
Apache Flink

 i

Apache Flink

 i

About the Tutorial

Apache Flink is an open source stream processing framework, which has both batch and

stream processing capabilities. Apache Flink is very similar to Apache Spark, but it follows

stream-first approach. It is also a part of Big Data tools list. This tutorial explains the

basics of Flink Architecture Ecosystem and its APIs.

Audience

This tutorial is for beginners who are aspiring to become experts with stream processing

in Big Data Domain. It is also ideal for Big Data professionals who know Apache Hadoop

and Apache Spark.

Prerequisites

Before proceeding with this tutorial, you should have basic knowledge of Scala

programming and any Linux operating system.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Apache Flink

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Apache Flink — Big Data Platform .. 1

2. Apache Flink — Batch vs Real-time Processing .. 2

3. Apache Flink — Introduction... 3

Ecosystem on Apache Flink .. 3

4. Apache Flink — Architecture ... 5

Features of Apache Flink .. 6

5. Apache Flink — System Requirements .. 7

6. Apache Flink — Setup/Installation .. 8

7. Apache Flink — API Concepts .. 10

Dataset API .. 10

DataStream API ... 11

8. Apache Flink — Table API and SQL .. 13

9. Apache Flink — Creating a Flink Application ... 14

10. Apache Flink — Running a Flink Program .. 30

11. Apache Flink — Libraries ... 32

Complex Event Processing (CEP) .. 32

Gelly .. 33

12. Apache Flink — Machine Learning .. 35

13. Apache Flink — Use Cases ... 37

Apache Flink – Bouygues Telecom ... 37

Apache Flink – Alibaba ... 37

Apache Flink

 iii

14. Apache Flink — Flink vs Spark vs Hadoop.. 39

15. Apache Flink — Conclusion ... 40

Apache Flink

 1

The advancement of data in the last 10 years has been enormous; this gave rise to a term

'Big Data'. There is no fixed size of data, which you can call as big data; any data that

your traditional system (RDBMS) is not able to handle is Big Data. This Big Data can be in

structured, semi-structured or un-structured format. Initially, there were three dimensions

to data – Volume, Velocity, Variety. The dimensions have now gone beyond just the three

Vs. We have now added other Vs – Veracity, Validity, Vulnerability, Value, Variability, etc.

Big Data led to the emergence of multiple tools and frameworks that help in the storage

and processing of data. There are a few popular big data frameworks such as Hadoop,

Spark, Hive, Pig, Storm and Zookeeper. It also gave opportunity to create Next Gen

products in multiple domains like Healthcare, Finance, Retail, E-Commerce and more.

Whether it is an MNC or a start-up, everyone is leveraging Big Data to store and process

it and take smarter decisions.

1. Apache Flink — Big Data Platform

Apache Flink

 2

In terms of Big Data, there are two types of processing:

 Batch Processing

 Real-time Processing

Processing based on the data collected over time is called Batch Processing. For example,

a bank manager wants to process past one-month data (collected over time) to know the

number of cheques that got cancelled in the past 1 month.

Processing based on immediate data for instant result is called Real-time Processing. For

example, a bank manager getting a fraud alert immediately after a fraud transaction

(instant result) has occurred.

The table given below lists down the differences between Batch and Real-Time Processing:

Batch Processing Real-Time Processing

Static Files Event Streams

Processed Periodically in minute,

hour, day etc.

Processed immediately (nanoseconds)

Past data on disk storage In Memory Storage

Example: Bill Generation Example: ATM Transaction Alert

These days, real-time processing is being used a lot in every organization. Use cases like

fraud detection, real-time alerts in healthcare and network attack alert require real-time

processing of instant data; a delay of even few milliseconds can have a huge impact.

An ideal tool for such real time use cases would be the one, which can input data as stream

and not batch. Apache Flink is that real-time processing tool.

2. Apache Flink — Batch vs Real-time Processing

Apache Flink

 3

Apache Flink is a real-time processing framework which can process streaming data. It is

an open source stream processing framework for high-performance, scalable, and accurate

real-time applications. It has true streaming model and does not take input data as batch

or micro-batches.

Apache Flink was founded by Data Artisans company and is now developed under Apache

License by Apache Flink Community. This community has over 479 contributors and 15500

+ commits so far.

Ecosystem on Apache Flink

The diagram given below shows the different layers of Apache Flink Ecosystem:

Storage

Apache Flink has multiple options from where it can Read/Write data. Below is a basic

storage list:

 HDFS (Hadoop Distributed File System)

 Local File System

3. Apache Flink — Introduction

Apache Flink

 4

 S3

 RDBMS (MySQL, Oracle, MS SQL etc.)

 MongoDB

 HBase

 Apache Kafka

 Apache Flume

Deploy

You can deploy Apache Fink in local mode, cluster mode or on cloud. Cluster mode can be

standalone, YARN, MESOS.

On cloud, Flink can be deployed on AWS or GCP.

Kernel

This is the runtime layer, which provides distributed processing, fault tolerance, reliability,

native iterative processing capability and more.

APIs & Libraries

This is the top layer and most important layer of Apache Flink. It has Dataset API, which

takes care of batch processing, and Datastream API, which takes care of stream

processing. There are other libraries like Flink ML (for machine learning), Gelly (for graph

processing), Tables for SQL. This layer provides diverse capabilities to Apache Flink.

Apache Flink

 5

Apache Flink works on Kappa architecture. Kappa architecture has a single processor -

stream, which treats all input as stream and the streaming engine processes the data in

real-time. Batch data in kappa architecture is a special case of streaming.

The following diagram shows the Apache Flink Architecture.

The key idea in Kappa architecture is to handle both batch and real-time data through a

single stream processing engine.

Most big data framework works on Lambda architecture, which has separate processors

for batch and streaming data. In Lambda architecture, you have separate codebases for

batch and stream views. For querying and getting the result, the codebases need to be

merged. Not maintaining separate codebases/views and merging them is a pain, but Kappa

architecture solves this issue as it has only one view – real-time, hence merging of

codebase is not required.

That does not mean Kappa architecture replaces Lambda architecture, it completely

depends on the use-case and the application that decides which architecture would be

preferable.

The following diagram shows Apache Flink job execution architecture.

4. Apache Flink — Architecture

Apache Flink

 6

Program

It is a piece of code, which you run on the Flink Cluster.

Client

It is responsible for taking code (program) and constructing job dataflow graph, then

passing it to JobManager. It also retrieves the Job results.

JobManager

After receiving the Job Dataflow Graph from Client, it is responsible for creating the

execution graph. It assigns the job to TaskManagers in the cluster and supervises the

execution of the job.

TaskManager

It is responsible for executing all the tasks that have been assigned by JobManager. All

the TaskManagers run the tasks in their separate slots in specified parallelism. It is

responsible to send the status of the tasks to JobManager.

Features of Apache Flink

The features of Apache Flink are as follows:

 It has a streaming processor, which can run both batch and stream programs.

 It can process data at lightning fast speed.

 APIs available in Java, Scala and Python.

 Provides APIs for all the common operations, which is very easy for programmers

to use.

 Processes data in low latency (nanoseconds) and high throughput.

 Its fault tolerant. If a node, application or a hardware fails, it does not affect the

cluster.

 Can easily integrate with Apache Hadoop, Apache MapReduce, Apache Spark,

HBase and other big data tools.

 In-memory management can be customized for better computation.

 It is highly scalable and can scale upto thousands of node in a cluster.

 Windowing is very flexible in Apache Flink.

 Provides Graph Processing, Machine Learning, Complex Event Processing libraries.

Apache Flink

 7

The following are the system requirements to download and work on Apache Flink −

Recommended Operating System

 Microsoft Windows 10

 Ubuntu 16.04 LTS

 Apple macOS 10.13/High Sierra

Memory Requirement

 Memory - Minimum 4 GB, Recommended 8 GB

 Storage Space - 30 GB

Note − Java 8 must be available with environment variables already set.

5. Apache Flink — System Requirements

Apache Flink

 8

Before the start with the setup/ installation of Apache Flink, let us check whether we have

Java 8 installed in our system.

Java - version

We will now proceed by downloading Apache Flink.

wget http://mirrors.estointernet.in/apache/flink/flink-1.7.1/flink-1.7.1-bin-

scala_2.11.tgz

Now, uncompress the tar file.

tar -xzf flink-1.7.1-bin-scala_2.11.tgz

Go to Flink’s home directory.

cd flink-1.7.1/

6. Apache Flink — Setup/Installation

Apache Flink

 9

Start the Flink Cluster.

./bin/start-cluster.sh

Open the Mozilla browser and go to the below URL, it will open the Flink Web Dashboard.

http://localhost:8081

This is how the User Interface of Apache Flink Dashboard looks like.

Now the Flink cluster is up and running.

http://localhost:8081/

Apache Flink

 10

Flink has a rich set of APIs using which developers can perform transformations on both

batch and real-time data. A variety of transformations includes mapping, filtering, sorting,

joining, grouping and aggregating. These transformations by Apache Flink are performed

on distributed data. Let us discuss the different APIs Apache Flink offers.

Dataset API

Dataset API in Apache Flink is used to perform batch operations on the data over a period.

This API can be used in Java, Scala and Python. It can apply different kinds of

transformations on the datasets like filtering, mapping, aggregating, joining and grouping.

Datasets are created from sources like local files or by reading a file from a particular

sourse and the result data can be written on different sinks like distributed files or

command line terminal. This API is supported by both Java and Scala programming

languages.

Here is a Wordcount program of Dataset API:

public class WordCountProg {

 public static void main(String[] args) throws Exception {

 final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment();

 DataSet<String> text = env.fromElements(

 "Hello",

 "My Dataset API Flink Program");

 DataSet<Tuple2<String, Integer>> wordCounts = text

 .flatMap(new LineSplitter())

 .groupBy(0)

 .sum(1);

 wordCounts.print();

 }

 public static class LineSplitter implements FlatMapFunction<String,
Tuple2<String, Integer>> {

 @Override

 public void flatMap(String line, Collector<Tuple2<String, Integer>>
out) {

7. Apache Flink — API Concepts

Apache Flink

 11

 for (String word : line.split(" ")) {

 out.collect(new Tuple2<String, Integer>(word, 1));

 }

 }

 }

}

DataStream API

This API is used for handling data in continuous stream. You can perform various

operations like filtering, mapping, windowing, aggregating on the stream data. There are

various sources on this data stream like message queues, files, socket streams and the

result data can be written on different sinks like command line terminal. Both Java and

Scala programming languages support this API.

Here is a streaming Wordcount program of DataStream API, where you have continuous

stream of word counts and the data is grouped in the second window.

import org.apache.flink.api.common.functions.FlatMapFunction;

import org.apache.flink.api.java.tuple.Tuple2;

import org.apache.flink.streaming.api.datastream.DataStream;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.api.windowing.time.Time;

import org.apache.flink.util.Collector;

public class WindowWordCountProg {

 public static void main(String[] args) throws Exception {

 StreamExecutionEnvironment env =

StreamExecutionEnvironment.getExecutionEnvironment();

 DataStream<Tuple2<String, Integer>> dataStream = env

 .socketTextStream("localhost", 9999)

 .flatMap(new Splitter())

 .keyBy(0)

 .timeWindow(Time.seconds(5))

 .sum(1);

 dataStream.print();

Apache Flink

 12

 env.execute("Streaming WordCount Example");

 }

 public static class Splitter implements FlatMapFunction<String,
Tuple2<String, Integer>> {

 @Override

 public void flatMap(String sentence, Collector<Tuple2<String, Integer>>
out) throws Exception {

 for (String word: sentence.split(" ")) {

 out.collect(new Tuple2<String, Integer>(word, 1));

 }

 }

 }

}

Apache Flink

 13

Table API is a relational API with SQL like expression language. This API can do both batch

and stream processing. It can be embedded with Java and Scala Dataset and Datastream

APIs. You can create tables from existing Datasets and Datastreams or from external data

sources. Through this relational API, you can perform operations like join, aggregate,

select and filter. Whether the input is batch or stream, the semantics of the query remains

the same.

Here is a sample Table API program:

// for batch programs use ExecutionEnvironment instead of

StreamExecutionEnvironment

val env = StreamExecutionEnvironment.getExecutionEnvironment

// create a TableEnvironment

val tableEnv = TableEnvironment.getTableEnvironment(env)

// register a Table

tableEnv.registerTable("table1", ...) // or

tableEnv.registerTableSource("table2", ...) // or

tableEnv.registerExternalCatalog("extCat", ...)

// register an output Table

tableEnv.registerTableSink("outputTable", ...);

// create a Table from a Table API query

val tapiResult = tableEnv.scan("table1").select(...)

// Create a Table from a SQL query

val sqlResult = tableEnv.sqlQuery("SELECT ... FROM table2 ...")

// emit a Table API result Table to a TableSink, same for SQL result

tapiResult.insertInto("outputTable")

// execute

env.execute()

8. Apache Flink — Table API and SQL

Apache Flink

 14

In this chapter, we will learn how to create a Flink application.

Open Eclipse IDE, click on New Project and Select Java Project.

9. Apache Flink — Creating a Flink Application

Apache Flink

 15

Give Project Name and click on Finish.

Apache Flink

 16

Now, click on Finish as shown in the following screenshot.

Apache Flink

 17

Now, right-click on src and go to New >> Class.

Apache Flink

 18

Give a class name and click on Finish.

Copy and paste the below code in the Editor.

import org.apache.flink.api.common.functions.FlatMapFunction;

import org.apache.flink.api.java.DataSet;

import org.apache.flink.api.java.ExecutionEnvironment;

import org.apache.flink.api.java.tuple.Tuple2;

import org.apache.flink.api.java.utils.ParameterTool;

import org.apache.flink.util.Collector;

public class WordCount {

Apache Flink

 19

 //

 // PROGRAM

 //

 public static void main(String[] args) throws Exception {

 final ParameterTool params = ParameterTool.fromArgs(args);

 // set up the execution environment

 final ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment();

 // make parameters available in the web interface

 env.getConfig().setGlobalJobParameters(params);

 // get input data

 DataSet<String> text = env.readTextFile(params.get("input"));

 DataSet<Tuple2<String, Integer>> counts =

 // split up the lines in pairs (2-tuples) containing:

(word,1)

 text.flatMap(new Tokenizer())

 // group by the tuple field "0" and sum up tuple field

"1"

 .groupBy(0)

 .sum(1);

 // emit result

 if (params.has("output")) {

 counts.writeAsCsv(params.get("output"), "\n", " ");

 // execute program

 env.execute("WordCount Example");

 } else {

 System.out.println("Printing result to stdout. Use --output

to specify output path.");

 counts.print();

Apache Flink

 20

 }

 }

 //

 // USER FUNCTIONS

 //

 public static final class Tokenizer implements FlatMapFunction<String,

Tuple2<String, Integer>> {

 public void flatMap(String value, Collector<Tuple2<String,

Integer>> out) {

 // normalize and split the line

 String[] tokens = value.toLowerCase().split("\\W+");

 // emit the pairs

 for (String token : tokens) {

 if (token.length() > 0) {

 out.collect(new Tuple2<>(token, 1));

 }

 }

 }

 }

}

Apache Flink

 21

You will get many errors in the editor, because Flink libraries need to be added to this

project.

Right-click on the project >> Build Path >> Configure Build Path.

Apache Flink

 22

Select the Libraries tab and click on Add External JARs.

Go to Flink’s lib directory, select all the 4 libraries and click on OK.

Apache Flink

 23

Go to the Order and Export tab, select all the libraries and click on OK.

You will see that the errors are no more there.

Apache Flink

 24

Now, let us export this application. Right-click on the project and click on Export.

Apache Flink

 25

Select JAR file and click Next>

Apache Flink

 26

Give a destination path and click on Next>

Apache Flink

 27

Click on Next>

Apache Flink

 28

Click on Browse, select the main class (WordCount) and click Finish.

Note: Click OK, in case you get any warning.

Apache Flink

 29

Run the below command. It will further run the Flink application you just created.

./bin/flink run /home/ubuntu/wordcount.jar --input README.txt --output

/home/ubuntu/output

Apache Flink

 30

In this chapter, we will learn how to run a Flink program.

Let us run the Flink wordcount example on a Flink cluster.

Go to Flink’s home directory and run the below command in the terminal.

bin/flink run examples/batch/WordCount.jar -input README.txt -output

/home/ubuntu/flink-1.7.1/output.txt

Go to Flink dashboard, you will be able to see a completed job with its details.

10. Apache Flink — Running a Flink Program

Apache Flink

 31

If you click on Completed Jobs, you will get detailed overview of the jobs.

To check the output of wordcount program, run the below command in the terminal.

cat output.txt

Apache Flink

 32

In this chapter, we will learn about the different libraries of Apache Flink.

Complex Event Processing (CEP)

FlinkCEP is an API in Apache Flink, which analyses event patterns on continuous streaming

data. These events are near real time, which have high throughput and low latency. This

API is used mostly on Sensor data, which come in real-time and are very complex to

process.

CEP analyses the pattern of the input stream and gives the result very soon. It has the

ability to provide real-time notifications and alerts in case the event pattern is complex.

FlinkCEP can connect to different kind of input sources and analyse patterns in them.

This how a sample architecture with CEP looks like:

Sensor data will be coming in from different sources, Kafka will act as a distributed

messaging framework, which will distribute the streams to Apache Flink, and FlinkCEP will

analyse the complex event patterns.

You can write programs in Apache Flink for complex event processing using Pattern API.

It allows you to decide the event patterns to detect from the continuous stream data.

Below are some of the most commonly used CEP patterns:

Begin

It is used to define the starting state. The following program shows how it is defined in a

Flink program:

Pattern<Event, ?> next = start.next("next");

11. Apache Flink — Libraries

Apache Flink

 33

Where

It is used to define a filter condition in the current state.

patternState.where(new FilterFunction <Event>() {

@Override

public boolean filter(Event value) throws Exception {

return ... // some condition

}

});

Next

It is used to append a new pattern state and the matching event needed to pass the

previous pattern.

Pattern<Event, ?> next = start.next("next");

FollowedBy

It is used to append a new pattern state but here other events can occur b/w two matching

events.

Pattern<Event, ?> followedBy = start.followedBy("next");

Gelly

Apache Flink’s Graph API is Gelly. Gelly is used to perform graph analysis on Flink

applications using a set of methods and utilities. You can analyse huge graphs using

Apache Flink API in a distributed fashion with Gelly. There are other graph libraries also

like Apache Giraph for the same purpose, but since Gelly is used on top of Apache Flink,

it uses single API. This is very helpful from development and operation point of view.

Let us run an example using Apache Flink API – Gelly.

Firstly, you need to copy 2 Gelly jar files from opt directory of Apache Flink to its lib

directory. Then run flink-gelly-examples jar.

cp opt/flink-gelly* lib/

./bin/flink run examples/gelly/flink-gelly-examples_*.jar

Apache Flink

 34

Let us now run the PageRank example.

PageRank computes a per-vertex score, which is the sum of PageRank scores transmitted

over in-edges. Each vertex's score is divided evenly among out-edges. High-scoring

vertices are linked to by other high-scoring vertices.

The result contains the vertex ID and the PageRank score.

usage: flink run examples/flink-gelly-examples_<version>.jar --algorithm

PageRank [algorithm options] --input <input> [input options] --output <output>
[output options]

./bin/flink run examples/gelly/flink-gelly-examples_*.jar --algorithm PageRank

--input CycleGraph --vertex_count 2 --output Print

Apache Flink

 35

Apache Flink’s Machine Learning library is called FlinkML. Since usage of machine learning

has been increasing exponentially over the last 5 years, Flink community decided to add

this machine learning APO also in its ecosystem. The list of contributors and algorithms

are increasing in FlinkML. This API is not a part of binary distribution yet.

Here is an example of linear regression using FlinkML:

// LabeledVector is a feature vector with a label (class or real value)

val trainingData: DataSet[LabeledVector] = ...

val testingData: DataSet[Vector] = ...

// Alternatively, a Splitter is used to break up a DataSet into training and
testing data.

val dataSet: DataSet[LabeledVector] = ...

val trainTestData: DataSet[TrainTestDataSet] = Splitter.trainTestSplit(dataSet)

val trainingData: DataSet[LabeledVector] = trainTestData.training

val testingData: DataSet[Vector] = trainTestData.testing.map(lv => lv.vector)

val mlr = MultipleLinearRegression()

 .setStepsize(1.0)

 .setIterations(100)

 .setConvergenceThreshold(0.001)

mlr.fit(trainingData)

// The fitted model can now be used to make predictions

val predictions: DataSet[LabeledVector] = mlr.predict(testingData)

Inside flink-1.7.1/examples/batch/ path, you will find KMeans.jar file. Let us run this

sample FlinkML example.

This example program is run using the default point and the centroid data set.

./bin/flink run examples/batch/KMeans.jar --output Print

12. Apache Flink — Machine Learning

Apache Flink

 36

Apache Flink

 37

In this chapter, we will understand a few test cases in Apache Flink.

Apache Flink – Bouygues Telecom

Bouygues Telecom is one of the largest telecom organization in France. It has 11+ million

mobile subscribers and 2.5+ million fixed customers. Bouygues heard about Apache Flink

for the first time in a Hadoop Group Meeting held at Paris. Since then they have been using

Flink for multiple use-cases. They have been processing billions of messages in a day in

real-time through Apache Flink.

This is what Bouygues has to say about Apache Flink: “We ended up with Flink because

the system supports true streaming - both at the API and at the runtime level, giving us

the programmability and low latency that we were looking for. In addition, we were able

to get our system up and running with Flink in a fraction of the time compared to other

solutions, which resulted in more available developer resources for expanding the business

logic in the system.”

At Bouygues, customer experience is the highest priority. They analyse data in real-time

so that they can give below insights to their engineers:

 Real-Time Customer Experience over their network

 What is happening globally on the network

 Network evaluations and operations

They created a system called LUX (Logged User Experience) which processed massive log

data from network equipment with internal data reference to give quality of experience

indicators which will log their customer experience and build an alarming functionality to

detect any failure in consumption of data within 60 seconds.

To achieve this, they needed a framework which can take massive data in real-time, is

easy to set up and provides rich set of APIs for processing the streamed data. Apache Flink

was a perfect fit for Bouygues Telecom.

Apache Flink – Alibaba

Alibaba is the largest ecommerce retail company in the world with 394 billion $ revenue

in 2015. Alibaba search is the entry point to all the customers, which shows all the search

and recommends accordingly.

Alibaba uses Apache Flink in its search engine to show results in real-time with highest

accuracy and relevancy for each user.

Alibaba was looking for a framework, which was:

 Very Agile in maintaining one codebase for their entire search infrastructure

process.

 Provides low latency for the availability changes in the products on the website.

13. Apache Flink — Use Cases

Apache Flink

 38

 Consistent and cost effective.

Apache Flink qualified for all the above requirements. They need a framework, which has

a single processing engine and can process both batch and stream data with same engine

and that is what Apache Flink does.

They also use Blink, a forked version for Flink to meet some unique requirements for their

search. They are also using Apache Flink’s Table API with few improvements for their

search.

This is what Alibaba had to say about apache Flink: “Looking back, it was no doubt a huge

year for Blink and Flink at Alibaba. No one thought that we would make this much progress

in a year, and we are very grateful to all the people who helped us in the community. Flink

is proven to work at the very large scale. We are more committed than ever to continue

our work with the community to move Flink forward!”

Apache Flink

 39

Here is a comprehensive table, which shows the comparison between three most popular

big data frameworks: Apache Flink, Apache Spark and Apache Hadoop.

 Apache Hadoop Apache Spark Apache Flink

Year of Origin 2005 2009 2009

Place of Origin MapReduce (Google)

Hadoop (Yahoo)

University of

California,

Berkeley

Technical University

of Berlin

Data Processing

Engine

Batch Batch Stream

Processing Speed Slower than Spark

and Flink

100x Faster than

Hadoop

Faster than spark

Programming

Languages

Java, C, C++, Ruby,

Groovy, Perl, Python

Java, Scala,

python and R

Java and Scala

Programming

Model

MapReduce Resilient

distributed

Datasets (RDD)

Cyclic dataflows

Data Transfer Batch Batch Pipelined and Batch

Memory

Management

Disk Based JVM Managed Active Managed

Latency Low Medium Low

Throughput Medium High High

Optimization Manual Manual Automatic

API Low-level High-level High-level

Streaming

Support

NA Spark Streaming Flink Streaming

SQL Support Hive, Impala SparkSQL Table API and SQL

Graph Support NA GraphX Gelly

Machine Learning

Support

NA SparkML FlinkML

14. Apache Flink — Flink vs Spark vs Hadoop

Apache Flink

 40

The comparison table that we saw in the previous chapter concludes the pointers pretty

much. Apache Flink is the most suited framework for real-time processing and use cases.

Its single engine system is unique which can process both batch and streaming data with

different APIs like Dataset and DataStream.

It does not mean Hadoop and Spark are out of the game, the selection of the most suited

big data framework always depends and vary from use case to use case. There can be

several use cases where a combination of Hadoop and Flink or Spark and Flink might be

suited.

Nevertheless, Flink is the best framework for real time processing currently. The growth

of Apache Flink has been amazing and the number of contributors to its community is

growing day by day.

Happy Flinking!

15. Apache Flink — Conclusion

