Apex: Screening at Speed

Program Planning Overview

Science and Technology

Chris Smith

Explosives Division, HSARPA Science and Technology Directorate

Checkpoint 2014

Existing Checkpoint

- Multiple static technologies working independently
- Limited automated threat detection capability
- High TSO-to-passenger ratio
- Slow throughput, long lines
- Frequent false alarms (pat-downs, bag searches)
- Significant passenger divestment and re-collection

Gaps

- Lower cost (capital investment & operating)
- Better upgradability (cost and schedule)
- Improved passenger experience

Airport Checkpoint Vision

Deployable aviation security checkpoint technology that supports:

- Screening 300+ passengers and their carry-on belongings per lane per hour to TSA Tier IV security standards
- Screening aviation passengers walking at a normal pace through the checkpoint
- No divestiture of clothing or removal of liquids or electronics from carry-on bags
- Adapting dynamically to information provided by Risk-Based Security

Today

Gateway 2020

Enhanced Security and Passenger Experience

Artist's concept of future passenger checkpoint

Dynamic Aviation Risk Management System (DARMS) Compliant Architecture

- Going beyond TSA Pre ✓
 - Checkpoint adjusts thresholds based on TSA-provided passenger risk profiles
 - Dynamically reconfigurable, driven by national and local threat intelligence

Diagram Source Filename: DARMS Per-Flight Process-Flow Diagram Concept (v1.4) 08.27.14

Science and Technology

Enterprise-wide adaptability to changing threat environments

APIs and Interface Goals

Open Architecture-based Application Programming Interfaces (APIs) facilitate the development of an integrated and customizable checkpoint with modular hardware and software.

- Components conform to TSA's Security Technology Integrated Program (STIP)
- APIs connect the checkpoint with DARMS
- Inputs accepted from Credential Authentication Technology (CAT)

Science and Technology

Designed for seamless integration with TSA infrastructure

What Does Success Look Like?

A checknoint lang that is collectively:	Too	<u>Today</u>		
A checkpoint lane that is conectively.	Standard	Pre √	Арех	
Fast (Passengers per lane per hour)	135-150	250	300	
Effective (TSA standard for bags)	Tier I *	Operator only	Tier IV	
Effective (TSA standard for passengers)	Tier II	Metal detector	Tier IV	
Efficient (False alarms for passengers; pat-downs)	(SSI)	-	< 1/2	
Efficient (False alarms for baggage; invasive search)	(SSI)	(SSI)	< 1/2	
Respectful (Divest outerwear, footwear, headwear)	Yes	None	None	
Convenient (Passenger transit)	Pause & Pose	Walk Through	Walk Through	
Convenient (Liquids, Aerosols, and Gels policy)	Divested; 3.4 oz. max.	In bag; 3.4 oz. max.	In bag; Any size	
Agile (Timeline for new threat response)	Months	N/A	Days	
Secure and Modular	Vulnerabilities known	Vulnerabilities known	STIP/DARMS compliant	

*: Tier II Detection being evaluated at TSL, but current P_{FA} unacceptable to customer

Test & Evaluation Strategy

EXD has an ongoing collaboration and funding agreement for Development Test and Evaluation (DT&E) at the Transportation Security Laboratory (TSL).

	Initial Lab Testing & Demo	Technology Demonstrator	Performance Evaluation at TSL	Operational Testing	Site Acceptance Testing
T&E Efforts	 Concept validation High-level performance assessment Event-driven Done at contractor facility 	 S&T Program Office validates performance against SOW Test conducted at contractor facility Test validated Performance report to TSL 	 P_D, false alarm, throughput and minimal operational tests Testing at TSL If unsuccessful, refer back to S&T for more development 	 Operational tests conducted Performance evaluated Defect remedy cycle TSA conducts OT&E 	 TSA decides who will integrate subsystems, and where it should be done
RIMO	T&E Resource Needs Homeland Operational Test Assessment Team Users/Data Collectors				

Pilot Locations
Facilities

Approvals

Test and Evaluation Responsibilities

Controlling Government T&E Risk:

- Vendor in-house capabilities used to evaluate early-TRL components and prototypes
- Third-party, independent test facilities used to validate vendor claims
- Proven (TRL 4+) components integrated into systems and tested further
- Formal, rigorous Developmental Test and Evaluation (DT&E) by TSL qualifies systems
- Transition to Operational Test and Evaluation (OT&E), managed by TSA

Notional T&E Budget profile:

Technology Path: Baggage Screening

Today	SaS Innovation	Technology Outcome	Improves
Transmission data	Transmission and Diffraction Data	Higher precision in effective atomic number	 P_{FA} Liquid/amorphous P_D Material discrimination
Single- or dual- energy detectors	Multi-energy detectors	 Direct photon counts Narrow energy resolution Spectrum of images at 16- 256 energies 	 Contrast P_D P_{FA} Material discrimination
Unstructured illumination	Phase Contrast Imaging	 Finer edge segmentation Real index of refraction to 10⁻⁷ precision 	 P_D P_{FA} Material discrimination
Few (~4) views	Thousands of views via Computed Tomography (CT)	More precise effective density and atomic number	 Concealment detection P_D for sheets P_{FA}
Conventional reconstruction	Iterative reconstruction	Improved SNRFewer artifacts	• P _D • Throughput

Technology Path: Passenger Screening

Today	SaS Innovation	Technology Outcome	Improves
Conventional antennas	 Wider bandwidths Multi - Frequency Metamaterial- enhanced antennas 	 High-definition (few mm) spatial resolution Improved clothing penetration High power efficiency Standoff imaging (~2m) 	 P_D P_{FA} Smaller anomalies Reduced divestiture Throughput Passenger experience
pause-and- pose	 Video analytics Compressive sensing algorithms 	 Walk-through (~1 m/s) screening 10-100 Hz video imaging 	ThroughputDefeats concealment
Single perspective	Multi-panel, multi- view arrays	Data fusion of scans from many angles	 Concealment detection P_{FA}
Single-band RF sources	Multi-band screening	 Attenuation data Penetrates thin objects Spectrum of reflectivity 	 Reduced divestiture P_D
		• Higher-frequency 'spotlight' re-scans suspect regions	• P _{FA}

Potential Technology Components

Homeland Security

L3 ProVision 2 AIT

Metamaterials flat-panel AIT prototype (left)

IDSS Detect 1000 checkpoint CT screening system

Design: CAMMS Miniaturized mass spectrometer

Stakeholders

Stakeholder	Role and Responsibilities
Congress & GAO	Resourcing, Oversight
TSA	MNS, AoA, CONOPS, Acquisitions Plan, Training, Logistics
S&T EXD	Technology Development, Prototypes (Hardware And Software)
S&T Other	T&E, Systems Integration
USSS, FPS, CBP	Provide And Defend Other Agency Requirements For System Components
ECAC	European Harmonization
Pass Rights/Privacy Advocates	Articulate And Defend Passenger/Privacy Rights
Airport Authorities	Facilities Planning And Preparation
Airlines (IATA)	Articulate And Defend Airline Industry Interests
Security Industry	Commercialization Of System Components
Universities and Labs	Technology Development And Optimization
Medical Consultants	Ensure Health And Safety To Passengers And Operators
Human Factors Experts	Passenger Experience, Operator Effectiveness, Training
Media	Accurately And Responsibly Informing The Public

Transition

- Leverage the TSA-S&T RDT&E Program Coordination Steering Group for joint planning, coordination and oversight
- Balance TSA's need for enhancing currently fielded technologies with the development of next-generation screening technologies
- Align with TSA lifecycle replacement /recapitalization plans to support TSA's Full Operational Capability (FOC) acquisition goals

		Useful Life	FOC	FY16	FY17	FY18	FY19	FY20
	AIT	10 years	870	an al an			Recap 43 Units	Recap 202 Units
PSP PSP	AT-2	10 years	2,030		Recap 246 Units	Recap 246 Units	Recap 247 Units	Recap 247 Units
	BLS	10 years	1,530				Recap 382 Units	Recap 383 Units
	CAT	10 years	1,520					
	EMD	10 years	1,460	Recap 897 Units	Recap 70 Units	Recap 72 Units	Recap 28 Units	Recap 6 Units
	ETD	10 years	5,1151			Recap 297 Units	Recap 298 Units	Recap 298 Units
EBS P	EDS	15 years	<u>-</u>	Recap 53 Units ³	Recap 15 Units ⁴	Recap 15 Units ⁴	Recap 15 Units ⁴	Recap 15 Units ⁴

Table from "Approved Recapitalization Figures", presented by TSA at their Industry Forum Kickoff, 2/5/15

SaS will field solutions for TSA's capability gaps

Program Plan

	FY15	FY16	FY17	FY18	FY19	FY20	Notes
ng	Supporting S	Science for Explo	sives Trace Dete	ction			. IDSS and Navt Constation
conda reeni	Hi- Res Trace	Exp	oanded Trace Lib	rary	Integrated Trace [Detection	Checkpoint budgets are
Sec							transitioning in their entirety to Apex: Screening at Speed
	Enhanced	Sensing Tech (E6	Mul	ti-Energy			Technologies derived from
lage ∋ninc	Ennanced	Sensing Tech (Ea		etection	DEAE		High-Resolution Trace and Advanced Material
Bagg Scree	Advanced Ma	terial	ening w/o Divest	ture SaS Cansto	DI&E		Discrimination will support
	Discriminati	on Dynamic	Risk Screening	Screening w/	o Divestiture	DT&E	Apex: Screening at Speed
ger ing	St	andoff AIT withou	It Divestiture				 Architecture components primarily implemented by TSA
ssen reeni	EST	Dynamic Risk So	creening W	alk-through AIT thout Divestiture	SaS Capstor w/o Divest	e Walk-through titure and Risk	Synchronized with the TSA's
S S C B B B B B B B B B B B B B B B B B				DT	&E		Recapitalization Plan
c		Interface	Standards, SaS I	Demonstration wi	th STIP and DARM	IS	
PEX gratio			APEX Integ	ration and API D	evelopment		
AF Inteç	TSL Support			TSL Test Support			
						DT&E	

APEX SaS &

New Starts

Legacy Projects &

Follow-on

Return on Investment

- TSA spends a majority of Aviation Security funds on staffing
 - TSA's Aviation Security budget for FY15: \$5.68B^[1]
 - Staffing driven by frequent false alarms and checkpoint complexity
- Apex SaS: Fewer false alarms, reduced 'coaching' for divestiture
 - 2,200 lanes are currently needed to achieve desired throughput ^[2]
 - Faster throughput could reduce the number of lanes (equipment/sustainment costs)
 - Significant reduction in divestiture and false alarms will allow some checkpoint staff at standard lanes to be redeployed to support other critical tasks
- Air travel volume is projected to grow 2.2%/year [3]
 - Apex SaS technology will increase TSA's efficiency even as more passengers need screening

SaS Outcome	SaS Impact
Fewer new lanes needed	Fewer systems and screeners
Improved P _D	Improved security
Improved P _{FA}	Fewer searches/searchers, Less secondary screening
Walk-through screening	Shorter lines, fewer complaints

Science and Technology

[1]: DHS Congressional Budget Justification FY15, http://www.dhs.gov/dhs-budget

[2]: TSA Full Operational Capacity, 2014

[3]: FAA Aerospace Forecast, Fiscal Years 2014-2034

Checkpoint Industry Day: June 15, 2015 (visit Fed Biz Opps for details – May 8 posting)

Questions?

Homeland Security

Carry-on Baggage Screening Comparison

	Current Screening	Current Pre ✓	Screening at Speed
Performance	 445 to 495 items per hour (~3.3 items/passenger) Liquids and laptops must be removed "3-1-1" rule applies 	 450 to 540 items per hour (~1.8 items/passenger) Liquids and laptops remain in bag "3-1-1" rule applies 	 Over 540 items per hour (~1.8 items/passenger) Liquids and laptops remain in bag No liquid size restrictions
Technology	 Few X-Ray views Less reliable automated threat recognition High false alarm rate slows throughput Cannot respond to evolving threats Must divest items from bag 	 Voluntary risk-based screening allows TSA to separate high-risk and low- risk passengers Static capability Accepting risk of limited divestiture from bags 	 Many X-Ray views Use of orthogonal technologies (e.g. diffraction) improve ATD Improved imaging and detection algorithms 50% fewer false alarms Higher throughput Detects concealed threats
Challenges and Strategy	 Automated threat detection "Few-view" reconstruction is impractical (~45 min) 	Less stringent security posture	 CT/Enhanced X-Ray and X- Ray diffraction performs automated threat detection Compressive sensing and computation supports real- time implementations

Homeland Security

Everything stays in the carry-on bag = screening is faster

Passenger Screening Comparison

	Current Screening	Current Pre ✓	Screening at Speed
Performance	 135-150 passengers/hour Limited by frequent false alarms 	 250 passengers/hour Only superficial screening (metal detectors) 	 300+ passengers/hour Full screening and fewer false alarms
Technology	 Metal detectors Millimeter wave and backscatter for anomaly detection Posing and 2-5s scan Full divestiture 	 Metal detectors Limited divestiture 	 Multi-band millimeter wave and terahertz technology for threat material identification Walk through at pace No divestiture
Challenges and Strategy	 Metamaterials transceivers are in their infancy Poor image quality 	Less stringent security posture	 Multiband transceivers embedded in metamaterials provide enhanced detection capability

No posing, No pausing

Secondary Screening Comparison

	Current Screening	Screening at Speed
Performance	 Threat detection requirements are not in agreement with primary screening capabilities Trace uses a large number of consumables 	 Align threat detection requirements with primary screening capabilities Reduce consumables requirement for trace equipment
Technology	 Ion mobility spectrometry-based explosive trace detectors (ETDs) with direct contact sampling Bottled liquid scanners (BLS) have bottle size and material limitations 	 More chemically-selective ETDs (<i>e.g.</i>, mass spectrometers) with non-contact sampling BLS handles multiple bottles at once, and wider variety of bottle materials
Challenges and Strategy	 Trace non-contact technologies are inefficient Ion mobility spectrometers can support only limited libraries BLS challenged by opaque bottles BLS only scans one bottle at a time 	 Non-contact trace collection technologies (<i>e.g.</i> vortex samplers) Systems with 2x-3x threat library sizes (<i>e.g.</i>, mass spectrometers) Robust X-Ray and optical techniques handle a wider array of bottle opacities Algorithms for multi-bottle scanning

Science and Technology

Faster, more accurate response to a wider variety of threats