
TIBCO AT-A-GLANCE | 1

Are your APIs performing optimally, and as they were designed? Do reliability
and scalability concerns keep you up at night? Are you confident you can rapidly
recover from a catastrophic data failure? Just about every customer we talk to
has these concerns. The good news is that no matter where your API program
is today, the right tools can support your program’s health and empower you to
remain a leader in your industry.

Tools like TIBCO Cloud™ Mashery® for cloud-native API management, and API
Fortress for continuous testing, help large and small enterprises evolve toward a
healthy and scalable API program.

The partnership between TIBCO and API Fortress expedites innovation
throughout the full lifecycle of APIs. We have collaborated for a seamless
experience for creating, testing, productizing, securing, and analyzing APIs, and
also for defining the keys areas for a healthy API program. We hope you benefit
from this collaboration, and take your API program to the next level.

TIBCO CLOUD™ MASHERY® + API FORTRESS = HIGH-PERFORMING
APIS DELIVERED WITH SPEED AND QUALITY
Review the material in this lookbook to learn more:

• Key Problems and Solutions for Healthy API Programs
• The Healthy API Lifecycle: A Checklist
• Learn from these API Management and Monitoring Mistakes

ABOUT API FORTRESS
API Fortress is a continuous testing platform for APIs. It is the final piece to
complete your continuous integration vision. One platform to test functionality,
performance, and load. Save time with automated test generation, benefit from
true cross team collaboration, leverage your existing version control system, and
seamlessly integrate with any CI/CD platform. Catch problems before they are
pushed live - automatically. To learn more about why companies are switching to
API Fortress visit www.apifortress.com.

ABOUT TIBCO
TIBCO fuels digital business by enabling better decisions and faster, smarter
actions through the TIBCO Connected Intelligence Cloud. From APIs and
systems to devices and people, we interconnect everything, capture data in
real time wherever it is, and augment the intelligence of your business through
analytical insights. Thousands of customers around the globe rely on us to build
compelling experiences, energize operations, and propel innovation. Learn how
TIBCO makes digital smarter at www.tibco.com.

Success Guide for a Healthy API Program

www.apifortress.com
www.tibco.com

Key Problems and Solutions for Healthy
API Programs

Although it comes with a deep cost to the enterprise, the fast pace of change in
technology makes for exciting and revolutionary changes in business operations
and growth. One of the downsides of charging forward with an “innovate faster”
ethos is that some legacy investments become difficult to update, which reduces
their reliability.

Well-designed and well-managed APIs are a solution to this and other
challenges, but become a problem when implemented without proper planning
and process. As microservice architectures begin to reach maturity, organizations
are finding that some systems are becoming stagnant, adding to the engineering
organization’s technical debt.

It’s now a best practice to approach any new development with an API-
first mindset to preserve or improve the agility and reusability of systems and
information—and testing and monitoring all deployed code becomes critical to
long-term success.

EVOLUTION OF APIS
Though test-driven development and test-first programming are recommended,
most organizations adhere closely to a “build first, test later” mentality.
Developers dislike writing additional code to test the code they’re about to write,
and many engineering managers hesitate to assign sprints to generate test code
when they’re being evaluated on how quickly they can deliver new features. Many
existing API programs are stuck with legacy code that has little test coverage
because of this.

Global Headquarters
3307 Hillview Avenue
Palo Alto, CA 94304
+1 650-846-1000 TEL
+1 800-420-8450
+1 650-846-1005 FAX
www.tibco.com

TIBCO fuels digital business by enabling better decisions and faster, smarter actions through the TIBCO
Connected Intelligence Cloud. From APIs and systems to devices and people, we interconnect everything,
capture data in real time wherever it is, and augment the intelligence of your business through analytical insights.
Thousands of customers around the globe rely on us to build compelling experiences, energize operations, and
propel innovation. Learn how TIBCO makes digital smarter at www.tibco.com.
©2019, TIBCO Software Inc. All rights reserved. TIBCO and the TIBCO logo, and Mashery are trademarks or registered trademarks of TIBCO Software Inc. or its
subsidiaries in the United States and/or other countries. All other product and company names and marks in this document are the property of their respective
owners and mentioned for identification purposes only.

04/11/19

EARLY STEPS
In the early days, many API programs were created for a single purpose: to serve
data to apps installed on mobile devices. Though this code was intended for
production, it was often treated as a proof of concept with less adherence to
strict QA, documentation, and traditional development standards.

REALIZING BUSINESS VALUE
As APIs proved their utility beyond initial purposes, organizations expanded into
full API programs to take advantage of the open developer ecosystem, leveraging
shared data and functionality for strategic partnerships.

ADOPTING API FIRST
An API-first strategy is the logical next step for any mature API program. As
staff engineers begin to understand the value of consuming their own APIs and
abstracting proprietary vendor systems from their code, refactoring existing
code and increasing test coverage becomes as important as developing new
functionality and products.

ADDRESS PROBLEMS NOW
Regardless of where your organization is in its lifecycle, you should implement
and adhere to the best practices of building to a pre-defined spec, ensuring
maximum test coverage of all developed code, and monitoring your APIs on both
the front and back end.

In the other whitepapers in this lookbook, we dive into the details and offer
suggestions you can implement immediately to bring your API program up to
speed. The diagram provides an overview of what we’ll be covering.

THE HEALTHY API LIFECYCLE

This lifecycle is cyclical

Tools like TIBCO Mashery®
for API management, and
API Fortress for testing and
monitoring, help large global
organizations burdened with
tons of antiquated backend
technology to migrate their
legacy processes to efficient
APIs. This method expedites
innovation with little additional
engineering effort, opening new
opportunities to monetize data.

UPTIME

FUNCTIONAL UPTIME

PERFORMANCE

DEPLOYMENT MONITORING
DATA AND
ANALYSIS

REGRESSION TESTING
AUTOMATION

API DESIGN
API
DOCUMENTATION

FUNCTIONAL TEST

INTEGRATION TEST

BUILDING AND
TESTING

The Healthy API Lifecycle: A Checklist

Though APIs have been around for a while, developers still treat them like they’re
something special and unique. In truth, there’s not much difference between
serving APIs and building an application with a graphical user interface. Each
should be designed with the end user in mind, fully tested on both the backend
and frontend before release, and continually monitored to ensure they are
performing within expected limits.

One key difference specific to APIs is the availability of mature solutions to
make all of these operations easier. API management tools like TIBCO Cloud™
Mashery® provide the infrastructure that can help you scale, secure, and support
your API program, while API-specific testing and monitoring tools, such as those
provided by TIBCO partner API Fortress, can help you adhere to best practices,
building services that are performant and secure.

Even with good API management, testing, and monitoring, IT leaders express
anxiety over the stability of their APIs. The interconnected nature of APIs can
lead to the appearance of complexity that cause operational bottlenecks or
potential security threats. However, the worst offenses are often due to poor
testing, inefficient coding, and a general lack of knowledge of how APIs operate.
Understanding the healthy API lifecycle and treating it as a checklist can help
address the biggest of issues and should calm all but the most irrational fears.

THE HEALTHY API LIFECYCLE

API DESIGN
You should put the same thought, care, and effort into designing your APIs as
you do for any of your websites or visual interfaces. A well-designed API will not
only best serve its primary function, it will reduce development time and costs,
improve performance on both the backend and frontend, improve reusability,
and leave you with a more robust platform with plenty of room for growth as the
business changes.

Many teams start the API design discussion debating different protocols, such
as REST, SOAP, or GraphQL. The best APIs are designed to serve the needs of the
business by identifying key resources and data parameters required to solve the
problems at hand. These will determine your protocol selection.

Approaching API design with this mindset can set you up to identify potential
security and performance issues. If the resources you need are not easily
accessible or are tightly coupled behind the scenes, you can begin to address
these limitations before writing a line of code. One approach is to start with user
stories that identify the actor, the action being taken, and the purpose of the
action. One example of a user story for an e-commerce application might be:

“As a customer, I would like to search for a product by category so it’s easier to
find what I am looking for.”

UPTIME

FUNCTIONAL UPTIME

PERFORMANCE

DEPLOYMENT MONITORING
DATA AND
ANALYSIS

REGRESSION TESTING
AUTOMATION

API DESIGN
API
DOCUMENTATION

FUNCTIONAL TEST

INTEGRATION TEST

BUILDING AND
TESTING

API DESIGN CHECKLIST
• Identify key resources.

• Address limitations.

• Define system expectations (through user stories).

• Ensure exposed data can
be contained for providing to developers.

• Appropriately limit data exposure.

• Use model and mock-up tools to flesh out resources, relationships,
and actions.

• Collaborate and confirm the design.

You may wind up with dozens — potentially hundreds — of stories, but they are
tremendously valuable when defining your system expectations. User stories
uncover the resources, actions, and relationships that will ultimately make up
your API system. In the story above, we can see that the nouns — “customers,”

“products,” and “categories” — are all resources we’d expect to find in this
system. The verb “search” indicates an action that should be implemented on
these resources. The phrase, “to search for a product by category” also indicates
a relationship between a product and a category resource. In this case, those
products belong to a category.

It’s important to pay attention to the audiences who are going to use these
APIs and ensure the exposed data can be contained to provide it to developers.
A common security issue with APIs is exposing more data than needed in your
resources, potentially leading to unintended data leaks when you widen your
audience. A good rule of thumb is to assume your APIs will be exposed to third-
party developers, so limit exposure of sensitive data to specific endpoints.

As you develop more use cases, the full nature of each resource, its
relationships, and the actions you can take will begin to guide your API design
and protocol choice.

Strong API management systems can help you decide how best to build these
APIs by providing modeling and mock-up tools. By using existing specification
formats such as Swagger/OpenAPI, you can use visual editors to rapidly design
standardized APIs for your organization according to the resources, actions, and
relationships. They also allow you to collaborate with your developers to confirm
that your design is headed in the right direction. Once you’ve agreed on the
general design of your APIs and how they might work once launched, you can
start building.

BUILDING
There are several ways to build your APIs: transforming existing services,
creating new services from scratch, using low-code API creation tools, etc. With
all of these methods, you need to make sure they are working as expected,
continuously testing them when changes are made. Testing and test code is an
invaluable part of software development, crucial to a healthy API program. That
being said, it should be done at this stage of the lifecycle.

API BUILD CHECKLIST
• Write test code and continually test code changes to confirm that

service transformations and new services are working as expected.

• Use pure functions whenever possible.

• Ensure autonomous pieces work in harmony. Use API Fortress to write
intermediate integration tests to check for semi-complete artifacts and
address them.

• Use a load testing tool at the end of specific sprints to identify
weaknesses in request and response services.

• Document your API using a standardized format, such as the OpenAPI
Spec (Swagger), to clearly define request and response data, which
forms the basis of your automated integration test plan.

Developers can guarantee that a function they write performs as expected. Such
functions should be determinate, always producing the same output given the
same input parameters and state of the application. A function that interacts
primarily with the state of the system may be hard or impossible to test, while
a function that receives an input, interpolates it, and produces an output (a.k.a.
pure functions) is easier to test. Whether you’re a functional developer or not,
leverage pure functions wherever you can. This not only guarantees that the code
is working but will verify that code changes do not modify behavior unexpectedly.

Unit tests can ensure internal consistency in standalone code but do little to
ensure the integrity of distributed, interconnected services, such as those found
in a microservices architecture. In such an environment, the risk for a “perfectly
functioning” piece of software that passes its own internal tests but still disrupts
the entire system is high. It’s common for a single API call to trigger a cascade of
multiple sub-calls to other dependent services in the system. Write intermediate
integration tests with platforms like API Fortress to work as checkpoints for semi-
complete artifacts. Validating the data returned from these dependent services is
vital to ensure autonomous pieces of the flow work in harmony.

Identifying these interdependencies can be tricky, but following the design
process outlined above can identify them early and highlight any potential risks.
Mocking and modeling these calls can also help bring up potential issues, allowing
your team to address them before they happen. There are open source mocking
tools available, along with the features available in TIBCO and API Fortress products.

Validating request and response data is vital, but many errors don’t make
themselves known until the system is under more intensive use. These errors may
show themselves through race conditions that produce strange behavior or may
emerge as performance issues. Programmatic functional load testing at the end
of specific sprints may help identify these weaknesses before your services are
deployed to production. The API Fortress platform includes a load testing tool, which
uses existing functional tests to perform this work. This helps make sure your APIs
work under stress, capturing unexpected problems such as memory leaks.

The structured, deterministic nature of APIs is a boon for your testing plan once
your services are in production. Documenting your APIs using a standardized
format such as the OpenAPI Spec (a.k.a “Swagger”) will clearly define the
expected data that both go into your API as a request and returns as a response.
These definitions not only document your APIs in a flexible way that is friendly
to automation tools, they should form the basis of your automated integration
testing plan and can be supplied to your continuous integration systems and tests
they should enforce. Platforms like API Fortress can automate test generation
from these spec files, saving you time and money.

Unit tests can ensure
internal consistency in
standalone code but
do little to ensure the
integrity of distributed,
interconnected services.

API DOCUMENTATION
The value of good API documentation cannot be overstated. While good resource
naming conventions and data response design can go a long way in improving the
usability of your APIs, well-formatted, searchable documentation, and consistent
communication can eliminate support issues before they arise. More importantly,
good documentation explains how your APIs are expected to act, which can help
both your developers and your code testers quickly identify and address any
issues they may find.

Good documentation starts with the developers creating your APIs. The best
strategy is often to start by documenting your APIs’ expected behaviors and build
to those specs. The mock and modeling tools discussed in the API Design section
often produce functional documentation written using one of the more popular
documentation formats, such as the OpenAPI Initiative’s Specification format
(OAS), formerly Swagger. While there are many formats to choose from, such as
the Blueprint spec from Apiary or the RESTful API Markup Language (RAML), the
OAS has seen wider adoption across the industry and is the most recommended.

This form of documentation describes every endpoint and every piece of data
your APIs can support on a request and return on a response, allowing it to
become the single source of truth to provide guidance to your client developers,
configure API management and testing tools, and even generate client code and
SDKs to speed development time. Tools like Stoplight and SwaggerUI, as well
as those embedded in API management systems like TIBCO Cloud Mashery, can
turn your OAS definitions into browser-based interactive documentation, allowing
developers to experiment with your API without writing a line of code.

While your functional documentation should be the primary source for
information about how your APIs are designed, your static documentation
should provide information about how they are intended to be used. Rather than
acting as a data dictionary and laying out each endpoint and parameter used
by your API — a task better suited for your functional documentation — your
static documents should focus on covering common use cases, addressing
anticipated support questions, and providing a narrative to walk developers
through the capabilities represented by your API program. These often take the
form of tutorials illustrated using sample code from the languages your developer
audience is most likely to use.

API DOCUMENTATION CHECKLIST
• Write or automatically generate functional documentation on the

API’s expected behaviors, including every endpoint and piece of data
it supports.

• Produce static documentation covering common use cases, anticipated
support questions, and a narrative to walk developers through your API
program’s capabilities.

• Verify that your documentation and actual API behavior/program are in
sync, and if not, fix any discrepancies.

• Prepare developers to take advantage of modifications you make to the
API by communicating about updates as soon as they are deployed.

• Consider including a “deprecated” or “update” field in your API response
payloads to alert developers of a change.

Both your functional and static documentation is tremendously valuable as
you test your APIs, as they should document expected behaviors. Any behavior
that strays from what you have advertised must either be fixed or properly
documented as soon as possible to ensure your developer audience always has
the most recent information available.

One frequently overlooked aspect of documentation is active and consistent
communication with your developer audience. As your API program matures,
you will likely add more endpoints and possibly alter existing APIs to make
them better suited to the needs of your audience. You should update all of your
documentation to reflect these changes as prior to deploying APIs are deployed.
It’s crucial to inform developers of these changes as early as possible to help
them prepare and let them take advantage of your modifications.

The communication strategy you adopt will depend largely on how your target
audience prefers to receive communications. The best plans are those that span
several channels at once. Use social media outlets such as Twitter and tools like
email to drive developers back to a blog or documentation page that details what
has changed and how long older versions will live until they are deprecated.

One of the more effective and interesting means of communication lies directly
in your APIs themselves. You may consider designing your response payloads
to include an optional response section with a field name of “deprecated” or

“update.” The data in this field should include a short message describing the
change made to the endpoint with a link to a static blog entry or web page that
details exactly what has changed and how the developer should respond.

The major benefit of this approach is that client developer teams can choose
precisely how they would like to handle these updates as they see them. As
developers change jobs, email addresses and social media followers may not be
aware of who to reach in light of the changes. Embedding it in the API itself — and
clearly documenting how it is expected to work in your static documentation —
allows developers to create code that reacts immediately when an update is seen by
forwarding the information to an internal mailing list, adding a message to an internal
chat channel, filing a ticket in their support system, or any other way they see fit.

TESTING
Verifying that your code and systems work as expected is not a one-off activity. In
massively distributed architectures where parts are maintained and deployed by
several teams — in some cases, not even part of the same organization — continuous
testing at every stage becomes critical to the success and performance of your API
program. These organizations put CI/CD pipelines in place to automate this process,
using platforms such as Jenkins, Bamboo, and Travis CI. These tests can be broken
down into two types: functional testing and integration testing (also known as end-
to-end tests).

API CHECKLIST
• Write or automatically generate functional and integration tests.

• Write detailed tests that also validate the intended logic (business logic) of
the API program.

• Run tests automatically as part of a CI/CD pipeline.

• Schedule tests to run as functional uptime monitors.

Functional testing is meant to ensure that your API call responds as expected,
validating everything from the header, to the resources, to the data associated
with each resource. Providing your OAS definitions to an automated testing
platform reduces much of the load, freeing you to focus on the creative aspects
of test development and business logic validation.

Consider as an example an API for e-commerce clothing. A general search
may return a resource representing many items across multiple categories, such
as shirts and shoes, each item with a parameter for size. For shirts, you’d might
expect this parameter to include values small, medium, large, etc. For shoes, you
might expect a numeric size cast as a string. Your OAS definition only shows that
the system should return a string value, but additional tests should also confirm
the actual returned values match expectations.

Integration tests allow you to validate the workflows and interdependencies of
your APIs. Most applications will make subsequent calls to your system, using the
data from one return endpoint to set the request parameters in another. Using our
e-commerce example again, a customer might perform a search based on some
criteria that returns multiple products, then select one of those products to get
more details. If they choose to purchase the product, they may add it to their cart
and, finally, complete the checkout by providing shipping and payment details.
Where functional testing ensures that each of these calls conforms to expected
behavior, integration testing helps ensure the complete flow of one call to the
next also works as expected.

Your developers can write these integration tests as part of their development
workflow, or you can use a platform like API Fortress to make it easy for
developers or testers to create them. Once deployed, these tests should be
handed off to automated testing tools that run them at least each time a new
piece of code is deployed to the system. This ensures that the whole system is
always performing as expected and there are no regressions.

DEPLOYMENT
Whether you deploy at scheduled intervals, or run a true continuous deployment
program, it’s critical to run a full series of regression tests each time you move
new services to production. As more code is deployed, the number of tests can
quickly add up and build on each other. It’s important to update the test code
that no longer reflects current functionality and remove any tests designed for
obsolete functionality.

API DEPLOYMENT CHECKLIST
• Run a full series of regression tests each time a new service is deployed

to production.

Whether you deploy at
scheduled intervals or run a
true continuous deployment
program, it’s critical to run
a full series of regression
tests each time you move
new services to production.

MONITORING
No API program in active use can be considered static, and there’s no such thing
as perfect test coverage. The performance of your APIs is determined by the
code itself, expected usage on the systems supporting it, and the actions of your
users—situations well beyond your anticipation or control.

API managers can provide for much of this monitoring by noting unusual spikes in
activity, an increase in certain HTTP response errors, and/or strange usage patterns
from specific users or applications. Monitoring for these activities provides an extra
layer of security when a bad actor or bad code gets into your API. By establishing
baselines early on, you can set thresholds that point to unusual behavior.

While a good API management system can identify such unusual activity, it
often requires human intervention to determine whether the behavior is bad
or not. Any kind of monitoring needs to be followed by analysis, which means
getting all of the data into a format that’s easy to understand and parse. The data
provided by TIBCO Cloud Mashery, for example, can be streamed directly into a
TIBCO Spotfire® instance, allowing you to create visualizations that help you best
understand what the data represents.

Another critical aspect to monitor is functional uptime. Beyond merely
checking whether the API is responding, functional uptime also helps ensure
the data provided in those responses matches expectations. This is where your
choice of API testing platform is key. A tool that only shows you that your API
has been up 100 percent of the time does nothing to tell you whether it’s actually
performing within expected parameters. Your testing platform should be able
to schedule existing integration and regression tests against your live API to
ensure it remains functionally accurate and consistent. Leading platforms like
API Fortress also provide a status page that can be viewed by all stakeholders —
internal and external — to help rule out potential issues as it tests your APIs calls.

API DATA AND ANALYSIS CHECKLIST
• To manage and grow your program, regularly review API program stats

collected by your API management system: calls made, errors found,
detailed developer and app usage.

• Pay attention to developer engagement, identifying which applications
are making the most calls and which show little to no activity. It may be
helpful to integrate that data with information from other systems to
determine KPIs for your business as well as for your users.

API MONITORING CHECKLIST
• Ensure the API manager is providing an extra layer of security by

monitoring for unusual activity spikes and other events.

• Consider using visualized analytics such as provided by Spotfire® to help
understand unusual activity and what might be causing it.

• Be sure to also monitor for functional uptime to ensure the API is
performing within expected parameters.

Global Headquarters
3307 Hillview Avenue
Palo Alto, CA 94304
+1 650-846-1000 TEL
+1 800-420-8450
+1 650-846-1005 FAX
www.tibco.com

TIBCO fuels digital business by enabling better decisions and faster, smarter actions through the TIBCO
Connected Intelligence Cloud. From APIs and systems to devices and people, we interconnect everything,
capture data in real time wherever it is, and augment the intelligence of your business through analytical insights.
Thousands of customers around the globe rely on us to build compelling experiences, energize operations, and
propel innovation. Learn how TIBCO makes digital smarter at www.tibco.com.
©2019, TIBCO Software Inc. All rights reserved. TIBCO, the TIBCO logo, Mashery, Spotfire, and TIBCO Cloud are trademarks or registered trademarks of TIBCO
Software Inc. or its subsidiaries in the United States and/or other countries. All other product and company names and marks in this document are the property
of their respective owners and mentioned for identification purposes only.

04/11/19

DATA AND ANALYSIS
Continuous automated testing can help you identify potential problems as they
happen, but a regular manual review of your API data provides numerous benefits
as you manage and grow your program. The information regarding the calls made,
errors found, and detailed usage of your APIs by developers and applications give
insight into how well your services are helping your client developers perform
their tasks.

For example, you may find some applications making regular successive calls to
a single endpoint to get the same data. This may indicate that applying a caching
layer or perhaps modifying the call could ensure that the data they receive is
always the most up to date. You may find several patterns where multiple calls are
made to perform a single task, which could indicate an opportunity to optimize
and potentially reduce that number.

It’s also important to pay attention to developer engagement, identifying which
applications are making the most calls and which show little to no activity. You may
want to form tighter relationships with your best users and ask them for regular
feedback on your system to identify feature enhancements that will help your API
usage grow among a similar cohort of applications. You may also consider reaching
out to those who are not using your APIs as often as expected to find out whether
any changes are necessary to make their tasks easier to perform.

Your API management system can help you collect most of this information,
but it may be helpful to integrate that data with information from other systems
to indicate KPIs from your APIs. The business KPIs you track will often differ from
the performance KPIs, but the sources for the data driving them may be the same.
Get with your business team early to identify their KPIs and build them into your
analysis to ensure you’re not only driving value for your customers, but also for
your business.

SUMMARY
When it comes to monitoring the health and performance of your API program,
there’s no single solution. A combination of a powerful API management system,
such as TIBCO Cloud Mashery, integrated with a full-featured API testing platform,
such as API Fortress, can help ensure your API program remains robust and
performant, no matter how you design, build, and deploy your services.

API Fortress’s integration with TIBCO Cloud Mashery complements and
improves the efficiencies of both platforms. Login to your existing Mashery
account from within API Fortress to generate regression tests in seconds and start
rapidly innovating with confidence.

Learn from these API Management and
Monitoring Mistakes

By now, you should have a clear understanding of just how critical good API
management, testing, and monitoring is to the health of your API program. While
we’ve gone into great detail to explain the hows and whys of applying these
processes to your API lifecycle, we find that real-world examples often provide
the best explanation of what can go wrong and how you can avoid similar pitfalls.
The TIBCO Cloud™ Mashery® and API Fortress teams have more than 10 years
worth of such stories. We’re going to share a few of them in the hopes of keeping
you from making the same mistakes.

LIFE WITHOUT API MANAGEMENT OR MONITORING
“One of your API users just brought down our entire system!”

Let’s start with an example of a successful API program that did not have
proper API management or monitoring applied. In a matter of minutes, the
operations team for a marketing company noticed an unusual amount of traffic
causing severe growth and performance issues. At first, they believed they
were the target of a coordinated denial of service attack, but the data payloads
appeared to be valid.

After some digging, they discovered that the source of the issues was a single
API call to add email recipients to a list one at a time. The system was designed
to provide both individual email adds as well as batch list uploads. The developer
documentation clearly laid out when to use each one; if you were only adding less
than 10 contacts to your list, you should use the individual add call, otherwise, you
use the batch call.

The ops team reached out to the engineering team responsible for building the
APIs. They then reached out to the person responsible for managing the API
program to find out exactly which client application was the culprit. Without an
API management system, there was no easy way to find out where the calls were
originating from, and every minute the performance of the entire web application
was degrading, affecting every single customer.

It took more than an hour to dig through logs and database entries to find
the account responsible, then additional time to track that account to the
developer responsible for the application. Upon speaking with the developer,
the team learned he had built a simple email newsletter registration form that
had gone massively and unexpectedly viral. Each time someone signed up, his
code added the single contact to an existing list, which was exactly how the
API documentation indicated it should be done. What no one expected was
that this code was making this call dozens of times per second, highlighting
the inefficiencies not only in the API, but in the code supporting it. The team
immediately blocked the account from making further calls by updating a row in
the user database by hand and working with the developer to rewrite his code to
use the batch method instead.

With proper API monitoring, the operations team would have found the
performance degradation much faster because the spike in unexpected calls on
that endpoint would have triggered alerts to the right people. API management
could have helped the company find the culprit in a matter of minutes, limiting
the impact on the system. This would have been as simple as reducing the
number of calls they could make per second rather than shutting them off
completely. Proper integration and performance testing during the API’s
development and deployment could have identified these issues well before the
code was in production.

Needless to say, the company immediately sought an API management solution
that would help them avoid this in the future, and adopted best practices in their
testing and monitoring across the entire API lifecycle.

AN EXPENSIVE NULL
“What do you mean there are 3,000 items missing from our website?!?”

When we first on-boarded a particular retailer’s API, we created tests based on
their documentation. The product_listing endpoint, which contained all available
products at that moment, had more than 3,000 errors. The retailer had never had
an issue with that endpoint before, and manual testing indicated that it seemed to
work fine.

When we reviewed the error report, the source of the problem became
immediately clear. Each product had an object called category, which should have
been one of 17 options including “men,” “women,” “babies,” etc. In their listing of
about 50,000 products, more than 3,000 items returned “null” for the category.

This was a critical miss because the category is how their main API consumer,
their website, organized the products. Those null values meant that more than
3,000 products were not showing up in customer searches, leading to potentially
thousands of dollars in lost sales. They designed tests to make sure the API was
responding with the correct data, but had not validated that the information
returned met expectations.

After further investigation, they discovered the web team that was responsible
for the tool that allowed vendors to post their products for sale had not run a
validation test to ensure the category field was populated before sending it to the
API. Further, the API team failed to add the requirement that the category field be
populated by client applications.

Global Headquarters
3307 Hillview Avenue
Palo Alto, CA 94304
+1 650-846-1000 TEL
+1 800-420-8450
+1 650-846-1005 FAX
www.tibco.com

TIBCO fuels digital business by enabling better decisions and faster, smarter actions through the TIBCO
Connected Intelligence Cloud. From APIs and systems to devices and people, we interconnect everything,
capture data in real time wherever it is, and augment the intelligence of your business through analytical insights.
Thousands of customers around the globe rely on us to build compelling experiences, energize operations, and
propel innovation. Learn how TIBCO makes digital smarter at www.tibco.com.
©2019, TIBCO Software Inc. All rights reserved. TIBCO and the TIBCO logo, Mashery, and TIBCO Cloud are trademarks or registered trademarks of TIBCO
Software Inc. or its subsidiaries in the United States and/or other countries. All other product and company names and marks in this document are the property
of their respective owners and mentioned for identification purposes only.

04/11/19

Good integration testing could have caught this before the code was deployed.
Applying those same tests using the platform running functional uptime
monitoring on the production environment would also have caught the problem if
the flaw had been introduced in a subsequent deployment.

This is a common problem we see in large organizations; cross-team
collaboration is a worthy goal, but often fails to catch errors. Automated testing
can pick up the slack and help ensure everything works as advertised.

CACHE ME IF YOU CAN
“None of our internal alerting tools are reporting any issues, but yours has been
going off for an hour.”

We received this message at 6:00 am from a book publisher. When we looked
at our reports, it showed the customer’s product details endpoint was frequently
returning a 404 “resource not found” error. Manual testing showed no issues at all.

A look at the testing reports once again quickly identified the problem: only
the integration tests were failing. These tests were written to follow the common
flows that their API partners would experience. In this test, we first hit their
ISBN listing endpoint, which gave us all active product IDs. Using those results,
the platform dove into hundreds of products individually. The integration tests
showed the same 404 errors customers were reporting.

So why were so many items missing for customers using the API outside the
API manager when all internal manual tests were fine? Good API management
gives you the ability to cache endpoints every few hours and substantially
increase performance for your customers and partners. When a major update
is made to a database, the API cache should be reset in order to use that new
data. The team performed a database refresh biweekly but never updated the API
cache. As a result, the problem had been building for months.

API management systems are incredibly powerful, but some features need to
be planned for carefully, and it can be easy to miss some things. A proper API
testing strategy can help you uncover these potential pitfalls early and give you
continued confidence that your APIs are responding quickly and accurately.

SUMMARY
We have countless tales of APIs gone wrong, and the vast majority of problems
are not due to bad development teams but simple human error. Good API testing,
management, and monitoring can’t fix every potential problem you encounter, but
a good strategy can increase your chances of finding and fixing problems before
your customers do.

Give TIBCO Cloud Mashery a try at cloud.tibco.com.

Learn more about API Fortress at https://apifortress.com, or sign up for a
free trial.

https://cloud.tibco.com/
https://apifortress.com/
https://mastiff.apifortress.com/app/web/login/auth
https://mastiff.apifortress.com/app/web/login/auth

