ol ol o b itk Db i T n

& e i .

APIEnablementand
COBOL Code Refactoring

June 2020

API Enablement and COBOL Code Refactoring

About this getting started guide

Welcome to this technical guide, thanks for picking it up. Thisis a
technical guide to help you learn about the new code refactoring
tools that are now available in the latest release of Micro Focus
Visual COBOL and Enterprise Developer.

Is this guide suitable for me? Do | need any experience or skills before | begin?

This guide is aimed at developers. Itis perfect for COBOL You'll need to be fairly comfortable using Visual Studio and the
developers but also for developers of other languages that want Micro Focus COBOL tools. Don't worry if you're not, you can get
to understand more about modernizing COBOL applications. up to speed with some free training available here.

If you're have an architect role, you might find this guide useful If you don't know COBOL, don't worry, if you're already a

to skim through to see how this technology could support your developer, COBOL is perhaps one of the easiest programming
modernization plans. languages to learn. If you'd like to learn the language, you'll find

free training available here.

https://ondemand.microfocus.com/courses/visual-cobol-for-visual-studio-essentials-free/
https://ondemand.microfocus.com/courses/cobol-programming-for-business-success-free/

API Enablement and COBOL Code Refactoring

What will | get out of this guide?

In this guide, we're going to cover
the following aspects of working with
modern COBOL tooling:

1. The new refactoring tools available in the latest release of Micro Focus
COBOL products and how they can be used to identify and extract
business logic from an existing COBOL application

2. How to create a REST API for an existing COBOL application using the
Micro Focus REST web services framework

3. How to create an automated unit test for a COBOL program that can be
run in a Continuous Integration platform

APl Enablement and COBOL Code Refactoring

What software do | need?

You will need either Visual COBOL or
Enterprise Developer 6.0. You can get
a trial license if you don't already have
the software installed

The screenshots and descriptions in this guide are based on Visual COBOL for
Visual Studio 2019 but you can also use Enterprise Developer. If you prefer to
use Eclipse instead of Visual Studio, you can still do so, although some of the
steps and screens will be different but the same functionality is still available.

If you plan to follow along using Visual Studio 2019, you can obtain a trial
here. Install this first before installing the Micro Focus software.

You can download Visual COBOL 6.0 here.

Something isn't working, where do | get help?

Let's be honest, if things don't go wrong then you're probably not learning
anything. But if you get truly stuck where should you go to get help?

Well, there's plenty of help available here on our Community Website. Sign-up
and post your question and we'll be sure to help.

https://visualstudio.microsoft.com/downloads/
www.microfocus.com/products/visual-cobol/product-trials
https://community.microfocus.com/t5/Visual-COBOL/ct-p/VisualCOBOL

API Enablement and COBOL Code Refactoring

Now, let us begin...

To get started, unpack the .zip file that

contains the sample COBOL application

we'll be working on.

In the extracted folder, open BookStoreDemo.sin to launch Visual Studio
The solution contains one project called BookStore -- a very simple COBOL
application that maintains a stock list of books in an indexed data file.

Within the project there are two programs, a copy file and a data file

bookmain.cbl — provides a simple green screen user interface that allows the
user to add, delete or view books in the inventory.

bookstore.cbl — the main functionality of the application that manages the
book inventory

book-rec.cpy —a common source file that defines the structure of the data
file records

bookfile.dat —an indexed data file that contains the details of a few books

Solution Explorer = 0 X
Qi o--9@ K=
Search Solution Explarer (Ctrl+;) 2

fa] Solution 'BockStoreDemo’ (1 of 1 project)

M Properties
[1 bockfile.dat
F] @ bookmain.chl

]3 bock-rec.cpy
[book-rec.cpy

4 [3) bookstore.chl
3 book-rec.cpy

Solution Explorer Team Explorer

Fig. The solution explorer showing our sample project and code

APl Enablement and COBOL Code Refactoring

Run the BookStore application...

Press CTRL-F5 to run the application and see how the application works. ReVieW the COde

1. Press 4 <enter> to read through the books in the inventory and see their details.
2. Press 2 <enter> and add your favourite book
3. Read through the book list to see it has been added successfully Open bookmain.cbl

Let's take a closer look at the code.

This program contains the simple Ul and sits in a loop until 9 is pressed. Each
command is sent to the subprogram bookstore.cbl to process. The two programs
exchange a data structure which holds various fields about a given book depending
on the function.

B c\amortloan - orig\loanamortscreens\bin\debug\LOANAMORTSCREENS.exe - O X

PRINCIPAL : 00001000
LOAN TERM : 60 Open bookstore.cbl.

3.50
The bookstore program takes in 3 parameters
1. The function code to execute: read, add, delete, etc

2. Data required for the operation e.g. when added or retrieving a book
3. A status code indicating success or error

#001 TOTAL $18.19 INT
#002 TOTAL $18.19 INT
PAYMENT #0603 TOTAL $18.19 INT
PAYMENT #0604 TOTAL $18.19 INT
#0065 TOTAL $18.19 INT
#0606 TOTAL $18.19 INT
#007 TOTAL $18.19 INT
#0608 TOTAL $18.19 INT
#009 TOTAL $18.19 INT
FINAL PAYMENT:
PAYMENT #00000060 TOTAL $19.05 INT $.05 PRINCIPAL
TOTAL INTEREST $91.65

o

PRINCIPAL
PRINCIPAL
PRINCIPAL
PRINCIPAL
PRINCIPAL
PRINCIPAL
PRINCIPAL
PRINCIPAL
PRINCIPAL

Q
S
8

1]
7
2
8
4
9

LDUVNOO LN

NN

The main section evaluates the function code requested and then performs the
appropriate section to do the job. Each section opens and closes the data file to
process the operation and returns information into the main program in the linkage
section parameters.

h Y

[«)]
@ wun
Vs bbb WWN

w o w

[V
[«)]

A
e
o
®
®

Spend a minute or two examining the code.

Fig. The main Ul for the Book Store, maybe looking a little dated by today's standards

APl Enablement and COBOL Code Refactoring

Code Refactoring

Refactoring is a coding activity that is often undertaken before
commencing any new enhancement to the application. The
purpose of refactoring is to prepare the code so that it can
accommodate the new enhancement more easily but it's

also the case that post-refactoring, the application should still
behave and function just as it did before.

Think of refactoring like changing the oil in your car. If you don't do it, the car usually still works, for a time. But eventually, the
engine will become dirty, clogged, and sluggish and eventually stop working altogether. In the world of software, it's exactly
the same but we usually call this software dirt and grime, technical debt. If it's allowed to build up, it slows down progress and
managers then start asking "why does it take so long to get anything done?”

Well, perhaps managers will always ask this question, we probably can't fix this quickly. But we can provide some useful
automated tools that developers can use to help reduce technical debt and modernize applications. From small changes
like renaming fields, to bigger things like code slicing, we're going to take a closer look.

API Enablement and COBOL Code Refactoring

Getting a lay of the land

Before we start refactoring the

code, let's get aview onwhat we're
dealing with. After all, we don't change
the oil without knowing what oll

the engine needs.

Open the bookstore.cbl and position the cursor on the first line of the
procedure division

Bring up the editor context menu and select the “Show Program
Flow Graph”

The program flow chart helps you see what programs are called and
what sections are performed in the program. In our sample, it's a fairly
trivial matter. For larger programs, you can quickly explore the application
and focus the chart on the context you're interested in.

Try selecting and hovering over different nodes in the chart to see
the code.

CBL_TOUPPER

DO-READ-RECORD

——’/"

PROCEDURE DIVISION
/ F-r#-*
___-——"""'_F-_F-

o S
~——__ > DO-DELETE-RECORD

\‘ s
—
o TES

DO-ADD-RECORD |

DO-NEXT-RECORD

COUNT-STOCK-SOLD

Fig. The Program Flow Graph for the Book Store program

API Enablement and COBOL Code Refactoring

Simple, simplification...

Let's explore some of the
refactoring tools.

Locate the Do-Read-Record section and take a closer look at the
evaluate statement.

Next, locate the do-delete-record section and look at the evaluate
statement there.

Notice we have some duplicated code. Let's pull this code out into a new
section and update the existing code to use our new section.

Go back to the do-read-record section and select the evaluate block
up until the end-evaluate

Bring up the context menu, click “"COBOL Refactoring” and select
“Extract to Section”

The Visual Studio editor will move the code into a new section. You just
need to give the new section a name.

To name the section, just type something appropriate like, read-book-
file <enter>.

do-read-record section.
open input bookfile
if ls-file-status <> "@@"
initialize lnk-b-details

move all "*' to lpk-b-text-details
move ls=-File-status to lnk-file-status
exit section
end-if
evaluate true Bk A s Aecicnegs e
when lnk-b-stockno <> spaces Cu i RO R, G
move lnk-b-stockns to B-ste CORG Eelies) *, Cieste Prigess tem Crrgedsten
rasd bookFile W Pass Detrman P *y Consce Frograen ten Condcs
T BeTo Dufeiten FiE “a ity Frigmion fiies Gnituss,
= Fored A1 Fiplaesen o £ Eavaet m Copybent
whan lnk-b-title <> speces o ('t Hrmre by A Dasac b et

move lnk-b-title to b-title § comps

read bookfile key is bB-tit] susgos

g Febymt St bt B

when lnk-b-author 4> spaces
move lnk-b-author to b-auth
read bookfile key ls b-auth

when other
R T No key specified - return y

move 237 to ls-file-status il o o

end-evaluate T

Cnstilranag

Y

Fig. Extracting code into a new section using the refactoring tools

APl Enablement and COBOL Code Refactoring

Now that we've moved the code into a new section, we can delete
the evaluate block from the do-delete-record and replace this with a
PERFORM to the new read-book-file section.

Extracting code into a new section is a simple refactoring tool that you can
use not only to deal with duplicated code but just as useful to break down
large sections into smaller units. If it makes sense, you can extract the
code into a copybook instead.

Try the Program Flow Graph again, it should look something like this

In the next step, we'll take a look at one other simple refactoring tool that
makes all the difference when you're faced with code you didn't write...

CBL_TOUPPER
o

PROCEDURE DIVISION AT e 2
- - == DO-ADD-RECORD

—* DO-DELETE-RECORD

=1
DO-NEXT-RECORD

.
COUNT-STOCK-S0LD

Fig. The Program Flow Graph now shows the new section

v DO-READ-RECORD

T
READ-BOOK-FILE
-

APl Enablement and COBOL Code Refactoring

Breaking down the monolith

Generally speaking, COBOL systems are huge. With
decades of development and engineering investment
they run into millions of lines of code. Often, these
applications are described as monolithic—meaning that
one program serves many functions. Decomposing
monolithic applications into smaller pieces can help
simplify maintenance tasks, make the job of writing
automated tests feasible and opens up options to use the
smaller application pieces in new ways, such as APIs. Our
sample application is hardly a monolith but we can use

it to see how we could break down larger systems, write
automated tests and even APIs. This is what we'll do next.

API Enablement and COBOL Code Refactoring

Making independently callable
programs from sections

In this task, you're going extract a portion of
logic from the bookstore program and move
that into a self-contained COBOL program.
We'll also update the original bookstore
program to use the new program. Sounds like
a lot of work”? Well, yes it can be—especially
for big programs. But this next refactoring tool
will help do most of the heavy lifting, let's see
how it works.

Locate the do-read-record section
From the COBOL Refactoring context menu, select Extract Section to Program...
In the dialog box, click next to see a preview of the code changes

Study these if you like but we'll review the code changes next anyway.

Preview Changes

zase T T (]
* GapprivgiRRGRRRC . RY

'I.I £
i
i

B ...il.':

iPREY

Fig. The COBOL code refactoring preview

API Enablement and COBOL Code Refactoring

Click apply to complete the refactoring
A new program has been created called do-read-record.cbl

The original bookstore.cbl program has been updated to call do-read-record. Let's take
a closer look, we'll start with do-read-record.cbl.

If you scroll through this program you'll notice that all of the fields and sections needed
by the original code have been brought into this new program. This includes the file
definition and working storage fields. In addition, you'll also see that a linkage section has
been created that allows the caller to pass in the parameters required and for the result
to be returned.

In the procedure division:

* The first PERFORM statement is unpacking the input fields into working storage
* The second statement performs the actual processing

* The final perform statement, moves the working storage items into the linkage section.

Whether you're working on a small program like this one or something more complex,
the same pattern will be applied by the refactoring tools.

If you scroll further down in the code you'll see the original section we extracted and
even the new read-book-file section we created in a previous step. All-in-all, we have a
self-contained program that will read a record from the file.

Make sure the program still runs as you expect.
Hit F5 to build and run the application

Test the READ function to ensure you can see the records in the file.

PROCEDURE DIVISION USING BRE-INP-INPUT-STRUCTURE
BRE-OUT-OUTPUT-5TRUCTURE.

main section.

PERFORM EBRE-COPY-INPUT-DATA-©.
PERFORM PAR-DO-READ-RECORD.
PERFORM BRE-COPY-0OUTPUT-DATA.
GOBACK.

Fig. The linkage section of the newly created program.

APl Enablement and COBOL Code Refactoring

Wait a minute!
I've changed my mind

Whenever | go out for dinner, | need to
look at everything on the menu, twice,
and still end up changing my choice.
Well, if you also end up changing your
mind about the refactored code, don't
WOrry—you can restore it. Let's try it out.

Hit CTRL-Z to UNDO your changes.

The original code in the bookstore.cbl program is restored to before the
refactoring.

Hit CTRL-Y to reinstate the refactoring.

When you finish up here, leave the code WITH the refactored do-read-record
code in place.

APl Enablement and COBOL Code Refactoring

Code slicing

In the previous step, we extracted code from the bookstore
program into a separate program and updated bookstore to use
the new code. In this step, we'll explore a new type of refactoring
called code slicing.

We use code slicing to pull out useful business logic from an
existing program but we leave the original intact. This can be
useful for different purposes as we'll come to see.

There are 3 type of code slicing operations you can perform:

1. Section slicing —just like the previous step except we don't modify the existing program

2. Conditional slicing —we extract only the code that would execute if a field contained a specified value
3. Computational slicing —we extract the code needed to calculate a field at a particular pointin the code

To alarger extent, we've already covered the section slicing operation, so let's move onto conditional slicing.

API Enablement and COBOL Code Refactoring

16

Conditional Slicing

Open up bookstore.cbl
Locate the definition of Ink-function in the linkage section
Place the cursor on the field name and bring up the context menu

Click COBOL Refactoring then Create Program from Condition

Create Program from Condition

Create a self-contained COBOL Program, with all statements treating the value of data item “Ink-function” as if
were hard-coded, removing code paths not éxecuted. The enginal program is not modified

* Copyright (C) 1882 Micro Focus International Ltd.
All rights reserved.

Program-id. bookstore.
Environment division.

input-output section.
file-control.

P, Ty Sy, [PPSR (R TS R, [P]

Mame: Program1.cbi

Condition Value: Equal - |-5I

Create Cancel

Fig. The Conditional refactoring tool

Notice the dialog refers to the Ink-function field as the subject. You can change the
program name if you wish.

In the condition value input field, input 4. This corresponds to the READ-NEXT
book operation.

Click Create to slice out the code

The finished result is a new program that includes only the code that would have be
executed if the original bookstore program had been called with the READ-NEXT
operation.

The original linkage section of the bookstore program has been preserved in the code
slice. The idea here is that it should then be easier for you to reuse as the interface
matches code you will already have. But it is certainly possible to perform further
manual refactoring of the code. For example, you really don't need the Ink-function
parameter as it's not used anywhere else in the program.

We're not going to use this code slice elsewhere in this guide. You can leave it in the
project or delete it if you wish.

APl Enablement and COBOL Code Refactoring

Using conditional slicing to remove obsolete code

Over time, some code in an application will become redundant.
Take for example, an application that is cloned for different
businesses and share much code in common but also have
customized aspects. Sometime this customization is done in the

code and over time, these customizations can become obsolete.

Recognizing this has happened is one thing but then removing
it is altogether another task.

Open the bookstore.cbl file and locate the do-add-record section

Notice specific code that checks the store-id and then makes adjustments to the book price. However, all of these stores are
no longer in existence and this code will now never be executed.

Invoke the conditional slicing refactoring tool once more but this time select the store-id field
Leave the value blank and create the new program
If you examine the code, you'll see that the special tax code is no longer present in the new program.

This can be a useful way to remove redundant code from the application and cut back on the amount of code you thought
you needed to maintain.

API Enablement and COBOL Code Refactoring

18

Computational Slicing

Within your own applications, there will be parts of the code that are responsible
for calculating an important piece of information which is then stored in a field.

It could be useful to provide that same calculated value for other purposes but it's
currently trapped beneath a mound of application code and isn't easily accessible
without running through a lot more of the application. This is where computational
slicing can help.

Locate the count-stock-sold section
Position the cursor on the last line which updates the Ink-books-sold field

Invoke the COBOL Refactoring context menu and select Create Program from
Computation...

Click the Create button and review the generated code

You can see that a new program has been created which includes the code path
needed to calculate the total number of books sold by the store.

Note how extraneous code is generally removed from the resulting program. For
example, the count-stock-sold section performed a separate section that displayed
amessage to the user. This code was not included in the new program as it did not
affect the result of the calculation.

Create Program from Computation

Create & self-contained COBOL Program, containing code that could impact the value of data item “Ink-books-sold”

a1 the selected point in the code (line 236, colurmn 28). The original program s not modified

count-stock-30ld section.
perfnru oo

cpen 1-0 bookfile
i1f 1s-flle-status <> "pa~"
move ls-file-status to lnk-file-status
exit section
end-1f
perform until ls-file-status <> "@a”
add lnk-b-zald to ws-count
read bookfile
end-perform

move wi-count to lInk-books-sold

foo section.
display “hello user: calculating stock sold..."
stop “press & key”

Mame: Program3.ch

Creats Cancel

Fig. The Computational Refactoring tool

API Enablement and COBOL Code Refactoring

Dead code, your days are numbered.

Another consequence of long running
applications, is dead code. Code can
get side lined without engineers ever
realising. This code soon mounts up and
can even incur unnecessary but costly
maintenance cycles.

So before we move on any further, why don't we clean up the code and see what's
no longer needed.

Open the bookstore.cbl program

Using the context menu, select the Code Analysis option and then ‘Within
Entire Program’

cti
perform foo
bookf
g-stat ¥ "
1g-11 tat to 1
t sacti
nd«if
wer-form until
add Ink
read Book
end - per-forn
..........
WOVE W L
. il af
T G
[RRPTT Sr—
sectic T
lisplay =] L B il
2] i
F Braruganit
Thass Dats T
b PrEagias
vt ey
[N
B8 e COBOL
O &dad
S
L 3
Arverms
Didbang
b
=

| oo

Fig. Running the code analysis tools

API Enablement and COBOL Code Refactoring

20

This will run a set of general rules against the code looking for a variety of things that
could be of interest to the engineer, including dead code. The result of the tool is
shown in a separate window and code is highlighted in the editor if there is something
to look at more closely.

R e — e

\Within Ermbire Program (BepkStess bookstere ghi) - 21:33:58 = Program Viea = G S b

boolkstore.chl \FoskStore

4 Dead Statements VWikhin Entsie Progiam
0 anitiakize Ink-b-details - bookitore.chl bne 128
0 mowe ol ™ to Ink-b-ted-detaile - baskstors.chi ng 120
0 aees "0000° Lo Ink-B-ilockns - beskilorechl line 130
0 agss 00 L Ink-b-tetnil - bookstere.chl ling 131
0 mowve 0 to Ink-b-onhand - bookstore.chl line 112
0 move 0 to Ink-b-sold - bockstore.chl line 133
0 meve O to Ink-bocks-rald - beokstonechl line 134

' Unuised Data . Wikin Eitite Pragiam
0 wi-temp - bookstodecbl line 32

Fig. Results from the code analysis

You should see results that indicate both dead code and dead data, unreachable in the

execution of the application -- this includes an entire section of code. You can safely

delete this code and rerun the analysis.

when other

e No key specified - return unsuccessful read
move “23" to ls-file-status

end-evaluate.

init-book-details section.
finitialize lnk-b-details
move all "*" to lnk-b-text-details
move "egee"” to lnk-b-stockno
move 8.0 to lnk-b-retail
move @ to lnk-b-onhand
move @ to lnk-b-sold
move @ to lnk-books-sold.

do-next-record section.
open input bookfile
if ls-file-status <> “p@
initialize Ink-b-details
move all "*" to lnk-b-text-details
exit section
end-if

Fig. Dead code found by the analysis tools

APl Enablement and COBOL Code Refactoring

21

Creating an APl from a Code Slice

Now that we've learned how to extract business logic from an
application, let's do something new with it. In this step, we'll
extract some code and use it as the basis of an API. The APl will
be implemented as a REST web service. The COBOL product
you're using comes with an inbuilt web services framework,

SO you can design and host the AP,

Let's start by extracting the code the will be the subject of the
API| —the next record function.

Open the bookstore.cbl file

Locate the do-next-record section

Invoke the COBOL refactoring menu and this time, select the Create Program from Section... option.
Remove the hyphens from the new program name, call it donextrecord.cbl

This new program will be stored in your existing BookStore project. We'll come back to it later.

For now we need to create a new project for the APl itself.

API Enablement and COBOL Code Refactoring

22

Creating a Project for your API code

From the File menu, select Add then New Projects...

DG File = Edit WView Project Build Debug Test Analyze Tools Extensions ‘Window Help
¢ N . - » BookStore - A4 (& .
Qpen [
E & Clone or Check Out Code
m Start Window - | "z DOMEXTRECORD
E Add to Source Control 28/05/2020 at 22:20:08
8
N Add - Mew Project...
(=]
E Cloze Exasting Praject
T g Pregect... Al
2 | B Close Solution Existing Web Site.. Slice: Ran
B Seve BookStoreDemo.sin Ctrl=S e Mierobacus
Save BookStoreDemo.sin As... v
W Saveall Ctrl=Shift+5
; IPE SPECIFIC:
i aph: PAR DO-NEXT-RECORD
fph: _PAR_DO-NEXT-RECORD
Account Settings...
Recent Files * ILAST LINE OF GEMERATED HEADER
Recent Projects and Solutions "
EIH .ﬂl‘t*Fﬁ EEEEEEEREEEE N E RN R R E SRR R R RN
15
16 * Copyright (C) 2802 Micro Focus Internation
17 * All rights reserved.
18

From the Add a new project dialog, search for Enterprise Server in the list

Select and click next

Add a new project

Becent praject templates

171 Enbbepmine Sarver Ajprbentn =
B Caniiiie dpyag stern ==
T gty Pajand o
B o i gy (T Framamenit] CEms
L Libeary AN
W Chaas Lobiary (T Tesadied) i
B Canivde B CHET Cive) L]
B Cenrole App LT Framaword) L]

B Conule Apphomtin [HET Fammmedd (OG5

it penc e x |r
AF famgaegen Wirndirar
m Erdeepras Serenr Appic s
& progetiee crestng o COBOL appi st al tur ande Mo
L Wy Edarerng e
WA Sarver [wtstese Progact
A profct for eatng 3 L e deistass
DOROL -
AEP Y ALK Tarver Comviicl Exierder
& progret dor basdthng e 250 SET LAY jarir comtiel et endi
Lae o THAT L]
ALP HLT AMY Jeraw Comued
& progct for busbebeng e 252 01T ALK werver corrirel
f3 =N Ll] L
ﬁ ASP WY Barewl Conteal
A& progest for westing costion o Ui @ Wek spplcians
COBOL WA WaE L
[5 et Dietbsnir Prsieet

Lo

AB progeet fypa

Fotm

Sarvir

Fig. Creating a new project

API Enablement and COBOL Code Refactoring

23

Name the new project BookAPI and place it in the same folder as your exiting
COBOL project

Click create

The solution explorer should now look like similar to this, with a new BookAPI project,
currently empty.

Configure your new project

Enterprise Server Application oo wecom trterone S
Fapaet faenE
o
Locaticn

Wb DB Guas

Back Lreale

Solution Explorer R S R R K e
@E- o-58dm L=
Search Solution Explorer (Ctrl+;)
fa] Solution 'BookStoreDemo’ (2 of 2 projects)
4 BookAP|
M Properties
4 BookStore
M Properties
[bookfile.dat
b [@ bookmain.cbl
[book-rec.cpy
b [bookstore.chl
b [3) donexrecord.chl

saiyadoid

Fig. setting up your new project

Fig. Solution explorer now showing the new BookAPI project

API Enablement and COBOL Code Refactoring

24

We now need to move our code slice
from the BookStore project into the
BookAPI project.

Select the donextrecord.cbl, right-click and select copy
Then select the BookAPI project, right click and select paste

Do the same for the bookfile.dat, and book-rec.cpy, paste these into the
BookAPI project

You're free to delete the donextrecord.cbl file form the BookStore project,
leaving only the instance of itin BookAPI

The result should look like this

Solution Explorer

Search Sclution Explorer (Ctrl+;)

4 BookAP]
M Properties
[bookfile.dat
[book-rec.cpy
[@ donextrecord.cbl
4 BookStore
M Properties
[bookfile.dat
b [@ bookmain.cbl
[bock-rec.cpy
b [3) bookstore.cbl

@E- o-5sdm L= ¥

fa] Solution 'BookStoreDemo’ (2 of 2 projects)

Fig. Results after moving files to the new project

Click Build Menu, click Build Solution

... to make sure everything is still compiling

API Enablement and COBOL Code Refactoring

Let's talk testing

Before you set about creating a REST API for your donextrecord program, you're going
to write a non-optional automated test. That's right, this isn't optional. Remember,

one of the reasons why you had to refactor is because your application became too
big, monolithic. That made it difficult to test and not being able to test the application
means you lack confidence when making code changes... and things then start to
slow down and before you know it, the boss is asking why things are taking so long.

Well, let's start out on the right foot and create some automated unit tests for what will
be our API.

Open donextrecord.cbl in the BookAPI project

Scroll down to the procedure division, bring up the context menu and choose
Create Unit Test.

138% - o Mo lssues found

PROCEDURE DTWTISTION USTHG
BRE-OUT-OUTPUT-STRUCTURE .

main section.

Culpul Erer Listh Code Definition Winduw Micm Foous Tude Analysis

PERFORM BRE-COPY-1INPUT-DATA-8.
PERFORM PAR-DO-NEXT-RECORD.
PERFORM BRE-COPY-DUTPUT -DATA.

GOBACK.,

L-record SECTTON.

AR -DO-NEXT -RECORD.

open input hookfile

if ls-file-status <> "@a”
imitialize Ink-b-details
move all "*" to lnk-b-text-det
cxit section

end-if

move 1nk-b-stockno to b-stockno
start bookfile key > b-stockno

read hookfils next

move ls-file-status to lnk-file-st
if 1s-file-status = "ea"
move b-title to lnk-b-title
move b-Type to Ink-b-type
move b-author to lnk-b-author
move h-stocknn to 1nk-h-stackr

Ll |

ol

&l ¥

G e

]
B

BRE -THF-THNPUT-STRUCTURE

Quick Actions ard Refactarings..
Reneme,.,

CORAL Refactosing

Peek Definitian

Ge Te Definition

Findl Al Fiefemnces

taeww Call Higrarchy

Congile

Ercakpaint

Share Dats Flow Anabziz

Shera Pregram Flaw Graph

Code Analys

Fan Te Cursar

Add COR0L Watchgnint

£ COBCL Pregram Breskpoint
Snipast

Cu

Copy

Annctaticn

Clutlining

Sherw Al Copybocic
Hide Al Copybooks
Update Syrlas Repenting

Create Uni Test

Cerd=,
Cirl=FR, Cii-F

AlteF12

Fl1z
Shift-F12
KXk, Chil=T

s FY

KXil=F10

Ced=X
il

v

Wik Publish Activity Project Gelai

Fig. Creating a unit test

API Enablement and COBOL Code Refactoring

Accept the defaults in both of the next dialogs and click Finish to create

a new project

Create Unit Test = Create Unit Test =

Test project: | <Mew test project> - Please select the entry points that test cases should be generated for...
] TestBookAFl - Entry Point Mame Test Case Mame Add New
e DONEXTRECORD ~ | |TestDONEXTRECORD
Project location: TestBookAP]
Mew test program names | TestDOMNEXTRECORD
Test Type Unit Test ”
< Previbue Mot = Ei Cancal Meat > Finish | l Cancel J

Fig. Configuring the unit test

Fig. Finishing-up with the unit test configuration

API Enablement and COBOL Code Refactoring 27

Solution Explorer * 3 X
@E- o-sam pl= v
Search Solution Explorer (Ctrl+;) P~
3] Solution 'BookStoreDemo’ (3 of 3 projects)
4 BookAP|
M Properties

[bookfile.dat
[book-rec.cpy
b [3) donextrecord.chbl
4 BookStore
M Properties
[bookfile.dat
b [3 bookmain.cbl
) book-rec.cpy
b [3] bookstore.cbl

4 [79] TestBookAPI
M Properties
b [TestDONEXTRECORD.cbl

Fig. The new unit test project in the solution

API Enablement and COBOL Code Refactoring

28

You should now have a 3rd project which contains a single project called
TestDONEXTRECORD.cbl. This is program has been automatically generated as a test
harness for our donextrecord.cbl program. Open it and you'll see it includes working
storage items needed to call the program we are going to test and 2 entry points.

The entry statement is a bit like having another PROGRAM-ID but within a single
source file —you can CALL entry points just like you can CALL a program and like a
program, each entry point needs a name. In this case, the entry point name is defined
by constant values in the program. If you hover the mouse over the MFU-TC-PREFIX
and TEST-TESTDONEXTRECORD you'll see that the actual name of the first entry
point amounts to MFUT _testDONEXTRECORD. MFUT equates to Micro Focus Unit
Test and the rest is the program you're testing.

This product includes a unit testing framework that allows you to write unit tests
against your programs which you can then run inside Visual Studio but also as
standalone test cases that can run as part of a continuous integration system. The
whole point here is that you can write a set of test cases that will help identify a
problem if another developer comes along and changes your application code at a
future date.

Apparently, this happens — other developers break your hard work.

The first entry point in the code, is a single, automatically generated test case for
donextrecord.cbl. At this point, it doesn't do a whole lot —just calls the program
under test.

The second entry point is used to initialize anything you need before the test runs.
As you'll see, you can include multiple tests within a single program and this is a way
to configure your test cases.

L1
entry MFU-TC-PREFIX & TEST-TESTDONEXTRECORD.

call "DONEXTRECORD" using
by reference BRE-INP-INPUT-STRUCTURE
by reference BRE-OUT-OUTPUT-STRUCTURE

*s> Verify the outputs here
goback returning MFU-PASS-RETURN-CODE

fregion TestCase Configuration

entry MFU-TC-SETUP-PREFIX & TEST-TESTDONEXTRECORD.
perform InitializelLinkageData

*» Add any other test setup code here

goback returning @

InitializelLinkageData section.
*» Load the library that is being tested
set pp to entry "DONEXTRECORD"

initialize BRE-INP-INPUT-STRUCTURE
initialize BRE-OUT-OUTPUT-STRUCTURE
exit section

Fig. The automatically generated code

API Enablement and COBOL Code Refactoring

29

Let's code up a test by modifying the
current test case to do something
meaningful. Code up the test case as
you see in the next screenshot.

This test case ensures that a specific book is returned given an input stock value.

On return from the call, we check the file status is okay and the expected stock code
is found. If either of these cases aren't true we tell the test framework there was an
unexpected condition and we exit the test.

If you're not familiar with the exhibit verb in COBOL, it displays both the name of the
field and its value, quite useful in this case.

Finally, we display a passing statement.

/]
entry MFU-TC-PREFIX & TEST-TESTOONEXTRECORD.

move "2222" to BRE-I-LHK-B-STOCKND

call "DONEXTRECORD™ using
by reference BRE-INP-INPUT-STRUCTURE
by reference BRE-OUT-OUTPUT-STRUCTURE

if BRE-O-LNE-FILE-STATU <> “e@"
CALL MFU-ASSERT-FAIL-Z using "File status not
exhibit BRE-0-LNK-FILE-STATU
goback returning MFU-FAIL-RETURN-CODE

end-if

if BRE-O-LNK-B-STOCKNO4 <> "3333"
CALL MFU-ASSERT-FAIL-Z wsing "Unexpected book
exhibit BRE-0-LNK-B-5TOCKNO4
goback returning MFU-FAIL-RETURN-CODE

end-if

display “DOMEXTRECORD retrieved correct book code
*» Verify the outputs here
goback returning MFU-PASS-RETURN-CODE

successful” & x"a@"

returned” & x"a"

" BRE-0-LNK-B-5TOCKNO4

Fig. A complete unit test

API Enablement and COBOL Code Refactoring

30

Run your test case

Let's run the test case within Visual Studio

to check it's successful.

Ifit's not already visible, make sure the Micro Focus Unit Testing tool window is

visible. If you can't see it, enable it from the View menu.

Click the Run All button — not the Run all (Code Coverage), we'll come to this later.

Micro Focus Uinit Testing
P Fun Al (Code Coverage) B RunAll B Funlast P Run Failed
I D TestBockAR]

hdicro Focis Unit Testng - Output ErrorList Code Definition Window

Web Publish Activity Project Dietosls

Wiem Freus Lirit Teming

B Bun Al [Code Coniragel B Run il b Runlaz B RunFaded
GTeBookAF (5 rm)
& ETentDOMENTRECORDC (58 mz)
SMEUT_TESTDONLETRECOHRIN [0 mad

Micrs Fedat lind Teshng | Chitpid Trar List - Code Defmfen Windsey

Wih Pokloh Actraby Projpacd Oebads

Tast Results

(=) & MEUT_TESTOOMEXTRECORD - Curpun

He srsaages to disglay

(=) Systeem Ohutpit

DONEXTRECDRD retzicwed correct book code 3333

Fig. The Unit Testing window

Fig. The output from running the test

APl Enablement and COBOL Code Refactoring

31

When you click Run, the IDE will build
your test project and execute the MFUT
entry points. Everything should be green
and passing. If you expand the test case in
the Test window you can see the passing
result and anything we displayed during
the test is also shown.

To give you an idea of what a failing test will look like, let's make a quick change
to the test.

Modify the IF statement that checks the file status so that it would fail, for
example, test for “11" instead of “00"

To rerun the test, this time use the editor adornment above the test case. Hover
over the green tick and click run.

If you have a whole bank of tests in red like this, you've definitely had a bad day in
the office.

Restore the test case to a passing state.

Uiy MPU=TC-PACFIX B TEST-TLSTOOMEXTELCOND.,

b Run AN (Code Covmege) b Rund® b Runlest B Run Faded
o @ TenBookAFl (60)

o & TentDOMEXTRECORILE (50 i
GOMPUT_TES T DEMENTRECOND 00 ma)

! H BDMFUT_TESTDOMEXTRECORD - Outgan

'~} Syshwrn Chutps

Fig. A failing test

API Enablement and COBOL Code Refactoring

32

One testisn't nearly enough

Our program contains only one test.
Surely, we can do better than that. And we
can, and we should and not just because
it's easy to do.

Here's a new test case | created by copying the exiting test, pasting it into the same
source file and renaming the entry point name. In this test, I'm checking to see that
we get the right file status returned when we pass in a stock code that doesn't exist.
Now one might argue a 2/3 is a better result than a 4/6 file status but this is the way
the program works today. You are of course entirely free to modify the code in the
program under test.

Once you've coded this up, run all the tests to ensure they pass. Here's my output.

0
entry MFU-TC-PREFIX & "TESTHotFound™.

move 5555 to BRE-I-LNK-B-STOCKNO
call "DONMEXTRECORD™ using by reference BRE-INF-INPUT-STRUCTURE
by reference BRE-OUT-OUTPUT-STRUCTURE

if BRE-O-LNK-FILE-STATU <> "48"
CALL MFU-ASSERT-FAIL-Z wsing "File status not expected”™ & x"a”
exhibit BRE-O-LNK-FILE-STATU
goback returning MFU-FAIL-RETURN-CODE

end-if

if BRE-O-LNK-B-STOCKNOA <> ™ "
CALL MFU-ASSERT-FAIL-Z using "Unexpected book returned” & x"e”
exhibit BRE-O-LMNK-B-STOCKNOA
goback returning MFU-FATIL-RETURN-CODE

end-if

*» Verify the outputs here
goback returning MFU-PASS-RETURN-CODE

Fig. Another test case

P Run All [Code Coverage)

P Run &ll = Runlast P Run Failed

p
4 GTestDONEXTRECORD.chl (66 ms)
SMFUT_TESTDOMEXTRECORD (61 ms)
SMFUT_TESTHOTFOUMND (5 ms)

Fig. Passing tests, yay!

API Enablement and COBOL Code Refactoring

Code Coverage

BefOI’e we |eave our teStIﬂg, thel’e'S one Microsoft Visual Studio
more thing to do. Let's check how much
, . Micro Focus Code Coverage

of our program code we're actually testing. !
Mo projects in the solution have been compiled with Code
Coverage enabled.

This time, rerun the tests using the Run All (Code Coverage) button. You'll see this To run the solution with Code Coverage, select “Enable Code

message box. Coverage” on the COBOL project property page for each of

the projects in the solution that you would like to see Code
Coverage results for, then select “Start with Micro Focus Code
Coverage’,

To suppress this message, disable the "Warn if no Code
Coverage information on launch’ Code Coverage option.

OK Cancel Help

Fig. Code coverage didn't work!

API Enablement and COBOL Code Refactoring

34

Let's follow what it says.

Click cancel

In the BookAPI project in Solution Explorer, double click the Properties item to

bring up the project properties pages

Make sure the COBOL tab is select in on the left and the check the Enable Code

Coverage checkbox

TR te-rotnomcoRn.ctl doramirpcosd ok

Spphoamen

Lonteppiteon Agtres (Debugl v Pabloemr Acbecs (a5 e
L |
Doy el
Coprylrrids S 2
Prepia disos
COBOL dealect Mg feoa o SREHLE WY A%en -
COBOL Liek R Finied

bligrg Fogus Lode hnpbies

B Compdt for debrggung

Busdd Erwnis.

Treger b wasringt

‘iWasrang Irvrt s hche et cemmanie grage (Lewd i)

fanp afer I [Temat wamings bt armset
Catput

Dafpist parth: (1

[fpreei et disrevn T [7] Genesune lnting fie

[Emalbde ciode covernge [Emaibie profier
Lbdteziipl detenfirrei
Busld sermngs

e cplichy warreng” 1" mansgeror™ B Restcov collection]” BookART)

[Whltipeecesior comprlataon

Browae

Lpepeced

Fig. Enabling code coverage

API Enablement and COBOL Code Refactoring

35

Close the properties pages run the tests with Code Coverage again

This time, you should be successful and after the tests have been run, you should see
the Code Coverage tool window.

Here are my results. This is telling us that around 78% of the code in the donextrecord
program is being executed by the tests. That's pretty darn good. But hey, it's only
about 100 lines of code, so let's not get too excited.

Rt rdiant_ 202005~ 50_ 16172546 | PagumiVisn » PFPL EXEN TR D
Hegigichy Covered [N Blacia) Coweted (Bhpcin} Mot Covared {% Boin) Mot Coverad [Blocka)
P8 Mamualts mbund_ M08 | 3
4 [BookAPl] L% 1 AN
d "3 Programc donestrecoed] BTN L] AN % 3
2 Seclion mim 0% <4 0% o
W Sechion: do rebl-retond BT Ao 5 MBI % 2
@ Section BRE-EXIT-PROGRAM.SEC] 8667 % 2 1% {
& Paragraphc PAR-DO-HENT-RECOR] 3131% 3 1667 % 1
2 Paragrephs BRE-COPY-INPUT-DAT RS MO% 1 0% o
@ Paragiaghe BRE-COPY-QUTPUT-0 [MO% 1 0% o

Fig. Code coverage results, good job!

N T

API Enablement and COBOL Code Refactoring

36
Here we can see what code has and T i et e e e T
has not been executed at a glance. e

Open the donextrecord.cbl file
In the Code Coverage tool window, enable the editor highlighting option

Every line of code that has been executed by a test is shown in blue. Anything in red,
hasn't been executed and maybe something you want to write a test case for, or not,
as the case may be.

By the way, if you struggle to differentiate these colors, you can configure these in the
Visual Studio properties pages —just look for Fonts and Colors.

|

z 74

Micro Fo

FERFORM BRF -COFY-THPUT-DATA-B.
PERFORM PAR-DO-HMEXT-RECORD.

75 PERFORM BRE -COPY-OUTRUT -DATA.
70 GOEBACK.

77 do-next-record SECTION.

78 - PAR-DO-MNEXT -RECORD .

79 open input bookfile

B0 - if ls-file-status <> "ga"

a1 initialize Ink-h-details

2 mowe all '*" to lnk-b-tesxt-details
&3 exit section

&1 end-itf

85

& move Ink-b-stockno to b-stackno

&7 slarl bookfile key > b-sLockno

a8 read bookfile next

84

move ls-file-status to Ink-file-status
- if ls-file-stalus - "ea"
move b-title to lnk-b-title
move b-Lype Lo lak-b-Lype
move b-author Lo lnk-b-aulhor

Results midunit_2020-05- 30 15 37 254z

- bmgemiew - P G P XEF PR D

Hizrarchy
4 F@ HesuRsenfunt 2020 09 20 10 37 25t
4 B BootAP|

4 %3 Frogram: donecreceed

Covered (% Dlocks)
] 7R3 %
I 7357 %
B 5T %

@ Secfice: do-nec-meord) TIAZ% M % z
& Sectier: DRE-DAT-PAOGRAKN-SDC T | 86457 % 2 el 1
© Faragraph: RSE-DO-MEXT-RECOR T @iz 5 LA 1
@ Raragraph: BRF-CORY-MSUT-NAT e 100 % 1 0% n
% Paragraph: DRC-COPY-OUTAUT-0 [100 % 1 0% o
Micen Foeus Uril Tesbing Oulpet Frooe List Code Difribion Windose M Facs Code Coverage Wi Publsh Scbvity Pojict Detaik

oL Dilal

Coversd [Elocks)
m DAZE
AR 3
A% 3

Mot Corverad (5 L .
[T st cuverage ighlighting

1
1
5

Fig. Editor show code executed by the unit test

APl Enablement and COBOL Code Refactoring

37

Designing your REST API

Time to build ourselves a REST API.
Should take, ooh, about 5 minutes perhaps.

A REST APl is a web service that's typically called by sending some JSON data to an
end point URL which implements the API.

JSON is a human readable data format, a bit like XML but different. It's used a lot by
Javascript and web applications to exchange data. You really don't need to worry about
it at all. That's because we're going to deploy our REST API using the Micro Focus
REST API framework which is called Enterprise Server. It will take care of receiving

the JSON traffic and calling your COBOL REST service which is in fact, just a COBOL
program. You just need to tell Enterprise Service about your API. Let's do that now.

Right-click the BookAPI project and on the context menu, click Add New Item.

In the Add New Item dialog

Click Native

¢ Select Service Interface

And in the name field, enter BookAPI
Click Add

S Mew Hern - Bookip)

4 Installed Sort by

4 COBOL -
Code Gk s
General
Hative

E Cwiline

Mame: :I.h:'ci."\.?{

Defsult

Sennce Interface

[ie i)

Type: COBOL

A Service Imterface

Cancel

Fig. Adding a new API to your project

API Enablement and COBOL Code Refactoring 38

In the next dialog, select JSON (RESTful) You are now presented with a new tool called the IMTK for short — Interface Mapping Toolkit, to give its full title.

Click OK The left hand window is where you will load the program you want to create as an API. This window will contain
the linkage parameters for the program.

Service Interface X The top right hand pane is where you will define the APl input/output parameters. These will map on to linkage
Name: parameters.

|B°°kAP|] The other two windows you can ignore.

Type of interface: Notice you also have a new file in your project, BookAPl.svi. If you need to open the IMTK window again, just
] Web Service ~] double-click this file in the project.

First task is to load the program we want to create an AP for.

Ti it T . .
e s From the extensions menu, choose Operation then New...
O SOAP
@ JSON [H ES-ITUI} Da File Edit Views Project Euld De=liug Test Analyze Tools Extensicns Winidaw Help Search [Tl £ BookStoreDemo
o - 8 -0 MM Debug = |88 B Meonage Extensions
Uperation ' Mew...
[y iookAPLovi = el - sk . ot .
Tylpe o{ source: E EooledPl, AoakaPl TesDOMNEXTRECORD chl o Fisld
& Mapping . .
COBOL Progam W g Marme Picture Assignment

Fig. Editor show code executed by the unit test Fig. Adding a new operation to your AP

API Enablement and COBOL Code Refactoring

39

In the first page:

* Name your API NextBook

* Select the donextrecord as the program

* And DONEXTRECORD as the entry point

e Then click the Path/HTTP properties page
* Select GET as the method

* Click OK

Operation Properties

General Path/HTTP User Exits AP| Resources (Disabled)
Name: | [ETRR |

Select program/copybook :

booktec

Select entry point (parameters shown at right):

DONEXTRECORD K Picture

@& BRE-INP-INPUT-STR...
)& BRE-OUT-OUTPUT-S...

Create Defautt Mappings:[] | Enable API Resources

Cancel

Fig. Setting up the COBOL program will implement the API

APl Enablement and COBOL Code Refactoring 40

Operation Properties X

General Path/HTTP User Exits AP| Resources (Disabled)

Path: ‘

Note: To specify a parameter in the path, type a cury-brace ({) and select a
prospective interface field. Other path4ype interface fields can be added after
the operation is created so one need not be selected here.

Method: (O POST

@®@GET

QOPUT
(O DELETE

Fig. Make sure the GET option is set

API Enablement and COBOL Code Refactoring 41

You'll now see the linkage section of the sk ek EIRGRS S
program loaded and displayed in the left o en
= BRE-0-LNK-FILE-STATU 2

& &7 BRE-0-LNK-B-DETAILS
= & BRE-O-LNK-B-TEXT-DETO
& BRE-O-LNK-B-TITLE! X([50)

It's now time to create the API defintion for this linkage section.

* Drag the 2nd item in the list, BRE-I-LNK-B-STOCKNO, over to the righthand o BRE-O-LNK-B-TYPE2 X20)
Interface fields window © BRE-O-LNK-B-AUTHO..., ¥[50)

» Double-click the item to bring up the properties: = BRE-O-LNK-B-STOCKNOQE Xi4)

* Make the name BookStockNo s FEES- O S RE HENI2) display

L © BRE-O-LNK-B-ONHAMDS 9(5) display

* Setthe Direction to Input = BRE-O-LNK-B-50LD7 9(5) comp-3

¢ Set Location to Query

e Click OK

Fig. The COBOL program linkage section loaded into the left hand IMTK window

Now drag the BRE-OUT-OUTPUT-STRUCTURE field from the linkage parameters
over to Interface fields window. You can leave it with it's default values. Operation D

Interface Fields

. . . Note: Fields marked with an ssterisk t nameless top-level values in JSON
Your Interface fields should now look like this: s mer an asterisk () represent nameless top-level values in J5ON message

Name Direction Type 0., Locatien
= BookStecklNo Input string Query i
® & BRE_OUT_OUTPUT_STRUCTURE Output Body -

Fig. The definition of our API

API Enablement and COBOL Code Refactoring

42

We renamed the stock number field to be a little more user friendly outside of COBOL.

You can come back later and make adjustments to the output fields too but for now,
let's leave this as-is.

It's now time to deploy your APl into its home so it can be called by a client, Micro
Focus Enterprise Server, is that home.

Step 1. Fire up Enterprise Server

While it is possible to start and stop Enterprise Server from within Visual Studio,
you could encounter some permissions issues. So we'll bypass those gotchas and
do this using a browser instead.

You can access the Enterprise Server dashboard at the following address in
a web browser

http://localhost:10004/

You should see a welcome screen similar to this:

WELCOME

F N S T) AR A

Fig. Enterprise Server web administration

API Enablement and COBOL Code Refactoring

If you don't already see a list of Enterprise Servers, use the Add Widget button to add

You should then see the following list window in the dashboard which contains our
a Native Region list Widget.

demonstration Enterprise Server called ESDEMO.

11T U0 2S REGHOM LIET &
Add Widger
MAME W DERCRIPTION AL UHEBPOINT w TRl STATHH Ba-BiT HAL THABLED) DISPLAYED COLUHAE
Dircctary Servers LT T STATA (TR | M4 EHARLED
Welcome
Dtz
Directary Serverlest R | EanEeas oo

[Ni'il-e Kegign List

Ma=we Region Status

Mariwe Region Monilor Graph
Masive Regien Consale

Maswe Regron Lsreners Lest

Marive Regien Communications Log

Managed Regin Lt

Fig. The ESDEMO server for our API

ADD BACK

Fig. Adding a Region list to the dashboard

APl Enablement and COBOL Code Refactoring

Hover over the ESDEMO item and a set of controls will appear on the righthand

side—click the cog icon.

12700001548 REGION LIST

NHAME .. DESCRIPTION .. PAC .. EHDOPGINT .

HAME

TYPE ~

STATUS -

Gb-BIT -

M55 ENABLED -~

TYPE

Regicn

ETATUS

Stopped

o #& X

[[] DISPLAYED COLUMNS

&&-BIT M55 EMABLED

Fig. Starting the ESDEMO server

API Enablement and COBOL Code Refactoring 45

In the next window, click the start button and click the start button again on the
next page you see — we like to be sure you mean it, so we ask you twice.

ES ADROSTRATER

OASHEOARD MWATIVE - ES MNET SECURETY

w (9 teon soamaL Auvwroiuses ESDEMO (DEFAULT)
i "y
: _f: ~ contROL O
s [l Do enaey Siivaid
w B £ Dl
[1 EspEmo

PROCESS STATUS BECHN FEATURES
LRt

TILE L]

Saptit bl T it T w1}

Stopped st P | - m

MESSAGES

L TP Tt Femamit By s 1D " wai i i v ite usbsg Fiyavew i1 (D
AR Camiols ity oy fro] e 1 3 W Cef_wdia” ohder fyilel [0 CEVITERT. .. TREEVIE] RRINLSTE

L h T BEAT BT S lanasd by aasla | CElaedT under petes [0 TEYED

" peaniing RN BT T RR R
MOR10ad T ferver Wlartup Sow nf 15 0 "ef_edue” cwles ayites 1D TEVETINT. . fE:EIo0} @S50S

AL Servwr Hanager FEL

widng {8 10 "ol _sia® under ipsies [b4 et] i) 15783 ¥ N1
AN Rerves ALAFTEE e y TReAFA) PR/ A0
A N sy regquedt by undsr iFites 10 “SYETER wileng Fipites 13 00, .. 17700040 @R/ 11/DE
Of FEdud T i D Gal I B LT Libesd by afsln 1B Tedaier lar dpites §0 “EVRIENT pesdlng 18 10 A e D108

 mareid Al FoE WS ELS

Caliislil] fervmr mgnaper fors]egilos coepleted seimnfully 1T00E

Fig. Output messages as ESDEMO fires up

API Enablement and COBOL Code Refactoring

46
Step 2. Connect your BookAPI project to ESDEMO b{) fle Edit View Droject Buld Debug Test Analyze Tools Edtensions Window Help | Search (Cul()
" . . . , - RN "R, - | Debug < |x86 < pStat- M@
In Visual Studio, make sure the Server Explorer Window is visible. Enable it from @ S =3 _IE bosms| @
the View menu. BookAP| TestDOMEXTRECORD. chl donextrecord.chl & X
Yo 5| k= [E] BookAPl - *iz DOMEXTR|
Expand the Micro Focus Servers and locate ESDEMO. If it is not showing as B Micro Focus Analysis Server 1 H Lo ot
tarted th text to Ref h 4 = MicroFocus Servers 72
Started, use the context menu to ~kefres 4 'E] 73 PERFORM BRE-COPY-INPUT-
BT PERFORM PAR-DO-NEXT-RE(
H i i i i b A Azure i
Bring up th¢=j co.ntext menu on ESD{:'MO and use the Associate with Project option = Start with Profiler =
to connect it with the BookAPI project b= Servers Start with Code Coverage GOBACK.

Delete

Associate With Project » BookAP RD.
Clear Credentials [up\:n—mpu-n—lgookﬁle

[ererg 85
b—next-reccr'd SECTION.

Show Console Log if ls-file-status <> "¢
14| T initialize lnk-b-dgq
82 move all '"*' to 1nk
23 exit section

2 A

and-if

Fig. Deploying the API from Visual Studio

API Enablement and COBOL Code Refactoring 47

Step 3 . Deploy your API All being well, you should see the following messages in the Output window

, s) within Visual Studio.
Bring up the context menu on the BookAPI.svi file your BookAPI project

Click Deploy
e — = FK
Wl Solution Explore _;; U S — H
. QB b-59B s v 4 ooy et
o _ [s
= | Search Solution Explorer (Ctrl+;) P - .) ’ .
- ruite [t 4 et s CER, i T
] Sclution ‘BookStoreDeme’ (3 of 2 projects) 24 T P
4 BookAP| it =
M Properties i
e
i
b
[bookfile.dat € Open v}
] ey TN e — .
0 book-rec.cpy Qpen With.., vt Flakibea with 1 seralog e
b [d donextrecord.chl
Cede Cl
' BookStore odeleandp "
& Properties Seope to This Fig. Deploying the API from Visual Studio
01 bookfile.dat = Mew Solution Explorer View
b bookmain.cbl
[book-rec.cpy Exclude From Project
3 bookstore.chl M o Cr+X
b F7 TestBookAPI G Copy e
X Delete Del
[Rename
Use Praject Defaults
Configure Runtime Envirenment...
Validate
Deploy
Generate WSE
Generate Clients
ﬁ Properties Alt+Enter

Fig. Deploying the API from Visual Studio

API Enablement and COBOL Code Refactoring

48

Step 4. Test your APl using a web browser

Because we created a REST API that supported HTTP GET messages, we can call our
AP using a browser.

Use this link to call your API:

http://localhost:9003/temppath/BookAPI/1.0/NextBook

Here are my results using the Chrome web browser:

L C @ localhost9003/temppath/BoakAPl/1.0/NextBook

{ 20280531188825

It ht

“BRE_O_LNK_FILE_STATU": "@@",
“BRE_O_LNK_B_DETAILS"

’ “BRE_O_LNK_B_TEXT_DETe"
"BRE_O_LMN¥_B_TITLE1": “LORD OF THE RING'
“BRE_O_LNK_B _TYPE2": "FANTASY"
"BRE_O_LMNK_B_AUTHOR3": "TOLKIEN"

“BRE_O_LNK_B_STOCKNO4": “1111"
"BRE_O_LNK_B_RETAILS": 15,
“BRE_O_LNK_B_ONHANDE": 40060
"BRE_O_LMK_B_SOLD7™: 3444

tp: /flocalhost ; 9983/ temppath/BookAPL /1.8 /NextBook

=

Fig. JSON output from calling the APIin a browser

API Enablement and COBOL Code Refactoring

49

'm using a handy JSON extension in
Chrome which formats the results nicely.
Depending on your choice of browser,

what you see will look different.

If you remember our COBOL program, it takes in a Stock Code value and locates the
next book in the data file. It then returns that information in the linkage section. In this
case, the linkage section is formatted as JSON data and sent back to the browser.

We didn't supply a Stock Number so the program the program found the first record in

the file.

Let's run again, this time specifying a Stock Number in the URL. The stock number
parameter name needs to match the name you used in the IMTK — that should be
BookStockNo if you followed the instructions before. If you decided not to rename it
or call it something else, go back to your IMTK service and check what you called it.

Then substitute it in the URL below.

Here's URL that gets the next book:

http://localhost:9003/temppath/BookAPI/1.0/NextBook?BookStockNo=1111

= (@ locathost:9003 temppath/BookAPL1.0/NextBook?BookStockNo=1111

“BRE_O_LNK_FILE_STATU"
“BRE_O_LNK_B_DETAILS"
"BRE_O_LNK_B_TEXT DET@"
"BRE_O_LNK_B_TITLE1"
"BRE_O_LNK_B_TYPE2"
“BRE_O_LNK_B_AUTHOR3": "DICKENS"

"BRE O LNK_B_STOCKNO4™: "2222"
"BRE_O_LNK_B_RETAILS": 10
“BRE_O_LNK_B_ONHANDG": 3868,
"BRE_O_LNK_B_SOLD?": 2333

And my results look like this:

Fig. Calling the API passing in a parameter

API Enablement and COBOL Code Refactoring

50

Debugging your service

To enable debugging, you need to
check Allow Dynamic Debugging in the
Enterprise Server Dashboard. You'll find

this under the General properties section.

ES ADHINESTRATION

DASHDOARD NATIVE

ES MNET SEG|

GEMERAL | HOHTOR S AWITCH USER

GENERAL PROPERTIES | O m

STARTUP RTINS

Sharmd Hemory Fagrs 513 o mamrniek SER Count 3

- -~ i

Shared Memary Cushion /' 31 o PERER ISR Rbpaiited Licermes) 10

Eongnis Log Siee || 0 -~

o o B ¥ o
O P d Log

L

L

Fig. Enabling debugging

API Enablement and COBOL Code Refactoring

51

You'll need to stop and start ESDEMO for the setting to take effect.
Now go back to Visual Studio

Set the Book API project to be the startup project using the context menu on
the project name

Set a breakpoint on the first line of the procedure division in donextrecord.cblin
the Book API project.

Then hit F5 to run the API
The Visual Studio debugging will sit in a wait state until you invoke the API.
Go back to the browser and resent a request using this URL.

As soon as you do, the Visual Studio debugging should attach and you can step
through the code

http://localhost:9003/temppath/BookAPI/1.0/NextBook

Sodution Explorer

Sigrin A,

atal- o

Search Sobution Explorer (Cirle:

-
=

g k= T

T Solution 'BookStereDeme’ (3 of 3 projects)

4 [E| BockaPl
H Properties
T BookAPLsvi
[Bookfiledat
O boak-rec.cpy

P & donetrecord.chl

“ EBookStore
A Properties
[boakfile.dat
b & Bockmainchl
T baok-rac.cpy
b B bookstorechl

¥ @ TestBookAPI

&

*x Po@

B x

Build

Rebuild

Clean

Scope to This

Mews Zolution Explorer Wiew
Enterprise Server

Build Dependencies

Add

Add Existing COBOL kems...

Set as Startlp Project
Debug
Project Details

Cut

Remave

R=namz

Dieterrmine Mirectives
Usz Froject Defaults for all Programs
Micro Focus Code Anabysis

Refrech Annotstions for Senvices_.
WValidate All
Generate Web Service

Unload Project
Dpen Folder i File Explorar

Properties

Ctrl=

Att+Enter

Fig. Making the API project the start up project

API Enablement and COBOL Code Refactoring

How to delete your API...

If you ever need to redeploy your
service to Enterprise Server, you'll
need to delete the existing API first.

* Load up the Enterprise Server dashboard

* Go to the Services page of ESDEMO

* Delete your NextBook service

* In the same page, click the Handlers and Packages tab
* Scroll down to find the Packages

* Delete your NextBook page

You will now be able to redeploy from Visual Studio

API Enablement and COBOL Code Refactoring

If you made it this far...

Many congratulations!
Seriously, very well done.

APl Enablement and COBOL Code Refactoring 54

Now what...

Well, first of all, pat yourself on the back.

Now, if you're feeling brave, you could hook up a basic webpage and use
Javascript to call your API.

And why not try using the refactoring tools on your own application code.

- —— ——

U

S ——
i ’ e - < -1

s it
e ‘,‘.u

-rrupprr,,r' 'F'“ ¥ rr!

© 2020 Micro Focus

