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Executive summary 
Imply Data evaluated the performance of Apache Druid and Google BigQuery to 

determine the suitability of each as an enterprise data warehouse (EDW) solution. 

Each solution was evaluated for query performance using the Star Schema 

Benchmark. Further, a price-performance comparison was conducted between 

Apache Druid and Google BigQuery. Tests were designed to conduct a fair and 

repeatable comparison between EDW solutions. All configurations, schema, queries 

and test scripts are available via a GitHub repository.   

 

Key Findings: 

In Star Schema Benchmark query performance tests: 
❑​      ​Apache Druid outperforms Google BigQuery by 321 percent in our testing. 
Total average response time for the query flight in Druid was 6043 ms, 
compared to 19409 ms in BigQuery. 
❑​      ​Apache Druid exhibits a 12x price-performance advantage over Google 
BigQuery. 

 

An EDW is a database, or a collection of databases, that centralizes information 

from multiple sources and applications to make it available for analytics use across 

an entire organization. EDWs have traditionally been housed on-premises, although 

recent years have seen a cloud-adoption surge. The data stored in an EDW can be 

one of a business’s most valuable assets as it represents everything an organization 

knows and tracks across business units related to the functioning of the business, 

and interactions with partners, employees and customers. However, tremendous 

challenges exist related to the organization and structure of data across the 

enterprise, and the ETL process required prior to ingestion by an EDW. Many EDW 

rely on a star schema, one or more fact tables referencing a multitude of dimension 

tables, to accomplish this feat. 
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The Star Schema Benchmark (SSB) is designed to evaluate database system 

performance of star schema data warehouse queries. The schema for SSB is based 

on the TPC-H benchmark, but in a highly modified form. The SSB has been used to 

measure query performance of commercial and open-source database products on 

Linux and Windows since January 2007. Testing using the performance results of 13 

standard SQL queries allows for comparison between products and configurations.  

 

This testing evaluates the suitability of Apache Druid and Google BigQuery for EDW 

workloads in terms of performance and price-performance using SSB. EDW 

workloads are shifting to the cloud and, as a result, a new class of technologies is 

emerging that can provide fast query response times at scale. These solutions load, 

store and analyze large amounts of data at high speed to prove timely business 

insights. New columnar architectures provide microsecond response time at high 

levels of concurrency where traditional EDW struggle. When deployed elastically as 

a service, they enable enterprises to innovate BI and OLAP apps at a more rapid 

pace.   

 

Drawing upon work previously conducted in academia , we ran the SSB queries in 

their standard form and, whenever possible, in an optimized form, and recorded 

results using Apache JMeter to compare performance of Imply Cloud (Apache 

Druid) and Google BigQuery. We relied on standard on-demand BigQuery access to 

process queries via the HTTP API. Please refer to the Testing Methodology section 

of this report for complete details on how we conducted these tests.   

 

Figure 1 shows the overall Star Schema Benchmark test results for Apache Druid 

and Google BigQuery. In our test configurations, Apache Druid outperforms Google 

BigQuery by 321% on the aggregate SSB query flight. Total average response time 
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for the query flight in Druid was 6043 ms, compared to 19409 ms in BigQuery. For 

these tests, lower average response times are better. 

 
 Figure 1. Star Schema Benchmark Test Results (average query response time) for Apache Druid and 

Google BigQuery. For these tests, lower is better. 

 

We conducted a price performance comparison for Apache Druid and Google 

BigQuery. In our testing, we found that Druid outperformed BigQuery by 3.2 times 

(Total Query Time) at a much lower cost. We modeled price-performance of Druid 

to BigQuery using the SSB workload run on an enterprise scale over a month and 

found that Druid has a 12x (11.858x) price-performance advantage over Google 

BigQuery.  
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Figure 2. SSB Price-Performance Comparison: Google BigQuery (Flat-Rate) to Apache Druid 

(Reserved). Google BigQuery Flat-Rate pricing with one year commit is shown against Apache Druid 

pricing on reserved AWS instances with one year and three year commit. Price-performance ratio is 

shown for increasing levels of concurrent queries. 

 

Concurrent queries can be used as an indication of flat-rate monthly cost, while 

queries per month indicates how BigQuery on-demand cost scales with respect to 

the cost of an equivalently performing Druid cluster. 
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Figure 3. SSB Price-Performance Comparison: Google BigQuery (On-Demand) to Apache Druid 

(Reserved). Price-performance ratio is shown for increasing levels of queries per month. 

Testing methodology 

We evaluated the performance of Imply Cloud (Apache Druid) and Google BigQuery 
to determine the suitability of each as an enterprise data warehouse (EDW) 
solution. Testing involved five major steps for each solution: 

1. Provision each solution 
2. Generate and prepare SSB test data 
3. Ingest SSB test data with optimal schema 
4. Optimize SSB test queries 
5. Performance test using Apache JMeter 

We optimized schema and queries following documented best practices for each 
platform. The SSB papers are clear in their vagueness regarding optimization 
ground rules. 
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1. Columns in SSB tables can be compressed by whatever means available in 
the database system used, as long as reported data retrieved by queries has 
the values specified in the original schema. 

2. Any product capability used in one product database design to improve 
performance must be matched in the database design for other products by 
an attempt to use the same type of capability, assuming such a capability 
exists and improves performance. 

3. Materialized Views that pre-join some useful dimension columns with the 
lineorder table are permitted. 

4. Denormalization is not only acceptable, it is considered a standard practice in 
data warehousing. 

5. Queries are designed to select from the lineorder table exactly once (no 
self-joins or subqueries or table queries) to represent “classic” data 
warehouse queries of select from the fact table with restrictions on the data 
table attributes. 

6. Queries are chosen as much as possible to span the tasks performed by an 
analyst, starting broadly and the increasing restrictions through the query 
group. 

7. Variant query forms are allowed. Any alternative SQL form that modifies 
predicate restrictions but retains the same effect on retrieval is fine. 

8. Query cache must be disabled, although OS and hardware level caching may 
not. Caching rules must be documented. 

9. SSB reports must include a scale factor, database product name, version 
number, processor model and number of processors, memory space, disk 
setup, and all other parameters that may impact performance. 

10. Any tuning capability habitually used to improve performance in a database 
product should be adopted for that product. 

11. Published SSB reports can anonymize the products tested, removing 
product-specific tuning details and query plans 

A logical testbed diagram follows. Apache Druid (Imply Cloud) and the JMeter server 
ran on AWS instances, while Google BigQuery was tested with JMeter running on 
GCP. Wherever possible, instances used for JMeter load generation were deployed 
into the same cloud provider region or zone to minimize network latency.  
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Figure 4. Logical testbed diagram for SSB performance testing. Apache Druid was 
deployed in AWS. 

We tested on Apache Druid unmodified from Imply Cloud. Google BigQuery is 
available as a service, making provisioning and configuration unnecessary. We 
followed published best practices to optimize for query response time throughout 
each stage of the test process. 

Apache Druid 

Apache Druid​ is an open source distributed data store. Druid’s core design 
combines ideas from ​data warehouses​, ​time series databases​, and ​search systems 
to create a unified system for real-time analytics for a broad range of ​use cases​. 
Druid merges key characteristics of each of the 3 systems into its ingestion layer, 
storage format, querying layer, and core architecture. 

●  Testing was conducted on Imply Cloud using Imply version 3.3.0.1 
(Apache Druid 0.18.1) 
●  The following hardware configurations were used: 

▪​        ​Data Servers: 3 @ i3.2xlarge (8 vCPU, 61 GB memory, 1.9 TB 
NVMe SSD storage each) 
▪​        ​Query Servers: 2 @ m5d.large (2 vCPU, 8 GB memory each) 
▪​        ​Master Server: 1 @ m5.large (2 vCPU, 8 GB memory) 
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Google BigQuery 

Google BigQuery​ is a cloud-based, fully managed, serverless enterprise data 
warehouse that supports analytics over petabyte-scale data. It delivers high-speed 
analysis of large data sets as a service. BigQuery scales its use of hardware up or 
down to maximize performance of each query, adding and removing compute and 
storage resources as needed.  

BigQuery is very easy to use via a simple browser-based GUI, although it lacks 
indexes or column constraints. No system tuning is possible. Google dynamically 
allocates storage and compute resources. Customers pay for the amount of data 
they query and store. Customers can pre-purchase flat-rate computation “slots” in 
increments of $10,000 per month per 500 computer units, or commit to a year for 
$8,500 per month. 

Ingestion was not as smooth as we were led to believe it would be, although once 
configured, it was fast. Our data transfer job for the ORC test file required entering 
location on our S3 bucket as a path containing wildcards in a box that stated that 
wildcards are not valid input. Google claims that data with an unknown schema can 
be loaded automatically, but we could not get this feature to work.  

Apache Jmeter and instances 

The​ ​Apache JMeter™​ application is open source software, a 100% pure Java 
application designed to load test functional behavior and measure performance. It 
was originally designed for testing web applications but has since expanded to 
other test functions. JMeter Version 5.2.1 was used for this testing. 

JMeter was deployed as follows: 

●​       ​To evaluate Druid performance, JMeter was installed and run from the 
command line of the primary Query server. 
●​       ​To evaluate BigQuery performance, JMeter was deployed onto a 
e2-standard-4 (4 vCPU, 16GB memory) in the us-east1 zone. 

Data generation and preparation 
We generated 600 million rows (approximately 100GB) of test data using SSB’s 
dbgen downloaded from ​ ​https://github.com/lemire/StarSchemaBenchmark​ and 
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executed locally. The test files generated included the fact table lineorder.tbl, and 
the dimension tables customer.tbl, part.tbl, supplier.tbl, and date.tbl. We executed 
dbgen with a Scale Factor of 1 (SF=1) to generate a lineorder table with 6,000,000 
rows. 

The schema of the SSB is based on TPC-H, as are the queries. Denormalization is 
standard in data warehousing and makes many joins unnecessary in common 
queries. Columns are classified as identifiers (any data type, but unique values for 
what it is identifying), text (fixed or variable length), and numeric (whole numbers, 
not floating point.)  Numeric identifiers must have unique values and have numeric 
interpretations which provide unique numbers. Text is in 8-bit ASCII. 

 

Figure 5. SSB Schema 

We denormalized the SSB data to create a single flat file using Amazon Athena (Hive). 
We partitioned the denormalized data by month. Athena DML is contained in a​ ​Github 
repository​. 

We saved the denormalized data to an S3 bucket in ORC and parquet formats. 

Data ingestion 
Prior to querying data, we had to create tables and ingest the denormalized SSB 
data. We created tables with the foreknowledge that dbgen generates patterns of 
data, especially so with respect to dates. Data falls roughly into equal amounts of 
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rows per day and month. This worked out conveniently when planning for optimal 
table structure and queries. We partitioned on month in the source data and saved 
it in ORC for Druid and BigQuery. 

In Druid’s case, we installed the druid-ORC extension and then ingested partitioned 
source data in ORC format. Data was partitioned on month and ingested by parsing 
lo_orderdate into 2,607 segments with an average segment size of 75.07 MB and a 
total size of 195.70 GB. See this​ ​Github repository​ for Druid ingestion and tuning 
specs.   

In BigQuery we performed the following steps: 

1.​      ​Create a table 
2.​      ​Run a data transfer job on our ORC test data from S3 and insert 
3.​      ​Create another table with an additional column ​f0_​ so data can be 
partitioned by date 

See this​ ​Github repository​ for BigQuery DDL.  

Query optimization 
SSB’s classic data warehouse queries select from the line order table exactly once 
(no self-joins or subqueries), with predicate restrictions on dimension table 
attributes. Benchmark queries are intended to span the tasks performed by 
common Star Schema queries used in commercial data warehouse systems. 

Both platforms tested support SQL. We followed the same general procedure to 
optimize queries for each platform, starting with the published generic SSB SQL 
queries and optimizing them to make use of platform-specific optimizations. 

Apache Druid supports queries via Druid SQL and native queries. Druid SQL is a 
built-in SQL layer that is powered by a parser and planner based on Apache Calcite. 
Druid SQL translates SQL into native Druid queries on the Query server, which are 
then executed. While there is a theoretical overhead involved in translating SQL, it 
was negligible in our testing. We further found that optimized SQL queries execute 
faster than unoptimized native queries.  

Google BigQuery leverages standard SQL that complies with the SQL 2011 
standard. Prior to version 2.0, BigQuery ran “BigQuery SQL”, a non-standard SQL 
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dialect that was renamed to legacy SQL. Standard SQL allowed us to utilize 
subqueries in the SELECT and WHERE clauses. 

We leveraged platform-specific syntax for date expressions in SSB queries. This 
enabled us to limit queries across partitions and to filter on time using the 
platform’s strengths to reduce the number of columns and rows that needed to be 
scanned. We also applied general SQL query optimization tactics such as simplifying 
expressions to aid in query planning. 

For example, here is how this procedure played out in optimizing Query 4.3. 

Query Optimization Stage  Query 4.3 

SSB (Original)  select d_year, s_city, p_brand1, 
sum(lo_revenue - lo_supplycost) as profit 
from denormalized where s_nation = 
'UNITED STATES' and (d_year = 1997 or 
d_year = 1998) and p_category = 
'MFGR#14' group by d_year, s_city, 
p_brand1 order by d_year, s_city, 
p_brand1 

Apache Druid  select d_year, s_nation, p_category, 
sum(lo_revenue) - sum(lo_supplycost) as 
profit from ${jmDataSource} where 
c_region = 'AMERICA' and s_region = 
'AMERICA' and (FLOOR(\"__time\" to YEAR) 
= 
TIME_PARSE('1997-01-01T00:00:00.000Z') 
or FLOOR(\"__time\" to YEAR) = 
TIME_PARSE('1998-01-01T00:00:00.000Z')) 
and (p_mfgr = 'MFGR#1' or p_mfgr = 
'MFGR#2') group by d_year, s_nation, 
p_category order by d_year, s_nation, 
p_category 
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Google BigQuery  select d_year, s_city, p_brand1, 
sum(lo_revenue - lo_supplycost) as profit 

from 
`community-benchmark.SSBData.ssb_dat
a_small_part` 

where s_nation = 'UNITED STATES' 

and (DATE(f0_) BETWEEN "1997-01-01" 
AND "1998-12-31") 

and p_category = 'MFGR#14' 

group by d_year, s_city, p_brand1 

order by d_year, s_city, p_brand1 

Figure 6. Query Optimization Process 

A detailed discussion of SSB queries is available in ​Appendix A​ and a​ ​Github 
repository. 

Performance testing 
We used JMeter to assess single-user query performance. No multi-user testing was 
performed. A JMeter script can be found in a​ ​Github​ repository​. 

We ran JMeter against each platform’s HTTP API under the following conditions: 

●  Query cache off 
●  Each SSB query was run 10 times (10 samples per query) 
●  Each query flight consisted of all 13 SSB queries run in succession 
●  For each test, Average Response Time, Lowest Response Time, Highest 
Response Time, and Average Response Time Standard Deviation per query 
were calculated 
●  Each test was repeated five times 
●  The lowest and highest test results were discarded, a standard 
practice to remove ​outliers ​from performance testing results, leaving results 
from 3 test runs 
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●  The remaining 3 results for each query were averaged to provide 
results for Average Response Time, Lowest Response Time, Highest 
Response Time, and Average Response Time Standard Deviation per query 
were calculated 

Personnel 
The following people contributed to this research: 

Community Team  Professional Services Team 

Matt Sarrel 

Surekha Saharan 

Gian Merlino 

Rachel Pedreschi 

  

Ben Hopp 

Rommel Garcia  

  

Figure 7. Contributors 
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Test results 

This section provides detailed results of performance testing and 

price-performance comparison of Apache Druid and Google BigQuery using the 

Star Schema Benchmark. Please refer to the Testing Methodology section (above) 

for complete details of how we conducted testing, and please see SSB Performance 

Test Results (below) for results. 

Computation and analytical parameters 

To obtain the average query response results presented, we used JMeter to 

measure query response time via HTTP API. 

Price-performance comparison 

The benchmark results tell us about performance of a specific workload, yet we 

also want to account for price, and we need to compare the cost of Apache Druid 

running on AWS instances to serverless BigQuery. Our overall methodology was to 

calculate the normalized cost of running the full SSB query flight for each platform. 

We summed the individual query times to determine an aggregate query flight 

time. We then set a performance threshold that stipulated that the total query flight 

must complete in less than 25 seconds. We relied on actual costs presented by the 

Google billing API as well as publicly available pricing for​ ​Google BigQuery​ and​ ​AWS 

in our calculations. 

Cost for Apache Druid is based on AWS on-demand and reserved instance costs. 

We obtained query response time via JMeter and query CPU time via the platform 

interface. Cost for BigQuery is modeled for their​ ​on-demand​ and​ ​flat-rate​ monthly 

price plans. We used the query cost and slot time provided by the console to 
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calculate the number of slots used and the slot cost for both on-demand and 

flat-rate billing. Pricing assumes the SSB workload runs 24/7.  

We used our SLA-type requirement (query flight must complete in 25 seconds or 

less, selected to ensure BigQuery can complete the test flight in the given time 

period given that BigQuery took 19.4 seconds in our testing) to establish two pricing 

models, one based on flat-rate pricing and concurrency (number of users) per 

month and one based on on-demand pricing and number of queries per month. 

Our flat-rate comparisons will be helpful in estimating recurring monthly cost based 

on the number of concurrent users, while our on-demand comparisons will be 

helpful in estimating monthly cost based on the number of queries. We used both 

average query time and total query flight time as performance metrics. We then 

compared results from the two models to determine price-performance as a 

function of queries per month, concurrency, and price. 

We relied on the following assumptions to begin calculations: 

Minutes 

per year 

Flight 

query 

count 

Required 

flight time 

(seconds) 

GBQ 

flat 

slot 

batch 

size 

GBQ flat 

slot batch 

cost (1 yr 

commit) 

Druid 

server 

on-dema

nd cost 

Druid 

server 

reserved 

cost (1yr 

not 

prepaid) 

Druid 

server 

reserved 

cost (3yr 

prepaid) 

Peak/avg 

ratio 

525600  13  25  500  $8,000  $457  $312  $193  5 

Figure 8. Parameters and assumptions used to model price-performance. 

We performed the following calculations in order to model price-performance: 

1. Start with average response time for Google BigQuery and Apache Druid for 

partitioned data with time filtered queries 

2. Sum average response time for all SSB queries in the query flight 
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3. Cost calculated is based on bytes transferred for BigQuery and AWS instance 

time for Druid 

4. Cost per query calculated as total cost / 13 (number of SSB queries) 

5. BigQuery flat slot cost assumes 500 slots purchased for $8500K/month. 

On-demand and flat rate comparison allowed us to: 

1. Calculate time taken per slot 

2. Calculate slot cost 

3. Calculate cost per query 

6. Assuming that performance scales linearly in column-oriented databases, we 

extrapolated performance and calculated price across a range of usage 

scenarios 

7. We then calculated ratios of Druid to BigQuery for price to performance 

SSB performance test results 

We ran the optimized SSB queries and recorded results using Apache JMeter to 

compare performance of Apache Druid and Google BigQuery. We submitted 

queries to both via the HTTP API to make it easier to compare performance results. 

We used on-demand BigQuery access to process queries via the HTTP API. ​Please 

refer to the Testing Methodology section of this report for complete details on 

how we conducted these tests​.  

  

The overall Star Schema Benchmark test results for Apache Druid and Google 

BigQuery, shown below, indicate that Apache Druid is the overall performance 

leader. In our test configurations, Apache Druid outperforms Google BigQuery by 

321% on the Star Schema Benchmark. Total average response time for the query 

flight in Druid was 6043 ms, compared to 19409 ms in BigQuery. For these tests, 

lower average response times are better. 

Imply Data, Inc.  Page 18 © 2020 



 

  

 

Figure 9. Star Schema Benchmark (SSB) Query Performance for Apache Druid and Google BigQuery. 

Average response time (milliseconds) per query. Total query flight time: Apache Druid (6043 ms), 

Google BigQuery (19409 ms). Lower is better. 

Test results by solution 

Apache Druid was the overall best performer on the 13 SSB queries, beating 

BigQuery in every query, in our testing. We can see that vectorization dramatically 

improves query response time.  
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Figure 10. SSB Query Average, Highest, Lowest Response Time and Vectorization: Apache Druid. 

Total query flight time for Apache Druid is 6043 ms. Lower is better. 

Google BigQuery, outperformed by Druid on each query, exhibited consistent, 

although slow, query response times.  
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Figure 11. SSB Query Average, Lowest, Highest Response Time: Google BigQuery. Total query flight 

time for Google BigQuery is 19409 ms. Lower is better. 

Results by query group 

SSB contains a group of 13 queries organized into 4 groups. Each Query Group is 

meant to provide functional coverage so as to allow prospective users to derive a 

performance rating to match the query workload they expect to use in practice. 

Also, in general, the total number of fact table rows retrieved is determined by the 

selectivity of restrictions on dimensions. The selectivity of queries varies across 

each Query Group, as well as how results are grouped, aggregated and sorted. 

Query Group 1 (based on TPC-H TPCQ6) has a restriction on one dimension and 

two lineorder columns, lo_discount and lo_quantity. The query measures the 

revenue increase from eliminating various ranges of discounts in given product 
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order quantity intervals in a given year. Druid outperformed BigQuery in this query 

group.  

 

Figure 12. SSB Query Group 1 Average, Lowest, Highest Response Time: Apache Druid, Google 

BigQuery. Lower is better. 

  

Query Group 2 has restrictions on two dimensions. The query compares revenues 

for certain product classes and suppliers in a given region, grouped by more 

restrictive product classes and all years of orders. Druid outperformed BigQuery. 
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Figure 13. SSB Query Group 2 Average, Lowest, Highest Response Time: Apache Druid, Google 
BigQuery. Lower is better. 

  

Query Group 3, based on TPC-H query TPCQ5, has restrictions on three dimensions. 
The query retrieves total revenue for lineorder transactions within a given region in 
a certain time period, grouped by customer nation, supplier nation and year. These 
queries progressively restrict to smaller numbers of results, therefore the 
expectation is that Q3.4 will execute fastest for a given product.  Druid dramatically 
outperformed BigQuery when faced with growing query complexity. 
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Figure 14. SSB Query Group 3 Average Response Time: Apache Druid and Google BigQuery. Lower is 
better. 

SSB Query Group 4 provides a “What-If” sequence of queries that are 
representative of an OLAP style of drill down exploration. It starts with a query with 
weak constraints on three-dimensional columns, retrieves aggregate profit, 
sum(lo_revenue - lo_supplycost), groups by d_year and c_nation. Following queries 
modify predicate constraints by drilling down to locate the origin of an anomaly. 
Q4.1 shows a growth in profit. Q4.2 drills down to group by p_category to see 
where the profit change came from. Q4.3 restricts s_nation to ‘UNITED STATES’ and 
p_category = ‘MFGR#14’, and drills down to group by s_city and p_brand. 

Druid outperforms BigQuery on every query in Query Group 4, demonstrating 
superior performance on an OLAP-style EDW workload. BigQuery lags significantly 
throughout this query group, suggesting that the new class of cloud EDW typified 
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by Druid excels at OLAP-style workloads. 

 

Figure 14. SSB Query Group 4 Average Response Time: Apache Druid, Google BigQuery. Lower is 
better. 

Price performance comparison 

Based on the detailed analysis below, we provide the conservative estimate that 
Druid exhibits a 12x price performance advantage over BigQuery. In our testing 
with the SSB workload, we found that Druid outperformed BigQuery by three times 
(Total Query Flight Time) at a much lower cost. Calculations below demonstrate a 
conservative estimation that Druid has a twelve times price performance advantage 
over BigQuery for the SSB workload run on an enterprise scale, as shown in 
concurrent queries, over a month. Concurrent queries are defined as those actively 
running at one time against an EDW. Concurrent queries come from many sources 
and have different profiles, so we modelled across a range of results. For example, 
dashboards can launch and refresh eight or more SQL queries that execute 
concurrently, or multiple users walking through multiple what-if query paths would 
represent concurrent queries. 
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Most enterprises will focus on BigQuery’s flat-rate pricing with a one-year commit 
for budgeting, so we emphasize that comparison to Druid. When normalizing 
performance, BigQuery costs between seven and 44 times as much for the same 
performance as Druid on a monthly basis depending on AWS reserved instance 
cost. 

 

Apache Druid (Reserved). Google BigQuery Flat-Rate pricing with one year commit is shown against 
Apache Druid pricing on reserved AWS instances with one year and three year commit. 
Price-performance ratio is shown for increasing levels of concurrent queries. 

The above model is based on concurrent queries, while the below model is based 
on total number of queries per month. Concurrent queries can be used as an 
indication of flat-rate monthly cost, while queries per month indicates how 
BigQuery on-demand cost scales with respect to the cost of an equivalently 
performing Druid cluster. Google charges by bytes transferred in the query 
response, so cost goes up linearly with the number of queries. Druid requires 
servers added to the cluster to handle the load from additional queries, so cost 
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increases with the number of AWS instances required to meet that load.

 

Figure 16. SSB Price-Performance Comparison: Google BigQuery (On-Demand) to Apache Druid 
(Reserved). Price-performance ratio is shown for increasing levels of queries per month. 

 When modelling based on concurrency, we used BigQuery slot time as the basis 
for flat-rate pricing. We assumed a linear increase in slot time required to meet 
additional concurrency. For Druid, we used the price of AWS instances that we 
projected would be required to meet the same query response time threshold. 
Druid's Price Performance is 7 times better when using 1 year reserved pricing, 12 
times better when using 3 year reserved pricing, than BigQuery Flat Rate. Druid’s 
cost can be minimized with 3 year reserved and prepaid AWS instances. 
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Conc. 
Queries 

BigQuery 
slot time 

BigQuery 
slots 

BigQuery 
monthly 
cost 

BigQuery 
Flat Rate 
cost, 
rounded, 
1yr 
commit 

Druid 
server 
time 

Druid 
servers, 
rounded 

Druid 
monthly 
cost (1 yr 
not 
prepaid) 

Druid 
monthly 
cost (3 yr 
prepaid) 

Ratio: 
BigQuery 
Flat-Rate 
to Druid (1 
yr not 
prepaid) 

Ratio: 
BigQuery 
Flat Rate 
to Druid (3 
yr prepaid) 

1  2391.626  96  $1,626  $8,500  18.128  1  $312  $193  27.205  44.110 

2  4783.252  191  $3,253  $8,500  36.256  2  $625  $385  13.603  22.055 

4  9566.504  383  $6,505  $8,500  72.512  3  $937  $578  9.068  14.703 

8  19133.008  765  $13,010  $17,000  145.024  6  $1,875  $1,156  9.068  14.703 

16  38266.016  1531  $26,021  $34,000  290.048  12  $3,749  $2,312  9.068  14.703 

32  76532.032  3061  $52,042  $59,500  580.096  24  $7,499  $4,625  7.935  12.865 

64  153064.064  6123  $104,084  $110,500  1160.192  47  $14,685  $9,057  7.525  12.201 

128  306128.128  12245  $208,167  $212,500  2320.384  93  $29,057  $17,921  7.313  11.858 

Figure 17: Druid vs. BigQuery Price Performance: Flat-Rate Pricing with 1 Year 
Commit Per Month, Varying Concurrency. Druid's Price Performance is 7 times 
better when using 1 year reserved pricing, 12 times better when using 3 year 
reserved pricing, than BigQuery Flat Rate 

Google limits the maximum concurrent number of slots and queries that are 
available concurrently on-demand. Results are shown to provide comparison to 
Druid. 

As mentioned previously, the above model is based on concurrent queries, while 
the below model is based on total number of queries per month. Concurrent 
queries can be used as an indication of flat-rate monthly cost, while queries per 
month indicates how BigQuery on-demand cost scales with respect to the cost of 
an equivalently performing Druid cluster. Google charges by bytes transferred in 
the query response, so cost goes up linearly with the number of queries. Druid 
requires servers added to the cluster to handle the load from additional queries, so 
cost increases with the number of AWS instances required to meet that load. 
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Queries / 
month 

BigQuery 

On-Demand 
cost / 
month 

Queries / 
peak time 

Flights / 
peak 
time 

Druid 
server 
time / 
peak time 

Druid 
servers 

Druid 
servers, 
rounded 

Druid 
monthly 
cost (1 
yr not 
prepaid) 

Druid 
monthly 
cost (3 
yr 
prepaid) 

Ratio 
BigQuery 
On-Dema
nd to 
Druid (1 
yr not 
prepaid) 

Ratio 
BigQuery 
On-Dema
nd to 
Druid (3 
yr 
prepaid) 

1,000 $275 0.0476 0.0037 0.0663 0.0027 1 $312 $193 0.8814 1.4291 

10,000 $2,754 0.4756 0.0366 0.6633 0.0265 1 $312 $193 8.8140 14.2908 

100,000 $27,538 4.7565 0.3659 6.6327 0.2653 1 $312 $193 88.1400 142.9085 

1,000,000 $275,385 47.5647 3.6588 66.3271 2.6531 3 $937 $578 293.8000 476.3616 

10,000,000 $2,753,846 475.6469 36.5882 663.2713 26.5309 27 $8,436 $5,203 326.4444 529.2906 

100,000,00
0 

$27,538,462 4756.4688 365.8822 6632.7128 265.3085 266 $83,109 $51,258 331.3534 537.2499 

Figure 18: Druid vs. BigQuery Price Performance: On-Demand Pricing Per Month, Varying Number 
Queries. Druid's Price Performance is 0.9 to 537 times better than BigQuery On-Demand. 
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Appendix a 
Below are the queries that were used in testing. The SQL queries as published in 
the Star Schema Benchmark are first, followed by the plain-English versions, then 
followed by denormalized versions, and then followed by queries optimized for 
Apache Druid and Google BigQuery. 

  

Star schema benchmark queries (original) 

  

Query 1.1 

select sum(lo_extendedprice*lo_discount) as revenue 

from ssb.lineorder, ssb.dwdate 

where lo_orderdate = d_datekey 

and d_year = 1993 

and lo_discount between 1 and 3 

and lo_quantity < 25; 

  

Query 1.2 

select sum(lo_extendedprice*lo_discount) as revenue 

from ssb.lineorder, ssb.dwdate 

where lo_orderdate = d_datekey 

and d_yearmonthnum = 199401 

and lo_discount between 4 and 6 

and lo_quantity between 26 and 35; 
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Query 1.3 

select sum(lo_extendedprice*lo_discount) as revenue 

from ssb.lineorder, ssb.dwdate 

where lo_orderdate = d_datekey 

and d_weeknuminyear = 6 

and d_year = 1994 

and lo_discount between 5 and 7 

and lo_quantity between 26 and 35; 

  

Query 2.1 

select sum(lo_revenue), d_year, p_brand1 

from ssb.lineorder, ssb.dwdate, ssb.part, ssb.supplier 

where lo_orderdate = d_datekey 

and lo_partkey = p_partkey 

and lo_suppkey = s_suppkey 

and p_category = 'MFGR#12' 

and s_region = 'AMERICA' 

group by d_year, p_brand1 

order by d_year, p_brand1; 

  

Query 2.2 

select sum(lo_revenue), d_year, p_brand1 

from ssb.lineorder, ssb.dwdate, ssb.part, ssb.supplier 
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where lo_orderdate = d_datekey 

and lo_partkey = p_partkey 

and lo_suppkey = s_suppkey 

and p_brand1 between 'MFGR#2221' and 'MFGR#2228' 

and s_region = 'ASIA' 

group by d_year, p_brand1 

order by d_year, p_brand1; 

  

Query 2.3 

select sum(lo_revenue), d_year, p_brand1 

from ssb.lineorder, ssb.dwdate, ssb.part, ssb.supplier 

where lo_orderdate = d_datekey 

and lo_partkey = p_partkey 

and lo_suppkey = s_suppkey 

and p_brand1 = 'MFGR#2221' 

and s_region = 'EUROPE' 

group by d_year, p_brand1 

order by d_year, p_brand1; 

  

Query 3.1 

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue 

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 
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and lo_orderdate = d_datekey 

and c_region = 'ASIA' and s_region = 'ASIA' 

and d_year >= 1992 and d_year <= 1997 

group by c_nation, s_nation, d_year 

order by d_year asc, revenue desc; 

  

Query 3.2 

select c_city, s_city, d_year, sum(lo_revenue) as revenue 

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_orderdate = d_datekey 

and c_nation = 'UNITED STATES' 

and s_nation = 'UNITED STATES' 

and d_year >= 1992 and d_year <= 1997 

group by c_city, s_city, d_year 

order by d_year asc, revenue desc; 

  

Query 3.3 

select c_city, s_city, d_year, sum(lo_revenue) as revenue 

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_orderdate = d_datekey 
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and (c_city='UNITED KI1' or c_city='UNITED KI5') 

and (s_city='UNITED KI1' or s_city='UNITED KI5') 

and d_year >= 1992 and d_year <= 1997 

group by c_city, s_city, d_year 

order by d_year asc, revenue desc; 

  

Query 3.4 

select c_city, s_city, d_year, sum(lo_revenue) as revenue 

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_orderdate = d_datekey 

and (c_city='UNITED KI1' or c_city='UNITED KI5') 

and (s_city='UNITED KI1' or s_city='UNITED KI5') 

and d_yearmonth = 'Dec1997' 

group by c_city, s_city, d_year 

order by d_year asc, revenue desc; 

  

Query 4.1 

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit 

from ssb.dwdate, ssb.customer, ssb.supplier, ssb.part, ssb.lineorder 

where lo_custkey = c_custkey 

 and lo_suppkey = s_suppkey 

 and lo_partkey = p_partkey 
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 and lo_orderdate = d_datekey 

 and c_region = 'AMERICA' 

 and s_region = 'AMERICA' 

 and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') 

group by d_year, c_nation 

order by d_year, c_nation; 

  

Query 4.2 

select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit 

from ssb.dwdate, ssb.customer, ssb.supplier, ssb.part, ssb.lineorder 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_partkey = p_partkey 

and lo_orderdate = d_datekey 

and c_region = 'AMERICA' 

and s_region = 'AMERICA' 

and (d_year = 1997 or d_year = 1998) 

and (p_mfgr = 'MFGR#1' 

or p_mfgr = 'MFGR#2') 

group by d_year, s_nation, p_category order by d_year, s_nation, p_category; 

  

Query 4.3 

select d_year, s_city, p_brand1, sum(lo_revenue - lo_supplycost) as profit 

from ssb.dwdate, ssb.customer, ssb.supplier, ssb.part, ssb.lineorder 
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where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_partkey = p_partkey 

and lo_orderdate = d_datekey 

and c_region = 'AMERICA' 

and s_nation = 'UNITED STATES' 

and (d_year = 1997 or d_year = 1998) 

and p_category = 'MFGR#14' 

group by d_year, s_city, p_brand1 order by d_year, s_city, p_brand1; 

  

Star schema benchmark queries (plain-English) 
Query Flight 1 has restrictions on 1 dimension and measures revenue increase from eliminating 
ranges of discounts in given product order quantity intervals shipped in a given year. 

●​       ​Q1.1 has restrictions d_year = 1993, lo_quantity < 25, and lo_discount between 1 and 3. 
●​       ​Q1.2 changes restrictions of Q1.1 to d_yearmonthnum = 199401, lo_quantity between 26 and 35, 
lo_discount between 4 and 6. 
●​       ​Q1.3 changes the restrictions to d_weeknuminyear = 6 and d_year= 1994, lo_quantity between 36 
and 40, and lo_discount between 5 and 7 

Query flight 2 has restictions on 2 dimensions. The query compares revenues for certain 
product classes and suppliers in a certain region, grouped by more restrictive product classes 
and all years of orders.  

●​       ​2.1 has restrictions on p_category and s_region. 
●​       ​2.2 changes restrictions of Q2.1 to p_brand1  between 'MFGR#2221' and 'MFGR#2228' and 
s_regrion to 'ASIA' 
●​       ​2.3 changes restriction to p_brand1='MFGR#2339' and s_region='EUROPE' 

  

Query flight 3, has restrictions on 3 dimensions. The query is intended to retrieve total revenue 
for lineorder transactions within and given region in a certain time period, grouped by customer 
nation, supplier nation and year. 

●​       ​Q3.1 has restriction c_region = 'ASIA', s_region='ASIA', and restricts d_year to a 6-year period, 
grouped by c_nation, s_nation and d_year 
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●​       ​3.2 changes region restrictions to c_nation = ""UNITED STATES' and s_nation = 'UNITED STATES', 
grouping revenue by customer city, supplier city and year. 
●​       ​3.3 changes restrictions to c_city and s_city to two cities in 'UNITED KINGDOM' and retrieves 
revenue grouped by c_city, s_city, d_year. 
●​       ​3.4 changes date restriction to a single month. After partitioning the 12 billion row dataset on 
d_yearmonth, we needed to rewrite the query for d_yearmonthnum 

  

Query flight 4 provides a ""what-if"" sequence of queries that might be generated in an 
OLAP-style of exploration. Starting with a query with rather weak constraints on three 
dimensional columns, we retreive aggregate profit, sum(lo_revenue-lo_supplycost), grouped by 
d_year and c_nation. Successive queries modify predicate constraints by drilling down to find 
the source of an anomaly. 

●​       ​Q4.1 restricts c_region and s_region both to 'AMERICA', and p_mfgr to one of two possilities. 
●​       ​Q4.2 utilizes a typical workflow to dig deeper into the results. We pivot away from grouping by 
s_nation, restrict d_year to 1997 and 1998, and drill down to group by p_category to see where the profit 
change arises. 
●​       ​Q4.3 digs deeper, restricting s_nation to 'UNITED STATES' and p_category = 'MFGR#14', drilling 
down to group by s_city (in the USA) and p_brand1 (within p_category 'MFGR#14'). 

Star schema benchmark queries (denormalized) 

  

Query 1.1 

select sum(lo_extendedprice*lo_discount) as revenue from denormalized where d_year = 1993 
and lo_discount between 1 and 3 and lo_quantity < 25 

  

Query 1.2 

select sum(lo_extendedprice*lo_discount) as lo_revenue from denormalized where 
d_yearmonthnum = 199401 and lo_discount between 4 and 6 and lo_quantity between 26 and 
35 

  

Query 1.3 
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select sum(lo_extendedprice*lo_discount) as lo_revenue from denormalized where 
d_weeknuminyear = 6 and d_year = 1994 and lo_discount between 5 and 7 and lo_quantity 
between 26 and 35 

  

Query 2.1 

select sum(lo_revenue), d_year, p_brand1 from denormalized where p_category = 'MFGR#12' 
and s_region = 'AMERICA' group by d_year, p_brand1 order by d_year, p_brand1 

  

Query 2.2 

select sum(lo_revenue), d_year, p_brand1 from denormalized where p_brand1 between 
'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand1 order by 
d_year, p_brand1 

  

Query 2.3 

select sum(lo_revenue), d_year, p_brand1 from denormalized where p_brand1= 'MFGR#2239' 
and s_region = 'EUROPE' group by d_year, p_brand1 order by d_year, p_brand1 

  

Query 3.1 

select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from denormalized where 
c_region = 'ASIA' and s_region = 'ASIA' and d_year >= 1992 and d_year <= 1997 group by 
c_nation, s_nation, d_year order by d_year asc, lo_revenue desc 

  

Query 3.2 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from denormalized where c_nation 
= 'UNITED STATES' and s_nation = 'UNITED STATES' and d_year >= 1992 and d_year <= 
1997 group by c_city, s_city, d_year order by d_year asc, lo_revenue desc 

  

Query 3.3 
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select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from denormalized where 
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') 
and d_year >= 1992 and d_year <= 1997 group by c_city, s_city, d_year order by d_year asc, 
lo_revenue desc 

  

Query 3.4 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from denormalized where 
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') 
and d_yearmonth = 'Dec1997' group by c_city, s_city, d_year order by d_year asc, lo_revenue 
desc 

  

Query 4.1 

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit from denormalized where 
c_region = 'AMERICA' and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 
'MFGR#2') group by d_year, c_nation order by d_year, c_nation 

  

Query 4.2 

select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit from 
denormalized where c_region = 'AMERICA' and s_region = 'AMERICA' and (d_year = 1997 or 
d_year = 1998) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, s_nation, 
p_category order by d_year, s_nation, p_category 

  

Query 4.3 

select d_year, s_city, p_brand1, sum(lo_revenue - lo_supplycost) as profit from denormalized 
where c_region = 'AMERICA' and s_nation = 'UNITED STATES' and (d_year = 1997 or d_year 
= 1998) and p_category = 'MFGR#14' group by d_year, s_city, p_brand1 order by d_year, 
s_city, p_brand1 

  

Optimized Apache Druid queries 
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Query 1.1 

select sum(lo_extendedprice*lo_discount) as revenue from ssb_data where floor(__time to 
YEAR) = TIMESTAMP '1993-01-01' and lo_discount between 1 and 3 and lo_quantity < 25 

  

Query 1.2 

select sum(lo_extendedprice*lo_discount) as lo_revenue from  ssb_data where 
TIME_FLOOR(\"__time\",'P1M') = TIME_PARSE('1994-01-01T00:00:00.000Z') and lo_discount 
between 4 and 6 and lo_quantity between 26 and 35 

  

Query 1.3 

select sum(lo_extendedprice*lo_discount) as lo_revenue from ssb_data where 

TIME_FLOOR(__time,'P1W')=TIME_PARSE('1994-02-07T00:00:00.000Z') and lo_discount 
between 5 and 7 and lo_quantity between 26 and 35 

  

Query 2.1 

select sum(lo_revenue), d_year, p_brand1 from ssb_data  where p_category = 'MFGR#12' and 
s_region = 'AMERICA' group by d_year, p_brand1 order by d_year, p_brand1 

  

Query 2.2 

select sum(lo_revenue), d_year, p_brand1 from ssb_data  where p_brand1 between 
'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand1 order by 
d_year, p_brand1 

  

Query 2.3 

select sum(lo_revenue), d_year, p_brand1 from ssb_data  where p_brand1= 'MFGR#2239' and 
s_region = 'EUROPE' group by d_year, p_brand1 order by d_year, p_brand1 
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Query 3.1 

select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from ssb_data  where 
c_region = 'ASIA' and s_region = 'ASIA' and TIME_EXTRACT(\"__time\",'YEAR') >= 1992 and 
TIME_EXTRACT(\"__time\",'YEAR') <= 1997 group by c_nation, s_nation, d_year order by 
d_year asc, lo_revenue desc 

  

Query 3.2 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from ssb_data  where c_nation = 
'UNITED STATES' and s_nation = 'UNITED STATES' and TIME_EXTRACT(\"__time\",'YEAR') 
>= 1992 and TIME_EXTRACT(\"__time\",'YEAR')  <= 1997 group by c_city, s_city, d_year order 
by d_year asc, lo_revenue desc 

  

Query 3.3 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from ssb_data  where 
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') 
and FLOOR(\"__time\" to YEAR) >= TIME_PARSE('1992-01-01T00:00:00.000Z') and 
FLOOR(\"__time\" to YEAR) <= TIME_PARSE('1997-01-01T00:00:00.000Z') group by c_city, 
s_city, d_year order by d_year asc, lo_revenue desc 

  

Query 3.4 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from ssb_data where 
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') 
and TIME_FLOOR(""__time"",'P1M') = TIME_PARSE('Dec1997','MMMyyyy') group by c_city, 
s_city, d_year order by d_year asc, lo_revenue desc 

  

Query 4.1 

select d_year, c_nation, sum(lo_revenue) - sum(lo_supplycost) as profit from ssb_data  where 
c_region = 'AMERICA' and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 
'MFGR#2') group by d_year, c_nation order by d_year, c_nation 
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Query 4.2 

select d_year, s_nation, p_category, sum(lo_revenue) - sum(lo_supplycost) as profit from 
ssb_data  where c_region = 'AMERICA' and s_region = 'AMERICA' and (FLOOR(\"__time\" to 
YEAR) = TIME_PARSE('1997-01-01T00:00:00.000Z') or FLOOR(\"__time\" to YEAR) = 
TIME_PARSE('1998-01-01T00:00:00.000Z')) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') 
group by d_year, s_nation, p_category order by d_year, s_nation, p_category 

  

Query 4.3 

select d_year, s_nation, p_category, sum(lo_revenue) - sum(lo_supplycost) as profit from 
ssb_data where c_region = 'AMERICA' and s_region = 'AMERICA' and (FLOOR(\"__time\" to 
YEAR) = TIME_PARSE('1997-01-01T00:00:00.000Z') or FLOOR(\"__time\" to YEAR) = 
TIME_PARSE('1998-01-01T00:00:00.000Z')) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') 
group by d_year, s_nation, p_category order by d_year, s_nation, p_category 

  

Google BigQuery optimized queries 

  

Query 1.1 

select sum(lo_extendedprice*lo_discount) as revenue from 
`community-benchmark.SSBData.ssb_data_small_part` where (date(f0_) between 
""1993-01-01"" and ""1993-12-31"") and lo_discount between 1 and 3 and lo_quantity < 25 

  

Query 1.2 

select sum(lo_extendedprice*lo_discount) as lo_revenue from 
`community-benchmark.SSBData.ssb_data_small_part` where (date(f0_) between 
""1994-01-01"" and ""1994-01-31"") and lo_discount between 4 and 6 and lo_quantity between 
26 and 35 

  

Query 1.3 

select sum(lo_extendedprice*lo_discount) as lo_revenue from 
`community-benchmark.SSBData.ssb_data_small_part` where d_weeknuminyear = 6 and 
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DATE (f0_) BETWEEN ""1994-01-01"" and ""1994-12-31"" and lo_discount between 5 and 7 
and lo_quantity between 26 and 35 

  

Query 2.1 

select sum(lo_revenue), d_year, p_brand1 from 
`community-benchmark.SSBData.ssb_data_small_part`  where p_category = 'MFGR#12' and 
s_region = 'AMERICA' group by d_year, p_brand1 order by d_year, p_brand1 

  

Query 2.2 

select sum(lo_revenue), d_year, p_brand1 from 
`community-benchmark.SSBData.ssb_data_small_part`  where p_brand1 between 
'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand1 order by 
d_year, p_brand1 

  

Query 2.3 

select sum(lo_revenue), d_year, p_brand1 from 
`community-benchmark.SSBData.ssb_data_small_part`  where p_brand1= 'MFGR#2239' and 
s_region = 'EUROPE' group by d_year, p_brand1 order by d_year, p_brand1 

  

Query 3.1 

select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from 
`community-benchmark.SSBData.ssb_data_small_part`where c_region = 'ASIA' and s_region = 
'ASIA' and (DATE(f0_) BETWEEN ""1992-01-01"" AND ""1997-12-31"") group by c_nation, 
s_nation, d_year order by d_year asc, lo_revenue desc 

  

Query 3.2 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from 
`community-benchmark.SSBData.ssb_data_small_part` where c_nation = 'UNITED STATES' 
and s_nation = 'UNITED STATES' and (DATE(f0_) BETWEEN ""1992-01-01"" AND 
""1997-12-31"") group by c_city, s_city, d_year order by d_year asc, lo_revenue desc 
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Query 3.3 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from 
`community-benchmark.SSBData.ssb_data_small_part` where (c_city='UNITED KI1' or 
c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and (DATE(f0_) 
BETWEEN ""1992-01-01"" AND ""1997-12-31"") group by c_city, s_city, d_year order by d_year 
asc, lo_revenue desc 

  

Query 3.4 

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from 
`community-benchmark.SSBData.ssb_data_small_part` where (c_city='UNITED KI1' or 
c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and (DATE(f0_) 
BETWEEN ""1997-12-01"" AND ""1997-12-31"") group by c_city, s_city, d_year order by d_year 
asc, lo_revenue desc 

  

Query 4.1 

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit from 
`community-benchmark.SSBData.ssb_data_small_part` where c_region = 'AMERICA' and 
s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, 
c_nation order by d_year, c_nation 

  

Query 4.2 

select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit from 
`community-benchmark.SSBData.ssb_data_small_part` where c_region = 'AMERICA' and 
s_region = 'AMERICA' 

and (DATE(f0_) BETWEEN ""1997-01-01"" AND ""1998-12-31"") and (p_mfgr = 'MFGR#1' or 
p_mfgr = 'MFGR#2') group by d_year, s_nation, p_category order by d_year, s_nation, 
p_category 

  

Query 4.3 
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select d_year, s_city, p_brand1, sum(lo_revenue - lo_supplycost) as profit from 
`community-benchmark.SSBData.ssb_data_small_part` where s_nation = 'UNITED STATES' 
and (DATE(f0_) BETWEEN ""1997-01-01"" AND ""1998-12-31"") and p_category = 'MFGR#14' 
group by d_year, s_city, p_brand1 order by d_year, s_city, p_brand1 
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About Apache Druid 

Apache Druid is an open source distributed data store. Druid’s core design                       
combines ideas from ​data warehouses​, ​time series databases​, and ​search systems                     
to create a unified system for real-time analytics for a broad range of ​use cases​.                             
Druid merges key characteristics of each of these three architectures into its                       
ingestion, storage and querying layers. 

About Imply  
 
Imply transforms how businesses run by integrating real-time analytics into their                     
operations. Founded by the authors of the ​Apache Druid database, Imply provides                       
a cloud-native solution that delivers real-time ingestion, interactive ad-hoc queries,                   
and intuitive visualizations for many types of event-driven and streaming data                     
flows. Imply has operations in North America, Europe, and Asia Pacific and is                         
backed by Andreesen Horowitz, Khosla Ventures, and Geodesic Capital. For more                     
information visit, please visit ​imply.io​.  
 
If you are interested in trying out Druid or Imply, you can ​download Imply or                             
request an Imply Cloud Trial Account​. 
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