
Appendix A
Density Operator and Density Matrix

In this appendix, we introduce density operator as well as density matrix and
explain, in brief, some of their important properties relevant to quantum information
in general, and to the studies reported in this monograph in particular.

A.1 Completely Random, Pure, and Mixed Systems

Let us consider a beam of silver atoms directly coming out of a hot oven in a
Stern–Gerlach type experiment [58]. (This beam can also be called a system=
collection=ensemble consisting of subsystems which, in the present case, are silver
atoms.) Such a beam can be characterized by

p" D N"
N" CN#

and p# D N#
N" CN#1

: (A.1a)

Here, N" and N# are the number of silver atoms in the beam which have their spin
up and down (i.e., are in the spin state j0i and j1i), respectively. Then, p" and p# in
(A.1a) represent atoms’ fractional populations in the two spin states. An unpolarized
beam is looked upon to be an even mixture of atoms in the states j0i � j "i and
j1i � j #i. This, in other words, means

N" D N# H) p" ; p# D 0:5 (A.1b)

for a beam in which atoms are expected to have their spins oriented randomly in
space.

In (A.1), p" and p# are simply two real numbers. In this equation, there is no
information on the relative phase between the spin-up and spin-down kets j0i and
j1i, respectively. Such a collection of particles is usually referred to as an incoherent,
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252 A Density Operator and Density Matrix

even mixture of the j "i and j #i states. This is called unpolarized because there is
no preferred direction for the orientation of the spin of a silver atom and, hence, is
characterized by (A.1).

Such a beam, containing particles coming directly out of an oven, is an example
of a completely random system. In contrast, a beam that has gone through a selective
Stern–Gerlach type measurement [58] is an example of a pure system. This beam
is said to be polarized because all members of the collection are characterized by a
single common ket (j0i or j1i) that describes a state with spin (" or #) of each atom
pointing in some definite direction.

Unpolarized and pure collections are two opposite extremes of a so-called mixed
collection. In a mixed beam of silver atoms, for example, a certain fraction—say,
70%—of the members are characterized by the state j0i, the remaining 30% by j1i.
Such a beam is said to be partially polarized. Although states j0i and j1i need not
be orthogonal, they are, however, normalized. One can, for example, have 70% of
the atoms with their spins in the positive OX direction and 30% of the spin in the
negative OZ direction.

Thus, a pure system is defined to be a collection of physical subsystems such that
each member is characterized by the same state j i. In a mixed system, on the other
hand, a fraction of its members with relative population p1 are in the normalized
state j 1i, some other fraction with relative population p2 in the normalized state
j 2i, and so on. Alternatively, a mixed system can be viewed as a mixture of
pure collections. The fractional populations of any mixed system must satisfy the
condition X

i
pi D 1: (A.2)

The number of terms in (A.2) needs not coincide with the dimensionality “d” of the
Hilbert space of the system being considered. For example, for a system consisting
of spin- 1

2
particles with d D 2, one may have 40% with spins in the positive OZ

direction, 30% in the positive OX direction, and the remaining 30% with their spins
in the negative OY direction.

State in (2.1), [or (2.2)], on the other hand, is a coherent, linear superposition
wherein the phase relation (in the form of the azimuthal angle �) between kets j0i
and j1i contains vital information on the spin orientation of a spin- 1

2
particle. Neither

of p" and p# in (A.1) should, in general, be confused with the probabilities jC0j2
and jC1j2 in (2.1b), or r20 and r21 in (2.2a).

A.2 Averaged Value and Representations

According to one of the fundamental postulates [58] of quantum mechanics, the
complete information about a system is contained in its wavefunction. But a
quantum mechanical wavefunction can describe only a pure system. The density
operator formalism, introduced by J. von Neumann [155, 354], is capable of
quantitatively describing physical situations with mixed as well as pure collections.
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The methods of density operator for mixed and=or pure states of a system were
first applied to atomic physics, probably, by Fano [62]. These methods have since
then been discussed in varying details in books on quantum mechanics (see, for
example, [58]) as well as in the literature (e.g., [60, 61, 68], etc) pertaining to the
atomic physics.

Suppose, one makes a measurement of some observable, say, ˝ on the mixed
collection defined in the following Sect. A.1 of this appendix. Then the averaged,
measured value (i.e., system=collection average) of ˝ for a large number of
measurements is given by

Œ˝� D
X

i

pi h i j˝j ii

D
X

i nm

pi h i j�nih�nj˝j�mi h�mj i i

D
X

i nm

pi Œh�mj i ih i j�ni� h�nj˝j�mi: (A.3)

Here, the number of terms to be included in the sums over n (or, m) is just equal to
those present in the complete set whose members are the orthonormal basis fj�ni,
n D 1; 2; : : :g (or, fj�mi, m D 1; 2; : : :g/. The number of terms in the sum over i
in (A.3) depends, on the other hand, on the decomposition of the mixed collection
in pure subsystems. The quantity

� �
X

i

pi j i ih i j (A.4)

is called the density operator for our mixed system/collection. The (m; n)-th
element of this operator’s matrix representation in the orthonormal basis fj�nig is

h�mj�j�ni D
X

i

pi h�mj i i h i j�ni: (A.5)

The density operator=matrix contains all the physically significant information
about the system under consideration. Now the system-average (A.3) can be
written as

Œ˝� D
X

mn

h�mj�j�ni h�nj˝j�mi

D
X

m

h�mj�˝j�mi

D Tr.�˝/: (A.6)
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As the trace of a matrix is known to be independent of its representation, any
complete set fj�ig can, therefore, be used for calculating Tr(�˝) in (A.6).

The Hermitian conjugate of the density operator (A.4) is

�� D
 
X

i

pi j i ih i j
!�

D
X

i

pi j i ih i j D �; (A.7)

remembering that each of the probabilities pi in(A.2) is real. Thus, a physically
acceptable density operator=matrix should always be Hermitian.

We further have

Tr.�/ D
X

n

h�nj�j�ni

D
X

n

h�nj
 
X

i

pi j i ih i j
!

j�ni

D
X

i n

pi h�nj i i h i j�ni

D
X

i

pi

 
X

n

h i j�ni h�nj i i
!

D
X

i

pi h i j i i D
X

i

pi (A.8)

assuming that the states j i i are normalized. Then in view of (A.2),

Tr.�/ D 1: (A.9)

Such a density operator is said to be normalized to unit trace. In situations wherein
normalization (A.9) does not hold, the system-average of an operator is given by

Œ˝� D
P

i pi h i j˝j i iP
i pi

: (A.10a)

Using relations (A.6) and (A.8), one can write

Œ˝� D Tr .�˝/

Tr.�/
: (A.10b)

Let us now calculate the trace of the square of a density operator, i.e.,
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Tr.�2/ D
X

m

h�mj�2j�mi

D
X

mn

h�mj�j�ni h�nj�j�mi:

On substituting (A.4)

Tr.�2/ D
X

mn

"
h�mj

 
X

i

pi j i ih i j
!

j�ni
# 2

4h�nj
0

@
X

j

pj j j ih j j
1

A j�mi
3

5

D
X

i j mn

pi pj h�mj i i h i j�ni h�nj j i h j j�mi

D
X

i j m

pi pj h�mj i i
 
X

n

h i j�ni h�nj j i
!

h j j�mi:

Assuming that the pure states j i i in (A.4) are orthonormal, one obtains

Tr.�2/ D
X

i j m

pi pj h�mj i i ıi j h j j�mi

D
X

i

p2i

 
X

m

h i j�mi h�mj i i
!

D
X

i

p2i h i j ii

D
X

i

p2i �
 
X

i

pi

!2
(A.11)

in view of the fact that pi � 0, always. Thus, relations (A.8) and (A.11) suggest

Tr.�2/ � ŒTr.�/�2 (A.12)

provided the states j i i representing the i -th subsystem in the density operator (A.4)
of the mixed system are orthonormal.

A pure ensemble is specified by pi D ıi i0 for some specific j i0i. The
corresponding density operator

� D j i0ih i0 j (A.13)

is readily obtained from (A.4). Clearly, the density operator for a pure ensemble is
idempotent, i.e.,

�2 D � (A.14a)
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or, equivalently

�.� � 1/ D 0: (A.14b)

Hence, for a pure ensemble

Tr.�2/ D Tr.�/ D 1 (A.15)

in view of (A.9). Equations (A.12) and (A.15) suggest that Tr.�2/ has its maximum
value of one when the ensemble is pure and normalized; for a mixed ensemble,
however, it [i:e:; Tr.�2/] is a positive number whose value is less than one.

Let us assume that the complete set fj�ig diagonalizes the density opera-
tor (A.13) for a pure ensemble, that is,

h�mj�j�ni D �m ımn (A.16a)

with �m being one of its eigenvalues. Then relation (A.14) gives

h�mj�2j�ni D h�mj�j�ni
or;

X

k

h�mj�j�ki h�kj�j�ni D �m ımn

or;
X

k

�m ımk �k ıkn D �m ımn

i:e:; �2m ımn D �m ımn

or; �m.�m � 1/ımn D 0: (A.16b)

This suggests that, for m D n (i.e., for diagonal elements), �m D 0 or 1.
Remembering that Tr.�/ D 1 for a normalized density matrix and sum of the
eigenvalues of a matrix is always equal to its trace, one concludes that, when
diagonalized, the normalized density matrix for a pure system has only one non-
zero eigenvalue which is always equal to one.1

It is obvious from (A.12) and (A.15) that

Tr.�2/ D ŒTr.�/�2 D 1 (A.17a)

for a pure and normalized system. But for a mixed system

0 < Tr.�2/ < ŒTr.�/�2 ; with Tr.�2/ < 1: (A.17b)

1The converse of this statement is proved at the end of (A.29).
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Let us suppose that j'i is any arbitrary state. Then the expectation value

h'j�j'i D
X

i

pi h'j iih i j 'i

D
X

i

pi jh'j iij2 � 0 (A.18)

of the density operator (A.4) in this state is a real, non-negative number. An operator
whose expectation values are strictly greater than zero for all j'i ¤ 0, is said to be a
positive definite operator; whereas a positive operator can have zero eigenvalues as
well. Hence, the density operator �—defined in (A.4)—is always, at least, a positive
operator.

Different density operators in the form of (A.4), each describing a different
mixture of subsystems, can be represented by the same density matrix. Consider,
for example [123], a density matrix of the form � D 1

2
I2, where I2 is an unit matrix

of size (2 � 2). Some of the possible systems in (A.4) which can be represented by
this density matrix are [123]:

1. Mixture of two subsystems

j 1i D
�
1

0

�
; j 2i D

�
0

1

�
; with probabilities: p1; p2 D 1

2
I (A.19a)

2. Mixture of three subsystems

.a/ j 1i D
�
1

0

�
; j 2i D 1

2

�
1p
3

�
; j 3i D 1

2

�
1

�p
3

�
;

with probabilities: p1; p2; p3 D 1

3
I (A.19b)

.b/ j 1i D 1p
281

�
9

�i10p2
�
; j 2i D 1p

194

�
12

�i5p2
�
;

j 3i D 1p
17

��i3
2
p
2

�
;

with probabilities: p1 D 281

900
; p2 D 97

450
; p3 D 17

36
I (A.19c)

etc. Here, each ket represents a column-matrix of size (2 � 1) (i:e:; a rectangular
matrix with two rows and one column). One may construct an innumerable number
of such examples. In the present example, however, all j i i’s in (A.4), will always
have only one column but as many rows as those occurring in the corresponding
density matrix �.
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A.3 Reduced Density Operator and Density Matrix

The concept of reduced density operator and of reduced density matrix is helpful in
the analysis of composite quantum systems.

Let us consider two subsystemsA andB described jointly by the density operator
�AB . A complete orthonormal basis set of size dA for A is fjai i, i D 1; 2; : : : ; dAg
and that of size dB for B is fjbj i, j D 1; 2; : : : ; dBg. Then the basis set

j ij i � jai i ˝ jbj i � jai bj i � ji j i (A.20)

for the composite system contains dAdB members. A typical element of the
(dAdB � dAdB ) density matrix is now given by

h ij j�AB j i 0j 0i � hij j�AB ji 0j 0i: (A.21)

Here, the first set of indices (i; i 0) refers to the state of the subsystem A and the
second set (j; j 0) to that of the subsystem B . Suppose, an operator ˝A acts only
on the subsystem A. Then a typical matrix element of ˝A in the basis (A.20) is
given by

h ij j˝Aj i 0j 0i � hij j˝Aji 0j 0i
� hi j˝Aji 0i hj j j 0i
� hi j˝Aji 0i ıjj 0: (A.22)

Let us calculate the trace of �AB˝A in the basis set (A.20):

Tr
�
�AB˝A

� D
X

i j

h ij j�AB˝Aj ij i

D
X

i j i 0 j 0

h ij j�AB j i 0j 0i h i 0j 0j˝Aj ij i

D
X

i j i 0 j 0

hij j�AB ji 0j 0i hi 0j˝Ajii ıj j 0

D
X

i i 0 j

hij j�AB ji 0j i hi 0j˝Ajii (A.23)

Here, we have used (A.22). Let us now define the reduced density matrix

hi j�Aji 0i D
X

j

hij j�AB ji 0j i: (A.24)
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This definition facilitates rewriting of (A.23) in the following form

Tr
�
�AB˝A

� D
X

i i 0

hi j�Aji 0i hi 0j˝Ajii

D
X

i

hi j�A˝Ajii

D Tr
�
�A˝A

� D Œ˝A� (A.25)

Thus, according to the last of (A.25), the average value of the one-particle operator
˝A may be obtained with the reduced density operator �A [see, (A.26)] whose
(i; i 0)-th matrix elements (A.24) are derivable from those of the density operator
�AB defined for the composite quantum system formed from the subsystems
A and B . The important distinction between �AB and �A is that while the former
refers to the composite system as a whole, the latter refers to a component (namely,
subsystem A) of the composite quantum system. The operator˝A operates only on
this part of the whole system. Hence, one can write

�A � TrB
�
�AB

�
(A.26)

with its (i; i 0)-th matrix element given by (A.24). Also,

�B � TrA
�
�AB

�
; (A.27a)

with

hj j�B jj 0i D
X

i

hi j j�AB ji j 0i: (A.27b)

Here, �A in (A.26) and �B in (A.27) are the reduced density operators for the
respective subsystems A and B constituting the composite system A ˝ B whose
density operator is �AB . The operators �A and �B are, of course, defined over
the respective bases sets fjai ig and fjbj ig. Further, it is obvious from expressions
[(A.24), (A.27b)] that [TrB; TrA] in [(A.26), (A.27a)] denote, respectively, the sum
of the diagonal elements—associated with the respective subsystems [B , A]—of
the density matrix of the composite system �AB . This, in other words, means that
if one is interested, for example, in the development of the subsystem A only, the
pertinent density operator is �A, which has no reference to the indices associated
with its companion subsystem B . In this way, unwanted indices are eliminated.
Further, dimensions of the matrices representing the reduced density operators [�A,
�B ] are [dA � dA, dB � dB ].
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A.4 Miscellaneous

(1) Matrix representations of the density matrix (A.4) will obviously be different in
different orthonormal basis. If �i ’s are the eigenvalues of the density operator in
(A.4) in the orthonormal basis fjii; i D 1; 2; : : :g, then a spectral representation
of � for the present basis is given by

� D
X

i

�i jiihi j (A.28a)

and, hence,

�2 D
X

i

�2i jiihi j: (A.28b)

It is obvious from these relations that

Tr .�/ D
X

i
�i D 1; (A.29a)

where the last result holds for any normalized density matrix [or, from (A.9)];
and

Tr .�2/ D
X

i
�2i : (A.29b)

Equations (A.29) reinforces the statements of (A.12)–(A.15). Equation (A.29a)
further shows that if only one, say m-th, of the eigenvalues is non-zero with
�m D 1, then (A.28a) reduces to � D jmihmj, i.e., the system represented by the
density operator � is in a pure state jmi.

(2) A state of a system in quantum mechanics can be represented in more than
one equivalent ways, e.g., by a state vector, wave function, density operator,
or by a density matrix. For example, in view of the discussions presented in
this appendix, the density operator and density matrix for first of the four Bell
states (2.17) are

� C �

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

j Cih Cj D 1
2

�
j01ih01j C j01ih10j C j10ih01j C j10ih10j

�
and

1
2

0
BBBB@

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1
CCCCA
:

(A.30a)
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respectively. Here, while (j0i, j1i) are the bases for each of the two qubits in
the state j Ci; but, the matrix representation of � C is in the basis (j00i, j01i,
j10i, j11i). One can, however, calculate the matrix representation of � C in the
bases taken in (j11i, j10i, j01i, j00i), or in some other order as well. Similarly,
one obtains

� � �

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

j �ih �j D 1
2

�
j01ih01j � j01ih10j � j10ih01j C j10ih10j

�

1
2

0
BBBB@

0 0 0 0

0 1 �1 0
0 �1 1 0

0 0 0 0

1
CCCCA
;

(A.30b)

��C �

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

j�Cih�Cj D 1
2

�
j00ih00j C j00ih11j C j11ih00j C j11ih11j

�

1
2

0

BBBB@

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

1

CCCCA
;

(A.30c)

and

��� �

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

j��ih��j D 1
2

�
j00ih00j � j00ih11j � j11ih00j C j11ih11j;

�

1
2

0

BBBB@

1 0 0 �1
0 0 0 0

0 0 0 0

�1 0 0 1

1

CCCCA
:

(A.30d)

for the remaining three Bell states (2.17b) and (2.17c).
(3) Suppose we have a composite system consisting of n parts such that ˝.u/

represents an operator for the u-th part of this system. If ˝.u/ is defined in
the Hilbert space Hu of dimensions du, then operator

˝ �
nX

u D 1

˝.u/ (A.31a)

for this composite system of n parts is given by
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˝ D ˝.1/ ˝ I .2/ ˝ I .3/ ˝ � � � ˝ I .n�1/ ˝ I .n/ C
I .1/ ˝ ˝.2/ ˝ I .3/ ˝ � � � ˝ I .n�1/ ˝ I .n/ C

� � � � � � � � �
I .1/ ˝ I .2/ ˝ I .3/ ˝ � � � ˝ ˝.n�1/ ˝ I .n/ C
I .1/ ˝ I .2/ ˝ I .3/ ˝ � � � ˝ I .n�1/ ˝ ˝.n/:

(A.31b)

Here, I .u/ is a unit operator defined in the Hilbert space of the u-th part of the
composite system. Operator˝ in (A.31a) is defined in the Hilbert space

H � H1 ˝ H2 ˝ � � � ˝ Hn (A.32a)

of size

d � d1 d2 d3 � � � dn: (A.32b)

Thus, the u-th term I .1/ ˝ I .2/ ˝ I .3/ ˝ � � � ˝ I .u�1/˝ ˝.u/ ˝ I .uC1/ ˝ � � � ˝ I .n/

in (A.31b) represents ˝.u/ in the (d � d )-dimensional Hilbert space (A.32) of the
composite system ˝ defined by (A.31a).

For example, (2.6) and (2.8) contain expressions for the three Cartesian compo-
nents of the Pauli spin operator [58] in the matrix and Dirac notations, respectively.
After multiplying the right-hand side of each of the two equations by 1

2
, these can be

looked upon also as representations of the three Cartesian components of an operator
for angular momentum 1

2
in the (j0i, j1i) bases. According to (A.31) and (A.32), the

angular momentum operator for a composite system of two spin- 1
2

particles is then

� � 1

2

�
�.1/ C �.2/

�
D 1

2

�
� .1/ ˝ I .2/ C I .1/ ˝ � .2/

�
; (A.33)

where each of I .1/ and I .2/ is an unit operator defined in the (2 � 2)-dimensional
Hilbert space of the first and the second spin- 1

2
particles, respectively. Using (2.6),

one now obtains

�x D 1

2

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�
�
.1/
x ˝ I .2/ C I .1/ ˝ �

.2/
x

�
;

�
j1ih0j C j0ih1j

�.1/ ˝
�
j0ih0j C j1ih1j

�.2/ C
�
j0ih0j C j1ih1j

�.1/ ˝
�
j1ih0j C j0ih1j

�.2/
;�

j00i C j11i
��

h01j C h10j
�

C
�
j10i C j01i

��
h00j C h11j

�
;

0

BBBB@

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

1

CCCCA
;

(A.34a)
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�y D 1

2

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�
�
.1/
y ˝ I .2/ C I .1/ ˝ �

.2/
y

�
;

�i
�
j00i � j11i

��
h01j C h10j

�
C i

�
j10i C j01i

��
h00j � h11j

�
;

0

BBBB@

0 �i �i 0
i 0 0 �i
i 0 0 �i
0 i i 0

1

CCCCA
;

(A.34b)

and

�z D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

1
2

�
�
.1/
z ˝ I .2/ C I .1/ ˝ �

.2/
z

�
;

j00ih00j � j11ih11j;0

BBBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �1

1

CCCCA

(A.34c)

for the matrix representations [in the (j00i, j01i, j10i, j11i) bases] of the three
Cartesian components of the angular momentum operator � in (A.33) for a
composite system of two spin- 1

2
particles. Furthermore, two times of each of the

three operators in (A.34) are applicable to any bipartite system of two qubits as well.



Appendix B
Density Matrix and State Multipoles for a
Photon Beam

In the theoretical considerations developed in the Chap. 3 and thereafter, the ionizing
radiation 	r has always been assumed to be in a definite state of its polarization (i.e.,
LP, RCP, LCP, or UP). However, in many experiments, the incident electromagnetic
wave may be either partially or arbitrarily polarized. A light beam of any kind of
polarization is properly described by three Stokes’ parameters [61, 76]. The present
appendix contains such description of 	r used in (1.1)–(1.8) and shows as to how
it can easily be introduced in the density matrices derived in this monograph to
study entanglement properties of states of qubits generated in these processes when
ionizing radiation 	r has an arbitrary polarization. This appendix also gives the
description of a photon beam in terms of its state multipoles (or statistical tensors)
[61,68,173,355]. The following description is applicable when the incident radiation
is being treated in the E1 approximation.

Let us represent by h1mr j �r j1m 0
ri an element of the density operator �r ,

introduced in (3.3) for describing the ionizing radiation 	r in the spherical bases
states j10i, j1;C1i, and j1-1i defined on page 7 in Chap. 1. In order to describe
an uncorrelated system of (arbitrarily polarized photon C polarized target), before
the absorption of 	r by T takes place, expression (3.4b) for the density operator
everywhere in this monograph be replaced by

�i D
X

mr m 0

r

j0I 1mrih1mr j �r j1m 0
rih0I 1m 0

r j: (B.1a)

If, on the other hand, the target T too is unpolarized before absorbing the photon,
then the density operator

�i D 1

nd0

X

d0 mr m 0

r

j0I 1mrih1mr j �r j1m 0
rih0I 1m 0

r j; (B.1b)
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266 B Density Matrix and State Multipoles for a Photon Beam

in place of (3.4c), represents the uncorrelated (arbitrarily polarized 	r C unpolar-
ized T)-system.

On using in (B.1a) and (B.1b) the density operator (3.3c) for a photon in a
state j1mri of definite polarization, one reproduces the respective expressions (3.4b)
and (3.4c) for the density operator �i . However, for an electromagnetic wave with
arbitrary polarization, the photon density matrix �r is well represented in terms of
the Stokes’ parameters (Ir , 
1, 
2, 
3) by [61, 173, 355]

j C 1i j0i j � 1i

�r D 1

2
Ir

0

@
1C 
2 0 �
3 C i
1
0 0 0

�
3 � i
1 0 1 � 
2

1

A (B.2)

In this equation, �r has been calculated in the (j1 C 1i, j10i, j1-1i) basis. Further
in (B.2), Ir is the total intensity of the arbitrarily polarized radiation incident on the
target T along the OZ-axis of our SF. If Ir (ˇr ) is the intensity of this same beam
transmitted by a Nicol prism oriented at an angle ˇr with respect to the OX -axis of
the SF, the remaining three Stokes’ parameters are given by [61, 173, 355]


1 D 1

Ir

h
Ir .�=4/� Ir.3�=4/

i
; (B.3a)


2 D 1

Ir

h
Ir .C/ � Ir.�/

i
; (B.3b)


3 D 1

Ir

h
Ir .0/� Ir .�=2/

i
: (B.3c)

In (B.3), Ir .C/ and Ir.�/ are the intensities of the electromagnetic wave (of total
intensity Ir ) transmitted along the OZ-axis by the polarization filters, which fully
transmit only photons of positive and negative helicities, respectively. Hence, for an
incident electromagnetic wave

LP along the OX -axis: 
1; 
2 D 0; 
3 D C1I
LP along the OY -axis: 
1; 
2 D 0; 
3 D �1I

RCP (i.e., positive helicity): 
1 D 0; 
2 D C1; 
3 D 0I
LCP (i.e., negative helicity): 
1 D 0; 
2 D �1; 
3 D 0:

9
>>=

>>;
(B.4)

The density operator for a photon beam can be expanded in terms of the tensor
operators T .1/KQ as follows [61, 68, 173, 355]

�r D
X

KQ

D
T .1/

�

kQ

E
T .1/KQ (B.5a)



B Density Matrix and State Multipoles for a Photon Beam 267

with state multipoles (or statistical tensors) given by

D
T .1/

�

kQ

E
D p

2K C 1
X

mr m 0

r

.�1/1�mr

�
1 1 K

mr �m 0
r �Q

�
h1mr j�r j1m 0

ri: (B.5b)

The state multipoles for a beam of electromagnetic radiation in a pure state of
polarization are readily obtained [172] by substituting the corresponding density
matrix (3.3c) in (B.5b). However, in order to calculate state multipoles for an UP
electromagnetic wave, one needs to use [172]

�r D 1

2

�
j1C 1ih1C 1j C j1 � 1ih1� 1j

�
; (B.6)

in place of (3.3c), in (B.5b). Table B.1 [172] contains state multipoles for an
LP photon beam with its electric field vector, or for RCP, LCP, or UP radiation
propagating, along the OZ-axis of the SF. These results are same as those given
in [172, 173].

Table B.2 [172], on the other hand, contains state multipoles for an arbitrarily
polarized electromagnetic wave propagating along the OZ-axis. Entries in this table
are identical to those calculated by Kleinman et al. [355].

Furthermore [172], state multipoles (or statistical tensors) given in Table B.1
for RCP, LCP, or UP 	r propagating along the OZ-axis can also be gotten by
substituting the appropriate values (B.4) of the Stokes’ parameters in Table B.2.
This procedure, however, cannot give us state multipoles in Table B.1 for radiation
LP along the OZ-axis (i.e., for mr D 0). For, both Stokes’ parameters in (B.4) and

Table B.1 State multipoles for an electromagnetic wave in a pure polarization state.

Polarization of the Monopole moment Orientation vectora Alignment tensorb

electromagnetic wave .K D 0/ .K D 1/ .K D 2/

LP .mr D 0/c
D
T .1/

�
00

E
D 1

p

3

D
T .1/

�
10

E
D 0

D
T .1/

�
20

E
D �

q
2
3

RCP .mr D C1/c
D
T .1/

�
00

E
D 1

p

3

D
T .1/

�
10

E
D 1

p

2

D
T .1/

�
20

E
D 1

p

6

LCP .mr D �1/c
D
T .1/

�
00

E
D 1

p

3

D
T .1/

�
10

E
D � 1

p

2

D
T .1/

�
20

E
D 1

p

6

UPd
D
T .1/

�
00

E
D 1

p

3

D
T .1/

�
10

E
D 0

D
T .1/

�
20

E
D 1

p

6

a Its each of the remaining two components
�
ie,
˝
T .1/

�

1 ˙1

˛	
, not given in this table, are zero

b Its each of the remaining four components
�
ie,
˝
T .1/

�

2 ˙1

˛
;
˝
T .1/

�

2 ˙2

˛	
, not given in this table,

are zero
c The density operator is given by (3.3c)
d The density operator is given by (B.6)
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Table B.2 State multipoles for an electromagnetic wave of arbitrary polarization.

Monopole moment Orientation vector Alignment tensor
.K D 0/ .K D 1/ .K D 2/D
T .1/

�
00

E
D 1

p

3
Ir

D
T .1/

�
10

E
D 1

p

2
Ir
2

D
T .1/

�
20

E
D 1

p

6
Ir

D
T .1/

�

1˙1

E
D 0

D
T .1/

�

2˙1

E
D 0

D
T .1/

�

2˙2

E
D 1

2

�
� 
3 ˙ i
1

�
Ir

state multipoles in the Table B.2 are for electromagnetic wave LP along the OX - or
OY -axis.

The inverse of (B.5b) is

h1mr j�r j1m 0
ri D .�1/1�mr

X

KQ

p
2K C 1

�
�
1 1 K

mr �m 0
r �Q

� D
T .1/

�

kQ

E
: (B.7)

On substituting (B.7) for the matrix elements of the photon density operator �r , one
readily expresses the density operator �i in (B.1) in terms of the state multipoles
of the arbitrarily polarized ionizing photon 	r . If one is interested in studying
entanglement between the particles produced in any of the processes (1.1)–(1.8),
wherein an inner-shell vacancy is created due to the absorption of an arbitrarily
polarized 	r , the consequent expression for �i should be used in deriving the
corresponding density matrix. However, this change will not at all affect the
Coulombic entanglement discussed in this monograph, The entanglement generated
in the absence of SDIs is always independent of the polarization of the ionizing
radiation. Use of [(B.1), (B.7)] should, on the other hand, certainly have an effect on
the fine-structure entanglement because it very much involves polarization of the 	r
used in (1.1)–(1.8) on account of the fact that the presence of the SDIs couples the
non-local correlation with both the kinematics and dynamics of these processes.



Appendix C
Decoherence and Dissipation of Quantum
Entanglement

This appendix contains a very brief, elementary and qualitative description of
decoherence and dissipation of entanglement in a state of a system due to its
interaction with ambient external environment.

The first time a student comes across the word coherence in physics is, probably,
in the context of electromagnetic waves when phenomena like interference (in, e.g.,
young’s double slit experiment, etc.) and=or Fraunhofer and Fresnel diffractions
are introduced to him/her in optics [356]. Two electromagnetic waves are said to be
coherent if the phase difference between them does not change with time; otherwise,
they are considered to be incoherent waves. Electromagnetic radiations produced in
the spontaneous decay of excited states of atoms or molecules in the solid, liquid, or
gas phase of matter are known to be incoherent; whereas, laser or maser generated
in induced (i.e., stimulated) decay of an excited state are the well known examples
of coherent electromagnetic waves. Another popular example is a coherent state in
quantum optics [25, 27].

Superpositions of two or more electromagnetic waves, or of states in quantum
mechanics, can also be of two kinds: Namely (see, for example, [76, 356]),
coherent or incoherent superpositions. A coherent superposition consists of addition
of complex amplitudes with appropriate multiplying constants which may even
be complex. In an incoherent superposition, on the other hand, intensities (i.e.,
square of the modulus of amplitudes) are added with appropriate weights. Coherent
superposition generates interference of amplitudes which gives rise, for example,
to a stable pattern of maxima and minima in the above-mentioned phenomena of
interference and diffraction in optics, provided [76, 356] superposed waves are also
coherent. Such interference terms can, of course, never be present in an incoherent
superposition.

Both, time-dependent and time-independent Schrödinger equations in quantum
mechanics are linear as well as homogeneous (see, for example, [58,59]). These two
properties mean that a linear combination (i.e., a superposition) of their solutions
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270 C Decoherence and Dissipation of Quantum Entanglement

is also a solution of the respective Schrödinger equation. Of the two kinds of
superpositions mentioned in the preceding paragraph, separable states like (2.27),
(2.39a), etc. represent an incoherent superposition of the product states. Similarly,
(A.4) too is an example of an incoherent superposition. On the other hand, the
simplest possible coherent superposition in quantum mechanics is, probably, the
one-particle state (2.1). This state gives rise to terms whose coefficients are C0C �

1

and C �
0 C1, in addition to those multiplied by jC0j2 and jC1j2, when probability

for finding a result on measuring an observable of the system represented by the
state (2.1) is to be calculated. The former two (i.e., C0C �

1 and C �
0 C1) are known

as interference terms representing local coherence inherently present in any linear
superposition [e.g., like (2.1)] of one (or more)-particle states. The incoherent
state (2.27), on the other hand, is a statistical mixture, which can never give rise
to any interference terms similar to those which may be generated by a coherent
superposition.

An entangled state is also a coherent superposition of the product states of
more than one particle. For example, Bell states (2.17) are four different coherent
superpositions of the products (j00i, j01i, j10i, j11i) of the states of two qubits
(e.g., photons, two-level atoms, spin- 1

2
particles). Similar is the case with the

bipartite states [e.g., (4.13), (5.14), (6.10b), etc.] discussed in various chapters of
this monograph. In an entangled state, correlation is present among its constituent
particles [i.e., between two qubits in (2.17)] as well. These particles may or may not
be interacting among themselves and may be located at places far away from each
other. Such a non-local correlation is also called distributed coherence. Thus, both
local and non-local coherences are present in an entangled state. The former exists
for each particle constituting the system; while, the non-separability of the state of
this system is due to the non-local correlation/distributed coherence. It has already
been mentioned at several places in this monograph that non-diagonal elements of
a density matrix represents coherence effects. Thus, the non-diagonal elements in
the matrix representation of an entangled state contain both local and non-local
coherence. It is, nevertheless, possible that local coherence may be present also in a
separable state. (For a more detailed discussion of local and non-local coherence in
a bipartite entangled state of two qubits, see, for example, [53].)

Hence, in a density matrix form [e.g., (A.30), etc] of a linear superposition
[e.g., (2.17), etc], the non-diagonal terms arise due to coherence (or, interference);
whereas diagonal terms represent probabilities for the outcome of a measurement
of an observable performed on a coherent superposition of states. Sometimes,
depending upon the observable being measured, the diagonal elements are called
populations as well. It is obvious from the discussion given herein that coherence in
states like (2.1), (2.17), etc, is a consequence of the phases of various terms present
in a superposition; whereas these phases play no role whatsoever in determining the
populations represented by these states.

Coherence is considered to be a major resource in quantum mechanics. Chapter 2
explains, in brief, the importance of entangled state, i.e., the availability of non-
local coherence, in quantum information. However, due to the presence of noisy
backgrounds and interaction with the ambient external environment, an entangled
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state always tends to lose its both local and non-local coherences. Such loss of
coherence for reasons external to a system is known as decoherence (see, for
example, [357–361]). Thus, decoherence affects the phase relationship among the
terms present in a coherent superposition of states. This, in other words, means
that value of the exponent � may be affected by decoherence of a single qubit
state (2.2b) if it is subjected to a noisy environment. Hence, decoherence is the
decay of the off-diagonal matrix elements of the density matrix of a system due to
its coupling to an ambient external environment. There have recently been several
studies of decoherence, including dynamics of dis-entanglement (see, for examples,
reviews [160, 348, 351]).

On the other hand, changes in the diagonal elements (i.e., populations) in a den-
sity matrix representation of a coherent superposition of a state of a system due to
its interaction with the external ambient environment is known as dissipation. Thus,
in dissipation, magnitudes—rather than phases—of the various terms present in a
coherent superposition change if a system represented by this state is experiencing
a noisy external background. References [180–182], etc, are some of the studies of
both decoherence and dissipation in quantum information.



Appendix D
A Computer Programme for Calculating 3-j;
6-j; and 9-j Symbols in Powers of Prime
Numbers

It is obvious from discussions given in Chaps. 3–10 of this monograph that
calculations of the density matrices needed for studying entanglement properties
of various bipartite states of flying particles generated in the processes (1.1)–
(1.8) capable of taking place in an atom or a linear molecule require a large
number of 3-j , 6-j , and/or 9-j symbols [65]. Most of the books on quantum
mechanics (e.g., [58, 59]), angular momentum (e.g., [65–68, 187]), atomic physics
(e.g., [10, 60, 184]), nuclear physics (e.g., [64]), for example, contain tables of 3-j ,
6-j , and/or 9-j symbols in one form or the other—specifically, for smaller values
of the angular momentum quantum numbers. Among these, and several others, the
excellent book by Rotenberg et al. [187] is exclusively dedicated to the tables of
3-j and 6-j symbols. In addition, a number of different computer programmes for
calculating all or some of these n-j (i.e., 3-j , 6-j , and=or 9-j ) symbols are also
readily available in the literature (see, for example, [68]). One may, then, wonder
as to what is the need for writing a new computer code for calculating these n-j
symbols and then including it in the present monograph?

First, the book cited in [187] was published more than fifty years ago. It has
been out of print since long and, consequently, it is presently available only at
few places (e.g., libraries, universities, etc.) in the world. Moreover, Rotenberg
et al. [187] have given tables only for 3-j and 6-j symbols, but none for 9-j
symbols. The expressions for the density matrices derived herein and elsewhere
(e.g., [56, 57]) contain, on the other hand, also the 9-j symbols, in addition to the
3-j and 6-j symbols. To the best of our knowledge, there are no computer codes
for calculating an n-j symbol (or, square of it, for that matter) in powers of prime
numbers. Almost all of the available programmes compute values of these symbols
in decimal forms which results in the considerable loss of accuracy. Moreover, in
an analytical calculation, it is far more convenient to use a value of an n-j symbol
in terms of prime numbers than in a decimal form. It is for these and other such
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reasons that computer programmes which calculate square of a n-j symbol in terms
of powers of prime numbers have been written in Chandra’s [362] group.

Although this [362] computer programme can not be claimed to be either elegant
or optimum, its accuracy has, however, been checked by various methods. For
example, results obtained from this programme for a 3-j symbol and a 6-j symbol
agree with those given in [67,187].1 A 9-j symbol, on the other hand was calculated
using two independent expressions (D.4) and (D.5) given on pages 275 and 276
herein. These two methods gave identical results which, in addition, agreed also
with their values in [67]. This programme for n-j symbols was subsequently used
for calculating density matrices needed for studying both Coulombic entanglement
and fine-structure entanglement.

D.1 Methods of Calculation

A 3-j symbol has been computed after suitably modifying the expression originally
derived by Racah [363] for Clebsch–Gordon coefficients and written in a symmet-
rical form by Edmonds

�
see (3.6.11) and (3.7.3) in [65]

�
. Accordingly, one can

write [65, 187]

�
A B C

a b c

�
D .�1/A�B�c .2C C 1/�

1
2

�
AaBbjAB C � c

�
(D.1a)

D .�1/A�B�c �
�
A;B;C

�
ı0; aCbCc

�
q�
AC a

�
Š
�
A � a�Š�B C b

�
Š
�
B � b

�
Š
�
C C c

�
Š
�
C � c

�
Š

�˙k�0 .�1/k
h
kŠ
�
AC B � C � k�Š�A� a � k

�
Š
�
B C b � k

�
Š

� �C � B C aC k
�
Š
�
C � A� b C k

�
Š
i�1

: (D.1b)

Here,

�
�
A;B;C

� D

�
AC B � C �Š�A� B C C

�
Š
� � AC B C C

�
Š

�
AC B C C C 1

�
Š

� 1
2

: (D.2)

In (D.1b), one needs to sum over all those positive integral values of k for which
arguments of none of the factorials functions present in the denominator of this

1All the tables given by Rotenberg et al. [187] contain values of the squares of 3-j and of 6-j
symbols in prime numbers; whereas, those given in [67] have n-j symbols in both prime numbers
and in decimals forms.
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expression becomes negative [see, for example, footnote (3) on page 277 in the
present Appendix D].

A 6-j symbol, used in this monograph, is related to Racah’s W-coefficient [363]
by [67, 187]

�
A B C

D E F


D .�1/ACBCDCE W

�
ABEDICF �: (D.3a)

This can finally be written as [65, 67, 68]

�
A B C

D E F


D �

�
ABC

�
�
�
AEF

�
�
�
DBF

�
�
�
DEC

�

�˙k�0 .�1/k .k C 1/Š
h�
k � A� B � C

�
Š
�
k � A� E � F �Š�k �D � B � F

�
Š

� �k �D �E � C
�
Š
�
AC B CD C E � k�Š�B C C C E C F � k

�
Š

� �C C AC F CD � k�Š
i�1

: (D.3b)

Similar to (D.1b), the upper limit for the positive integer k in the sum (D.3b) is
determined so that none of the factorials in this expression is negative.

There are various equivalent expressions (see, for example, [64, 65, 67, 68, 364])
available in the literature for computing a 9-j symbol. It can be written as a sum of
the product of six 3-j symbols, sum of a triple product of 6-j symbols, or in the
form of an algebraic expression. The two expressions used herein are

8
<

:

A B C

D E F

G H J

9
=

; D ˙k�0 .�1/2k .2k C 1/

�
A D G

H J k



�
B E H

D k F

 �
C F J

k A B


(D.4)

in terms of 6-j symbols fe.g., (6.4.3) in [65]g and the following algebraic relation

8
<

:

A B C

D E F

G H J

9
=

; D .�1/CCF�J �
0�DAG

�
�0�BEH

�
�0�JGH

�

�0�DEF
�
�0�BAC

�
�0�JCF

�

�˙p�0 ˙q�0 ˙r�0
.�1/pCqCr

pŠ qŠ rŠ

�
2F � p

�
Š
�
2A� r

�
Š

�
2H C 1C q

�
Š
�
ACD CG C 1 � r

�
Š

�
�
D C E � F C p

�
Š
�
C C J � F C p

�
Š

�
E C F �D � p�Š �C C F � J � p

�
Š
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�
�
E CH � B C q

�
Š
�
G CH � J C q

�
Š

�
B C E �H � q

�
Š
�
G C J �H � q�Š

�
�
B C C � AC r

�
Š

�
ACD �G � r�Š �AC C � B � r

�
Š

�
�
ACD C J �H � q � r�Š

�
D CH � B � F C p C q

�
Š
�
B � F �AC J C p C r

�
Š

(D.5a)

with

�0�A;B;C
� D


�
AC B � C

�
Š
�
A � B C C

�
Š
�
ACB C C C 1

�
Š

� � AC B C C
�
Š

� 1
2

: (D.5b)

originally obtained by Jucys and Bandzaitis [364] and reproduced in [(A-6)–(A-8)]
in [68]. In the three sums present in (D.5a), only those positive integral values of
each of p; q, and r are to be considered for which argument of none of the factorials
present therein is negative.

D.2 A Short Description of the Programme

The programme threenj consists of a master driver which reads the input data
and directs the flow of the whole programme through its eight subroutines.2 This
driver programme also writes the results calculated. Details of the working of
the programme are described in its comment cards. In the following, we give,
in alphabetical order, a brief description of each of the 10 parts of the present
programme threenj. A complete listing of this programme is available from the
Springer’s website <http://extra.springer.com>.

D.2.1 Subroutine delta

This subroutine is called in each of the three subroutines ninej JB (Sect. D.2.5),
sixj (Sect. D.2.9), and threej (Sect. D.2.10). It is needed for calculating

2The driver of threenj calls the subroutines of this programme in the following sequence:
(i) primnum, (ii) gamafun, (iii) threej, (iv) printr, (v) sixj, (vi) printr, (vii) nine JB,
(viii) printr, (ix) nine 6j, (x) printr.
The logical function, in addition to the subroutine printr, is used by each of threej,
sixj, nine JB, and nine 6j.

http://extra.springer.com
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�
�
A B C

�
[in threej and sixj] or �0�A B C

�
[in ninej JB], defined in

(D.2) or (D.5b), respectively. The value of the input integer “iselect” decides as to
which of the two deltas is to be calculated:

If “iselect” D 1, �
�
A B C

�
of (D.2) is computed;

if “iselect” D 2, �0�A B C
�

of (D.5b) will be calculated.
Delta, calculated in the subroutine delta, is printed if “iprint(4)” is a non-zero

integer.

D.2.2 The Driver

It reads the input data, controls the flow of the programme, and prints results.
The input data is described in the Sect. D.3 (page 280). On the other hand, the
output of a test run is available from the web page <http://extra.springer.com>
which contains also a complete listing of the present programme threenj.

D.2.3 Subroutine gamafun

This is a subroutine for calculating Gamma functions in terms of prime numbers
and their powers.3 Gamma functions are calculated for all the integers in the range
from n D 1 to prime(nprim). The calculated Gamma functions are stored in the
2-dimensional integer matrix “gamma.4” This matrix is passed to other parts of the
programme threenj through a common block.

Matrix “gamma” is printed if “iprint(2)” is a non-zero integer.

3Note [259] that  .n/ D .n � 1/!; 0Š D 1; nŠ D ˙ 1 when n is a negative integer.
4For example, for ”nprim” D 10, this subroutine will calculate first ten prime numbers (exclud-
ing 1), namely: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Then, the  functions are calculated for the first
thirty integers, ie, 1, 2, 3, 4, : : :, 29, 30. Thus, elements gama(1, i) D 0 (with i D 1–10) contain the
value of  .1/.D 0Š D 1 D 20�30�50� : : : 290/. Similarly, gama (2, i) D 0 (with i D 1–10) give
the value of  .2/.D 1Š D 1 D 20 � 30 � 50 � : : : 290); gama (3, 1) D 1, gama (3, i) D 0 (with i
D 2–10) give the value of  .3/ (D 2Š D 2 D 21 � 30 � 50 � : : : 290); gama(4, 1) D 1, gama(4, 2)
D 1, gama (4, i) D 0 (with i D 3–10) give the value of  .4/ (D 3Š D 6 D 21 � 31 � 50 � : : : 290).
Further, gama(29, 1) D 25, gama(29, 2) D 13, gama(29, 3) D 6, gama(29, 4) D 4, gama(29, 5)
D 2, gama(29, 6) D 2, gama(29, 7) D 1, gama(29, 8) D 1, gama(29, 9) D 1, gama(29, 10) D 0,
give the value of  .29/ (D 28! D 225 � 313 � 56 � 74 � 112 � 132 � 171 � 191 � 231 � 290).
Lastly, gama(30, 1) D 25, gama(30, 2) D 13, gama(30, 3) D 6, gama(29, 4) D 4, gama(30, 5) D
2, gama(30, 6) D 2, gama(30, 7) D 1, gama(30, 8) D 1, gama(30, 9) D 1, gama(30, 10) D 1, is
the value of  .30/ (D 29Š D 225 � 313 � 56 � 74 � 112 � 132 � 171 � 191 � 231 � 291/.
Thus, gama(j; i ) is the power of the i -th prime number present in  .j /.

http://extra.springer.com
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D.2.4 Function logical function

This function tests whether the three angular momenta (say, j1, j2, j3) of a 3n-j
symbol satisfy the well-known triangular condition (i.e., jj1 - j2j � j3 � j1 + j2)
applicable [63–68] to their vector addition in quantum mechanics. It is called at
various places in the subroutine threenj in order to avoid those calls of the
subroutines ninej JB; ninej 6j; sixj; and threej wherein any of the 3-j ,
6-j , or 9-j symbols identically vanishes.

Value of the logical variable “ltc,” calculated in this function, is printed if
iprint(7) is a non-zero integer.

D.2.5 Subroutine ninej JB

This is a subroutine for calculating square of a 9-j symbol using the algebraic
expression (D.5). Its output is in powers of prime numbers. The input arguments
are: “j1” D 2*A, “j2” D 2*B, “j12” D 2*C, “j3” D 2*D, “j4” D 2*E, “j34” D
2*F, “j13” D 2*G, “j24” D 2*H, and “jj” D 2*J, i.e., TWICE of the actual values
of angular momenta. Hence, each of the nine input arguments is always a positive
and real integer. The respective triads (j1, j2 j12), (j3, j4, j34), and (j13, j24, jj) of
the angular momenta form the first, second, and third rows of a 9-j symbol [see,
for example, left-hand sides of (D.4) and of (D.5a)]. The integer variables “sign9j,”
“n9j,” “sum9j,” and the integer array “v9j” contain this subroutine’s output.

The driver, discussed in the Sect. D.2.2, will call the subroutine ninej JB if
input integer ”i9” D 1, or � 3.

A 9-j symbol, calculated in this subroutine is printed if ”iprint(9)” is a non-zero
integer.

A ”*” symbol in front of a printed value of a 9-j symbol means that its negative
square root is to be used.

D.2.6 Subroutine ninej 6j

This subroutine uses the relation (D.4) for computing square of a 9-j symbol in
terms of the prime numbers. Its input arguments are exactly the same as in the case
of the subroutine ninej JB, discussed in the immediately preceding Sect. D.2.5.

The subroutine ninej 6j is called by the driver (see the Sect. D.2.2) of the
present programme threenj if the input integer ”i9” � 2.

A 9-j symbol, calculated in the subroutine ninej 6j, is printed if ”iprint(10)”
is a non-zero integer.

A ”*” symbol in front of a printed value of a 9-j symbol means that its negative
square root is to be used.
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Thus, if “i9” > 2, a required 9-j symbol will be calculated by using the relation
(D.4) as well as the algebraic expression (D.5). This provides a very good check
for each of the three subroutines sixj (Sect. D.2.9), ninej JB (Sect. D.2.5), and
ninej 6j (Sect. D.2.6), provided the last two subroutines compute identical values
for a given 9-j symbol.

D.2.7 Subroutine primnum

This subroutine calculates first “nprim” prime numbers. These prime numbers are
stored in the 1-dimensional, integer array called “prim.” [See footnotes (2) and (4).]
Both “nprim” and the array “prim” are passed to other parts of the programme
through a common block.

Array “prim” is printed if “iprint(1)” is a non-zero integer.

D.2.8 Subroutine printr

The driver (Sect. D.2.2) as well as each of the four subroutines ninej JB (Sect.
D.2.5), nine 6j (Sect. D.2.6), sixj (Sect. D.2.9), and threej (Sect. D.2.10)
calls the subroutine printr for printing a 3-j , 6-j , and/or 9-j symbol calculated
in the present programme threenj.

D.2.9 Subroutine sixj

This subroutine computes the square of a 6-j symbol in terms of the powers of prime
numbers. The definition used is that given in (D.3). Its input arguments (“j1” D 2*A,
“j2” D 2*B, “j3” D 2*C, “l1” D 2*D, “l2” D 2*E, and “l3” D 2*F) are TWICE of
the actual values of angular momenta for which a 6-j symbol is required. Hence,
each of these six input arguments is always a positive and real integer. The output of
sixj is given by the integers “sign6j,” “n6j,” “sum6j,” and the integer array “v6j.”
A “*” sign means that a negative square root of a computed value is to be used.

A 6-j symbol, calculated in the subroutine sixj, is printed if “iprint(6)” is a
non-zero integer.

D.2.10 Subroutine threej

The square of a 3-j symbol is computed in this subroutine in terms of prime numbers
and their powers. It is defined in (D.1) and (D.2). The input arguments of the present
subroutine are: “j1” D 2*A, “j2” D 2*B, “j3” D 2*C, “m1” D 2*a, “m2” D
2*b, and “m3” D 2*c, i.e., TWICE of the actual angular momenta and of their
projections. Hence, arguments (“j1, j2, j3, m1, m2, m3”) of threej are always
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real integers. Here, “j1, j2, j3” are necessarily non-negative; whereas -j1 � m1 �
j1, -j2 � m2 � j2, -j3 � m3 � j3 such that (m1 C m2 C m3) D 0. The output
of this subroutine is contained in the integer variables “sign3j, n3j, sum3j,” and in
the integer array “v3j.” Results preceded by a ’*’ (for “sign3j” < 0) means that one
should use negative of the square root of the computed value.

A 3-j symbol, calculated in the subroutine threej, is printed if “iprint(3)” is a
non-zero integer.

D.3 Input

The whole of the input information needed for a successful run of threenj is
read in the driver segment of this programme. Some of it (i.e., integer variable
“nprim,” and integer array “iprint”) is passed to the other parts of the programme
threenj through a common block; whereas the remaining in the form of the
arguments of the various subroutines already described herein.

1. nprim (1 � nprim � 100) Described in the Sects. D.2.3 and D.2.7.
2. irpt (1 � irpt � 11) Controls the re-looping of the

programme threenj:
irpt D 1, input for the statement number 10 is read;
irpt D 2-4, input for the statement number 30 (for a 3-j symbol) is read;

irpt D 5-7, input for the statement number 60 (for a 6-j symbol)is read;
irpt D 8-10, input for the statement number 90 (for a 9-j symbol)is read;
irpt D 11, programme threenj ends.
3. iprint(i ) Controls the printing in various

subroutines.
4. (j1, j2, j3, m1, m2, m3) Described in the Sect. D.2.10.
5. (j1, j2, j3, l1, l2, l3) Described in the Sect. D.2.9.
6. (j1, j2, j12, j3, j4, j34, j13, j24, jj) Described in the Sects. D.2.5

and D.2.6.
7. i9 Described in the Sects. D.2.5 and D.2.6.

D.4 Programme Listing

It is available from Springer’s web page <http://extra.springer.com>.

D.5 Test Run Output

It too is available from Springer’s web page <http://extra.springer.com>.

http://extra.springer.com
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Appendix E
A Generic Computer Programme
for the Coefficient A’s Needed in the Calculation
of the Density Matrix for Fine-Structure
Entanglement in 2-DPI

This appendix is a brief write-up of the computer code coefficient A
used [188] for calculating the coefficient A’s present in the density matrix (7.19)
needed for studying fine-structure entanglement between the spins of a
photoelectron ep and Auger electron ea generated in the 2-DPI process (1.3). This
is a generic programme as it can readily be adapted for calculating density matrices
needed for similar studies of entanglement between two electronic qubits, which
may be generated in the 2-DPI process taking place in a linear molecular target or
in 1-DPI (1.2) in an atom or a molecule. Furthermore, the following programme
coefficient A can readily be generalized also to the two-step process (1.4) for
studying the hybrid, fine-structure entanglement between the spin of photoelectron
ep and polarization of the emitted fluorescence 	d .

E.1 Method of Calculation

For a given set of values of the integer variables (Sp, Sa, NSp , NSa , mr ) [(7.19b)],
programme coefficient A calculates A’s in terms of the products of spherical

harmonics
h
Y
MLp

Lp
. Okp/

i�h
Y
MLa

La
. Oka/

i�
as well as of the photoionization and Auger

decay amplitudes Pe(J1C
� jp; J0 1; jt ; `p)

h
Pe.J1C

� j 0
p I J0 1I j 0

t I ` 0
p/
i�

and

Ae(J2C ja; J1C
� ; `a)

h
Ae.J2C j 0

a I J1C
� I ` 0

a/
i�

, respectively. For the spherical

harmonics, the phase convention used is the one given in (2.5.29) in Edmond’s
book [65] or, for examples, (1)–(5) on page 59 in [365]; whereas the latter two
amplitudes are defined by the respective (7.20). This programme substitutes neither
the trigonometric [i.e., in terms of the spherical angles (�p, �p) of Okp , or (�a, �a) of

Oka] nor numerical values of a spherical harmonics
h
Y
MLp

Lp
. Okp/

i�
or of

h
Y
MLa

La
. Oka/

i�
.

It, on the other hand, determines values of (Lp , MLp ) and (La, MLa ) for which the
two required spherical harmonics are to be used. The advantage of doing this is

N. Chandra and R. Ghosh, Quantum Entanglement in Electron Optics, Springer Series
on Atomic, Optical, and Plasma Physics 67, DOI 10.1007/978-3-642-24070-6,
© Springer-Verlag Berlin Heidelberg 2013
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that on substituting these A’s in the expression (7.19a), one is free to compute the
density matrix hJ2C I �p Oup kpI �a Oua kaj �(2-DPI) jJ2C I � 0

p Oup kpI � 0
a Oua kai for any

experimental geometry (i.e., directions Okp and Oka) one desires without having to
recalculate the A’s for that specific 2-DPI process (1.3). Thus, need for calculating
A’s for each new Okp and/or Oka is completely the eliminated.

Similarly, it is more likely than not that more than one amplitudes Pe(J1C
� jp ;

J0 1; jt ; `p) [each with a different set of values of the quantum numbers (`p , jp ,
jt )] and Ae(J2C ja; J1C

� ; `a) [differing in `a, ja] contribute to the photoioniza-
tion (1.3a)] and Auger decay (1.3b), respectively. In view of these possibilities,
although the programme coefficient A does inform its user as to which of
the Pe(J1C

� jp ; J0 1; jt ; `p) and Ae(J2C ja; J1C
� ; `a) is to be used where; it,

however, does not require numerical/algebraic values of either amplitudes. These
values are used when A’s are substituted in (7.19a) for the final calculation of the
density matrix. This feature of coefficient A makes it possible to compute the
density matrix (7.19a) for the same participating transitions but in different atoms
without requiring recalculation of A’s. In other words, the A’s obtained from the
programme coefficient A are only transition, but neither atom nor geometry,
specific.

However, in spite of the above-discussed two features of the programme
coefficient A, one still requires to compute A’s for each different polarization
(specified by mr D �1, 0, C1) of the incident photon 	r used for ionization of the
atomic target T in the 2-DPI process (1.3).

For the calculation of the various n-j (i.e., 3-j , 6-j , and/or 9-j ) symbols, present
in the expression (7.19b), coefficient A uses the subroutines given in the
programme threenj (but without its driver part) described in the Appendix D
on pages 273–280.

E.2 A Short Description of the Programme

The programme coefficient A contains twelve subroutines, including a
block data and a driver. Out of these, nine (namely: delta; gamafun,
logical function; ninej JB; ninej 6j; primnum; printr; sixj;
threej) are those needed to calculate a 3n-j symbol and have already been
explained in the Appendix D. In the following, therefore, the remaining three parts
of the present programme are explained.

E.2.1 The Driver

It reads the input data, i.e., ”nprim,” ”iprint,” and ”irpt” (each explained in the Sect.
D.3 on page 280); all the ten elements of the array ”iwrite” (explained in the source
code of the subroutine main of the present programme). In addition, the values of the
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parameters (Sp, Sa, NSp , NSa , mr ),1 needed to specify an A
Sp Sa
NSp NSa

.mr I Okp Oka/ in
(7.19), are also read in this driver part of the programme coefficient A. It then
calls the subroutine main.

E.2.2 block data

This part of the present programme stores the variables corresponding to the total
angular momenta (J0, J1C

� , J2C ) of (T, T1C�

, T2C) as well as values (`p, `a)
of the orbital angular momenta of the partial waves of (photoelectron ep , Auger
electron ea) participating in the 2-DPI process (1.3).

In this block data, (nl1v, nl2v) are the number of the values of (`p, `a), which
need to be taken in to account for a given 2-DPI process (1.3). These values of
(`p, `a) are stored in the integer arrays (l1v, l2v).

In the given version of the programmecoefficient A, each of the arrays (l1v,
l2v) has been declared to have dimension 05. This can, however, readily be changed
according to one’s requirements. If either or both of (nl1v, nl2v) have values less
than the declared dimensions of (l1v, l2v), then the remaining elements of these two
arrays are filled with some un-physical value (e.g., say, �1), which neither of the
partial waves (`p, `a) can ever have.

E.2.3 Subroutine main

This subroutine is the main part of the present programme coefficient A. It
performs the following tasks:

1. Determines the possible values of all the variables [other than those (i.e., Sp, Sa,
NSp ,NSa ,mr ) read in the driver (Sect. E.2.1) or stored (i.e., J0, J1C

� , J2C , `p , `a
in the block data (Sect. E.2.2)).

2. Calculates all the 3n-j symbols contributing to (7.19b).
3. Multiplies the product of these 3n-j symbols with appropriate spherical

harmonics
h
Y
MLp

Lp
. Okp/

i�
,
h
Y
MLa

La
. Oka/

i�
[after determining the proper values

of (Lp , MLp ) and of (La, MLa )] and by the photoionization amplitudes

1Recall that each of Sp , Sa , NSp , NSa , and mr is always an integer. Their values are: mr D 0
[for LP ionizing radiation 	r ], or C1 (�1) [for CP ionizing radiation 	r with negative (positive)
helicity] in (7.19). NSp D 0 (for Sp D 0); �1, 0, C1 (for Sp D C1). NSa D 0 (for Sa D 0); �1,
0, C1 (for Sa D C1). Programme coefficient A does not need any information about either
the unit vectors ( Okp , Oka), or amplitudes (Pe , Ae).
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"
Pe(J1C

� jp; J0 1; jt ; `p),
h
Pe.J1C

� j 0
p I J0 1I j 0

t I ` 0
p/
i�
#

as well as Auger

decay amplitudes

"
Ae(J2C ja; J1C

� ; `a),
h
Ae.J2C j 0

a I J1C
� I ` 0

a/
i�
#

belonging

to the appropriate values of [(jp jt `p), (j 0
p j

0
t `

0
p)] and [(ja `a), (j 0

p `
0
a)],

respectively.
4. These products are then added to obtain the final expression for a desired
A
Sp Sa
NSp NSa

.mr I Okp Oka/ according to the definitions given in (7.19) and (7.20).
5. Complete calculation in this programme is performed in integer algebra.

E.3 Input

The integer variables (“nprim,” and “iprint”) are read in the beginning of the driver
part (i.e., Sect. E.2.1) of the programme coefficient A. Integer variables [Sp,
Sa, NSp , NSa ,mr ] (see footnote (1) on page 283), “irpt,” and all the ten elements of
the array “iwrite” are supplied in the second read statement of the driver. A value of
the integer variable “irpt” decides the flow of the programme coefficient A in
its driver part.

E.4 Programme Listing

Folder programme coefficient A, available at the web page <http://extra.springer.
com> contains a complete listing of the present programme coefficient A.

E.5 Test Run Output

Folder programme coefficient A, available at the web page <http://extra.springer.
com> contains output of a test run of coefficient A. The test run given therein
corresponds to the 2-DPI transition (7.21).

http://extra.springer.com
http://extra.springer.com
http://extra.springer.com
http://extra.springer.com
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quantum, 32, 46, 47, 241, 249
of qubits, 16, 43
reduced, 42
rotational, 197, 201, 202, 220, 225, 231
separable

bipartite, 34, 41, 108
Coulombic, 210, 224
spin, 105, 143, 145, 211

simultaneously accessible, 103
single qubit, 16, 43, 271
singlet

electronic, 84, 102, 123, 132, 169, 209
spin, 102, 126, 127, 147, 175, 209, 225,

226, 244
spin

down, 18, 24
entangled, 105, 130, 159, 186
flipped, 46
up, 18, 24

of subsystems, 23, 30, 34, 36, 41, 108, 258
superposition of

coherent, 19, 269–271
incoherent, 269, 270
linear, 15, 16, 20, 132, 252, 270

tensor product of, 23
tripartite, 248, 249
tripartite electronic, 248
triplet

group of, 24
spin, 132

unbound, 114
unentangled, 23, 57
unpolarized, 48, 115, 247
Werner

mixed, separable, 146, 147, 210, 225
separable, 142

white noise, 35, 57 (see also maximally
chaotic)

State multipoles. See Alignment, vector;
Orientation, tensor

Statistical
mixture, 270
tensors (see State multipoles)

Structure
3-dimensional (3-D), 74
extended, 74, 201
fine (see Fine-structure)
geometrical, 223

Symmetry
axial/cylindrical, 75, 76, 243
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center of, 74
point group

C 1v, 6, 221
D 1h, 6, 74, 221

spherical, 203

Tensor(s)
operator(s), 266
product, 23
statistical (see State multipoles)

1-TPI, 5
2-TPI, 5
3-TPI, 5
Transition(s)

allowed, 53
amplitude(s), 9, 57–90, 117, 120, 219,

230–232, 247
in atom(s)/atomic, 57–73
Auger (see Auger, transition(s))
cascade, 2
induced, 4, 11, 94, 191, 203, 246, 269
in molecule(s)/molecular, 74–90, 210
spontaneous

non-radiative, 53, 64, 66, 89, 219, 230
(see also Auger, transition(s))

radiative, 53
Transpose/Transposition

full, 40, 41, 128
partial

negative, 100–106
positive, 38, 106–112

Value(s)
actual, 278, 279
algebraic, 282

allowed, 107, 121, 129, 132, 141, 142, 177,
207

appropriate, 267
averaged, 252–257
computed, 279, 280
definite, 26
different, 128, 139, 145
discrete, 140
eigen (see Eigenvalue(s))
equal, 177, 236
expectation, 29, 39
experimental, 173
extreme, 236
identical, 129, 145, 176, 235
increasing, 145
integral, 274
intermediate, 9, 58
large, 9, 191
maximum, 145, 237
measured, 253
minimum, 234
non-zero, 102
numerical, 11, 281
positive, 206
possible, 234, 283
proper, 283
same, 46, 129, 139, 178, 237
singular, 44
smaller, 273
suitable, 284
unit, 126
un-physical, 283

W-coefficient, 275. See also 6-j symbol
Werner state(s). See State(s), Werner
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