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Reinforcement learning is one of the paradigms and methodologies of machine learning developed in the computational in-
telligence community. Reinforcement learning algorithms present a major challenge in complex dynamics recently. In the
perspective of variable selection, we often come across situations where too many variables are included in the full model at the
initial stage of modeling. Due to a high-dimensional and intractable integral of longitudinal data, likelihood inference is
computationally challenging. It can be computationally difficult such as very slow convergence or even nonconvergence, for the
computationally intensive methods. Recently, hierarchical likelihood (h-likelihood) plays an important role in inferences for
models having unobservable or unobserved random variables. ,is paper focuses linear models with random effects in the mean
structure and proposes a penalized h-likelihood algorithm which incorporates variable selection procedures in the setting of mean
modeling via h-likelihood. ,e penalized h-likelihood method avoids the messy integration for the random effects and is
computationally efficient. Furthermore, it demonstrates good performance in relevant-variable selection. ,roughout theoretical
analysis and simulations, it is confirmed that the penalized h-likelihood algorithm produces good fixed effect estimation results
and can identify zero regression coefficients in modeling the mean structure.

1. Introduction

Reinforcement learning is specified as trial and error (var-
iation and selection and search) plus learning (association
and memory) in Sutton and Barto [1]. Traditional variable
selection procedures, such as LASSO in Tibshirani [2] and
OMP in Cai and Wang [3], only consider the fixed effect
estimates in the linear models in the past literature. How-
ever, in real life, a lot of existing data have both the fixed
effects and random effects involved. For example, in the
clinic trials, several observations are taken for a period of
time for one particular patient. After collecting the data
needed for all the patients, it is natural to consider random
effects for each individual patient in themodel setting since a
common error term for all the observations is not sufficient
to capture the individual randomness. Moreover, random
effects, which are not directly observable, are of interest in
themselves if inference is focused on each individual’s re-
sponse.,erefore, to solve the problem of the random effects

and to get good estimates, Lee and Nelder [4] proposed
hierarchical generalized linear models (HGLMs). HGLMs
are based on the idea of h-likelihood, a generalization of the
classical likelihood to accommodate the random compo-
nents coming through the model. It is preferable because it
avoids the integration part for the marginal likelihood and
uses the conditional distribution instead.

Inspired by the idea of reinforcement learning and hi-
erarchical models, this paper proposes a method by adding a
penalty term to the h-likelihood. ,is method considers not
only the fixed effects but also the random effects in the linear
model, and it produces good estimation results with the
ability to identify zero regression coefficients in joint models
of mean-covariance structures for high-dimensional mul-
tilevel data.

,e rest of this paper is organized as follows: Section 2
provides the literature review on current variable selection
methods based on partial linear models and h-likelihood.
Section 3 explains a penalty-based h-likelihood variable
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selection algorithm and demonstrates via simulation that
our proposed algorithm exhibits desired sample properties
and can be useful in practical applications. Finally, Section 4
concludes the paper, and some future research directions are
given.

2. Literature Review

2.1. Reinforcement Learning in the Perspective of Nonlinear
Systems. Reinforcement learning, one of the most active
research areas in artificial intelligence, is introduced and
defined as a computational approach to learning whereby
an agent tries to maximize the total amount of reward it
receives when interacting with a complex, uncertain en-
vironment in Sutton and Barto [1]. In addition, in the
paper of Sutton and Barto [5], reinforcement learning is
specified to be trial and error (variation and selection and
search) plus learning (association and memory). Fur-
thermore, Barto and Mahadevan [6] propose hierarchical
control architectures and associated learning algorithms.
Approaches to temporal abstraction and hierarchical
organization, which mainly rely on the theory of semi-
Markov decision processes, are reviewed and discussed in
Barto and Mahadevan’s paper [6]. Recent works, such as
Dietterich [7], have focused on the hierarchical methods
that incorporate subroutines and state abstractions, in-
stead of solving “flat” problem spaces.

Nonlinear control design has gained a lot of attention
in the research area for a long time. In the industrial field,
the controlled system usually has great nonlinearity.
Various adaptive optimal control models have been ap-
plied to the identification of nonlinear systems in the past
literature. In fact, the two important fundamental prin-
ciples of controller design are optimality and veracity. He
et al. [8] study a novel policy iterative scheme for the
design of online H∞ optimal laws for a class of nonlinear
systems and establishes the convergence of the novel
policy iterative scheme to the optimal control law. He et al.
[9] investigate an online adaptive optimal control prob-
lem of a class of continuous-time Markov jump linear
systems (MJLSs) by using a parallel reinforcement
learning (RL) algorithm with completely unknown dy-
namics. A novel parallel RL algorithm is proposed, and the
convergence of the proposed algorithm is shown. Wang
et al. [10] study a new online adaptive optimal controller
design scheme for a class of nonlinear systems with input
time delays. An online policy iteration algorithm is
proposed, and the effectiveness of the proposed method is
verified. He et al. [11] propose the online adaptive optimal
controller design for a class of nonlinear systems through
a novel policy iteration (PI) algorithm. Cheng et al. [12]
investigate the observer-based asynchronous fault de-
tection problem for a class of nonlinear Markov jumping
systems and introduces a hidden Markov model to ensure
that the observer modes run synchronously with the
system modes. Cheng et al. [13] propose the finite-time
asynchronous output feedback control scheme for a class
of Markov jump systems subject to external disturbances
and nonlinearities.

2.2. Partial Linear Models. Linear models have been widely
used and employed in the literature. One extension of linear
models, which was introduced by Nelder and Wedderburn
[14], is generalized linear models (GLMs). GLMs allow the
class of distributions to be expanded from the normal
distribution to that of one-parameter exponential families.
In addition, GLMs generalize linear regression in the fol-
lowing two manners: first of all, GLMs allow the linear
model to be related to the response variable via a link
function, or equivalently a monotonic transform of the
mean, rather than the mean itself. Second, GLMs allow the
magnitude of the variance of each measurement to be a
function of its predicted value.

On the contrary, Laird and Ware [15] propose linear
mixed effect models (LMEs), which are widely used in the
analysis of longitudinal and repeated measurement data.
Linear mixed effect models have gained popular attention
since they take into consideration within-cluster and be-
tween-cluster variations simultaneously. Vonesh and
Chinchilli [16] have investigated and applied statistical es-
timation as well as inference for this class of LME models.
However, it seems that model selection problem in LME
models is ignored. ,is disregarded problem was noticed
and pointed out by Vaida and Blanchard [17], stating that
when the focus is on clusters instead of population, the
traditional selection criteria such as AIC and BIC are not
appropriate. In the paper of Vaida and Blanchard [17], the
conditional AIC is proposed, for mixed effects models with
detailed discussion on how to define degrees of freedom in
the presence of random effects. Furthermore, Pu and Niu
[18] study the asymptotic behavior of the proposed gener-
alized information criterion method for selecting fixed ef-
fects. In addition, Rajaram and Castellani [19] use ordinary
differential equations and the linear advection partial dif-
ferential equations (PDEs) and introduce a case-based
density approach to modeling big data longitudinally.

Recently, Fan and Li [20] develop a class of variable
selection procedures for both fixed effects and random ef-
fects in linear mixed effect models by incorporating the
penalized profile likelihood method. By this regularization
method, both fixed effects and random effects can be selected
and estimated. ,ere are two outstanding aspects regarding
Fan and Li’s [20] method. First of all, the proposed pro-
cedures can estimate the fixed effects and random effects in a
separate way. Or in other words, the fixed effects can be
estimated without the random effects being estimated, and
vice versa. In addition, the method works in the high-di-
mensional setting by allowing dimension of random effect to
grow exponentially with sample size.

Combined with the idea of generalized linear models
(GLMs) and linear mixed effect (LME) models, one ex-
tension, generalized linear mixed models (GLMMs), is de-
veloped. In the traditional GLMs, it is assumed that the
observations are uncorrelated. To solve the constrained
assumption, GLMMs allow for correlation between obser-
vations, which often happens in the longitudinal data and
clustered designs. ,e advantages of GLMMs are presented
as follows: first of all, GLMMs allow random effects to be
included in the linear predictor. As a result, the correlations
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between observations can be explained through an explicit
probability model. Second, when the focus is on estimating
the fixed effects on a particular individual, GLMMs provide
good subject-specific parameter estimates. However, since
GLMMs are also called multilevel models, it is generally
more computationally intensive when fitting the model.

So far, all those GLMs and GLMMs are well-established
parametric regression models. A serious disadvantage of
parametric modeling is that a parametric model may be too
restrictive in some applications. To overcome this restrictive
assumption difficulty in the parametric regression, non-
parametric regression has gained popular attention in the
literature. ,ere are many nonparametric and smoothing
methods, such as kernel smoothing, local polynomial fitting,
and penalized splines. In this section, two often-used
smoothing methods in estimating a nonparametric model
are described in the following paragraphs since they are used
later in simulations and applications.

,e first type is called local linear kernel smoothing. ,e
main idea of local linear kernel smoothing is to locally
approximate the function f linearly. Local linear kernel
smoothing uses Taylor expansion as a fundamental tool. In
particular, Taylor expansion states that any smooth function
can be locally approximated by a polynomial of some degree.

Suppose we have a simple nonparametric model

yi � f ti( 􏼁 + εi, (1)

for i � 1, . . . , n. Let t0 be an arbitrary fixed point where the
function f is estimated. Assume f(t) has a first-order
continuous derivative at t0. ,en, by Taylor expansion, f(t)

can be locally approximated by

f(t) ≈ f t0( 􏼁 + t − t0( 􏼁f
(1)

t0( 􏼁, (2)

in a neighborhood of t0 that allows the above expansion
where f(1)(t0) denotes the first derivative of f(t) at t0.

Let α0 � f(t0) and α1 � f(1)(t0). ,e local linear
smoother is obtained by fitting a data set locally with a linear
function, to minimize the following weighted least squares
criterion:

􏽘
n

i�1
yi − α0 − α1 t − t0( 􏼁􏼂 􏼃

2
Kh ti − t0( 􏼁, (3)

where Kh(.) � K(./h)/h, which is obtained by rescaling a
kernel function K(.) with a positive constant bandwidth h.
,e primary objective of the bandwidth h is to specify the
size of the local neighborhood [t0 − h, t0 + h], where the
local fitting is conducted.Moreover, the kernel functionK(.)

determines how observations within the neighborhood
contribute to the fit at t0. A detailed introduction of the
kernel function will be provided in the later paragraphs.

,e local linear smoother 􏽤fh(t0) � 􏽢α0 can be simply
expressed as

􏽤fh t0( 􏼁 �
􏽘

n

i�1 s2 t0( 􏼁 − s1 t0( 􏼁 t − t0( 􏼁􏼂 􏼃Kh ti − t0( 􏼁yi

s2 t0( 􏼁s0 t0( 􏼁 − s
2
1 t0( 􏼁

, (4)

where

s0 t0( 􏼁 � 􏽘
n

i�1
Kh ti − t0( 􏼁,

s1 t0( 􏼁 � 􏽘
n

i�1
Kh ti − t0( 􏼁 ti − t0( 􏼁,

s2 t0( 􏼁 � 􏽘

n

i�1
Kh ti − t0( 􏼁 ti − t0( 􏼁

2
.

(5)

A local linear smoother is often good enough for most
problems if the kernel functionK(.) and the bandwidth h are
adequately determined. Moreover, it enjoys many good
properties that the other linear smoothers may lack. Fan
[21], Fan and Gijbels [22], and Hastie and Loader [23]
separately discussed those good properties in detail.

,e kernel function K(.) used in the local linear
smoother is a symmetric probability density function. ,e
kernel K(.) specifies how the observations contribute to the
local linear kernel fit at t0, whereas the bandwidth h specifies
the size of the local neighborhood [t0 − h, t0 + h]. Several
widely used kernel functions include the following:

(i) Uniform K(u) � (1/2)I |u|≤1{ }

(ii) Epanechnikov K(u) � (3/4)(1 − u2)I |u|≤1{ }

(iii) Biweight K(u) � (15/16)(1 − u2)2I |u|≤1{ }

(iv) Gaussian K(u) � (1/
���
2ϕ

􏽰
)e− (1/2)u2

Suppose, for instance, the uniform kernel is used. All the
ti’s within the neighborhood [t0 − h, t0 + h] contribute
equally; or equivalently, the weights are the same, in the local
linear kernel fit at t0; on the contrary, all the ti’s outside the
neighborhood [t0 − h, t0 + h] contribute nothing. Suppose,
for another example, the Gaussian kernel is used. ,e
contribution of the ti’s is determined by the distance of ti

from t0. In other words, smaller distance (t − t0) results in
larger contribution since the Gaussian kernel is a bell-shaped
curve, which peaks at the origin.

,e second type of smoothing is called regression spline
smoothing. In local linear kernel smoothing introduced
above, local neighborhoods were defined by a bandwidth h

and a fixed point t0. On the contrary, in regression spline
smoothing that will be introduced shortly, local neighbor-
hoods are defined by a group of locations, known as knots,
for example,

τ0, τ1, . . . , τK, τK+1, (6)

in an interval [a, b], where
a � τ0 < τ1 < · · · < τk < τk+1 � b. Moreover, τi, i � 1, 2, . . . , k

are referred as interior knots or simple knots. ,en, local
neighborhoods are divided by these knots, i.e.,

τi, τi+1􏼂 􏼁, i � 0, 1, . . . , k, (7)

and within any two neighboring knots, a Taylor’s expansion
up to some degree is applicable.

A regression spline can be constructed in terms of
truncated power basis. As mentioned earlier, there are K
knots τ1, . . . , τK, and the k-th degree truncated power basis
can be expressed as
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1, t, . . . , t
k
, t − τ1( 􏼁

k
+, . . . , t − τK( 􏼁

k
+, (8)

where ak
+ denotes power k of the positive part of a with

a+ � max(0, a). In most of the literature, it is called “con-
stant, linear, quadratic, and cubic” truncated power basis
when k � 0, 1, 2, and 3 correspondingly. For the purpose of
this chapter, cubic truncated power basis is used in subse-
quent sections of simulations and applications.

We still consider the abovementioned simple non-
parametric model:

yi � f ti( 􏼁 + εi, (9)

for i � 1, . . . , n. It is with conventional purpose to denote the
truncated basis as

Φp(t) � 1, t, . . . , t
k
, t − τ1( 􏼁

k

+, . . . , t − τK( 􏼁
k

+􏽨 􏽩
T
, (10)

where p � K + k + 1 is the number of the basis functions
involved. ,en, the regression fit of the function f(t) in the
nonparametric model can be expressed as

􏽢fp(t) � Φp(t)
T

X
T
X􏼐 􏼑

− 1
X

T
y, (11)

where y � (y1, . . . , yn)T and X � (Φp(t1), . . . ,Φp(tn))T.
To sum up, parametric models are very useful for lon-

gitudinal data analysis since they provide a clear and easy
description of the relationship between the response variable
and its covariates. However, in most of data analysis, the
parametric model does not fit the data well, resulting in
biased estimates. To overcome the restricted assumptions on
parametric forms, various nonparametric models such as
nonparametric mixed effects models have been proposed for
longitudinal data. Refer, for example, the study by Fan and
Zhang [24] and Wu and Rice [25] among others. ,ere is
always a trade-off model assumption and model complexity.
Parametric models are less robust against model assump-
tions, but they are efficient when the models are corrected
assigned. On the contrary, nonparametric models are more
robust against model assumptions, but they are less efficient
and more complex. A trade-off between efficiency and
complexity by the information measure is fully investigated
and discussed in Caves and Schack [26]. Zhang et al. [27]
propose an improved K-means clustering algorithm, which
is called the covering K-means algorithm (C-K-means).
,ere are two advantages for the C-K-means algorithm. First
of all, it acquires efficient and accurate clustering results
under both sequential and parallel conditions. Furthermore,
it self-adaptively provides a reasonable number of clusters
based on the data features.

Semiparametric models come across in the need to
compromise and remain good features of both parametric
and nonparametric models. In semiparametric models,
parametric component and nonparametric component are
the two essential components. More specifically, the para-
metric component is often used to model important factors
that affect the responses parametrically, whereas the non-
parametric component is often used for less important and
nuisance factors. Various semiparametric models for

longitudinal data include semiparametric population mean
models proposed in Martinussen and Scheike [28] and Xu
[29], among others, and semiparametric mixed effects
models in the study by Zeger and Diggle [30], Groll and Tutz
[31], and Heckman et al. [32]. For the purpose of this paper,
we restrict our attention to partially linear regression
models.

2.3.h-Likelihood. In longitudinal studies, there are two types
of models, marginal models, and conditional models. By
definition, marginal models are usually referred as pop-
ulation-average models by ignoring the cluster random
effects. In contrast, conditional models have random effect
or are subject-specific models. ,e main difference between
marginal and conditional models is whether the regression
coefficients describe an individual’s response or the marginal
response to changing covariates. Or in other words,
changing covariates does not attempt to control for unob-
served subjects’ random effects. Diggle et al. [33] suggested
the random effect model for inferences about individual
responses and the marginal model for inferences about
margins.

,e idea of h-likelihood was introduced by Lee and
Nelder [4]. h-likelihood is an extension of Fisher likelihood
to models of GLMs with additional random effects in the
linear predictor.,e concept of h-likelihood is for inferences
of unobserved random variables. In fact, h-likelihood is a
special kind of extended likelihood, where the random effect
parameter is specified to satisfy certain conditions as we shall
talk more in details later. In the meantime, with the idea of
h-likelihood, hierarchical generalized linear models
(HGLMs) were introduced as well in Lee and Nelder’s [4]
paper. ,is class of hierarchical GLMs allows various dis-
tributions of the random component. In addition, these
distributions are conjugate to the distributions of the re-
sponse y. Four conjugate HGLMs were introduced in [4],
namely, normal-normal, Poisson-gamma, binomial-beta,
and gamma-inverse gamma (Table 1). If we let y be the
response and u be the unobserved random component, v is
the scale on which the random effect u happens linearly in
the linear predictor. In other words, u and v are linked via
some strictly monotonic function.

Consider the hierarchical model where y|v and v follow
some arbitrary distributions listed in Table 1. ,e definition
of h-likelihood, denoted by lh, is presented in the following
way:

lh � l(β, ϕ; y | v) + l(α; v), (12)

where l(α; v) is the log likelihood function of v given pa-
rameter α and l(β, ϕ; y | v) is that of y|v given parameter β
and ϕ. One point to note is that the h-likelihood is not a
traditionally defined likelihood since v are not directly
observable. In the traditional standard maximum likelihood
estimation for models with random effects, the method is
based on themarginal likelihood as the objective function. In
this marginal likelihood approach, random effects v are
integrated out and what remain in the maximized function
are the fixed effects β and dispersion parameter ϕ. ,ere are
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two disadvantages of the marginal likelihood approach. First
of all, the intractable integration of v is with obvious dif-
ficulty. In addition, random effects are nonestimable after
integration. In contrast, the h-likelihood approach avoids
such intractable integration. In fact, as clearly stated by Lee
and Nelder [4], “we can treat the h-likelihood as if it were an
orthodox likelihood for the fixed effects β and random effects
v, where the v are regarded as fixed parameters for realized
but unobservable values of the random effects.” Further-
more, the h-likelihood allows us to have a fixed effect es-
timator that is asymptotically efficient as the marginal
maximum likelihood estimator. Last but not least, the
maximized h-likelihood estimates are derived by solving the
two equations simultaneously:

zlh

zβ
� 0;

zlh

zv
� 0.

(13)

People always expect an outstanding property of like-
lihood inference to be invariant with respect to transfor-
mations. As for maximum h-likelihood estimates, estimates
for random effects are invariant with respect to the trans-
formation of the random components of u.

Furthermore, Lee and Nelder [4] mentioned adjusted
profile h-likelihood, which is defined in the following way:

l(β) ≈ lh −
1
2
log det

D lh( 􏼁

2π
􏼨 􏼩􏼢 􏼣

v�􏽢v
, (14)

where D(lh) � − z2lh/zv zvT. It eliminates the nuisance ef-
fects v from the h-likelihood. Moreover, the D(lh) part is
often referred as the adjusted term for such elimination. In
fact, this adjusted profile h-likelihood, which is used for the
estimation of dispersion components, acts as an approxi-
mation of the marginal likelihood, without integrating v out.

,ere are a few outstanding contributions in Lee and
Nelder’s [4] publication. First of all, it widens the choice of
random effect distributions in mixed generalized linear
models. In addition, it brings about the h-likelihood as a
device for estimation and prediction in hierarchical gen-
eralized linear models. Compared to the traditional marginal
likelihood, the h-likelihood avoids the messy integration for
the random effects and hence is convenient to use. Fur-
thermore, maximized h-likelihood estimates are obtained by
iteratively solving equation (14). To conclude, the h-likeli-
hood is used for inference about the fixed and random effects
given dispersion parameter ϕ.

On the contrary, Lee and Nelder [34] demonstrated the
use of an adjusted profile h-likelihood for inference about
the dispersion components given fixed and random effects.
In this paper, the focus is on the joint modeling of the mean
and dispersion structure. Iterative weighted least squares
(IWLS) algorithm is used for estimations of both the fixed
and random effects by the extended likelihood and dis-
persion parameters by the adjusted profile likelihood. Later,
in [35], the algorithmwas adjusted by replacing the extended
likelihood to the first-order adjusted profile likelihood, as to
estimate fixed effects in the mean structure.

Lee and Nelder [36] proposed a class of double hier-
archical generalized linear models in which random effects
can be specified for both the mean and dispersion. Com-
pared with HGLMs, double hierarchical generalized linear
models allow heavy-tailed distributions to be present in the
model. Random effects are introduced in the dispersion
model to solve heteroscedasticity between clusters. ,en,
h-likelihood is applied for statistical references and efficient
algorithm, as the synthesis of the inferential tool. In addition,
Lee and Noh [37] proposed a class of double hierarchical
generalized linear models in which random effects can be
specified for both the mean and dispersion, allowing models
with heavy-tailed distributions and providing robust esti-
mation against outliers. Greenlaw and Kantabutra [38]
address the parallel complexity of hierarchical clustering.
Instead of the traditional sequential algorithms, the de-
scribed top-down algorithm in Greenlaw and Kantabutra
[38] is parallelized and the computational cost of the top-
down algorithm is with O(log n) time.

In conclusion, for both hierarchical generalized linear
models (HGLMs) and double hierarchical generalized linear
models (DHGLMs), h-likelihood plays an important role in
inferences for models having unobservable or unobserved
random variables. Furthermore, numerical studies have
been investigated and shown that h-likelihood gives sta-
tistically efficient estimates for HGLMs as well as DHGLMs.
In addition, Noh and Lee [39] have shown that the
h-likelihood procedure outperforms existing methods, in-
cluding MCMC-type methods, in terms of bias. Last but not
least, compared to the traditional marginal likelihood, the
h-likelihood avoids the messy integration for the random
effects and hence is convenient to use. ,erefore, the
h-likelihood method is worth attention.

3. Variable Selection viaPenalizedh-Likelihood

3.1. Model Setup. Suppose that we have k independent
groups and each group contains m subjects. Let yij be the jth

subject of group i, where i � 1, . . . , k and j � 1, . . . , m. Based
on the idea of modeling the mean structure in the HGLM
framework, we consider a partial linear model for modeling
the conditional mean:

g μij􏼐 􏼑 � f tij􏼐 􏼑 + x
T
ijβ + vi, (15)

where f(.) is an unknown smooth function in t, tij is an
univariate explanatory variable in [0, 1] for simplicity, g(.) is
the canonical link function for the conditional distribution

Table 1: Conjugate HGLMs.

y|u u Link
Normal Normal Identity
Poisson Gamma Log
Binomial Beta Logit
Gamma Inverse gamma Log
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of yij, and xij is a p × 1 covariate vector with β as the as-
sociated coefficients. In matrix representation,

y � f(t) + Xβ + Zv + ε. (16)

We assume that conditional random variables ui and yij

are from an exponential family with mean and variance:

E yij

􏼌􏼌􏼌􏼌􏼌 ui􏼒 􏼓 � μij,

V yij

􏼌􏼌􏼌􏼌􏼌 ui􏼒 􏼓 � ϕV μij􏼐 􏼑.

(17)

We also assume that (XT, t)T and ε are independent.,e
random effects presented in the mean model vi are linked to
ui via the relationship vi � v(ui), where ui ∼ N(0, σ2u). ,is

allows for the definition of h-likelihood given in Lee and
Nelder [4]. In this paper, the identity link vi � ui is used, and
hence, this canonical scale corresponds to the case that the
conditional distribution of the response y is normal, i.e.,
yij ∼ N(μij, ϕ).

For simplicity, random effects are considered in the form
of a random intercept throughout this paper. If a random
intercept is not sufficient to represent the variation exhibited
in the data, then the model can be easily extended to a more
general form by considering a more complex random effects
structure.

3.2. Estimation Procedure via Penalized h-Likelihood

h − likelihood � 􏽙
k

i�1
f vi( 􏼁 􏽙

m

j�1
f yij

􏼌􏼌􏼌􏼌􏼌 vi􏼒 􏼓

� 􏽙
k

i�1

1
���
2π

√
σu

exp −
vi − 0( 􏼁

2

2
􏼨 􏼩 􏽙

m

j�1

1
���
2π

√ exp −
yij − x

T
ijβ − vi − f tij􏼐 􏼑􏼐 􏼑

2

2

⎧⎪⎨

⎪⎩

⎫⎪⎬
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�
1

���
2π

√
σu( 􏼁

k

1
(

���
2π

√
)
km

􏽙

k

i�1
exp −

v
2
i

2σ2u
􏼨 􏼩 􏽙

m

j�1
exp −

yij − x
T
ijβ − vi − f tij􏼐 􏼑􏼐 􏼑

2

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

�
1

���
2π

√
σu( 􏼁

k

1
(

���
2π

√
)
km

exp −
σ2u􏽘

k

i�1􏽘
m

j�1 yij − x
T
ijβ − vi − f tij􏼐 􏼑􏼐 􏼑

2
+ 􏽘

k

i�1v
2
i

2σ2u

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(18)

,us, the log of h-likelihood is

lh(β, v) � − k log
���
2π

√
σu(

���
2π

√
)
m

􏼈 􏼉

−
􏽘

k

i�1􏽘
m

j�1 yij − x
T
ijβ − vi − f tij􏼐 􏼑􏼐 􏼑

2

2
−

􏽘
k

i�1v
2
i

2σ2u

� − k log
���
2π

√
σu(

���
2π

√
)
m

􏼈 􏼉

−
1
2
‖y − Xβ − Zv − f(t)‖

2
2 −

1
2σ2u

‖v‖
2
2.

(19)

For the purpose of this paper, the first and second de-
rivatives of lh(β, v) with respect to β and v are derived and
listed below:

▽lh(β, v) �
zlh(β, v)

zβ
� X

T
(y − Xβ − Zv − f(t));

▽
2

lh(β, v) �
z
2
lh(β, v)

zβ zβT
� − X

T
X;

zlh(β, v)

zv
� Z

T
(y − Xβ − Zv − f(t)) −

1
σ2u

v;

z
2
lh(β, v)

zv zv
T

� − Z
T

Z −
1
σ2u

I.

(20)

,e maximum likelihood estimate for the random effects
􏽢v is obtained by setting zlh(β, v)/zv to zero. ,en, an ap-
proximated likelihood for the fixed effects can be obtained by
plugging the estimate 􏽢v in lh(β, v). In addition, the marginal
likelihood is approximated by the adjusted profile likelihood:
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l(β) ≈ lh(β, v) −
1
2
log det

D lh(β, v)( 􏼁

2π
􏼨 􏼩􏼢 􏼣

v�􏽢v
, (21)

where D(lh(β, v)) � − z2lh(β, v)/zv zvT.
Now the problem of how to estimate the smooth

function f(t) rises. In this paper, we use two nonparametric
approaches to estimate f(t): local linear regression tech-
nique and spline technique.

In the framework of penalized variable selection, we
apply a penalty on the approximated marginal likelihood so
that

lp(β) � l(β) − n 􏽘

p

j�1
Pλ βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (22)

where Pλ(.) is the penalty function with tuning parameter λ.
Our aim is to maximize lp(β) and get the maximum like-
lihood estimates for the fixed effects β. We will give a brief
theoretical support on how to derive the estimation in the
following paragraphs.

First of all, the L1 penalty functions are singular at the
origin, and they do not have continuous second-order de-
rivatives. However, they can be locally approximated by a
quadratic function as follows. Assume that we are given an
initial value β0 that is close to the maximizer of lh(β). If βj0 is
very close to 0, then set 􏽢βj � 0. Otherwise, they can be locally
approximated by a quadratic function as

Pλ βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼔 􏼕
′ � Pλ′ βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓sgn βj􏼐 􏼑

≈
Pλ′ βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
βj

≈
Pλ′ βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

βj + βj0

2
,

(23)

when βj ≠ 0. In other words,

Pλ βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 ≈ Pλ βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 +
1
2

Pλ′ βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

β2j − β2j0􏼐 􏼑, (24)

for βj ≈ βj0. A drawback of this approximation is that once a
coefficient is shrunk to zero, it will stay at zero.

Furthermore, note the first two derivatives of the log
h-likelihood function lh(β, v) are continuous. Around a
given point β0, the log h-likelihood function can be ap-
proximated by

lh(β) ≈ lh β0( 􏼁 +
zlh β0( 􏼁

zβ
􏼢 􏼣

T

β − β0( 􏼁

+
1
2
β − β0( 􏼁

T z
2
lh β0( 􏼁

zβ zβT
􏼢 􏼣 β − β0( 􏼁.

(25)

Similarly, lp(β) can be locally approximated by the
quadratic function

lp(β) � l β0( 􏼁 +▽l β0( 􏼁
T β − β0( 􏼁

+
1
2
β − β0( 􏼁

T▽
2

l β0( 􏼁 β − β0( 􏼁

−
1
2

nβT
􏽘
λ

β0( 􏼁β + C,

(26)

where C is a constant term, ▽l(β0) � zl(β0)/zβ, ▽2l
(β0) � z2l(β0)/zβ zβT, and 􏽐λ(β0) � diag Pλ′(|β10|)/|β10|,􏼈

. . . , Pλ′(|βp0|)/|βp0|}. ,e quadratic maximization problem
yields the solution iteratively by

β1 � β0 + ▽
2

l β0( 􏼁 − n 􏽘
λ

β0( 􏼁
⎧⎨

⎩

⎫⎬

⎭

− 1

n 􏽘
λ

β0( 􏼁β0 − ▽l β0( 􏼁
⎧⎨

⎩

⎫⎬

⎭.

(27)

When the algorithm converges, the estimator satisfies
the penalized likelihood equation condition

zl 􏽢β0􏼐 􏼑

zβj

− nPλ′
􏽣βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓sgn 􏽣βj0􏼐 􏼑 � 0, (28)

for nonzero elements of 􏽢β0.
As stated in Fan and Li [20], in the maximum likelihood

estimation (MLE) setting, with good initial value of β0, the one-
step procedure can be as efficient as the fully iterative pro-
cedure, when the Newton–Raphson algorithm is used. ,us, if
we have a good initial value for β, the very next iteration can be
regarded as a one-step procedure, and the resulting estimator
can be as efficient as the fully iterative method.

3.3. Variable Selection via the Adaptive Lasso Penalty.
,ere are many penalized likelihood variable selection criteria
available in the literature review on penalized approaches, such
as lasso penalty and SCAD. In this paper, we focus on the
adaptive lasso penalty, which was introduced by Zou [40]. ,e
form of the penalty function for adaptive lasso is given by

Pλ βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � λwj βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (29)

where w is a known weights vector and λ is the tuning
parameter satisfying λ> 0. It has been shown if the weights
are data-dependent and cleverly chosen, the weighted lasso
can achieve the oracle properties, or in other words, it
performs well as if the true underlying model was known in
advance. ,is is the main reason for our choice of penalty
function. In addition, the adaptive lasso is less complicated
than the smoothly clipped absolute deviation (SCAD)
penalty introduced by Fan and Li [20] and hence is easier to
implement.

For the choice of the data-dependent weights vector w,
we use the hierarchical generalized linear model to estimate
􏽢βhglm. To specify,

w �
1

􏽢βhglm
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
0.5. (30)
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As the sample size grows, the weights for zero-coefficient
estimators get to infinity, whereas the weights for nonzero-
coefficients converge to a finite constant.

A significant part of our proposed method is the process
of variable selection by choosing an appropriate penalty
function. As a result, the choice of the tuning parameter λ in
the penalty function becomes important. ,e most popular
methods for choosing such tuning parameters are K-fold
cross-validation and generalized cross-validation proce-
dures in the literature. In fact, the consistency of selection of
various shrinkagemethods relies on an appropriate choice of
the tuning parameters, and the method of generalized cross-
validation (GCV) method has been widely used in the past
literature. ,erefore, we adopt the traditional method and
generalized cross-validation method, for the choice of the
tuning parameter. In particular, suppose we have the fitted
􏽢Y � HY for a linear method under squared error, then the
standard formula for the generalized cross-validation is

GCVλ �
1
n

􏽘

n

i�1

yi − 􏽢fλ xi( 􏼁

(1 − tr(H))/n
􏼠 􏼡

2

. (31)

,en, we obtain the tuning parameter λ with the min-
imized GCV.

3.4. Computational Algorithm. We propose the following
h-likelihood algorithm (Algorithm 1) for developing the
method discussed in this paper.

,e computational cost of the proposed penalized
h-likelihood algorithm is of order O(np2), where n is the
sample size and p is the number of associated coefficients in
equation (16). ,e efficient path algorithm makes the pro-
posed penalized h-likelihood algorithm an attractive method
for real applications. In particular, if we have a good initial
value for β, the very next iteration can be regarded as a one-
step procedure, and the resulting estimator can be as efficient
as the fully iterative method.

3.5. Simulation Studies. To assess the finite sample perfor-
mance of our proposed method, we conduct several sim-
ulation studies. All simulations are conducted using R codes.
Our models have the form

yij � f tij􏼐 􏼑 + x
T
ijβ + vi + εij, (32)

with vi ∼ N(0, σ2u) and εij ∼ N(0, ϕ). It has been assumed
throughout this chapter σ2u � 0.2 and ϕ � 1. In addition, the
distribution of the response yij conditional on the random
components vi is also assumed to be N(μij,ϕ), where
μij � f(tij) + xT

ijβ + vi. To form the covariates
xij � (xij1, . . . , xij10)

T for the model, we draw random
samples from a multivariate normal distribution N(0,Σ),
where the covariance matrix Σ is assumed to have an AR (1)
structure with σ2 � 1 and ρ � 0.5. ,e choice of the cor-
relation parameter ρ is fixed here since the choice of the
correlation has little impact on the resulting penalized es-
timates for β by trying several values for ρ ∈ [0.1, 0.9].
Furthermore, tij are simulated from a uniform [0, 1]

distribution. We do the simulation studies through several
examples. For each of the cases, we run a simulation study
over 100 simulated datasets.

Furthermore, for the nonparametric part of the model,
we use three different functions for simulation purposes:
f(t) � exp(0.1t), f(t) � sin(0.1πt), and f(t) � t2. Both
f(t) � exp(0.1t) and f(t) � t2 represent a nonlinear and
increasing function, whereas f(t) � sin(0.1πt) represents a
nonlinear and nonmonotonic function.

In order to examine the finite sample performance of our
proposed method, we run simulations based on the fol-
lowing six examples.

Example 1. We generate a balanced dataset such that there are
10 subjects within each 100 groups. In other words, we have
100 clusters and 10 subjects within each cluster, denoted by
i � 1, . . . , 100 and j � 1, . . . , 10. ,e size of the true model is
d0 � 5 with the true values of the parameters is set to be
β � (7.7, 4.6, 3.8, 2.9, 5.3, 0, 0, 0, 0, 0)T. In addition to the
linear component, the nonparametric component is f(t) � t2.

Example 2. Similar to Example 1 but with reduced number
of within cluster subjects. We generate a balanced dataset,
such that there are 5 subjects within each 100 groups. In
other words, we have 100 clusters and 5 subjects within each
cluster, denoted by i � 1, . . . , 100 and j � 1, . . . , 5. ,e size
of the true model is d0 � 5 with the true values of the pa-
rameters set to be β � (7.7, 4.6, 3.8, 2.9, 5.3, 0, 0, 0, 0, 0)T. In
addition to the linear component, the nonparametric
component is f(t) � t2.

Example 3. We generate a balanced dataset such that there
are 10 subjects within each 100 groups. In other words, we
have 100 clusters and 10 subjects within each cluster,
denoted by i � 1, . . . , 100 and j � 1, . . . , 10. ,e size of the
true model is d0 � 3 with the true values of the parameters
set to be β � (2, 1, 3, 0, 0, 0, 0, 0, 0, 0)T. In addition to the
linear component, the nonparametric component is
f(t) � exp(0.1t).

Example 4. Similar to Example 3 but with reduced number
of within cluster subjects. We generate a balanced dataset,
such that there are 5 subjects within each 100 groups. In
other words, we have 100 clusters and 5 subjects within each
cluster, denoted by i � 1, . . . , 100 and j � 1, . . . , 5. ,e size
of the true model is d0 � 3 with the true values of the pa-
rameters set to be β � (2, 1, 3, 0, 0, 0, 0, 0, 0, 0)T. In addition
to the linear component, the nonparametric component is
f(t) � exp(0.1t).

Example 5. We generate a balanced dataset, such that there
are 10 subjects within each 100 groups. In other words, we have
100 clusters and 10 subjects within each cluster, denoted by
i � 1, . . . , 100 and j � 1, . . . , 10. ,e size of the true model is
d0 � 3 with the true values of the parameters set to be
β � (2, 1, 3, 0, 0, 0, 0, 0, 0, 0)T. In addition to the linear com-
ponent, the nonparametric component is f(t) � sin(0.1πt).
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Example 6. Similar to Example 5 but with reduced number
of within cluster subjects. We generate a balanced dataset,
such that there are 5 subjects within each 100 groups. In
other words, we have 100 clusters and 5 subjects within each
cluster, denoted by i � 1, . . . , 100 and j � 1, . . . , 5. ,e size
of the true model is d0 � 3 with the true values of the pa-
rameters set to be β � (2, 1, 3, 0, 0, 0, 0, 0, 0, 0)T. In addition
to the linear component, the nonparametric component is
f(t) � sin(0.1πt).

We simulate each random effect vi from a normal dis-
tribution with 0 mean and σ2u � 0.2. Moreover, we simulate
tij from uniform distribution of [0, 1]. ,en, we obtain the
smoothing function f(t) by plugging in the values of tij.
Once we have the random effects and the nonparametric
part of f(t), we can simulate the response yij by computing
its mean and variance through the model. In this case,
yij ∼ N(μij,ϕ), where μij � f(tij) + xT

ijβ + vi and ϕ � 1.
By default, we estimate the unknown smooth functionf(t)

by two methods: local linear kernel smoothing method and
cubic spine smoothing method. We denote the estimates with
respective to those twomethods by PHKernel and PHSpline. In
addition, we also calculated the cubic spline smoothing method
without the penalty term, i.e., λ � 0, and denote the estimates
algorithm by HSpline. However, due to the computational
complexity of the local linear kernel smoothing method, we
only consider the comparison between local linear kernel
smoothing method and cubic spine smoothing method for
Examples 1 and 2. For the rest of the four examples, we only run
the simulations in terms of HSpline and PHSpline.

Before we report the simulation performances of our
proposed penalty-based procedure, several terms, which will
be listed in the summary tables, are introduced. First of all,
let percentage of correctly fitted and percentage of overfitted
be the proportions of selected models that are correctly fitted
and overfitted, respectively. In the case of overfitting, the
columns “1,” “2,” and “>2” represent the proportions of
selected models including one, two, and more than two
irrelevant predictors, correspondingly.

Furthermore, to characterize the capability of a method
in producing sparse solutions, we define

percentage of correct zeros(%)

�
1

d − d0

1
100

􏽘

100

k�1
􏽘

d

j�1
I 􏽢βj(k) � 0􏼐 􏼑 × I βj � 0􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(33)

To characterize the method’s underfitting effect, we
further define

percentage of incorrect zeros(%)

�
1
d0

1
100

􏽘

100

k�1
􏽘

d

j�1
I 􏽢βj(k) � 0􏼐 􏼑 × I βj ≠ 0􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(34)

Table 2 presents a detailed summary of variable selection
accuracy for all the six examples provided above. Several key

[(Step 1)] (initialization).
(i) Assume a partial linear model excluding variable selection. Express f(tij) in a parametric way. For example, a cubic regression

spline can be expressed by using the truncated power basis:
f(tij) � 􏽐

s
k�0 αktk

ij + 􏽐
r
l�1 αl+3(tij − τl)

3
+
,

where the 5 knots τ1, . . . , τ5 are percentiles of t, α0, . . . , α8 are the associated coefficients, and s � 3, r � 5, are the numbers
corresponding to the cubic regression spline representation.

(ii) Initialize the fixed effects 􏽢β
(0)

� 􏽢βhglm, where 􏽢βhglm is the h-likelihood estimates by treating f(tij) in a parametrical way. ,en, we
have
wj � 1/|􏽢β

(0)

j |0.5.

(iii) Denote the estimates by 􏽢f(tij):
􏽢f(tij) � 􏽐

s
k�0 􏽢αktk

ij + 􏽐
r
l�1 􏽢αl+3(tij − τl)

3
+
,

where 􏽢α � 􏽢αhglm are the h-likelihood estimates.
(iv) Determine initial value for random effects using

􏽢v(0)
i � (σ2u/mσ2u + ϕ) 􏽐

m
j�1[yij − xT

ij
􏽢β

(0)
− 􏽢f(tij)],

with σ2u � 0.2 and ϕ � 1.

[(Step 2)] (loop).

(i) Use 􏽢β
(k)

and 􏽢v
(k)
i to get

􏽢vi � (σ2u/mσ2u + ϕ) 􏽐
m
j�1[yij − xT

ij
􏽢β

(k)
− 􏽢f(tij)].

(ii) For the (k + 1)th iteration, set the estimator 􏽢β
(k)

from the kth iteration and update β by

􏽢β
(k+1)

� β(k) + ▽
2

l(β(k)) − n􏽐λ(β
(k))􏼨 􏼩

− 1

n􏽐λ(β
(k))β(k) − ▽l(β(k))􏽮 􏽯.

(iii) For s � 1, . . . , p, set 􏽢β
(k+1)

� 0 if 􏽢β
(k+1)
< c 􏽐

p
s�1 |􏽢β

(k+1)
|, for a small cutoff value c.

(iv) Compute |(􏽢β
(k+1)

− 􏽢β
(k)

)/􏽢β
(k)

| and compare to a small predetermined value c′. If |(􏽢β
(k+1)

− 􏽢β
(k)

)/􏽢β
(k)

| is smaller than c′, stop the
loop.

ALGORITHM 1
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findings can be observed from Table 2. First of all, all the six
examples do not have the underfitting problem, which
means all the relevant predictors can be discovered by the
PHSpline method. Equivalently, results of zeros for percent of
incorrect zeros column double confirm the above statement.

Furthermore, our proposed PHSpline method is in good
performance in terms of variable selection consistency for
Example 1, with 100% correctly fit. Similarly, simulation
results of our proposed PHSpline method for Example 2
provides a 94% correct fit, a 2% of overfit with 1 irrelevant
predictor included, and a 2% of overfit with 2 irrelevant
predictors included. ,e overall performance of variable
selection consistency for Example 2 is good with a 98.8% of
correct zeros.

,irdly, when we have a more sparse representation for
the fixed effects β with smaller magnitudes, our proposed
PHSpline tends to provide a little bit conservative result
compared to Examples 1 and 2, in terms of variable selection
accuracy. In particular, simulation results of our proposed
PHSpline method for Example 3 provide a 74% of correct fit,
a 14% of overfit with 1 irrelevant predictor included, a 8% of
overfit with 2 irrelevant predictors included, and a 4% of
overfit with more than 2 irrelevant predictors included. In
fact, the overall performance of variable selection consis-
tency for Example 3 is good with a 93.3% of correct zeros. On
the contrary, when the number of within-cluster subjects
decreases from 10 to 5 in Example 4, percent of correct zeros
decreases to 84.4%, meaning that more irrelevant predictors
are included in the model.

Last but not least, similar trends can be observed for
Examples 5 and 6 compared to Examples 3 and 4. Example 5
returns a 71% of correct fit, a 20% of overfit with 1 irrelevant
predictor included, a 2% of overfit with 2 irrelevant predictors
included, and a 7% of overfit with more than 2 irrelevant
predictors included. On the contrary, Example 6 returns a
64% of correct fit, a 21% of overfit with 1 irrelevant predictor
included, a 6% of overfit with 2 irrelevant predictors included,
and a 9% of overfit with more than 2 irrelevant predictors
included. As a result, the 71% of correct fit for Example 5
outperforms the 64% of correctly fit for Example 6, in terms of
the variable selection consistency. Hence, generally speaking,
our proposed PHSpline method works better when the
number of within cluster subjects increases.

Besides the variable selection accuracy summarized in
Table 2, prediction accuracy for the fixed effects β for various
examples is also with our interest. In the following para-
graphs, results of prediction accuracy for the fixed effects β
are discussed and interpreted, with Tables 3–8 presented.

Table 3 summarizes simulation result over 100 repli-
cations for Example 1. As we can see, both PHkernel and
PHSpline can recover the relevant predictors accurately. In
addition, the estimates of the fixed effects for both PHkernel
and PHSpline are comparably making very little difference
with the true values of β. However, in terms of speed of the
algorithm, the PHSpline method is way fast than the
PHKernel method, and hence, the PHSpline method is fast

Table 2: Simulation summary of PHSpline for six examples.

Example d0 Underfitted (%) Correctly fitted (%)
Overfitted (%)

Correct zeros (%) Incorrect zeros (%)
1 2 3

1 5 0 100 0 0 0 100 0
2 5 0 94 2 2 0 98.8 0
3 3 0 74 14 8 4 93.3 0
4 3 0 69 16 10 5 84.4 0
5 3 0 71 20 2 7 93.1 0
6 3 0 64 21 6 9 88.3 0

Table 3: Simulation result of Example 1.

Coefficients Truth HSpline
(s.e.)

PHKernel
(s.e.)

PHSpline
(s.e.)

β1 7.7 7.741 (0.043) 7.724 (0.139) 7.704 (0.048)
β2 4.6 4.529 (0.059) 4.562 (0.179) 4.588 (0.062)
β3 3.8 3.930 (0.060) 3.830 (0.200) 3.806 (0.078)
β4 2.9 2.800 (0.079) 2.878 (0.177) 2.883 (0.086)
β5 5.3 5.363 (0.081) 5.311 (0.144) 5.298 (0.090)

β6 0 − 0.031
(0.048) 0 (—) 0 (—)

β7 0 − 0.001
(0.076) 0 (—) 0 (—)

β8 0 − 0.040
(0.109) 0 (—) 0 (—)

β9 0 − 0.004
(0.040) 0 (—) 0 (—)

β10 0 − 0.001
(0.063) 0 (—) 0 (—)

Table 4: Simulation result of Example 2.

Coefficients Truth HSpline
(s.e.)

PHKernel
(s.e.)

PHSpline
(s.e.)

β1 7.7 7.703
(0.050)) 7.701 (0.051) 7.685 (0.067)

β2 4.6 4.604 (0.064) 4.593 (0.065) 4.608 (0.108)
β3 3.8 3.792 (0.075) 3.872 (0.078) 3.778 (0.115)
β4 2.9 2.909 (0.078) 2.850 (0.091) 2.891 (0.125)

β5 5.3 5.295
(0.079)) 5.308 (0.087) 5.282 (0.133)

β6 0 0.003 (0.072) 0.005 (0.083) 0.006 (0.058)

β7 0 − 0.003
(0.061) 0 (—) 0 (—)

β8 0 0.001 (0.058) 0 (—) 0 (—)

β9 0 − 0.002
(0.059) 0 (—) 0 (—)

β10 0 0.0004
(0.042) 0 (—) 0 (—)
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to implement. On the contrary, the HSpline method returns
the h-likelihood estimates of the fixed effects, without the
penalty term. As we can observe from Table 3, the HSpline
method gives nonzero estimates for all the β, resulting in bad
variable selection performance compared with PHSpline,
which involves a penalty term. Furthermore, PHSpline es-
timates tend to have relatively smaller standard deviations
than those computed in HSpline estimates. ,erefore, the
PHSpline method outperforms the other two methods by
either variable selection accuracy or efficiency of the
implementation speed.

Simulation result over 100 replications for Example 2 is
summarized in Table 4. Example 2 has a smaller number of
within-cluster subjects than that in Example 1. In fact,
similar to the results obtained in Example 1, both PHKernel
and PHSpline methods return relatively good estimates of
the fixed effects β in terms of variable selection accuracy and
prediction accuracy. In particular, both PHKernel and

PHSpline methods select one irrelevant covariate wrongly.
In addition, the estimates of the fixed effects for both
PHKernel and PHSpline methods are comparably making
very little difference with the true values of β. On the
contrary, as we can observe from Table 4, the HSpline
method gives nonzero estimates for all the β, resulting in bad
variable selection performance compared with PHSpline.
Furthermore, PHSpline estimates tend to have relatively
smaller standard deviations than those computed in HSpline
estimates. In fact, it is not surprising to see that both
PHkernel and PHSpline methods include X6 as a relevant
predictor in the model. Or in an equivalent way, both
PHKernel and PHSpline methods return nonzero β6. ,e
reason is that we have a AR (1) model, whichmeans there is a
correlation of ρ � 0.5 between X5 and X6.

`As we compare simulation results of Examples 1 and 2,
our proposed PHSpline method tends to perform better when
the number of within-cluster subjects increases. In addition, a
similar conclusion can be drawn for the PHKernel method.
Furthermore, both PHKernel and PHSpline methods work
well when the nonparametric component is f(t) � t2.

Tables 5 and 6 present simulation results over 100
replications for Examples 3 and 4. In these two examples, we
have a more sparse representation in terms of the fixed
effects β than those in Examples 1 and 2. On top of that, the
magnitudes of the fixed effects β are set to be smaller than
those in Examples 1 and 2. For both of the results, the
PHSpline method outperforms the HSpline method in terms
of variable selection performance in two ways. First of all, the
PHSpline method identifies some of the irrelevant predictors
accurately, whereas the HSpline method gives nonzero es-
timates for all the β. ,ough PHSpline cannot guarantee
100% selection accuracy, it does improve the poor variable
selection performance of HSpline by adding a penalty term.
Furthermore, PHSpline estimates tend to have relatively
smaller standard deviations than those computed in HSpline
estimates. ,erefore, the PHSpline method performs better
than the HSpline method, even for the sparse fixed effects β
situation.

Similarly, simulation results over 100 replications for
Examples 5 and 6 are presented in Tables 7 and 8. Again, we
have a more sparse representation in terms of the fixed
effects β than those in Examples 1 and 2, with smaller
magnitudes of the fixed effects β. ,e PHSpline method
works pretty well in terms of variable selection for Example 5

Table 5: Simulation result of Example 3.

Coefficients Truth HSpline (s.e.) PHSpline (s.e.)
β1 2 2.001 (0.045) 1.995 (0.043)
β2 1 1.002 (0.064) 0.995 (0.061)
β3 3 2.994 (0.075) 2.992 (0.074)
β4 0 0.006 (0.078) 0.005 (0.043)
β5 0 0.004 (0.079) 0.004 (0.053)
β6 0 0.003 (0.072) − 0.004 (0.060)
β7 0 − 0.003 (0.061) 0 (—)
β8 0 0.001 (0.058) 0 (—)
β9 0 − 0.002 (0.059) 0.001 (0.023)
β10 0 0.0004 (0.042) 0 (—)

Table 6: Simulation result of Example 4.

Coefficients Truth HSpline (s.e.) PHSpline (s.e.)
β1 2 1.930 (0.120) 1.977 (0.074)
β2 1 0.951 (0.102) 0.997 (0.100)
β3 3 2.943 (0.089) 2.979 (0.115)
β4 0 0.041 (0.081) 0.012 (0.106)
β5 0 − 0.005 (0.072) − 0.009 (0.104)
β6 0 0.011 (0.096) 0.008 (0.093)
β7 0 0.022 (0.103) 0 (—)
β8 0 − 0.009 (0.085) 0.011 (0.088)
β9 0 0.008 (0.084) 0 (—)
β10 0 0.003 (0.077) 0 (—)

Table 7: Simulation result of Example 5.

Coefficients Truth HSpline (s.e.) PHSpline (s.e.)
β1 2 2.012 (0.064) 1.999 (0.046)
β2 1 0.988 (0.055) 1.002 (0.062)
β3 3 2.986 (0.070) 3.000 (0.067)
β4 0 0.003 (0.048) 0 (—)
β5 0 0.005 (0.050) 0 (—)
β6 0 0.010 (0.062) 0.001 (0.040)
β7 0 − 0.007 (0.079) − 0.003 (0.058)
β8 0 0.002 (0.070) 0 (—)
β9 0 0.006 (0.061) 0 (—)
β10 0 0.009 (0.069) − 0.001 (0.014)

Table 8: Simulation result of Example 6.

Coefficients Truth HSpline (s.e.) PHSpline (s.e.)
β1 2 1.990 (0.063) 1.982 (0.071)
β2 1 0.992 (0.070) 0.984 (0.096)
β3 3 2.973 (0.089) 2.972 (0.106)
β4 0 0.022 (0.061) 0.017 (0.085)
β5 0 0.019 (0.072) − 0.023 (0.090)
β6 0 0.004 (0.089) 0.019 (0.079)
β7 0 − 0.041 (0.080) 0.002 (0.078)
β8 0 0.031 (0.067) 0.001 (0.061)
β9 0 − 0.014 (0.071) 0.001 (0.073)
β10 0 0.009 (0.087) − 0.001 (0.015)
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even though it does not guarantee a 100% selection accuracy.
On the contrary, the PHSpline method returns nonzero
estimates for all the β, resulting in poor variable selection
performance for Example 6, where the number of within
cluster subjects reduces to 5.

Overall, the simulation results show that our proposed
penalized h-likelihood approach performs good in terms of
variable selection accuracy because of its ability to recover
the true zeros, especially when the number of within-
cluster subjects is not too small. Generally, our proposed
PHSpline method works better when the number of within
cluster subjects increases. In addition, even when the true
model is sparse, our penalized estimator still does no worse
than the h-likelihood estimator in terms of estimation
accuracy.

4. Conclusion

To conclude, we have introduced a new penalized h-like-
lihood approach to identify nonzero relevant fixed effects in
the partial linear model setting in this paper. ,is penalized
h-likelihood incorporates variable selection procedures in
the setting of mean modeling via h-likelihood. A few ad-
vantages of this newly proposed method are listed below.
First of all, compared to the traditional marginal likelihood,
the h-likelihood avoids themessy integration for the random
effects and hence is convenient to use. In addition, h-like-
lihood plays an important role in inferences for models
having unobserved random variables. Last but not least, it
has been demonstrated by simulation studies that the
proposed penalty-based method is able to identify zero
regression coefficients in modeling the mean structure and
produces good fixed effects estimation results.

As for future research, it would be interesting to apply
the proposed penalized h-likelihood approach to be ex-
tended for more complicated circumstances for the partial
linear models. In other words, the model in this paper as-
sumes only a simple one-component structure for the
random effects, such that only a random intercept is con-
sidered. For possible future research, we may consider a
partial linear model for modeling the conditional mean with
more than one random effect, i.e., the extended multi-
component random effects model. Other future work, in-
cluding variance components estimates of the random
effects and study of penalized h-likelihood estimator’s
theoretical and asymptotical property such as convergence
rate, would be investigated and discussed.

Data Availability

,is is a theoretical study, and we do not have experimental
data.

Disclosure

,is work was part of the originally written Ph.D. thesis by
the first author in 2013 [41].

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was funded by the Ministry of Education of
Humanities and Social Science Project (Grant no.
17YJCZH199). ,e authors gratefully acknowledge the
Ministry of Education of Humanities and Social Science for
the technical and financial support.

References

[1] R. S. Sutton and A. G. Barto, “Reinforcement learning: an
introduction,” IEEE Transactions on Neural Networks, vol. 9,
no. 5, p. 1054, 1998.

[2] R. Tibshirani, “Regression shrinkage and selection via the
Lasso,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[3] T. T. Cai and L. Wang, “Orthogonal matching pursuit for
sparse signal recovery with noise,” IEEE Transactions on
Information @eory, vol. 57, no. 7, pp. 4680–4688, 2011.

[4] Y. Lee and J. A. Nelder, “Hierarchical generalized linear
models,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 4, pp. 619–678, 1996.

[5] R. Sutton and G. Barto, “Reinforcement learning,” A Bradford
Book, vol. 15, no. 7, pp. 665–685, 1998.

[6] A. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems,
vol. 13, no. 1-2, pp. 341–379, 2003.

[7] T. Dietterich, “An overview of MAXQ hierarchical rein-
forcement learning,” in Proceedings of the International
Symposium on Abstraction, Horseshoe Bay, TX, USA, July
2000.

[8] S. He, H. Fang, M. Zhang, F. Liu, X. Luan, and Z. Ding,
“Online policy iterative-based H∞ optimization algorithm for
a class of nonlinear systems,” Information Sciences, vol. 495,
pp. 1–13, 2019.

[9] S. He, M. Zhang, H. Fang, F. Liu, X. Luan, and Z. Ding,
“Reinforcement learning and adaptive optimization of a class
of Markov jump systems with completely unknown dynamic
information,” Neural Computing and Applications, 2019.

[10] C. Wang, H. Fang, and S. He, “Adaptive optimal controller
design for A class of LDI-based neural network systems with
input time-delays,” Neurocomputing, vol. 385, pp. 292–299,
2019.

[11] S. He, H. Fang, M. Zhang, F. Liu, and Z. Ding, “Adaptive
optimal control for a class of nonlinear systems: the online
policy iteration approach,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 2, pp. 549–558,
2020.

[12] P. Cheng, J. Wang, S. He, X. Luan, and F. Liu, “Observer-
based asynchronous fault detection for conic-type nonlinear
jumping systems and its application to separately excited DC
motor,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 67, no. 3, 2020.

[13] P. Cheng, S. He, J. Cheng, X. Luan, and F. Liu, “Asynchronous
output feedback control for a class of conic-type nonlinear
hidden Markov jump systems within a finite-time interval,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 99, pp. 1–8, 2020.

12 Complexity



[14] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear
models,” Journal of the Royal Statistical Society. Series A
(General), vol. 135, no. 3, pp. 370–384, 1972.

[15] N. M. Laird and J. H. Ware, “Random-effects models for
longitudinal data,” Biometrics, vol. 38, no. 4, pp. 963–974,
1982.

[16] F. Vonesh, C. Edward, and M. Vernon, “Linear and nonlinear
models for the analysis of repeated measurements,” Journal of
Biopharmaceutical Statistics, vol. 18, no. 4, pp. 595–610, 1996.

[17] F. Vaida and S. Blanchard, “Conditional Akaike information
for mixed-effects models,” Biometrika, vol. 92, no. 2,
pp. 351–370, 2005.

[18] W. Pu and X. Niu, “Selecting mixed-effects models based on a
generalized information criterion,” Journal of Multivariate
Analysis, vol. 97, no. 3, pp. 733–758, 2008.

[19] R. Rajaram and B. Castellani, “,e utility of nonequilibrium
statistical mechanics, specifically transport theory, for mod-
eling cohort data,” Complexity, vol. 20, no. 4, pp. 45–57, 2015.

[20] J. Fan and R. Li, “Variable selection via nonconcave penalized
likelihood and its oracle properties,” Journal of the American
Statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001.

[21] J. Fan and I. Gijbels, “Variable bandwidth and local linear
regression smoothers,” @e Annals of Statistics, vol. 20, no. 4,
pp. 2008–2036, 1992.

[22] J. Fan, “Design-adaptive nonparametric regression,” Journal
of the American Statistical Association, vol. 87, no. 420,
pp. 998–1004, 1992.

[23] T. Hastie and C. Loader, “Local regression: automatic kernel
carpentry (with discussion),” Statistical Science, vol. 8,
pp. 120–143, 1993.

[24] J. Fan and J.-T. Zhang, “Two-step estimation of functional
linear models with applications to longitudinal data,” Journal
of the Royal Statistical Society: Series B (Statistical Method-
ology), vol. 62, no. 2, pp. 303–322, 2000.

[25] Wu and Rice, “Nonparametric mixed effects models for
unequally sampled noisy curves,” Biometrics, vol. 57, no. 1,
pp. 253–259, 2001.

[26] C. Caves and R. Schack, “Unpredictability, information, and
chaos,” Complexity, vol. 3, no. 1, pp. 46–57, 2015.

[27] Y. Zhang, Y. Zhou, X. Guo et al., “Self-adaptive K-means
based on a covering algorithm,” Complexity, vol. 2018, Article
ID 7698274, 16 pages, 2018.

[28] T. Martinussen and T. Scheike, “Sampling corrected analysis
of dynamic additive regression models for longitudinal data,”
University of Copenhagen, vol. 28, no. 2, pp. 303–323, 2001.

[29] R. Xu, “Measuring explained variation in linear mixed effects
models,” Statistics in Medicine, vol. 22, no. 22, pp. 3527–4354,
2003.

[30] S. L. Zeger and P. J. Diggle, “Semiparametric models for
longitudinal data with application to CD4 cell numbers in HIV
seroconverters,” Biometrics, vol. 50, no. 3, pp. 689–699, 1994.

[31] A. Groll and G. Tutz, “Variable selection for generalized linear
mixed models by L 1-penalized estimation,” Statistics and
Computing, vol. 24, no. 2, pp. 137–154, 2014.

[32] N. Heckman, R. Lockhart, and J. D. Nielsen, “Penalized re-
gression, mixed effects models and appropriate modelling,”
Electronic Journal of Statistics, vol. 7, pp. 1517–1552, 2013.

[33] P. Diggle, K. Liang, and S. Zeger, Analysis of Longitudinal
Data, Clarendon Press, Oxford, UK, 1994.

[34] Y. Lee and J. A. Nelder, “Modelling and analysing correlated non-
normal data,” Statistical Modelling, vol. 1, no. 1, pp. 3–16, 2001.

[35] M. Noh and Y. Lee, “Hierarchical-likelihood approach for
nonlinear mixed-effects models,” Computational Statistics &
Data Analysis, vol. 52, no. 7, pp. 3517–3527, 2008.

[36] Y. Lee and J. Nelder, “Double hierarchical generalized linear
models (with discussion),” Journal of the Royal Statistical
Society, vol. 55, no. 4, pp. 139–185, 2010.

[37] M. Noh and Y. Lee, “Double hierarchical generalized linear
models,” Journal of the Royal Statistical Society, vol. 55, no. 2,
pp. 139–185, 2017.

[38] R. Greenlaw and S. Kantabutra, “On the parallel complexity of
hierarchical clustering and CC-complete problems,” Com-
plexity, vol. 14, no. 2, pp. 18–28, 2010.

[39] M. Noh and Y. Lee, “REML estimation for binary data in
GLMMs,” Journal of Multivariate Analysis, vol. 98, no. 5,
pp. 896–915, 2007.

[40] H. Zou, “,e adaptive Lasso and its oracle properties,” Journal
of the American Statistical Association, vol. 101, no. 476,
pp. 1418–1429, 2006.

[41] Y. Xie, “Variable selection procedures in linear regression
models,” Ph.D. dissertation, Stats Department, NUS, Singa-
pore, 2013.

Complexity 13


