

Apache Druid and Google BigQuery

Performance Evaluation

Evaluating enterprise data warehouse performance using the Star

Schema Benchmark

WHITE PAPER

June 2020

Executive summary 3

Testing methodology 7
Apache Druid 9
Google BigQuery 10
Apache Jmeter and instances 10

Data generation and preparation 10

Data ingestion 11

Query optimization 12

Performance testing 14

Personnel 15

Test results 16
Computation and analytical parameters 16

Price-performance comparison 16
SSB performance test results 18

Test results by solution 19
Price performance comparison 25

Appendix a 30
Star schema benchmark queries (original) 30
Star schema benchmark queries (plain-English) 36
Star schema benchmark queries (denormalized) 37
Optimized Apache Druid queries 39
Google BigQuery optimized queries 42

About Apache Druid 46

About Imply 46

Imply Data, Inc. Page 2 © 2020

Executive summary
Imply Data evaluated the performance of Apache Druid and Google BigQuery to

determine the suitability of each as an enterprise data warehouse (EDW) solution.

Each solution was evaluated for query performance using the Star Schema

Benchmark. Further, a price-performance comparison was conducted between

Apache Druid and Google BigQuery. Tests were designed to conduct a fair and

repeatable comparison between EDW solutions. All configurations, schema, queries

and test scripts are available via a GitHub repository.

Key Findings:

In Star Schema Benchmark query performance tests:
❑​ ​Apache Druid outperforms Google BigQuery by 321 percent in our testing.
Total average response time for the query flight in Druid was 6043 ms,
compared to 19409 ms in BigQuery.
❑​ ​Apache Druid exhibits a 12x price-performance advantage over Google
BigQuery.

An EDW is a database, or a collection of databases, that centralizes information

from multiple sources and applications to make it available for analytics use across

an entire organization. EDWs have traditionally been housed on-premises, although

recent years have seen a cloud-adoption surge. The data stored in an EDW can be

one of a business’s most valuable assets as it represents everything an organization

knows and tracks across business units related to the functioning of the business,

and interactions with partners, employees and customers. However, tremendous

challenges exist related to the organization and structure of data across the

enterprise, and the ETL process required prior to ingestion by an EDW. Many EDW

rely on a star schema, one or more fact tables referencing a multitude of dimension

tables, to accomplish this feat.

Imply Data, Inc. Page 3 © 2020

The Star Schema Benchmark (SSB) is designed to evaluate database system

performance of star schema data warehouse queries. The schema for SSB is based

on the TPC-H benchmark, but in a highly modified form. The SSB has been used to

measure query performance of commercial and open-source database products on

Linux and Windows since January 2007. Testing using the performance results of 13

standard SQL queries allows for comparison between products and configurations.

This testing evaluates the suitability of Apache Druid and Google BigQuery for EDW

workloads in terms of performance and price-performance using SSB. EDW

workloads are shifting to the cloud and, as a result, a new class of technologies is

emerging that can provide fast query response times at scale. These solutions load,

store and analyze large amounts of data at high speed to prove timely business

insights. New columnar architectures provide microsecond response time at high

levels of concurrency where traditional EDW struggle. When deployed elastically as

a service, they enable enterprises to innovate BI and OLAP apps at a more rapid

pace.

Drawing upon work previously conducted in academia , we ran the SSB queries in

their standard form and, whenever possible, in an optimized form, and recorded

results using Apache JMeter to compare performance of Imply Cloud (Apache

Druid) and Google BigQuery. We relied on standard on-demand BigQuery access to

process queries via the HTTP API. Please refer to the Testing Methodology section

of this report for complete details on how we conducted these tests.

Figure 1 shows the overall Star Schema Benchmark test results for Apache Druid

and Google BigQuery. In our test configurations, Apache Druid outperforms Google

BigQuery by 321% on the aggregate SSB query flight. Total average response time

Imply Data, Inc. Page 4 © 2020

for the query flight in Druid was 6043 ms, compared to 19409 ms in BigQuery. For

these tests, lower average response times are better.

 Figure 1. Star Schema Benchmark Test Results (average query response time) for Apache Druid and

Google BigQuery. For these tests, lower is better.

We conducted a price performance comparison for Apache Druid and Google

BigQuery. In our testing, we found that Druid outperformed BigQuery by 3.2 times

(Total Query Time) at a much lower cost. We modeled price-performance of Druid

to BigQuery using the SSB workload run on an enterprise scale over a month and

found that Druid has a 12x (11.858x) price-performance advantage over Google

BigQuery.

Imply Data, Inc. Page 5 © 2020

Figure 2. SSB Price-Performance Comparison: Google BigQuery (Flat-Rate) to Apache Druid

(Reserved). Google BigQuery Flat-Rate pricing with one year commit is shown against Apache Druid

pricing on reserved AWS instances with one year and three year commit. Price-performance ratio is

shown for increasing levels of concurrent queries.

Concurrent queries can be used as an indication of flat-rate monthly cost, while

queries per month indicates how BigQuery on-demand cost scales with respect to

the cost of an equivalently performing Druid cluster.

Imply Data, Inc. Page 6 © 2020

Figure 3. SSB Price-Performance Comparison: Google BigQuery (On-Demand) to Apache Druid

(Reserved). Price-performance ratio is shown for increasing levels of queries per month.

Testing methodology

We evaluated the performance of Imply Cloud (Apache Druid) and Google BigQuery
to determine the suitability of each as an enterprise data warehouse (EDW)
solution. Testing involved five major steps for each solution:

1. Provision each solution
2. Generate and prepare SSB test data
3. Ingest SSB test data with optimal schema
4. Optimize SSB test queries
5. Performance test using Apache JMeter

We optimized schema and queries following documented best practices for each
platform. The SSB papers are clear in their vagueness regarding optimization
ground rules.

Imply Data, Inc. Page 7 © 2020

1. Columns in SSB tables can be compressed by whatever means available in
the database system used, as long as reported data retrieved by queries has
the values specified in the original schema.

2. Any product capability used in one product database design to improve
performance must be matched in the database design for other products by
an attempt to use the same type of capability, assuming such a capability
exists and improves performance.

3. Materialized Views that pre-join some useful dimension columns with the
lineorder table are permitted.

4. Denormalization is not only acceptable, it is considered a standard practice in
data warehousing.

5. Queries are designed to select from the lineorder table exactly once (no
self-joins or subqueries or table queries) to represent “classic” data
warehouse queries of select from the fact table with restrictions on the data
table attributes.

6. Queries are chosen as much as possible to span the tasks performed by an
analyst, starting broadly and the increasing restrictions through the query
group.

7. Variant query forms are allowed. Any alternative SQL form that modifies
predicate restrictions but retains the same effect on retrieval is fine.

8. Query cache must be disabled, although OS and hardware level caching may
not. Caching rules must be documented.

9. SSB reports must include a scale factor, database product name, version
number, processor model and number of processors, memory space, disk
setup, and all other parameters that may impact performance.

10. Any tuning capability habitually used to improve performance in a database
product should be adopted for that product.

11. Published SSB reports can anonymize the products tested, removing
product-specific tuning details and query plans

A logical testbed diagram follows. Apache Druid (Imply Cloud) and the JMeter server
ran on AWS instances, while Google BigQuery was tested with JMeter running on
GCP. Wherever possible, instances used for JMeter load generation were deployed
into the same cloud provider region or zone to minimize network latency.

Imply Data, Inc. Page 8 © 2020

Figure 4. Logical testbed diagram for SSB performance testing. Apache Druid was
deployed in AWS.

We tested on Apache Druid unmodified from Imply Cloud. Google BigQuery is
available as a service, making provisioning and configuration unnecessary. We
followed published best practices to optimize for query response time throughout
each stage of the test process.

Apache Druid

Apache Druid​ is an open source distributed data store. Druid’s core design
combines ideas from ​data warehouses​, ​time series databases​, and ​search systems
to create a unified system for real-time analytics for a broad range of ​use cases​.
Druid merges key characteristics of each of the 3 systems into its ingestion layer,
storage format, querying layer, and core architecture.

● Testing was conducted on Imply Cloud using Imply version 3.3.0.1
(Apache Druid 0.18.1)
● The following hardware configurations were used:

▪​ ​Data Servers: 3 @ i3.2xlarge (8 vCPU, 61 GB memory, 1.9 TB
NVMe SSD storage each)
▪​ ​Query Servers: 2 @ m5d.large (2 vCPU, 8 GB memory each)
▪​ ​Master Server: 1 @ m5.large (2 vCPU, 8 GB memory)

Imply Data, Inc. Page 9 © 2020

https://druid.apache.org/

Google BigQuery

Google BigQuery​ is a cloud-based, fully managed, serverless enterprise data
warehouse that supports analytics over petabyte-scale data. It delivers high-speed
analysis of large data sets as a service. BigQuery scales its use of hardware up or
down to maximize performance of each query, adding and removing compute and
storage resources as needed.

BigQuery is very easy to use via a simple browser-based GUI, although it lacks
indexes or column constraints. No system tuning is possible. Google dynamically
allocates storage and compute resources. Customers pay for the amount of data
they query and store. Customers can pre-purchase flat-rate computation “slots” in
increments of $10,000 per month per 500 computer units, or commit to a year for
$8,500 per month.

Ingestion was not as smooth as we were led to believe it would be, although once
configured, it was fast. Our data transfer job for the ORC test file required entering
location on our S3 bucket as a path containing wildcards in a box that stated that
wildcards are not valid input. Google claims that data with an unknown schema can
be loaded automatically, but we could not get this feature to work.

Apache Jmeter and instances

The​ ​Apache JMeter™​ application is open source software, a 100% pure Java
application designed to load test functional behavior and measure performance. It
was originally designed for testing web applications but has since expanded to
other test functions. JMeter Version 5.2.1 was used for this testing.

JMeter was deployed as follows:

●​ ​To evaluate Druid performance, JMeter was installed and run from the
command line of the primary Query server.
●​ ​To evaluate BigQuery performance, JMeter was deployed onto a
e2-standard-4 (4 vCPU, 16GB memory) in the us-east1 zone.

Data generation and preparation
We generated 600 million rows (approximately 100GB) of test data using SSB’s
dbgen downloaded from ​ ​https://github.com/lemire/StarSchemaBenchmark​ and

Imply Data, Inc. Page 10 © 2020

https://cloud.google.com/bigquery
https://jmeter.apache.org/
https://jmeter.apache.org/
https://github.com/lemire/StarSchemaBenchmark
https://github.com/lemire/StarSchemaBenchmark

executed locally. The test files generated included the fact table lineorder.tbl, and
the dimension tables customer.tbl, part.tbl, supplier.tbl, and date.tbl. We executed
dbgen with a Scale Factor of 1 (SF=1) to generate a lineorder table with 6,000,000
rows.

The schema of the SSB is based on TPC-H, as are the queries. Denormalization is
standard in data warehousing and makes many joins unnecessary in common
queries. Columns are classified as identifiers (any data type, but unique values for
what it is identifying), text (fixed or variable length), and numeric (whole numbers,
not floating point.) Numeric identifiers must have unique values and have numeric
interpretations which provide unique numbers. Text is in 8-bit ASCII.

Figure 5. SSB Schema

We denormalized the SSB data to create a single flat file using Amazon Athena (Hive).
We partitioned the denormalized data by month. Athena DML is contained in a​ ​Github
repository​.

We saved the denormalized data to an S3 bucket in ORC and parquet formats.

Data ingestion
Prior to querying data, we had to create tables and ingest the denormalized SSB
data. We created tables with the foreknowledge that dbgen generates patterns of
data, especially so with respect to dates. Data falls roughly into equal amounts of

Imply Data, Inc. Page 11 © 2020

https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools

rows per day and month. This worked out conveniently when planning for optimal
table structure and queries. We partitioned on month in the source data and saved
it in ORC for Druid and BigQuery.

In Druid’s case, we installed the druid-ORC extension and then ingested partitioned
source data in ORC format. Data was partitioned on month and ingested by parsing
lo_orderdate into 2,607 segments with an average segment size of 75.07 MB and a
total size of 195.70 GB. See this​ ​Github repository​ for Druid ingestion and tuning
specs.

In BigQuery we performed the following steps:

1.​ ​Create a table
2.​ ​Run a data transfer job on our ORC test data from S3 and insert
3.​ ​Create another table with an additional column ​f0_​ so data can be
partitioned by date

See this​ ​Github repository​ for BigQuery DDL.

Query optimization
SSB’s classic data warehouse queries select from the line order table exactly once
(no self-joins or subqueries), with predicate restrictions on dimension table
attributes. Benchmark queries are intended to span the tasks performed by
common Star Schema queries used in commercial data warehouse systems.

Both platforms tested support SQL. We followed the same general procedure to
optimize queries for each platform, starting with the published generic SSB SQL
queries and optimizing them to make use of platform-specific optimizations.

Apache Druid supports queries via Druid SQL and native queries. Druid SQL is a
built-in SQL layer that is powered by a parser and planner based on Apache Calcite.
Druid SQL translates SQL into native Druid queries on the Query server, which are
then executed. While there is a theoretical overhead involved in translating SQL, it
was negligible in our testing. We further found that optimized SQL queries execute
faster than unoptimized native queries.

Google BigQuery leverages standard SQL that complies with the SQL 2011
standard. Prior to version 2.0, BigQuery ran “BigQuery SQL”, a non-standard SQL

Imply Data, Inc. Page 12 © 2020

https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools

dialect that was renamed to legacy SQL. Standard SQL allowed us to utilize
subqueries in the SELECT and WHERE clauses.

We leveraged platform-specific syntax for date expressions in SSB queries. This
enabled us to limit queries across partitions and to filter on time using the
platform’s strengths to reduce the number of columns and rows that needed to be
scanned. We also applied general SQL query optimization tactics such as simplifying
expressions to aid in query planning.

For example, here is how this procedure played out in optimizing Query 4.3.

Query Optimization Stage Query 4.3

SSB (Original) select d_year, s_city, p_brand1,
sum(lo_revenue - lo_supplycost) as profit
from denormalized where s_nation =
'UNITED STATES' and (d_year = 1997 or
d_year = 1998) and p_category =
'MFGR#14' group by d_year, s_city,
p_brand1 order by d_year, s_city,
p_brand1

Apache Druid select d_year, s_nation, p_category,
sum(lo_revenue) - sum(lo_supplycost) as
profit from ${jmDataSource} where
c_region = 'AMERICA' and s_region =
'AMERICA' and (FLOOR(\"__time\" to YEAR)
=
TIME_PARSE('1997-01-01T00:00:00.000Z')
or FLOOR(\"__time\" to YEAR) =
TIME_PARSE('1998-01-01T00:00:00.000Z'))
and (p_mfgr = 'MFGR#1' or p_mfgr =
'MFGR#2') group by d_year, s_nation,
p_category order by d_year, s_nation,
p_category

Imply Data, Inc. Page 13 © 2020

Google BigQuery select d_year, s_city, p_brand1,
sum(lo_revenue - lo_supplycost) as profit

from
`community-benchmark.SSBData.ssb_dat
a_small_part`

where s_nation = 'UNITED STATES'

and (DATE(f0_) BETWEEN "1997-01-01"
AND "1998-12-31")

and p_category = 'MFGR#14'

group by d_year, s_city, p_brand1

order by d_year, s_city, p_brand1

Figure 6. Query Optimization Process

A detailed discussion of SSB queries is available in ​Appendix A​ and a​ ​Github
repository.

Performance testing
We used JMeter to assess single-user query performance. No multi-user testing was
performed. A JMeter script can be found in a​ ​Github​ repository​.

We ran JMeter against each platform’s HTTP API under the following conditions:

● Query cache off
● Each SSB query was run 10 times (10 samples per query)
● Each query flight consisted of all 13 SSB queries run in succession
● For each test, Average Response Time, Lowest Response Time, Highest
Response Time, and Average Response Time Standard Deviation per query
were calculated
● Each test was repeated five times
● The lowest and highest test results were discarded, a standard
practice to remove ​outliers ​from performance testing results, leaving results
from 3 test runs

Imply Data, Inc. Page 14 © 2020

https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools
https://github.com/implydata/benchmark-tools
https://en.wikipedia.org/wiki/Outlier

● The remaining 3 results for each query were averaged to provide
results for Average Response Time, Lowest Response Time, Highest
Response Time, and Average Response Time Standard Deviation per query
were calculated

Personnel
The following people contributed to this research:

Community Team Professional Services Team

Matt Sarrel

Surekha Saharan

Gian Merlino

Rachel Pedreschi

Ben Hopp

Rommel Garcia

Figure 7. Contributors

Imply Data, Inc. Page 15 © 2020

Test results

This section provides detailed results of performance testing and

price-performance comparison of Apache Druid and Google BigQuery using the

Star Schema Benchmark. Please refer to the Testing Methodology section (above)

for complete details of how we conducted testing, and please see SSB Performance

Test Results (below) for results.

Computation and analytical parameters

To obtain the average query response results presented, we used JMeter to

measure query response time via HTTP API.

Price-performance comparison

The benchmark results tell us about performance of a specific workload, yet we

also want to account for price, and we need to compare the cost of Apache Druid

running on AWS instances to serverless BigQuery. Our overall methodology was to

calculate the normalized cost of running the full SSB query flight for each platform.

We summed the individual query times to determine an aggregate query flight

time. We then set a performance threshold that stipulated that the total query flight

must complete in less than 25 seconds. We relied on actual costs presented by the

Google billing API as well as publicly available pricing for​ ​Google BigQuery​ and​ ​AWS

in our calculations.

Cost for Apache Druid is based on AWS on-demand and reserved instance costs.

We obtained query response time via JMeter and query CPU time via the platform

interface. Cost for BigQuery is modeled for their​ ​on-demand​ and​ ​flat-rate​ monthly

price plans. We used the query cost and slot time provided by the console to

Imply Data, Inc. Page 16 © 2020

https://cloud.google.com/products/calculator/#id=52c679c2-9f7a-49a2-bf16-f8b1b75359e8
https://cloud.google.com/products/calculator/#id=52c679c2-9f7a-49a2-bf16-f8b1b75359e8
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://cloud.google.com/bigquery/pricing#on_demand_pricing
https://cloud.google.com/bigquery/pricing#on_demand_pricing
https://cloud.google.com/bigquery/pricing#flat_rate_pricing
https://cloud.google.com/bigquery/pricing#flat_rate_pricing

calculate the number of slots used and the slot cost for both on-demand and

flat-rate billing. Pricing assumes the SSB workload runs 24/7.

We used our SLA-type requirement (query flight must complete in 25 seconds or

less, selected to ensure BigQuery can complete the test flight in the given time

period given that BigQuery took 19.4 seconds in our testing) to establish two pricing

models, one based on flat-rate pricing and concurrency (number of users) per

month and one based on on-demand pricing and number of queries per month.

Our flat-rate comparisons will be helpful in estimating recurring monthly cost based

on the number of concurrent users, while our on-demand comparisons will be

helpful in estimating monthly cost based on the number of queries. We used both

average query time and total query flight time as performance metrics. We then

compared results from the two models to determine price-performance as a

function of queries per month, concurrency, and price.

We relied on the following assumptions to begin calculations:

Minutes

per year

Flight

query

count

Required

flight time

(seconds)

GBQ

flat

slot

batch

size

GBQ flat

slot batch

cost (1 yr

commit)

Druid

server

on-dema

nd cost

Druid

server

reserved

cost (1yr

not

prepaid)

Druid

server

reserved

cost (3yr

prepaid)

Peak/avg

ratio

525600 13 25 500 $8,000 $457 $312 $193 5

Figure 8. Parameters and assumptions used to model price-performance.

We performed the following calculations in order to model price-performance:

1. Start with average response time for Google BigQuery and Apache Druid for

partitioned data with time filtered queries

2. Sum average response time for all SSB queries in the query flight

Imply Data, Inc. Page 17 © 2020

3. Cost calculated is based on bytes transferred for BigQuery and AWS instance

time for Druid

4. Cost per query calculated as total cost / 13 (number of SSB queries)

5. BigQuery flat slot cost assumes 500 slots purchased for $8500K/month.

On-demand and flat rate comparison allowed us to:

1. Calculate time taken per slot

2. Calculate slot cost

3. Calculate cost per query

6. Assuming that performance scales linearly in column-oriented databases, we

extrapolated performance and calculated price across a range of usage

scenarios

7. We then calculated ratios of Druid to BigQuery for price to performance

SSB performance test results

We ran the optimized SSB queries and recorded results using Apache JMeter to

compare performance of Apache Druid and Google BigQuery. We submitted

queries to both via the HTTP API to make it easier to compare performance results.

We used on-demand BigQuery access to process queries via the HTTP API. ​Please

refer to the Testing Methodology section of this report for complete details on

how we conducted these tests​.

The overall Star Schema Benchmark test results for Apache Druid and Google

BigQuery, shown below, indicate that Apache Druid is the overall performance

leader. In our test configurations, Apache Druid outperforms Google BigQuery by

321% on the Star Schema Benchmark. Total average response time for the query

flight in Druid was 6043 ms, compared to 19409 ms in BigQuery. For these tests,

lower average response times are better.

Imply Data, Inc. Page 18 © 2020

Figure 9. Star Schema Benchmark (SSB) Query Performance for Apache Druid and Google BigQuery.

Average response time (milliseconds) per query. Total query flight time: Apache Druid (6043 ms),

Google BigQuery (19409 ms). Lower is better.

Test results by solution

Apache Druid was the overall best performer on the 13 SSB queries, beating

BigQuery in every query, in our testing. We can see that vectorization dramatically

improves query response time.

Imply Data, Inc. Page 19 © 2020

Figure 10. SSB Query Average, Highest, Lowest Response Time and Vectorization: Apache Druid.

Total query flight time for Apache Druid is 6043 ms. Lower is better.

Google BigQuery, outperformed by Druid on each query, exhibited consistent,

although slow, query response times.

Imply Data, Inc. Page 20 © 2020

Figure 11. SSB Query Average, Lowest, Highest Response Time: Google BigQuery. Total query flight

time for Google BigQuery is 19409 ms. Lower is better.

Results by query group

SSB contains a group of 13 queries organized into 4 groups. Each Query Group is

meant to provide functional coverage so as to allow prospective users to derive a

performance rating to match the query workload they expect to use in practice.

Also, in general, the total number of fact table rows retrieved is determined by the

selectivity of restrictions on dimensions. The selectivity of queries varies across

each Query Group, as well as how results are grouped, aggregated and sorted.

Query Group 1 (based on TPC-H TPCQ6) has a restriction on one dimension and

two lineorder columns, lo_discount and lo_quantity. The query measures the

revenue increase from eliminating various ranges of discounts in given product

Imply Data, Inc. Page 21 © 2020

order quantity intervals in a given year. Druid outperformed BigQuery in this query

group.

Figure 12. SSB Query Group 1 Average, Lowest, Highest Response Time: Apache Druid, Google

BigQuery. Lower is better.

Query Group 2 has restrictions on two dimensions. The query compares revenues

for certain product classes and suppliers in a given region, grouped by more

restrictive product classes and all years of orders. Druid outperformed BigQuery.

Imply Data, Inc. Page 22 © 2020

Figure 13. SSB Query Group 2 Average, Lowest, Highest Response Time: Apache Druid, Google
BigQuery. Lower is better.

Query Group 3, based on TPC-H query TPCQ5, has restrictions on three dimensions.
The query retrieves total revenue for lineorder transactions within a given region in
a certain time period, grouped by customer nation, supplier nation and year. These
queries progressively restrict to smaller numbers of results, therefore the
expectation is that Q3.4 will execute fastest for a given product. Druid dramatically
outperformed BigQuery when faced with growing query complexity.

Imply Data, Inc. Page 23 © 2020

Figure 14. SSB Query Group 3 Average Response Time: Apache Druid and Google BigQuery. Lower is
better.

SSB Query Group 4 provides a “What-If” sequence of queries that are
representative of an OLAP style of drill down exploration. It starts with a query with
weak constraints on three-dimensional columns, retrieves aggregate profit,
sum(lo_revenue - lo_supplycost), groups by d_year and c_nation. Following queries
modify predicate constraints by drilling down to locate the origin of an anomaly.
Q4.1 shows a growth in profit. Q4.2 drills down to group by p_category to see
where the profit change came from. Q4.3 restricts s_nation to ‘UNITED STATES’ and
p_category = ‘MFGR#14’, and drills down to group by s_city and p_brand.

Druid outperforms BigQuery on every query in Query Group 4, demonstrating
superior performance on an OLAP-style EDW workload. BigQuery lags significantly
throughout this query group, suggesting that the new class of cloud EDW typified

Imply Data, Inc. Page 24 © 2020

by Druid excels at OLAP-style workloads.

Figure 14. SSB Query Group 4 Average Response Time: Apache Druid, Google BigQuery. Lower is
better.

Price performance comparison

Based on the detailed analysis below, we provide the conservative estimate that
Druid exhibits a 12x price performance advantage over BigQuery. In our testing
with the SSB workload, we found that Druid outperformed BigQuery by three times
(Total Query Flight Time) at a much lower cost. Calculations below demonstrate a
conservative estimation that Druid has a twelve times price performance advantage
over BigQuery for the SSB workload run on an enterprise scale, as shown in
concurrent queries, over a month. Concurrent queries are defined as those actively
running at one time against an EDW. Concurrent queries come from many sources
and have different profiles, so we modelled across a range of results. For example,
dashboards can launch and refresh eight or more SQL queries that execute
concurrently, or multiple users walking through multiple what-if query paths would
represent concurrent queries.

Imply Data, Inc. Page 25 © 2020

Most enterprises will focus on BigQuery’s flat-rate pricing with a one-year commit
for budgeting, so we emphasize that comparison to Druid. When normalizing
performance, BigQuery costs between seven and 44 times as much for the same
performance as Druid on a monthly basis depending on AWS reserved instance
cost.

Apache Druid (Reserved). Google BigQuery Flat-Rate pricing with one year commit is shown against
Apache Druid pricing on reserved AWS instances with one year and three year commit.
Price-performance ratio is shown for increasing levels of concurrent queries.

The above model is based on concurrent queries, while the below model is based
on total number of queries per month. Concurrent queries can be used as an
indication of flat-rate monthly cost, while queries per month indicates how
BigQuery on-demand cost scales with respect to the cost of an equivalently
performing Druid cluster. Google charges by bytes transferred in the query
response, so cost goes up linearly with the number of queries. Druid requires
servers added to the cluster to handle the load from additional queries, so cost

Imply Data, Inc. Page 26 © 2020

increases with the number of AWS instances required to meet that load.

Figure 16. SSB Price-Performance Comparison: Google BigQuery (On-Demand) to Apache Druid
(Reserved). Price-performance ratio is shown for increasing levels of queries per month.

 When modelling based on concurrency, we used BigQuery slot time as the basis
for flat-rate pricing. We assumed a linear increase in slot time required to meet
additional concurrency. For Druid, we used the price of AWS instances that we
projected would be required to meet the same query response time threshold.
Druid's Price Performance is 7 times better when using 1 year reserved pricing, 12
times better when using 3 year reserved pricing, than BigQuery Flat Rate. Druid’s
cost can be minimized with 3 year reserved and prepaid AWS instances.

Imply Data, Inc. Page 27 © 2020

Conc.
Queries

BigQuery
slot time

BigQuery
slots

BigQuery
monthly
cost

BigQuery
Flat Rate
cost,
rounded,
1yr
commit

Druid
server
time

Druid
servers,
rounded

Druid
monthly
cost (1 yr
not
prepaid)

Druid
monthly
cost (3 yr
prepaid)

Ratio:
BigQuery
Flat-Rate
to Druid (1
yr not
prepaid)

Ratio:
BigQuery
Flat Rate
to Druid (3
yr prepaid)

1 2391.626 96 $1,626 $8,500 18.128 1 $312 $193 27.205 44.110

2 4783.252 191 $3,253 $8,500 36.256 2 $625 $385 13.603 22.055

4 9566.504 383 $6,505 $8,500 72.512 3 $937 $578 9.068 14.703

8 19133.008 765 $13,010 $17,000 145.024 6 $1,875 $1,156 9.068 14.703

16 38266.016 1531 $26,021 $34,000 290.048 12 $3,749 $2,312 9.068 14.703

32 76532.032 3061 $52,042 $59,500 580.096 24 $7,499 $4,625 7.935 12.865

64 153064.064 6123 $104,084 $110,500 1160.192 47 $14,685 $9,057 7.525 12.201

128 306128.128 12245 $208,167 $212,500 2320.384 93 $29,057 $17,921 7.313 11.858

Figure 17: Druid vs. BigQuery Price Performance: Flat-Rate Pricing with 1 Year
Commit Per Month, Varying Concurrency. Druid's Price Performance is 7 times
better when using 1 year reserved pricing, 12 times better when using 3 year
reserved pricing, than BigQuery Flat Rate

Google limits the maximum concurrent number of slots and queries that are
available concurrently on-demand. Results are shown to provide comparison to
Druid.

As mentioned previously, the above model is based on concurrent queries, while
the below model is based on total number of queries per month. Concurrent
queries can be used as an indication of flat-rate monthly cost, while queries per
month indicates how BigQuery on-demand cost scales with respect to the cost of
an equivalently performing Druid cluster. Google charges by bytes transferred in
the query response, so cost goes up linearly with the number of queries. Druid
requires servers added to the cluster to handle the load from additional queries, so
cost increases with the number of AWS instances required to meet that load.

Imply Data, Inc. Page 28 © 2020

Queries /
month

BigQuery

On-Demand
cost /
month

Queries /
peak time

Flights /
peak
time

Druid
server
time /
peak time

Druid
servers

Druid
servers,
rounded

Druid
monthly
cost (1
yr not
prepaid)

Druid
monthly
cost (3
yr
prepaid)

Ratio
BigQuery
On-Dema
nd to
Druid (1
yr not
prepaid)

Ratio
BigQuery
On-Dema
nd to
Druid (3
yr
prepaid)

1,000 $275 0.0476 0.0037 0.0663 0.0027 1 $312 $193 0.8814 1.4291

10,000 $2,754 0.4756 0.0366 0.6633 0.0265 1 $312 $193 8.8140 14.2908

100,000 $27,538 4.7565 0.3659 6.6327 0.2653 1 $312 $193 88.1400 142.9085

1,000,000 $275,385 47.5647 3.6588 66.3271 2.6531 3 $937 $578 293.8000 476.3616

10,000,000 $2,753,846 475.6469 36.5882 663.2713 26.5309 27 $8,436 $5,203 326.4444 529.2906

100,000,00
0

$27,538,462 4756.4688 365.8822 6632.7128 265.3085 266 $83,109 $51,258 331.3534 537.2499

Figure 18: Druid vs. BigQuery Price Performance: On-Demand Pricing Per Month, Varying Number
Queries. Druid's Price Performance is 0.9 to 537 times better than BigQuery On-Demand.

Imply Data, Inc. Page 29 © 2020

Appendix a
Below are the queries that were used in testing. The SQL queries as published in
the Star Schema Benchmark are first, followed by the plain-English versions, then
followed by denormalized versions, and then followed by queries optimized for
Apache Druid and Google BigQuery.

Star schema benchmark queries (original)

Query 1.1

select sum(lo_extendedprice*lo_discount) as revenue

from ssb.lineorder, ssb.dwdate

where lo_orderdate = d_datekey

and d_year = 1993

and lo_discount between 1 and 3

and lo_quantity < 25;

Query 1.2

select sum(lo_extendedprice*lo_discount) as revenue

from ssb.lineorder, ssb.dwdate

where lo_orderdate = d_datekey

and d_yearmonthnum = 199401

and lo_discount between 4 and 6

and lo_quantity between 26 and 35;

Imply Data, Inc. Page 30 © 2020

Query 1.3

select sum(lo_extendedprice*lo_discount) as revenue

from ssb.lineorder, ssb.dwdate

where lo_orderdate = d_datekey

and d_weeknuminyear = 6

and d_year = 1994

and lo_discount between 5 and 7

and lo_quantity between 26 and 35;

Query 2.1

select sum(lo_revenue), d_year, p_brand1

from ssb.lineorder, ssb.dwdate, ssb.part, ssb.supplier

where lo_orderdate = d_datekey

and lo_partkey = p_partkey

and lo_suppkey = s_suppkey

and p_category = 'MFGR#12'

and s_region = 'AMERICA'

group by d_year, p_brand1

order by d_year, p_brand1;

Query 2.2

select sum(lo_revenue), d_year, p_brand1

from ssb.lineorder, ssb.dwdate, ssb.part, ssb.supplier

Imply Data, Inc. Page 31 © 2020

where lo_orderdate = d_datekey

and lo_partkey = p_partkey

and lo_suppkey = s_suppkey

and p_brand1 between 'MFGR#2221' and 'MFGR#2228'

and s_region = 'ASIA'

group by d_year, p_brand1

order by d_year, p_brand1;

Query 2.3

select sum(lo_revenue), d_year, p_brand1

from ssb.lineorder, ssb.dwdate, ssb.part, ssb.supplier

where lo_orderdate = d_datekey

and lo_partkey = p_partkey

and lo_suppkey = s_suppkey

and p_brand1 = 'MFGR#2221'

and s_region = 'EUROPE'

group by d_year, p_brand1

order by d_year, p_brand1;

Query 3.1

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

Imply Data, Inc. Page 32 © 2020

and lo_orderdate = d_datekey

and c_region = 'ASIA' and s_region = 'ASIA'

and d_year >= 1992 and d_year <= 1997

group by c_nation, s_nation, d_year

order by d_year asc, revenue desc;

Query 3.2

select c_city, s_city, d_year, sum(lo_revenue) as revenue

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

and c_nation = 'UNITED STATES'

and s_nation = 'UNITED STATES'

and d_year >= 1992 and d_year <= 1997

group by c_city, s_city, d_year

order by d_year asc, revenue desc;

Query 3.3

select c_city, s_city, d_year, sum(lo_revenue) as revenue

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

Imply Data, Inc. Page 33 © 2020

and (c_city='UNITED KI1' or c_city='UNITED KI5')

and (s_city='UNITED KI1' or s_city='UNITED KI5')

and d_year >= 1992 and d_year <= 1997

group by c_city, s_city, d_year

order by d_year asc, revenue desc;

Query 3.4

select c_city, s_city, d_year, sum(lo_revenue) as revenue

from ssb.customer, ssb.lineorder, ssb.supplier, ssb.dwdate

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

and (c_city='UNITED KI1' or c_city='UNITED KI5')

and (s_city='UNITED KI1' or s_city='UNITED KI5')

and d_yearmonth = 'Dec1997'

group by c_city, s_city, d_year

order by d_year asc, revenue desc;

Query 4.1

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit

from ssb.dwdate, ssb.customer, ssb.supplier, ssb.part, ssb.lineorder

where lo_custkey = c_custkey

 and lo_suppkey = s_suppkey

 and lo_partkey = p_partkey

Imply Data, Inc. Page 34 © 2020

 and lo_orderdate = d_datekey

 and c_region = 'AMERICA'

 and s_region = 'AMERICA'

 and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')

group by d_year, c_nation

order by d_year, c_nation;

Query 4.2

select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit

from ssb.dwdate, ssb.customer, ssb.supplier, ssb.part, ssb.lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and c_region = 'AMERICA'

and s_region = 'AMERICA'

and (d_year = 1997 or d_year = 1998)

and (p_mfgr = 'MFGR#1'

or p_mfgr = 'MFGR#2')

group by d_year, s_nation, p_category order by d_year, s_nation, p_category;

Query 4.3

select d_year, s_city, p_brand1, sum(lo_revenue - lo_supplycost) as profit

from ssb.dwdate, ssb.customer, ssb.supplier, ssb.part, ssb.lineorder

Imply Data, Inc. Page 35 © 2020

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and c_region = 'AMERICA'

and s_nation = 'UNITED STATES'

and (d_year = 1997 or d_year = 1998)

and p_category = 'MFGR#14'

group by d_year, s_city, p_brand1 order by d_year, s_city, p_brand1;

Star schema benchmark queries (plain-English)
Query Flight 1 has restrictions on 1 dimension and measures revenue increase from eliminating
ranges of discounts in given product order quantity intervals shipped in a given year.

●​ ​Q1.1 has restrictions d_year = 1993, lo_quantity < 25, and lo_discount between 1 and 3.
●​ ​Q1.2 changes restrictions of Q1.1 to d_yearmonthnum = 199401, lo_quantity between 26 and 35,
lo_discount between 4 and 6.
●​ ​Q1.3 changes the restrictions to d_weeknuminyear = 6 and d_year= 1994, lo_quantity between 36
and 40, and lo_discount between 5 and 7

Query flight 2 has restictions on 2 dimensions. The query compares revenues for certain
product classes and suppliers in a certain region, grouped by more restrictive product classes
and all years of orders.

●​ ​2.1 has restrictions on p_category and s_region.
●​ ​2.2 changes restrictions of Q2.1 to p_brand1 between 'MFGR#2221' and 'MFGR#2228' and
s_regrion to 'ASIA'
●​ ​2.3 changes restriction to p_brand1='MFGR#2339' and s_region='EUROPE'

Query flight 3, has restrictions on 3 dimensions. The query is intended to retrieve total revenue
for lineorder transactions within and given region in a certain time period, grouped by customer
nation, supplier nation and year.

●​ ​Q3.1 has restriction c_region = 'ASIA', s_region='ASIA', and restricts d_year to a 6-year period,
grouped by c_nation, s_nation and d_year

Imply Data, Inc. Page 36 © 2020

●​ ​3.2 changes region restrictions to c_nation = ""UNITED STATES' and s_nation = 'UNITED STATES',
grouping revenue by customer city, supplier city and year.
●​ ​3.3 changes restrictions to c_city and s_city to two cities in 'UNITED KINGDOM' and retrieves
revenue grouped by c_city, s_city, d_year.
●​ ​3.4 changes date restriction to a single month. After partitioning the 12 billion row dataset on
d_yearmonth, we needed to rewrite the query for d_yearmonthnum

Query flight 4 provides a ""what-if"" sequence of queries that might be generated in an
OLAP-style of exploration. Starting with a query with rather weak constraints on three
dimensional columns, we retreive aggregate profit, sum(lo_revenue-lo_supplycost), grouped by
d_year and c_nation. Successive queries modify predicate constraints by drilling down to find
the source of an anomaly.

●​ ​Q4.1 restricts c_region and s_region both to 'AMERICA', and p_mfgr to one of two possilities.
●​ ​Q4.2 utilizes a typical workflow to dig deeper into the results. We pivot away from grouping by
s_nation, restrict d_year to 1997 and 1998, and drill down to group by p_category to see where the profit
change arises.
●​ ​Q4.3 digs deeper, restricting s_nation to 'UNITED STATES' and p_category = 'MFGR#14', drilling
down to group by s_city (in the USA) and p_brand1 (within p_category 'MFGR#14').

Star schema benchmark queries (denormalized)

Query 1.1

select sum(lo_extendedprice*lo_discount) as revenue from denormalized where d_year = 1993
and lo_discount between 1 and 3 and lo_quantity < 25

Query 1.2

select sum(lo_extendedprice*lo_discount) as lo_revenue from denormalized where
d_yearmonthnum = 199401 and lo_discount between 4 and 6 and lo_quantity between 26 and
35

Query 1.3

Imply Data, Inc. Page 37 © 2020

select sum(lo_extendedprice*lo_discount) as lo_revenue from denormalized where
d_weeknuminyear = 6 and d_year = 1994 and lo_discount between 5 and 7 and lo_quantity
between 26 and 35

Query 2.1

select sum(lo_revenue), d_year, p_brand1 from denormalized where p_category = 'MFGR#12'
and s_region = 'AMERICA' group by d_year, p_brand1 order by d_year, p_brand1

Query 2.2

select sum(lo_revenue), d_year, p_brand1 from denormalized where p_brand1 between
'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand1 order by
d_year, p_brand1

Query 2.3

select sum(lo_revenue), d_year, p_brand1 from denormalized where p_brand1= 'MFGR#2239'
and s_region = 'EUROPE' group by d_year, p_brand1 order by d_year, p_brand1

Query 3.1

select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from denormalized where
c_region = 'ASIA' and s_region = 'ASIA' and d_year >= 1992 and d_year <= 1997 group by
c_nation, s_nation, d_year order by d_year asc, lo_revenue desc

Query 3.2

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from denormalized where c_nation
= 'UNITED STATES' and s_nation = 'UNITED STATES' and d_year >= 1992 and d_year <=
1997 group by c_city, s_city, d_year order by d_year asc, lo_revenue desc

Query 3.3

Imply Data, Inc. Page 38 © 2020

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from denormalized where
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5')
and d_year >= 1992 and d_year <= 1997 group by c_city, s_city, d_year order by d_year asc,
lo_revenue desc

Query 3.4

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from denormalized where
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5')
and d_yearmonth = 'Dec1997' group by c_city, s_city, d_year order by d_year asc, lo_revenue
desc

Query 4.1

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit from denormalized where
c_region = 'AMERICA' and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr =
'MFGR#2') group by d_year, c_nation order by d_year, c_nation

Query 4.2

select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit from
denormalized where c_region = 'AMERICA' and s_region = 'AMERICA' and (d_year = 1997 or
d_year = 1998) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, s_nation,
p_category order by d_year, s_nation, p_category

Query 4.3

select d_year, s_city, p_brand1, sum(lo_revenue - lo_supplycost) as profit from denormalized
where c_region = 'AMERICA' and s_nation = 'UNITED STATES' and (d_year = 1997 or d_year
= 1998) and p_category = 'MFGR#14' group by d_year, s_city, p_brand1 order by d_year,
s_city, p_brand1

Optimized Apache Druid queries

Imply Data, Inc. Page 39 © 2020

Query 1.1

select sum(lo_extendedprice*lo_discount) as revenue from ssb_data where floor(__time to
YEAR) = TIMESTAMP '1993-01-01' and lo_discount between 1 and 3 and lo_quantity < 25

Query 1.2

select sum(lo_extendedprice*lo_discount) as lo_revenue from ssb_data where
TIME_FLOOR(\"__time\",'P1M') = TIME_PARSE('1994-01-01T00:00:00.000Z') and lo_discount
between 4 and 6 and lo_quantity between 26 and 35

Query 1.3

select sum(lo_extendedprice*lo_discount) as lo_revenue from ssb_data where

TIME_FLOOR(__time,'P1W')=TIME_PARSE('1994-02-07T00:00:00.000Z') and lo_discount
between 5 and 7 and lo_quantity between 26 and 35

Query 2.1

select sum(lo_revenue), d_year, p_brand1 from ssb_data where p_category = 'MFGR#12' and
s_region = 'AMERICA' group by d_year, p_brand1 order by d_year, p_brand1

Query 2.2

select sum(lo_revenue), d_year, p_brand1 from ssb_data where p_brand1 between
'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand1 order by
d_year, p_brand1

Query 2.3

select sum(lo_revenue), d_year, p_brand1 from ssb_data where p_brand1= 'MFGR#2239' and
s_region = 'EUROPE' group by d_year, p_brand1 order by d_year, p_brand1

Imply Data, Inc. Page 40 © 2020

Query 3.1

select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from ssb_data where
c_region = 'ASIA' and s_region = 'ASIA' and TIME_EXTRACT(\"__time\",'YEAR') >= 1992 and
TIME_EXTRACT(\"__time\",'YEAR') <= 1997 group by c_nation, s_nation, d_year order by
d_year asc, lo_revenue desc

Query 3.2

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from ssb_data where c_nation =
'UNITED STATES' and s_nation = 'UNITED STATES' and TIME_EXTRACT(\"__time\",'YEAR')
>= 1992 and TIME_EXTRACT(\"__time\",'YEAR') <= 1997 group by c_city, s_city, d_year order
by d_year asc, lo_revenue desc

Query 3.3

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from ssb_data where
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5')
and FLOOR(\"__time\" to YEAR) >= TIME_PARSE('1992-01-01T00:00:00.000Z') and
FLOOR(\"__time\" to YEAR) <= TIME_PARSE('1997-01-01T00:00:00.000Z') group by c_city,
s_city, d_year order by d_year asc, lo_revenue desc

Query 3.4

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from ssb_data where
(c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5')
and TIME_FLOOR(""__time"",'P1M') = TIME_PARSE('Dec1997','MMMyyyy') group by c_city,
s_city, d_year order by d_year asc, lo_revenue desc

Query 4.1

select d_year, c_nation, sum(lo_revenue) - sum(lo_supplycost) as profit from ssb_data where
c_region = 'AMERICA' and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr =
'MFGR#2') group by d_year, c_nation order by d_year, c_nation

Imply Data, Inc. Page 41 © 2020

Query 4.2

select d_year, s_nation, p_category, sum(lo_revenue) - sum(lo_supplycost) as profit from
ssb_data where c_region = 'AMERICA' and s_region = 'AMERICA' and (FLOOR(\"__time\" to
YEAR) = TIME_PARSE('1997-01-01T00:00:00.000Z') or FLOOR(\"__time\" to YEAR) =
TIME_PARSE('1998-01-01T00:00:00.000Z')) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')
group by d_year, s_nation, p_category order by d_year, s_nation, p_category

Query 4.3

select d_year, s_nation, p_category, sum(lo_revenue) - sum(lo_supplycost) as profit from
ssb_data where c_region = 'AMERICA' and s_region = 'AMERICA' and (FLOOR(\"__time\" to
YEAR) = TIME_PARSE('1997-01-01T00:00:00.000Z') or FLOOR(\"__time\" to YEAR) =
TIME_PARSE('1998-01-01T00:00:00.000Z')) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')
group by d_year, s_nation, p_category order by d_year, s_nation, p_category

Google BigQuery optimized queries

Query 1.1

select sum(lo_extendedprice*lo_discount) as revenue from
`community-benchmark.SSBData.ssb_data_small_part` where (date(f0_) between
""1993-01-01"" and ""1993-12-31"") and lo_discount between 1 and 3 and lo_quantity < 25

Query 1.2

select sum(lo_extendedprice*lo_discount) as lo_revenue from
`community-benchmark.SSBData.ssb_data_small_part` where (date(f0_) between
""1994-01-01"" and ""1994-01-31"") and lo_discount between 4 and 6 and lo_quantity between
26 and 35

Query 1.3

select sum(lo_extendedprice*lo_discount) as lo_revenue from
`community-benchmark.SSBData.ssb_data_small_part` where d_weeknuminyear = 6 and

Imply Data, Inc. Page 42 © 2020

DATE (f0_) BETWEEN ""1994-01-01"" and ""1994-12-31"" and lo_discount between 5 and 7
and lo_quantity between 26 and 35

Query 2.1

select sum(lo_revenue), d_year, p_brand1 from
`community-benchmark.SSBData.ssb_data_small_part` where p_category = 'MFGR#12' and
s_region = 'AMERICA' group by d_year, p_brand1 order by d_year, p_brand1

Query 2.2

select sum(lo_revenue), d_year, p_brand1 from
`community-benchmark.SSBData.ssb_data_small_part` where p_brand1 between
'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand1 order by
d_year, p_brand1

Query 2.3

select sum(lo_revenue), d_year, p_brand1 from
`community-benchmark.SSBData.ssb_data_small_part` where p_brand1= 'MFGR#2239' and
s_region = 'EUROPE' group by d_year, p_brand1 order by d_year, p_brand1

Query 3.1

select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from
`community-benchmark.SSBData.ssb_data_small_part`where c_region = 'ASIA' and s_region =
'ASIA' and (DATE(f0_) BETWEEN ""1992-01-01"" AND ""1997-12-31"") group by c_nation,
s_nation, d_year order by d_year asc, lo_revenue desc

Query 3.2

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from
`community-benchmark.SSBData.ssb_data_small_part` where c_nation = 'UNITED STATES'
and s_nation = 'UNITED STATES' and (DATE(f0_) BETWEEN ""1992-01-01"" AND
""1997-12-31"") group by c_city, s_city, d_year order by d_year asc, lo_revenue desc

Imply Data, Inc. Page 43 © 2020

Query 3.3

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from
`community-benchmark.SSBData.ssb_data_small_part` where (c_city='UNITED KI1' or
c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and (DATE(f0_)
BETWEEN ""1992-01-01"" AND ""1997-12-31"") group by c_city, s_city, d_year order by d_year
asc, lo_revenue desc

Query 3.4

select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from
`community-benchmark.SSBData.ssb_data_small_part` where (c_city='UNITED KI1' or
c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and (DATE(f0_)
BETWEEN ""1997-12-01"" AND ""1997-12-31"") group by c_city, s_city, d_year order by d_year
asc, lo_revenue desc

Query 4.1

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit from
`community-benchmark.SSBData.ssb_data_small_part` where c_region = 'AMERICA' and
s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year,
c_nation order by d_year, c_nation

Query 4.2

select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit from
`community-benchmark.SSBData.ssb_data_small_part` where c_region = 'AMERICA' and
s_region = 'AMERICA'

and (DATE(f0_) BETWEEN ""1997-01-01"" AND ""1998-12-31"") and (p_mfgr = 'MFGR#1' or
p_mfgr = 'MFGR#2') group by d_year, s_nation, p_category order by d_year, s_nation,
p_category

Query 4.3

Imply Data, Inc. Page 44 © 2020

select d_year, s_city, p_brand1, sum(lo_revenue - lo_supplycost) as profit from
`community-benchmark.SSBData.ssb_data_small_part` where s_nation = 'UNITED STATES'
and (DATE(f0_) BETWEEN ""1997-01-01"" AND ""1998-12-31"") and p_category = 'MFGR#14'
group by d_year, s_city, p_brand1 order by d_year, s_city, p_brand1

Imply Data, Inc. Page 45 © 2020

About Apache Druid

Apache Druid is an open source distributed data store. Druid’s core design
combines ideas from ​data warehouses​, ​time series databases​, and ​search systems
to create a unified system for real-time analytics for a broad range of ​use cases​.
Druid merges key characteristics of each of these three architectures into its
ingestion, storage and querying layers.

About Imply

Imply transforms how businesses run by integrating real-time analytics into their
operations. Founded by the authors of the ​Apache Druid database, Imply provides
a cloud-native solution that delivers real-time ingestion, interactive ad-hoc queries,
and intuitive visualizations for many types of event-driven and streaming data
flows. Imply has operations in North America, Europe, and Asia Pacific and is
backed by Andreesen Horowitz, Khosla Ventures, and Geodesic Capital. For more
information visit, please visit ​imply.io​.

If you are interested in trying out Druid or Imply, you can ​download Imply or
request an Imply Cloud Trial Account​.

Imply Data, Inc. Page 46 © 2020

https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Time_series_database
https://en.wikipedia.org/wiki/Full-text_search
http://druid.apache.org/use-cases
https://druid.apache.org/
http://www.imply.io/
https://imply.io/get-started
https://imply.io/get-started

