT(x,y)
VARCHAR

Combines the two alphanumeric values x and y.

Has the same effect as the || operator.

Apache Drill

37

INITCAP(x)
VARCHAR

Returns x in which the first character is

capitalized.

LENGTH(x)
INTEGER

Returns the length in bytes of the alphanumeric

value x.

LOWER(x)
VARCHAR

Converts all upper-case letters of x to lower-case

letters.

LPAD(x,y [, z])

VARCHAR

The value of x is filled in the front (the left-hand

side) with the value of z until the total length of

the value is equal y’s length.

If no z value then blanks are used to fill the

position.

LTRIM(x)
VARCHAR

Removes all blanks that appear at the beginning

of x.

POSITION(x IN y)
INTEGER

Returns the start position of the string x in the

string y.

REGEXP_REPLACE(x,y,x)

VARCHAR

Substitutes new text for substrings that match

Java regular expression patterns. In the string x,

y is replaced by z. Y is the regular expression.

RPAD(x,y,z)

VARCHAR

The value of x is filled in the front (the right-hand

side) with the value of z just until the total length

of the value is equal to that of y.

RTRIM(x)
VARCHAR

Removes all blanks from the end of the value of

x.

STRPOS(x,y)
INTEGER

Returns the start position of the string y in the

string x.

SUBSTR(x,y,z)
VARCHAR

Extracts characters from position 1 - x of x an

optional y times.

TRIM(x)
VARCHAR

Removes all blanks from the start and from the

end of x. Blanks in the middle are not removed.

UPPER(x)
VARCHAR

Converts all lower-case letters of x to upper-case

letters.

Now let’s continue to query on string functions.

Apache Drill

38

BYTE_SUBSTR(x,y [, z])

The following program shows the query for this function:

0: jdbc:drill:zk=local> select BYTE_SUBSTR('Drill',1,2) from (values(1));

Result:

+———————-+

| EXPR$0

+———————-+

| 4472

+———————-+

The above query returns a binary format of the substring position of the string Drill.

CHAR_LENGTH(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select char_length('Drill') from (values(1));

Result:

+———————+

| EXPR$0

+——————-+

| 5

+——————-+

The query returns the output value length as 5 for the string “Drill”.

CONCAT(x,y)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select concat('apache','drill') from (values(1));

Result:

+—————————————-+

| EXPR$0

+—————————————-+

| apachedrill

+—————————————-+

Apache Drill

39

The above query produces the result of concatenation of two specified strings.

INITCAP(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select initcap('drill') from (values(1));

Result:

+————————+

| EXPR$0

+————————+

| Drill

+————————+

The Initcap function returns the result as the first character of the string becomes capitalized.

LENGTH(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select length('apache drill') from (values(1));

Result:

+———————-+

| EXPR$0

+———————-+

| 12

+———————-+

This query returns the length of the given string.

Apache Drill

40

LOWER(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select lower('APACHE DRILL') from (values(1));

Result:

+————————————-+

| EXPR$0

+————————————-+

| apache drill

+————————————-+

It converts the given string to a lower case format.

UPPER(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select upper('apache drill') from (values(1));

Result:

+---------------+

| EXPR$0 |

+---------------+

| APACHE DRILL |

+---------------+

It converts the given string to the upper case format.

LPAD(x,y [, z])

The following program shows the query for this function:

0: jdbc:drill:zk=local> select lpad('drill',2,4) from (values(1));

Result:

+---------+

| EXPR$0 |

+---------+

| dr |

+---------+

Apache Drill

41

Left pad the value of the given string “drill” from the position of 2 to 4, so the result will be just

dr.

RPAD(x,y,z)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select rpad('tutorialspoint',2,4) from (values(1));

Result:

+———————+

| EXPR$0

+——————-+

| tu

+——————-+

Right pad the value of the given string.

RTRIM(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select rtrim('tutorialspoint','point') from (values(1));

Result:

+—————————-+

| EXPR$0

+—————————-+

| tutorials

+——————————+

Right trimming the characters form the two given strings.

Apache Drill

42

LTRIM(x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select ltrim('tutorialspoint','point') from (values(1));

Result:

+——————————————-+

| EXPR$0

+——————————————-+

| utorialspoint

+———————————————+

Left trimming the character from the given string.

REGEXP_REPLACE(x,y,x)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select regexp_replace('new','e','o') from (values(1));

Result:

+————————-+

| EXPR$0 |

+————————-+

| now |

+————————-+

Here the given string new is replaced as now.

STRPOS(x,y)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select strpos('tutorialpoint','o') from (values(1));

Result:

+——————+

| EXPR$0

+——————+

| 4

+——————+

The output indicates the position of ‘o’ occurs first in the given string.

Apache Drill

43

POSITION(x IN y)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select position('o' in 'tutorialspoint') from (values(1));

Result:

+——————-+

| EXPR$0

+———————+

| 4

+———————+

SUBSTR(x,y,z)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select substr('tutorialspint',4,7) from (values(1));

Result:

+----------+

| EXPR$0 |

+----------+

| orialsp |

+----------+

Null Handling Function

Apache Drill supports the following list of null handling functions.

Function Return type Description

COALESCE(x, y [, y]...) Data type of y
Returns the first non-null argument in the list of

y’s.

NULLIF(x,y) Data type of y
Returns the value of the x if x and y are not equal,

and returns a null value if x and y are equal.

Apache Drill

44

COALESCE(x, y [, y]...)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select coalesce(3,1,7) from (values(1));

Result:

+---------+

| EXPR$0 |

+---------+

| 3 |

+————————-+

Here first arg is non null, so it returns the value 3.

NULLIF(x,y)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select NULLIF(3,3) from (values(1));

Result:

+---------+

| EXPR$0 |

+---------+

| null |

+---------+

Here both the arguments are same, so the result is NULL.

Apache Drill

45

Apache Drill supports JSON format for querying data. Drill treats a JSON object as SQL record.

One object equals one row in a Drill table.

Querying JSON File

Let us query the sample file, “employee.json” packaged as part of the drill. This sample file is

Foodmart data packaged as JAR in Drill's classpath: ./jars/3rdparty/foodmart-data-json.0.4.jar.

The sample file can be accessed using namespace, cp.

Start the Drill shell, and select the first row of data from the “employee.json” file installed.

Query:

0: jdbc:drill:zk=local> select * from cp.`employee.json` limit 1;

Result:

+--------------+---------------+-------------+------------+--------------+-----------

------+-----------+----------------+-------------+------------------------+----------

+----------------+------------------+-----------------+---------+-------------------+

| employee_id | full_name | first_name | last_name | position_id |

position_title | store_id | department_id | birth_date | hire_date |

salary | supervisor_id | education_level | marital_status | gender |

management_role |

+--------------+---------------+-------------+------------+--------------+-----------

------+-----------+----------------+-------------+------------------------+----------

+----------------+------------------+-----------------+---------+--------------------

+

| 1 | Sheri Nowmer | Sheri | Nowmer | 1 | President

| 0 | 1 | 1961-08-26 | 1994-12-01 00:00:00.0 | 80000.0 | 0

| Graduate Degree | S | F | Senior Management |

+--------------+---------------+-------------+------------+--------------+-----------

------+-----------+----------------+-------------+------------------------+----------

+----------------+------------------+-----------------+---------+--------------------

+

6. Apache Drill – Query Using JSON

Apache Drill

46

The same result can be viewed in the web console as –

Storage Plugin Configuration

You can connect Drill to a file system through a storage plugin. On the Storage tab of the Drill

Web Console (http://localhost:8047), you can view and reconfigure a storage plugin.

The Drill installation contains the following default storage plugin configurations.

 cp - Points to the JAR files in the Drill classpath.

 dfs - Points to the local file system, but you can configure this storage plugin to point

to any distributed file system, such as a Hadoop or S3 file system.

 hbase - Provides a connection to the HBase.

 hive - Integrates Drill with the Hive metadata abstraction of files, HBase, and libraries

to read data and operate on SerDes and UDFs.

 mongo - Provides a connection to MongoDB data.

Storage Plugin Configuration Persistence

 Embedded mode: Apache Drill saves the storage plugin configurations in a

temporary directory. The temporary directory clears when you reboot.

 Distributed mode: Drill saves storage plugin configurations in ZooKeeper.

Workspace

The workspace defines the location of files in subdirectories of a local or distributed file system.

One or more workspaces can be defined in a plugin.

Apache Drill

47

Create JSON file

As of now we have queried an already packaged “employee.json” file. Let us create a new JSON

file named “student_list.json” as shown in the following program.

 {

 "ID" : "001",

 "name" : "Adam",

 "age" : 12,

 "gender" : "male",

 "standard" : "six",

 "mark1" : 70,

 "mark2" : 50,

 "mark3" : 60,

 "addr" : "23 new street",

 "pincode" : 111222

}

{

"ID" : "002",

 "name" : "Amit",

 "age" : 12,

 "gender" : "male",

 "standard" : "six",

 "mark1" : 40,

 "mark2" : 50,

 "mark3" : 40,

 "addr" : "12 old street",

 "pincode" : 111222

}

{

 "ID" : "003",

 "name" : "Bob",

 "age" : 12,

 "gender" : "male",

 "standard" : "six",

 "mark1" : 60,

 "mark2" : 80,

Apache Drill

48

 "mark3" : 70,

 "addr" : "10 cross street",

 "pincode" : 111222

}

{

"ID" : "004",

 "name" : "David",

 "age" : 12,

 "gender" : "male",

 "standard" : "six",

 "mark1" : 50,

 "mark2" : 70,

 "mark3" : 70,

 "addr" : "15 express avenue",

 "pincode" : 111222

}

{

"ID" : "005",

 "name" : "Esha",

 "age" : 12,

 "gender" : "female",

 "standard" : "six",

 "mark1" : 70,

 "mark2" : 60,

 "mark3" : 65,

 "addr" : "20 garden street",

 "pincode" : 111222

}

{

"ID" : "006",

 "name" : "Ganga",

 "age" : 12,

 "gender" : "female",

 "standard" : "six",

Apache Drill

49

 "mark1" : 100,

 "mark2" : 95,

 "mark3" : 98,

 "addr" : "25 north street",

 "pincode" : 111222

}

{

"ID" : "007",

 "name" : "Jack",

 "age" : 13,

 "gender" : "male",

 "standard" : "six",

 "mark1" : 55,

 "mark2" : 45,

 "mark3" : 45,

 "addr" : "2 park street",

 "pincode" : 111222

}

{

"ID" : "008",

 "name" : "Leena",

 "age" : 12,

 "gender" : "female",

 "standard" : "six",

 "mark1" : 90,

 "mark2" : 85,

 "mark3" : 95,

 "addr" : "24 south street",

 "pincode" : 111222

}

{

"ID" : "009",

 "name" : "Mary",

Apache Drill

50

 "age" : 13,

 "gender" : "female",

 "standard" : "six",

 "mark1" : 75,

 "mark2" : 85,

 "mark3" : 90,

 "addr" : "5 west street",

 "pincode" : 111222

}

{

"ID" : "010",

 "name" : "Peter",

 "age" : 13,

 "gender" : "female",

 "standard" : "six",

 "mark1" : 80,

 "mark2" : 85,

 "mark3" : 88,

 "addr" : "16 park avenue",

 "pincode" : 111222

}

Now, let us query the file to view its full records.

Query:

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Result:

ID name age gender standard mark1 mark2 mark3 addr pincode

001 Adam 12 male six 70 50 60 23 new street 111222

002 Amit 12 male six 40 50 40 12 old street 111222

003 Bob 12 male six 60 80 70 10 cross street 111222

004 David 12 male six 50 70 70 15 express avenue 111222

Apache Drill

51

005 Esha 12 female six 70 60 65 20 garden street 111222

006 Ganga 12 female six 100 95 98 25 north street 111222

007 Jack 13 male six 55 45 45 2 park street 111222

008 Leena 12 female six 90 85 95 24 south street 111222

009 Mary 13 female six 75 85 90 5 west street 111222

010 Peter 13 female six 80 85 88 16 park avenue 111222

SQL Operators

This section will cover the operations on SQL operators using JSON.

AND Operator

The following program shows the query for this function:

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/student_list.json` where age = 12 and mark3 = 70;

Result:

ID name age gender standard mark1 mark2 mark3 addr pincode

003 Bob 12 male six 60 80 70 10 cross street 111222

004 David 12 male six 50 70 70 15 express avenue 111222

Here, the AND operator produces the result when the condition matches to age=12 and

mark3=70.

OR Operator

The following program shows the query for this function:

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/student_list.json` where ID = '007' or mark3 = 70;

Result:

ID name age gender standard mark1 mark2 mark3 addr pincode

003 Bob 12 male six 60 80 70 10 cross street 111222

004 David 12 male six 50 70 70 15 express avenue 111222

007 Jack 13 male six 55 45 45 2 park street 111222

Here, the OR operator produces the result if anyone condition matches from the above query.

Apache Drill

52

IN Operator

The following program shows the query for this function:

0: jdbc:drill:zk=local> select name,age,addr from dfs.`/Users/../workspace/Drill-

samples/student_list.json` where ID in (‘001','003');

Result:

name age addr

Adam 12 23 new street

Bob 12 10 cross street

The IN operator returns result in the set condition.

Between Operator

The following program shows the query for this function:

0: jdbc:drill:zk=local> select name,age,addr from dfs.`/Users/../workspace/Drill-

samples/student_list.json` where mark1 between 50 and 70;

Result:

name age addr

Adam 12 23 new street

Bob 12 10 cross street

David 12 15 express avenue

Esha 12 20 garden street

Jack 13 2 park street

LIKE Operator

The Like Operator is used for pattern matching.

The following program shows the query for this function:

0: jdbc:drill:zk=local> select name from dfs.`/Users/../workspace/Drill-

samples/student_list.json` where name like ‘A%';

Result:

name

Adam

Amit

Apache Drill

53

The above query returns this result, when the name first letter is starting with ‘A’.

NOT Operator

The following program shows the query for this function:

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/student_list.json` where mark1 not in (80,75,70);

Result:

ID name age gender standard mark1 mark2 mark3 addr pincode

002 Amit 12 male six 40 50 40 12 old street 111222

003 Bob 12 male six 60 80 70 10 cross street 111222

004 David 12 male six 50 70 70 15 express avenue 111222

006 Ganga 12 female six 100 95 98 25 north street 111222

007 Jack 13 male six 55 45 45 2 park street 111222

008 Leena 12 female six 90 85 95 24 south street 111222

Aggregate Functions

The aggregate functions produce a single result from a set of input values. The following table

lists out the functions in further detail.

Function Description

AVG(expression) Averages a column of all records in a data source

COUNT(*) Returns the number of rows that match the given criteria.

COUNT([DISTINCT] expression) Returns the number of distinct values in the column.

MAX(expression) Returns the largest value of the selected column.

MIN(expression) Returns the smallest value of the selected column.

SUM(expression) Return the sum of given column.

Apache Drill

54

Avg(exp)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select avg(mark1) from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Result:

EXPR$0

69.0

Here, the output is the average result of mark1 column.

COUNT(*)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select count(*) from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Result:

EXPR$0

10

This count(*) function returns the total number of records

COUNT(DISTINCT(exp))

The following program shows the query for this function:

0: jdbc:drill:zk=local> select count(distinct(mark3)) from

dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

EXPR$0

9

count(distinct(mark3)) returns the no of distinct records for the column mark3.

MAX(exp)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select max(mark2) from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Apache Drill

55

Result:

EXPR$0

95

Max of mark2 column is 95

MIN(exp)

In this, there is MIN(column) function, which returns the smallest value of the selected column.

Query:

0: jdbc:drill:zk=local> select min(mark2) from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Result:

EXPR$0

45

SUM(exp)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select sum(mark1) from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Result:

EXPR$0

690

Here mark1 column values are summed and then returns the result as 690.

Statistical Function

The following program shows the query for this function:

0: jdbc:drill:zk=local> select stddev(mark2) from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Result:

EXPR$0

18.020050561034015

Apache Drill

56

Query:

0: jdbc:drill:zk=local> select variance(mark2) from dfs.`/Users/../workspace/Drill-

samples/student_list.json`;

Result:

EXPR$0

324.7222222222223

Variance of mark2 column result is returned as the output.

Apache Drill

57

Window functions execute on a set of rows and return a single value for each row from the

query. The term window has the meaning of the set of rows for the function.

A Window function in a query, defines the window using the OVER() clause. This OVER() clause

has the following capabilities:

 Defines window partitions to form groups of rows. (PARTITION BY clause)

 Orders rows within a partition. (ORDER BY clause)

Aggregate Window Functions

The Aggregate window function can be defined over a partition by and order by clause.

Avg()

The following program shows the query for this function:

0: jdbc:drill:zk=local> select mark1,gender,avg(mark1) over (partition by gender)

as avgmark1 from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

mark1 gender avgmark1

70 female 83.0

100 female 83.0

90 female 83.0

75 female 83.0

80 female 83.0

70 male 55.0

40 male 55.0

60 male 55.0

50 male 55.0

55 male 55.0

This result shows that partition by clause is used for the gender column. So, it takes the average

of mark1 from female gender which is 83.0 and then replaces that value to all the male and

female gender. The mark1 avg result is now 55.0 and hence it replaces the same to all genders.

7. Apache Drill – Window Functions using JSON

Apache Drill

58

Count(*)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select name, gender, mark1, age, count(*) over(partition by

age) as cnt from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

name gender mark1 age cnt

Adam male 70 12 7

Amit male 40 12 7

Bob male 60 12 7

David male 50 12 7

Esha female 70 12 7

Ganga female 100 12 7

Leena female 90 12 7

Jack male 55 13 3

Mary female 75 13 3

Peter female 80 13 3

Here, there are two age groups 12 and 13. The age count of 12 is for 7 students and 13 age

count is for 3 students. Hence count(*) over partition by age replaces 7 for 12 age group and 3

for 13 age group.

MAX()

The following program shows the query for this function:

0: jdbc:drill:zk=local> select name,age,gender,mark3,max(mark3) over (partition by

gender) as maximum from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

name age gender mark3 maximum

Esha 12 female 65 98

Ganga 12 female 98 98

Leena 12 female 95 98

Mary 13 female 90 98

Peter 13 female 88 98

Adam 12 male 60 70

Apache Drill

59

Amit 12 male 40 70

Bob 12 male 70 70

David 12 male 70 70

Jack 13 male 45 70

From the above query, maximum mark3 is partitioned by gender, hence female gender max

mark 98 is replaced to all female students and male gender max mark 70 is replaced to all male

students.

MIN()

The following program shows the query for this function:

0: jdbc:drill:zk=local> select mark2,min(mark2) over (partition by age) as minimum

from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

mark2 minimum

50 50

50 50

80 50

70 50

60 50

95 50

85 50

45 45

85 45

85 45

SUM()

The following program shows the query for this function:

0: jdbc:drill:zk=local> select name,age,sum(mark1+mark2) over (order by age) as

summation from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

name age summation

Adam 12 970

Amit 12 970

Apache Drill

60

Bob 12 970

David 12 970

Esha 12 970

Ganga 12 970

Leena 12 970

Jack 13 1395

Mary 13 1395

Peter 13 1395

Here mark1+mark2 result is replaced separately to each male and female student.

Ranking Window Functions

Following is the table listed out with ranking window functions.

Function Return Type Description

CUME_DIST() DOUBLE

Calculates the relative rank of the current row

within a window partition (number of rows

preceding or peer with current row) / (total rows

in the window partition)

DENSE_RANK() BIGINT

Rank of a value in a group of values based on

the ORDER BY expression and the OVER clause.

Each value is ranked within its partition. Rows

with equal values receive the same rank. If two

or more rows have the same rank then no gaps

in the rows.

NTILE() INTEGER

The NTILE window function divides the rows for

each window partition, as equally as possible,

into a specified number of ranked groups.

PERCENT_RANK() DOUBLE

Calculates the percent rank of the current row

using the following formula: (x - 1) / (number of

rows in window partition - 1) where x is the rank

of the current row.

RANK() BIGINT

The RANK window function determines the rank

of a value in a group of values. For example, if

two rows are ranked 1, the next rank is 3.

ROW_NUMBER() BIGINT
Gives unique row numbers for the rows in a

group.

Apache Drill

61

CUME_DIST()

 The following program shows the query for this function:

0: jdbc:drill:zk=local> select name,age,gender,cume_dist() over (order by age) as

relative_rank from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

name age gender relative_rank

Adam 12 male 0.7

Amit 12 male 0.7

Bob 12 male 0.7

David 12 male 0.7

Esha 12 female 0.7

Ganga 12 female 0.7

Leena 12 female 0.7

Jack 13 male 1.0

Mary 13 female 1.0

Peter 13 female 1.0

Dense_Rank()

The following program shows the query for this function:

0: jdbc:drill:zk=local> select mark1,mark2,mark3,dense_rank() over (order by age) as

denserank from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

mark1 mark2 mark3 dense_rank

70 50 60 1

40 50 40 1

60 80 70 1

50 70 70 1

70 60 65 1

100 95 98 1

90 85 95 1

55 45 45 2

Apache Drill

62

75 85 90 2

80 85 88 2

NTILE()

The NTILE window function requires the ORDER BY clause in the OVER clause.

Query:

0: jdbc:drill:zk=local> select name,gender,ntile(3) over (order by gender) as

row_partition from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

name gender row_partition

Esha female 1

Ganga female 1

Leena female 1

Mary female 1

Peter female 2

Adam male 2

Amit male 2

Bob male 3

David male 3

Jack male 3

Percent_rank

The following program shows the query for this function:

0: jdbc:drill:zk=local> select name,age,percent_rank() over (order by age) as

percentrank from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

+--------+------+---------------------+

| name | age | percentrank |

+--------+------+---------------------+

| Adam | 12 | 0.0 |

| Amit | 12 | 0.0 |

| Bob | 12 | 0.0 |

Apache Drill

63

| David | 12 | 0.0 |

| Esha | 12 | 0.0 |

| Ganga | 12 | 0.0 |

| Leena | 12 | 0.0 |

| Jack | 13 | 0.7777777777777778 |

| Mary | 13 | 0.7777777777777778 |

| Peter | 13 | 0.7777777777777778 |

+--------+------+---------------------+

Rank()

The ORDER BY expression in the OVER clause determines the value.

Query:

0: jdbc:drill:zk=local> select name,age,rank() over (order by age) as percentrank

from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

+--------+------+--------------+

| name | age | percentrank |

+--------+------+--------------+

| Adam | 12 | 1 |

| Amit | 12 | 1 |

| Bob | 12 | 1 |

| David | 12 | 1 |

| Esha | 12 | 1 |

| Ganga | 12 | 1 |

| Leena | 12 | 1 |

| Jack | 13 | 8 |

| Mary | 13 | 8 |

| Peter | 13 | 8 |

+--------+------+--------------+

Apache Drill

64

Row_number()

The ORDER BY expression in the OVER clause determines the number. Each value is ordered

within its partition. Rows with equal values for the ORDER BY expressions receive different row

numbers non-deterministically.

Query:

select *,row_number() over (order by age) as rownumber from

dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+------------+

| ID | name | age | gender | standard | mark1 | mark2 | mark3 | addr

| pincode | rownumber |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+------------+

| 001 | Adam | 12 | male | six | 70 | 50 | 60 | 23 new

street | 111222 | 1 |

| 002 | Amit | 12 | male | six | 40 | 50 | 40 | 12 old

street | 111222 | 2 |

| 003 | Bob | 12 | male | six | 60 | 80 | 70 | 10 cross

street | 111222 | 3 |

| 004 | David | 12 | male | six | 50 | 70 | 70 | 15 express

avenue | 111222 | 4 |

| 005 | Esha | 12 | female | six | 70 | 60 | 65 | 20 garden

street | 111222 | 5 |

| 006 | Ganga | 12 | female | six | 100 | 95 | 98 | 25 north

street | 111222 | 6 |

| 008 | Leena | 12 | female | six | 90 | 85 | 95 | 24 south

street | 111222 | 7 |

| 007 | Jack | 13 | male | six | 55 | 45 | 45 | 2 park

street | 111222 | 8 |

| 009 | Mary | 13 | female | six | 75 | 85 | 90 | 5 west

street | 111222 | 9 |

| 010 | Peter | 13 | female | six | 80 | 85 | 88 | 16 park

avenue | 111222 | 10 |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+------------+

Apache Drill

65

In this chapter, we will discuss in detail about which all composite data types does Apache Drill

supports.

 Array - An array is a repeated list of values. A value in an array can be a scalar type,

such as string or int, or an array can be a complex type, such as a map or another

array.

 Map - A map is a set of name/value pairs. A value in a map can be a scalar type,

such as string or int, or a complex type, such as an array or another map.

Apache Drill uses map and array data types internally for reading complex and nested data

structures from data sources.

FLATTEN

FLATTEN separates the elements in a repeated field into individual records.

Syntax:

FLATTEN(x)

Where,

x - JSON array.

Create a JSON file named “array.json” as shown in the following program.

{

"num1" : 10,

"num2" : [10,20,30],

"num3" : " simple json array",

"num4" : 50.5

}

Now we can execute this query in Drill.

The following program shows the query for this function:

0: jdbc:drill:zk=local> select *,flatten(num2) as flatten from

dfs.`/Users/../workspace/Drill-samples/array.json`;

8. Apache Drill – Querying Complex Data

Apache Drill

66

Result:

num1 num2 num3 num4 flatten

10 [10,20,30] simple json array 50.5 10

10 [10,20,30] simple json array 50.5 20

10 [10,20,30] simple json array 50.5 30

KVGEN

This function returns a list of the keys that exist in the map.

Syntax:

KVGEN(column name)

Create a simple JSON map file named “student_map” as shown in the following program.

{

"student_ID" : {

"001" : "Adam",

"002" : "Amit"

 }

}

{

"student_ID" : {

"003" : "Bob",

"004" : "David"

 }

}

The following program shows the query for this function:

0: jdbc:drill:zk=local> select kvgen(student_ID) from dfs.`/Users/../workspace/Drill-

samples/student_map.json`;

Result:

EXPR$0

[{"key":"001","value":"Adam"},{"key":"002","value":"Amit"}]

[{“key":"003","value":"Bob"},{"key":"004","value":"David"}]

Apache Drill

67

REPEATED_COUNT

This function counts the values in an array.

Syntax:

REPEATED_COUNT (array)

The following program shows the query for this function:

0: jdbc:drill:zk=local> select REPEATED_COUNT(num2) from

dfs.`/Users/../workspace/Drill-samples/array.json`;

Result:

EXPR$0

3

REPEATED CONTAINS

Searches for a keyword in an array. If the keyword is present in an array, the result will be true

otherwise false.

Syntax:

REPEATED_CONTAINS(array_name, keyword)

The array_name is a simple array. The following program shows the query for this function:

0: jdbc:drill:zk=local> select REPEATED_CONTAINS(num2,10) from

dfs.`/Users/../workspace/Drill-samples/array.json`;

Result:

true

Query:

0: jdbc:drill:zk=local> select REPEATED_CONTAINS(num2,40) from

dfs.`/Users/deiva/workspace/Drill-samples/array.json`;

Result:

false

Apache Drill

68

This section will cover Data definition statements. Let’s go through each of these commands in

detail.

Create Statement

You can create tables in Apache Drill by using the following two CTAS commands.

Method 1

Syntax:

CREATE TABLE name [(column list)] AS query;

Where,

Query - select statement.

Method 2

Syntax:

CREATE TABLE name [(<column list>)] [PARTITION BY (<column_name> [, ...])]

AS <select statement>

Where,

 name - unique directory name

 column list - optional list of column names or aliases in the new table.

 PARTITION BY - partitions the data by the first column_name

To create a table, you should adhere to the following steps:

 Set the workspace to a writable workspace.

 You can only create new tables in df.tmp workspace. You cannot create tables using

storage plugins, such as Hive and HBase.

For example:

"tmp": {

 "location": "/tmp",

 "writable": true,

 }

9. Apache Drill – Data Definition Statements

Apache Drill

69

Example Query:

0: jdbc:drill:zk=local> use dfs.tmp;

Result:

+-------+--------------------------------------+

| ok | summary |

+-------+--------------------------------------+

| true | Default schema changed to [dfs.tmp] |

+-------+--------------------------------------+

Query:

0: jdbc:drill:zk=local> create table students as select * from

dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

+-----------+----------------------------+

| Fragment | Number of records written |

+-----------+----------------------------+

| 0_0 | 10 |

+-----------+----------------------------+

To view records –

0: jdbc:drill:zk=local> select * from students;

Result:

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

| ID | name | age | gender | standard | mark1 | mark2 | mark3 | addr

| pincode |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

| 001 | Adam | 12 | male | six | 70 | 50 | 60 | 23 new

street | 111222 |

| 002 | Amit | 12 | male | six | 40 | 50 | 40 | 12 old

street | 111222 |

| 003 | Bob | 12 | male | six | 60 | 80 | 70 | 10 cross

street | 111222 |

Apache Drill

70

| 004 | David | 12 | male | six | 50 | 70 | 70 | 15 express

avenue | 111222 |

| 005 | Esha | 12 | female | six | 70 | 60 | 65 | 20 garden

street | 111222 |

| 006 | Ganga | 12 | female | six | 100 | 95 | 98 | 25 north

street | 111222 |

| 007 | Jack | 13 | male | six | 55 | 45 | 45 | 2 park

street | 111222 |

| 008 | Leena | 12 | female | six | 90 | 85 | 95 | 24 south

street | 111222 |

| 009 | Mary | 13 | female | six | 75 | 85 | 90 | 5 west

street | 111222 |

| 010 | Peter | 13 | female | six | 80 | 85 | 88 | 16 park

avenue | 111222 |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

The following program shows the query for this function:

0: jdbc:drill:zk=local> create table student_new partition by (gender) as select *

from dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

+-----------+----------------------------+

| Fragment | Number of records written |

+-----------+----------------------------+

| 0_0 | 10 |

+-----------+----------------------------+

To view the records of the table –

0: jdbc:drill:zk=local> select * from student_new;

Result:

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

| ID | name | age | gender | standard | mark1 | mark2 | mark3 | addr

| pincode |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

Apache Drill

71

| 005 | Esha | 12 | female | six | 70 | 60 | 65 | 20 garden

street | 111222 |

| 006 | Ganga | 12 | female | six | 100 | 95 | 98 | 25 north

street | 111222 |

| 008 | Leena | 12 | female | six | 90 | 85 | 95 | 24 south

street | 111222 |

| 009 | Mary | 13 | female | six | 75 | 85 | 90 | 5 west

street | 111222 |

| 010 | Peter | 13 | female | six | 80 | 85 | 88 | 16 park

avenue | 111222 |

| 001 | Adam | 12 | male | six | 70 | 50 | 60 | 23 new

street | 111222 |

| 002 | Amit | 12 | male | six | 40 | 50 | 40 | 12 old

street | 111222 |

| 003 | Bob | 12 | male | six | 60 | 80 | 70 | 10 cross

street | 111222 |

| 004 | David | 12 | male | six | 50 | 70 | 70 | 15 express

avenue | 111222 |

| 007 | Jack | 13 | male | six | 55 | 45 | 45 | 2 park

street | 111222 |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

Here the table records are partitioned by gender.

Alter Statement

The ALTER SYSTEM command permanently changes a system setting.

Syntax:

ALTER SYSTEM SET `option_name` = value;

To reset the system settings, use the following syntax.

ALTER SYSTEM RESET `option_name`;

ALTER SYSTEM RESET ALL;

Query:

Here is the sample query that enables the Decimal data type –

0: jdbc:drill:zk=local> ALTER SYSTEM SET `planner.enable_decimal_data_type` = true;

Apache Drill

72

Result:

+-------+--+

| ok | summary |

+-------+--+

| true | planner.enable_decimal_data_type updated. |

+-------+--+

By default, Apache Drill disables the decimal data type. To reset all the changes, you will need

to key-in the following command –

0: jdbc:drill:zk=local> ALTER SYSTEM RESET all;

Result:

+-------+---------------+

| ok | summary |

+-------+---------------+

| true | ALL updated. |

+-------+---------------+

Create View Statement

The CREATE VIEW command creates a virtual structure for the result set of a stored query. A

view can combine data from multiple underlying data sources and provide the illusion that all of

the data is from one source.

Syntax:

CREATE [OR REPLACE] VIEW [workspace.]view_name [(column_name [, ...])] AS query;

Where,

 workspace - The location where you want the view to exist. By default, the view can be

created in “dfs.tmp”.

 view_name - The name that you give to the view. This view must have a unique name.

Query:

0: jdbc:drill:zk=local> create view student_view as select * from

dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Apache Drill

73

Result:

+-------+--+

| ok | summary |

+-------+--+

| true | View 'student_view' created successfully in 'dfs.tmp' schema |

+-------+--+

To see the records, you can use the following query.

0: jdbc:drill:zk=local> select * from student_view;

Result:

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

| ID | name | age | gender | standard | mark1 | mark2 | mark3 | addr

| pincode |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

| 001 | Adam | 12 | male | six | 70 | 50 | 60 | 23 new

street | 111222 |

| 002 | Amit | 12 | male | six | 40 | 50 | 40 | 12 old

street | 111222 |

| 003 | Bob | 12 | male | six | 60 | 80 | 70 | 10 cross

street | 111222 |

| 004 | David | 12 | male | six | 50 | 70 | 70 | 15 express

avenue | 111222 |

| 005 | Esha | 12 | female | six | 70 | 60 | 65 | 20 garden

street | 111222 |

| 006 | Ganga | 12 | female | six | 100 | 95 | 98 | 25 north

street | 111222 |

| 007 | Jack | 13 | male | six | 55 | 45 | 45 | 2 park

street | 111222 |

| 008 | Leena | 12 | female | six | 90 | 85 | 95 | 24 south

street | 111222 |

| 009 | Mary | 13 | female | six | 75 | 85 | 90 | 5 west

street | 111222 |

| 010 | Peter | 13 | female | six | 80 | 85 | 88 | 16 park

avenue | 111222 |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

Apache Drill

74

Drop Table

The drop table statement is used to drop the table from a DFS storage plugin.

Syntax:

DROP TABLE [workspace.]name;

Query:

0: jdbc:drill:zk=local> drop table student_new;

Result:

+-------+------------------------------+

| ok | summary |

+-------+------------------------------+

| true | Table [student_new] dropped |

+-------+------------------------------+

Drop View

Similar to the table, a view can be dropped by using the following command –

0: jdbc:drill:zk=local> drop view student_view;

Result:

+-------+---+

| ok | summary |

+-------+---+

| true | View [student_view] deleted successfully from schema [dfs.tmp]. |

+-------+---+

Apache Drill

75

In this chapter, we will learn about how Apache Drill allows us to query plain text files such as

CSV, TSV and PSV.

CSV File

Create a CSV file named “students.csv” as shown in the following program:

001,Adam,23 new street

002,Amit,12 old street

003,Bob,10 cross street

004,David,15 express avenue

005,Esha,20 garden street

006,Ganga,25 north street

007,Jack,2 park street

008,Leena,24 south street

009,Mary,5 west street

010,Peter,16 park avenue

After saving the file, you can return to the terminal again and type the following query to view

that CSV file.

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/students.csv`;

Result:

+--------------------------------------+

| columns |

+--------------------------------------+

| ["001","Adam","23 new street"] |

| ["002","Amit","12 old street"] |

| ["003","Bob","10 cross street"] |

| ["004","David","15 express avenue"] |

| ["005","Esha","20 garden street"] |

| ["006","Ganga","25 north street"] |

| ["007","Jack","2 park street"] |

| ["008","Leena","24 south street"] |

10. Apache Drill – Querying Data

Apache Drill

76

| ["009","Mary","5 west street"] |

| ["010","Peter","16 park avenue"] |

+—————————————————————————————————————-+

From this output we can conclude that, Apache Drill recognizes each row as an array of values

and returns one column for each row.

Finding Columns[n]

The COLUMNS[n] syntax is used to return CSV rows in a column by the column format, where

n starts from 0 to n-1.

Query:

0: jdbc:drill:zk=local>select columns[0],columns[1],columns[2] from

dfs.`/Users/../workspace/Drill-samples/students.csv`;

Result:

+---------+---------+--------------------+

| EXPR$0 | EXPR$1 | EXPR$2 |

+---------+---------+--------------------+

| 001 | Adam | 23 new street |

| 002 | Amit | 12 old street |

| 003 | Bob | 10 cross street |

| 004 | David | 15 express avenue |

| 005 | Esha | 20 garden street |

| 006 | Ganga | 25 north street |

| 007 | Jack | 2 park street |

| 008 | Leena | 24 south street |

| 009 | Mary | 5 west street |

| 010 | Peter | 16 park avenue |

+---------+---------+--------------------+

If you want to assign an alias name for columns, use the following query :

0: jdbc:drill:zk=local>select columns[0] as ID,columns[1] as Name,columns[2] as

Address from dfs.`/Users/../workspace/Drill-samples/students.csv`;

Apache Drill

77

Result:

+------+--------+--------------------+

| ID | Name | Address |

+------+--------+--------------------+

| 001 | Adam | 23 new street |

| 002 | Amit | 12 old street |

| 003 | Bob | 10 cross street |

| 004 | David | 15 express avenue |

| 005 | Esha | 20 garden street |

| 006 | Ganga | 25 north street |

| 007 | Jack | 2 park street |

| 008 | Leena | 24 south street |

| 009 | Mary | 5 west street |

| 010 | Peter | 16 park avenue |

+------+--------+--------------------+

Create Table

Like in JSON, you can create table for plain text files. Following is a sample query:

0: jdbc:drill:zk=local> create table CSV as select * from

dfs.`/Users/../workspace/Drill-samples/students.csv`;

Result:

+-----------+----------------------------+

| Fragment | Number of records written |

+-----------+----------------------------+

| 0_0 | 10 |

+-----------+----------------------------+

To view the file contents, type the following query:

0: jdbc:drill:zk=local> select * from CSV;

Apache Drill

78

Result:

+--------------------------------------+

| columns |

+--------------------------------------+

| ["001","Adam","23 new street"] |

| ["002","Amit","12 old street"] |

| ["003","Bob","10 cross street"] |

| ["004","David","15 express avenue"] |

| ["005","Esha","20 garden street"] |

| ["006","Ganga","25 north street"] |

| ["007","Jack","2 park street"] |

| ["008","Leena","24 south street"] |

| ["009","Mary","5 west street"] |

| ["010","Peter","16 park avenue"] |

+--------------------------------------+

TSV File

Create a TSV file named “students.tsv” as shown in the following program:

ID Name Age Standard Remark

001 id "name is Adam" "for the age of 12" "studying sixth std" "Having good marks"

Now we can execute this TSV file in Apache Drill by using the following query:

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/student.tsv`;

Result:

+--

--------+

| columns

|

+--

--------+

| ["ID","Name","Age","Standard","Marks","Addr","pincode"]

|

Apache Drill

79

| ["001 id ","name is adam","for the age of 12","studying sxith std\" \"Having good

marks"] |

+--

--------+

Create Table

As shown in the CSV file above, you can also create a table for the TSV file.

Query:

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/student.tsv`;

Result:

+-----------+----------------------------+

| Fragment | Number of records written |

+-----------+----------------------------+

| 0_0 | 2 |

+-----------+----------------------------+

1 row selected (0.347 seconds)

Query:

0: jdbc:drill:zk=local> select * from TSV;

Result:

+--

--------+

| columns

|

+--

--------+

| ["ID","Name","Age","Standard","Marks","Addr","pincode"]

|

| ["001 id ","name is adam","for the age of 12","studying sxith std\" \"Having good

marks"] |

+--

--------+

Apache Drill

80

PSV (Pipe Separated Value) File

Create a psv file named “sample.tbl” as shown in the following program.

Tutorialspoint|Apache|Drill|article

Now we can execute this PSV file in Drill,

Query:

0: jdbc:drill:zk=local> select * from dfs.`/Users/../workspace/Drill-

samples/sample.tbl`;

Result:

+--+

| columns |

+--+

| ["Tutorialspoint","Apache","Drill","article"] |

+--+

Now, similar to the CSV and TSV files, try for yourself to create a table for PSV file.

Apache Drill

81

HBase is a distributed column-oriented database built on top of the Hadoop file system. It is a

part of the Hadoop ecosystem that provides random real-time read/write access to data in the

Hadoop File System. One can store the data in HDFS either directly or through HBase. The

following steps are used to query HBase data in Apache Drill.

How to Start Hadoop and HBase?

Step 1: Prerequisites

Before moving on to querying HBase data, you must need to install the following:

 Java installed version 1.7 or greater

 Hadoop

 HBase

Step 2: Enable Storage Plugin

After successful installation navigate to Apache Drill web console and select the storage menu

option as shown in the following screenshot.

11. Apache Drill – Querying Data Using HBase

Apache Drill

82

Then choose HBase Enable option, after that go to the update option and now you will see the

response as shown in the following program.

{

 "type": "hbase",

 "config": {

 "hbase.zookeeper.quorum": "localhost",

 "hbase.zookeeper.property.clientPort": "2181"

 },

 "size.calculator.enabled": false,

 "enabled": true

}

Here the config settings “hbase.zookeeper.property.clientPort” : “2181” indicates ZooKeeper

port id. In the embedded mode, it will automatically assign it to the ZooKeeper, but in the

distributed mode, you must specify the ZooKeeper port id’s separately. Now, HBase plugin is

enabled in Apache Drill.

Step 3: Start Hadoop and HBase

After enabling the plugin, first start your Hadoop server then start HBase.

Creating a Table Using HBase Shell

After Hadoop and HBase has been started, you can start the HBase interactive shell using “hbase

shell” command as shown in the following query.

/bin/hbase shell

Then you will see the response as shown in the following program.

hbase(main):001:0>

To query HBase, you should complete the following steps:

Create a Table:

Pipe the following commands to the HBase shell to create a “customer” table.

hbase(main):001:0> create 'customers','account','address'

Load Data into the Table:

Create a simple text file named “hbase-customers.txt” as shown in the following program.

put 'customers','Alice','account:name','Alice'

put 'customers','Alice','address:street','123 Ballmer Av'

Apache Drill

83

put 'customers','Alice','address:zipcode','12345'

put 'customers','Alice','address:state','CA'

put 'customers','Bob','account:name','Bob'

put 'customers','Bob','address:street','1 Infinite Loop'

put 'customers','Bob','address:zipcode','12345'

put 'customers','Bob','address:state','CA'

put 'customers','Frank','account:name','Frank'

put 'customers','Frank','address:street','435 Walker Ct'

put 'customers','Frank','address:zipcode','12345'

put 'customers','Frank','address:state','CA'

put 'customers','Mary','account:name','Mary'

put 'customers','Mary','address:street','56 Southern Pkwy'

put 'customers','Mary','address:zipcode','12345'

put 'customers','Mary','address:state','CA'

Now, issue the following command in hbase shell to load the data into a table.

hbase(main):001:0> cat ../drill_sample/hbase/hbase-customers.txt | bin/hbase shell

Query:

Now switch to Apache Drill shell and issue the following command.

0: jdbc:drill:zk=local> select * from hbase.customers;

Result:

+-------------+----------------------+---

-----------------------------+

| row_key | account | address

|

+-------------+----------------------+---

-----------------------------+

| 416C696365 | {"name":"QWxpY2U="} |

{"state":"Q0E=","street":"MTIzIEJhbGxtZXIgQXY=","zipcode":"MTIzNDU="} |

| 426F62 | {"name":"Qm9i"} |

{"state":"Q0E=","street":"MSBJbmZpbml0ZSBMb29w","zipcode":"MTIzNDU="} |

| 4672616E6B | {"name":"RnJhbms="} |

{"state":"Q0E=","street":"NDM1IFdhbGtlciBDdA==","zipcode":"MTIzNDU="} |

Apache Drill

84

| 4D617279 | {"name":"TWFyeQ=="} |

{"state":"Q0E=","street":"NTYgU291dGhlcm4gUGt3eQ==","zipcode":"MTIzNDU="} |

+-------------+----------------------+---

-----------------------------+

The output will be 4 rows selected in 1.211 seconds.

Apache Drill fetches the HBase data as a binary format, which we can convert into readable data

using CONVERT_FROM function available in drill. Check and use the following query to get

proper data from drill.

0: jdbc:drill:zk=local> SELECT CONVERT_FROM(row_key, 'UTF8') AS customer_id,

. > CONVERT_FROM(customers.account.name, 'UTF8') AS

customers_name,

. > CONVERT_FROM(customers.address.state, 'UTF8') AS

customers_state,

. > CONVERT_FROM(customers.address.street, 'UTF8') AS

customers_street,

. > CONVERT_FROM(customers.address.zipcode, 'UTF8') AS

customers_zipcode

. > FROM hbase.customers;

Result:

+--------------+-----------------+------------------+-------------------+------------

--------+

| customer_id | customers_name | customers_state | customers_street |

customers_zipcode |

+--------------+-----------------+------------------+-------------------+------------

--------+

| Alice | Alice | CA | 123 Ballmer Av | 12345

|

| Bob | Bob | CA | 1 Infinite Loop | 12345

|

| Frank | Frank | CA | 435 Walker Ct | 12345

|

| Mary | Mary | CA | 56 Southern Pkwy | 12345

|

+--------------+-----------------+------------------+-------------------+------------

--------+

Apache Drill

85

Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on

top of Hadoop to summarize Big Data, and makes querying and analyzing easy. Hive stores

schema in a database and processed data into HDFS.

How to Query Hive Data in Apache Drill?

Following are the steps that are used to query Hive data in Apache Drill.

Step 1: Prerequisites

You must need to install the following components first –

 Java installed version 1.7 or greater

 Hadoop

 Hive

 ZooKeeper

Step 2: Start Hadoop, ZooKeeper and Hive

After the installation, start all the services (Hadoop, ZooKeeper and Hive) one by one in a new

terminal.

Step 3: Start Hive metastore

You can start the Hive metastore using the following command –

hive --service metastore

Apache Drill uses Hive metastore service to get hive table’s details.

Step 4: Start Apache Drill in Distributed Mode

To start Drill shell in a distributed mode, you can issue the following command –

bin/drillbit.sh start

Step 5: Enable Storage Plugin

Like HBase, open Apache Drill web console and choose Hive storage plugin enable option then

add the following changes to hive storage plugin “update” option,

{

 "type": "hive",

 "enabled": false,

12. Apache Drill – Querying Data Using Hive

Apache Drill

86

 "configProps": {

 "hive.metastore.uris": "thrift://localhost:9083",

 "hive.metastore.sasl.enabled": "false",

 "fs.default.name": "hdfs://localhost/"

 }

}

Step 6: Create a Table

Create a table in hive shell using the following command.

create table customers (Name string, address string) row format delimited fields

terminated by ',' stored as textfile;

Step 7: Load Data

Load data in the hive shell using the following command.

load data local inpath '/path/to/file/customers.csv' overwrite into table customers;

Step 8: Query Data in Drill

You can query data in the hive shell using the following command.

select * from hive.`customers`;

Result:

'Alice','123 Ballmer Av'

'Bob','1 Infinite Loop'

'Frank','435 Walker Ct'

'Mary','56 Southern Pkwy'

Apache Drill

87

Parquet is a columnar storage format. Apache Drill uses Parquet format for easy, fast and

efficient access.

Create a Table

Before moving to create a table in parquet, you must change the Drill storage format using the

following command.

0: jdbc:drill:zk=local> alter session set `store.format`= 'parquet';

Result:

+-------+------------------------+

| ok | summary |

+-------+------------------------+

| true | store.format updated. |

+———+------------------------+

You can create a table using the following syntax.

0: jdbc:drill:zk=local> create table dfs.tmp.`/Users/../workspace` as select * from

dfs.`/Users/../workspace/Drill-samples/student_list.json`;

Result:

+-----------+----------------------------+

| Fragment | Number of records written |

+-----------+----------------------------+

| 0_0 | 10 |

+-----------+----------------------------+

To see the table contents, type-in the following query –

0: jdbc:drill:zk=local> select * from dfs.tmp.`/Users/../workspace`;

13. Apache Drill – Querying Parquet Files

Apache Drill

88

Result:

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

| ID | name | age | gender | standard | mark1 | mark2 | mark3 | addr

| pincode |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------+

| 001 | Adam | 12 | male | six | 70 | 50 | 60 | 23 new

street | 111222 |

| 002 | Amit | 12 | male | six | 40 | 50 | 40 | 12 old

street | 111222 |

| 003 | Bob | 12 | male | six | 60 | 80 | 70 | 10 cross

street | 111222 |

| 004 | David | 12 | male | six | 50 | 70 | 70 | 15 express

avenue | 111222 |

| 005 | Esha | 12 | female | six | 70 | 60 | 65 | 20 garden

street | 111222 |

| 006 | Ganga | 12 | female | six | 100 | 95 | 98 | 25 north

street | 111222 |

| 007 | Jack | 13 | male | six | 55 | 45 | 45 | 2 park

street | 111222 |

| 008 | Leena | 12 | female | six | 90 | 85 | 95 | 24 south

street | 111222 |

| 009 | Mary | 13 | female | six | 75 | 85 | 90 | 5 west

street | 111222 |

| 010 | Peter | 13 | female | six | 80 | 85 | 88 | 16 park

avenue | 111222 |

+------+--------+------+---------+-----------+--------+--------+--------+------------

--------+----------

Apache Drill

89

Apache Drill provides JDBC interface to connect and execute queries. We can use JDBC interface

in JDBC based SQL Client like “SquirreL SQL Client” and work on all the features of drill. We can

use the same JDBC interface to connect drill from our Java based application. Let us see how to

connect drill and execute commands in our sample Java application using JDBC interface in this

section.

Java Application

Apache Drill provides a JDBC driver as a single jar file and it is available @

/path/to/drill/jars/jdbc-driver/drill-jdbc-all-1.6.0.jar. The connection string to connect

the drill is of the following format –

jdbc:drill:zk=<zk_host>:<zk_port>

jdbc:drill:zk=<zk_host>:<zk_port>/<zk_drill_path>/<zk_drillbit_name

jdbc:drill:zk=<zk_host>:<zk_port>/<zk_drill_path>/<zk_drillbit_name;schema=hive

Considering ZooKeeper is installed in the local system, the port configured is 2181, the drill path

is “drill” and drillbit name is “drillbits1”, the connection string may be among the following

commands.

jdbc:drill:zk=localhost:2181

jdbc:drill:zk=localhost:2181/drill/dillbits1

jdbc:drill:zk=localhost:2181/drill/dillbits1;schema=hive

if the drill is installed in a distributed mode, we can replace the “localhost” with the list of drill

installed system IP/name as shown in the following command.

jdbc:drill:zk=1.2.3.4:2181,5.6.7.8:2181/drill/dillbits1;schema=hive

The connection to drill is just like any other JDBC interface. Now, create a new maven project

with "com.tutorialspoint.drill.samples" as the package name and “connect-drill” as the

application name.

Then, update the following code in “App.java” file. The coding is simple and self-explanatory.

The query used in the application is the default JSON file packaged into drill.

Coding:

package com.tutorialspoint.drill.samples;

import java.sql.*;

import java.lang.*;

14. Apache Drill – JDBC Interface

Apache Drill

90

public class App

{

 public static void main(String[] args) throws SQLException,

ClassNotFoundException

 {

 // load the JDBC driver

 Class.forName("org.apache.drill.jdbc.Driver");

 // Connect the drill using zookeeper drill path

 Connection connection

=DriverManager.getConnection("jdbc:drill:zk=localhost:2181/drill/drillbits1");

 // Query drill

 Statement st = connection.createStatement();

 ResultSet rs = st.executeQuery("SELECT * from cp.`employee.json` LIMIT 3");

 // Fetch and show the result

 while(rs.next()){

 System.out.println("Name: " + rs.getString(2));

 }

 }

}

Now add following drill dependency tag to “pom.xml” file.

<dependency>

 <groupId>org.apache.drill.exec</groupId>

 <artifactId>drill-jdbc-all</artifactId>

 <version>1.1.0</version>

</dependency>

Now, you can compile the application by using the following command.

mvn clean package

Once the application is compiled, execute it using the following command.

java -cp target/connect-drill-1.0.jar:/path/to/apache-drill-1.6.0/jars/jdbc-

driver/drill-jdbc-all-1.6.0.jar com.tutorialspoint.drill.samples.App

Apache Drill

91

The output of this application list is the name of the first three employees available in

“employee.json” file and it will show in the console as shown in the following program.

Result:

Name: Sheri Nowmer

Name: Derrick Whelply

Name: Michael Spence

Apache Drill

92

Apache Drill has an option to create custom functions. These custom functions are reusable SQL

functions that you develop in Java to encapsulate the code that processes column values during

a query.

Custom functions can perform calculations and transformations that the built-in SQL operators

and functions do not provide. Custom functions are called from within a SQL statement, like a

regular function, and return a single value. Apache Drill has custom aggregate function as well

and it is still evolving. Let us see how to create a simple custom function in this section.

IsPass Custom Function

Apache Drill provides a simple interface, “DrillSimpleFunc”, which we have to implement to

create a new custom function. The “DrillSimpleFunc” interface has two methods, “setup” and

“eval”. The “setup” method is to initialize necessary variables. “eval” method is actual method

used to incorporate the custom function logic. The “eval” method has certain attributes to set

function name, input and output variables.

Apache Drill provide a list of datatype to hold input and output variable like BitHolder,

VarCharHolder, BigIntHolder, IntHolder, etc. We can use these datatypes to pass on information

between drill and custom function. Now, let us create a new application using Maven with

“com.tutorialspoint.drill.function” as the package name and “is-pass” as the library name.

mvn archetype:generate -DgroupId=com.tutorialspoint.drill.function -DartifactId=is-

pass -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

Here,

 -DgroupId - package name

 -DartifactId - argument

Then remove the App.java file and create new java file and name it as “IsPassFunc.java”. This

java file will hold out custom function logic. The custom function logic is to check whether the

particular student is secured pass in a particular subject by checking his mark with cutoff mark.

The student mark will be first input and it will change according to the record.

The second input is the cutoff mark, which will be a constant and does not change for different

records. The custom function will implement “DrillSimpleFunc” interface and just check whether

the given input is higher than the cutoff. If the input is higher, then if returns true, otherwise

false.

15. Apache Drill – Custom Function

Apache Drill

93

The coding is as follows –

Coding: IsPassFunc.java

package com.tutorialspoint.drill.function;

import com.google.common.base.Strings;

import io.netty.buffer.DrillBuf;

import org.apache.drill.exec.expr.DrillSimpleFunc;

import org.apache.drill.exec.expr.annotations.FunctionTemplate;

import org.apache.drill.exec.expr.annotations.Output;

import org.apache.drill.exec.expr.annotations.Param;

import org.apache.drill.exec.expr.holders.BigIntHolder;

import org.apache.drill.exec.expr.holders.BitHolder;

import org.apache.drill.exec.expr.holders.NullableVarCharHolder;

import org.apache.drill.exec.expr.holders.VarCharHolder;

import javax.inject.Inject;

// name of the function to be used in drill

@FunctionTemplate(

 name = “ispass",

 scope = FunctionTemplate.FunctionScope.SIMPLE,

 nulls = FunctionTemplate.NullHandling.NULL_IF_NULL

)

public class IsPassFunc implements DrillSimpleFunc {

 // input - student mark

 @Param

 BigIntHolder input;

 // input - cutoff mark, constant value

 @Param(constant = true)

 BigIntHolder inputCutOff;

 // output - true / false

 @Output

Apache Drill

94

 BitHolder out;

 public void setup() {

 }

 // main logic of the function. checks mark with cutoff and returns true / false.

 public void eval() {

 int mark = (int) input.value;

 int cutOffMark = (int) inputCutOff.value;

 if(mark >= cutOffMark)

 out.value = 1;

 else

 out.value = 0;

 }

}

Now, you can create a resource file @ is-pass/src/main/resources/drill-module.conf and

place the following code into it.

drill {

 classpath.scanning {

 base.classes : ${?drill.classpath.scanning.base.classes} [

 com.tutorialspoint.drill.function.IsPassFunc

],

 packages : ${?drill.classpath.scanning.packages} [

 com.tutorialspoint.drill.function

]

 }

}

Apache Drill uses this configuration file to find the custom function class in the jar file. A jar file

can have any number of custom function and it should be properly configured here.

Finally, add the following configuration in “pom.xml” to properly compile the custom function in

maven.

Apache Drill

95

pom.xml

Change the following settings in “pom.xml” file.

<dependencies>

 <dependency>

 <groupId>org.apache.drill.exec</groupId>

 <artifactId>drill-java-exec</artifactId>

 <version>1.1.0</version>

 </dependency>

</dependencies>

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-source-plugin</artifactId>

 <version>2.4</version>

 <executions>

 <execution>

 <id>attach-sources</id>

 <phase>package</phase>

 <goals>

 <goal>jar-no-fork</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.0</version>

 <configuration>

 <verbose>true</verbose>

 <compilerVersion>1.7</compilerVersion>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

 </plugin>

Apache Drill

96

 </plugins>

</build>

After making all the changes, create a package using the following command.

mvn clean package

Maven will create the necessary jars, is-pass-1.0.jar & is-pass-1.0-sources.jar in the

"target" folder. Now, copy the jar files and place it @ /path/to/apache-drill/jars/3rdparty

in all the drill nodes.

After jar files are place properly in all the drillbits, restart all the drillbits, open a new drill shell

and then execute the query as shown in the following program.

select name, ispass(mark1, 35) as is_pass from

dfs.`/Users/../Workspace/drill_sample/student_list.json` limit 3;

Result:

name is_pass

Adam true

Amit true

Bob true

Apache Drill custom functions are simple to create and provides great extension capabilities to

drill query language.

Apache Drill

97

Apache Drill supports many of today's best industrial applications. Some of these contributors

are –

 Oracle

 IBM Netezza

 Clustrix

 Pentaho

Conclusion

Apache Drill is a schema free SQL engine and scales up to 10,000 servers or more to process

petabytes of data and trillions of records in less than a second. Apache Drill uses pure data flow

through the memory and extensible architecture.

16. Apache Drill – Contributors

