# Appendix A **Qualitative Factors Assessment Tools** ## **Contents** | Abbreviat | ions and Acronyms | 3 | |-----------|-----------------------------------------------------|----| | A.1. Pu | rpose | 4 | | A.2. Ty | pes of Cost and Benefits | | | A.2.1 | Tangible | | | A.2.2 | Intangible | | | A.3. Th | e Need for Consistent Methods | 5 | | A.4. Me | ethods | 6 | | A.4.1 | Qualitative Narrative | 7 | | A.4.2 | Cost Effectiveness Analysis | | | A.4.3 | Threshold Analysis | 11 | | A.4.4 | Bounding Analysis | 12 | | A.4.5 | Pros and Cons Analysis | 12 | | A.4.6 | Trade-Off Analysis | | | A.4.7 | Rank Order / Weight Based Analysis | 12 | | A.4.8 | A Fortiori Analysis | 13 | | A.4.9 | Maximin and Maximax Analysis | 13 | | A.4.10 | Conjunctive and Disjunctive Analysis | 15 | | A.4.11 | Lexicographic Analysis | 15 | | A.4.12 | Decision Matrix | 16 | | A.4.1 | 2.1 Multi-attribute Utility Theory Technique | 17 | | A.4.1 | 2.2 Simple Multi-attribute Rating Technique (SMART) | 17 | | A.4.1 | 2.3 Generalized Means Technique | 18 | | A.4.1 | 2.4 Analytic Hierarchy Process | 18 | | A.4.13 | Outranking Methods Technique | 19 | | A.4.1 | 3.1 The ELECTRE I Method | 20 | | A.5. Re | ferences | 22 | ## **Abbreviations and Acronyms** AHP analytic hierarchy process CBI cost-benefit index Cs cesium EPA U.S. Environmental Protection Agency MAUT multi-attribute utility theory NRC U.S. Nuclear Regulatory Commission OMB Office of Management and Budget SMART simple multi-atribute rating technique SOP standard operation procedure WTP willingness-to-pay ## A.1. Purpose The purpose of this *Qualitative Factors Assessment Methodology Appendix* is to provide guidance and best practices for use in considering intrinsic costs and benefits (i.e., qualitative factors) to improve the clarity, transparency, and consistency of the U.S. Nuclear Regulatory Commission's (NRC's) regulatory, backfit, and environmental analyses. The identification, characterization, and analysis of both monetized costs and benefits (e.g., those measured in dollars) and qualitative (e.g., functional or non-monetized) costs and benefits are essential for the evaluation and selection of the preferred alternative. The NRC uses cost-benefit analysis to determine whether a regulatory action is justified on the basis of a comparison of predicted benefits and costs. Consideration of the relative importance of qualitative attributes in the decision rationale is an extremely useful and powerful tool for decisionmakers and stakeholders. It is important to realize that monetary units are not the only way to assign value to outcomes that people care about. A known limitation of cost-benefit analysis is that some outcomes are rarely ever priced or traded in the economy, making it difficult to assign monetary value to some types of costs and benefits. This Appendix captures best practices for the consideration of qualitative factors by providing a number of methods that can be used to support the NRC's evidence-based, quantitative, and analytical approach to decisionmaking. This guidance is intended to provide a toolkit to enable analysts to clarify their thinking in order to clearly present analyses of qualitative results in a transparent way that decisionmakers, stakeholders, and the general public can understand. However, these methods should only be used when quanitification is not practicable and are not a substitute for collecting accurate information to develop realistic cost estimates and do not constitute an expansion of the consideration of qualitative factors in regulatory, backfit, or environmental analyses. ## A.2. Types of Cost and Benefits #### A.2.1 Tangible Quantifiable costs and benefits have numeric values such as dollars, physical count of tangible items, or percentage change. Monetized benefits are always quantifiable and are measured in dollars or are tangible items with known conversion factors to monetize the variable (e.g., person-rem conversion factor contained in NUREG-1530 (Ref. 1)). Examples of non-monetized, quantifiable costs and benefits include: - Number of commodities or items produced for each alternative, - Maintainability or supportability measures (i.e., mean-time-to-repair or average downtime), and Accuracy, timeliness, and completeness of data produced by systemic performance and operational effectiveness. #### A.2.2 Intangible Intangible costs and benefits do not lend themselves easily to direct and quantitative measures. In other words, these types of attributes: (1) do not have readily available standard measurement scales; and (2) tend to be subject to great interindividual measurement variability. Although subjective in nature, qualitative measures can make a positive contribution to the cost-benefit analysis. The analysts should use the best analytical practices (e.g., surveys and interviews) in order to include difficult to quantify costs and benefits in the analysis. Some examples of non-quantifiable costs and benefits listed in SECY 14-0087 attachment 1 (Ref. 2) include: - Defense in Depth, - Perception / Image, - Aesthetics. - Morale, - Opportunity costs, - Compatibility, - Quality of Material or Service, - Safeguards and Security, - Operational Readiness, - Regulatory Efficiency, and - Improvements in Knowledge. While quantifying costs and benefits assists the decisionmakers in understanding the magnitude of the effects of alternative regulatory actions, some benefits may be too difficult to quantify in monetary terms. However, they also can be too important to ignore. In this situation, the analysts should use accurate information to develop realistic estimates to quantify parameters and should use the methods contained in this appendix to inform decisionmaking when quantitative analyses are not possible or practical. ### A.3. The Need for Consistent Methods Cost-benefit analysis is a tool regulatory agencies use to anticipate and evaluate consequences of regulatory actions. It provides a formal way of organizing the evidence, good and bad, of various alternatives that should be considered in developing regulations. The motivation is to learn if the benefits of an action are likely to justify the costs or discover which of various possible alternatives would provide the greatest net benefit to society. Regulatory analyses are designed to inform other parts of the Government and the public of the effects of alternative regulatory actions. These analyses sometimes show that a proposed action may not be appropriate for the situation and can also demonstrate that actions are reasonable and justified. Where all costs and benefits can be quantified and expressed in monetary units, cost-benefit analysis provides decisionmakers with a clear indication of the most efficient alternative (i.e., the alternative that generates the largest net benefits to society). This is useful information for decisionmakers and the public to receive, even when economic efficiency is not the only or primary regulatory objective. Unfortunately, it will not always be possible to express in monetary units all of the important cost and benefits. When it is not, the most efficient alternative will not necessarily be the one with the largest quantified, monetized net-benefit estimate. In such cases, the analysts must use professional judgment and/or must elicit subject matter expertise in order to determine how important the non-quantified costs and benefits may be in the context of the overall analysis. This would enable the analysts to clearly explain the non-quantified costs and benefits so decisionmakers can compare them with the monetary costs and benefits. For example, one method for eliciting subject matter expertise is the Delphi technique (Ref. 7 and 8), a forecasting method based on the results of questionnaires sent to a panel of independent experts. During this process several rounds of questionnaires are sent out, and the anonymous responses are aggregated and shared with the group after each round. The experts are allowed to adjust their answers in subsequent rounds. Because multiple rounds of questions are asked and because each member of the panel is told what the group thinks as a whole, the Delphi Method seeks to reach a "common" response through consensus. #### A.4. Methods There are several tools that are available if some attributes do not lend themselves to quantification. Where possible, considerations associated with these attributes should be quantified using market data, shadow pricing, or willingness-to-pay<sup>1</sup> techniques. Some potential data sources that may be used for quantifying cost estimates include: - Budget submissions - Facility and plant visits - Historical cost data reports - Manpower utilization records/reports - Construction materials cost database The principle of willingness-to-pay captures the notion of opportunity cost by measuring what individuals are willing to forgo (pay) to enjoy a particular benefit. DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. Because data collection can be a time consuming process, a formal data collection plan may be useful. Such a data collection plan would include tasks to identify the types of data available; to acquire the data with supporting documentation; to determine which estimating methods and models will be used with which data set; and to verify, validate, and normalize the data. If the consideration does not lend itself to monetized cost and benefits, then its treatment should take the form of a qualitative evaluation by which the analysts concisely describe the effect of the proposed action. Some methods are briefly described here, with references provided. The selection of an appropriate method depends on the issues being considered and the desired objectives. The sophistication of the method selected should be commensurate with the complexity of the issue. Analysts should remember that because these alternatives do not estimate the net benefits of a policy or regulation, they fall short of a cost-benefit analysis in their ability to identify an economically efficient policy. Such shortcomings should be discussed when presenting results that include qualitative analyses. #### A.4.1 Qualitative Narrative When there are potentially important effects that cannot be quantified, the analysts should include a qualitative discussion of benefits results. The analysts should provide a discussion of the strengths and limitations of the qualitative information. This should include information on the key reason(s) why they cannot be quantified. In one instance, the analysts may know with certainty the magnitude of a risk to which a substantial, but unknown, number of individuals are exposed. In another instance, based on highly speculative assumptions, a postulated consequence may result in an unknown magnitude of risk. For cases in which the unquantified costs or benefits affect a recommendation, the analysts should provide a clear explanation of the rationale behind the choice. Such an explanation could include detailed information on the nature, timing, likelihood, location, and distribution of the un-monetized costs and benefits. Also, the analyses should include a summary table that lists all the quantified and unquantified costs and benefits. The careful consideration of qualitative factors using techniques described in this appendix should be used to document and highlight (e.g., with categories or rank ordering) those factors that are most important for decisionmaking.<sup>2</sup>) While the focus is often placed on difficult to quantify benefits of regulatory actions, some costs are difficult to quantify as well. For example, "certain permitting requirements (e.g., U.S. Environmental Protection Agency's New Source Review program, and Clean Power Plan) restrict the decisions of production facilities to shift to new products and adopt innovative methods of production. While these programs may impose substantial costs on the economy, it is very difficult to quantify and monetize these effects. Similarly, regulations that establish emission standards for recreational vehicles, like motorcycles, may adversely affect the performance of the vehicles in terms of drivability and zero to 60 miles per hour acceleration" Examples identified in Office of Management and Budget (OMB) Circular A-4 under "Benefits and Costs that are Difficult to Quantify" are "the degree of certainty, expected magnitude, and reversibility of effects." (Ref. 10) (Ref. 9). The cost associated with the loss of these attributes may be difficult to quantify and monetize, so they need to be analyzed qualitatively. ## A.4.2 Cost Effectiveness Analysis A cost-effectiveness analysis<sup>3</sup> is a cost-minimization technique (Ref 10). This type of analysis is commonly used to compare alternatives when the value of costs or benefits cannot be adequately monetized. If it can be assumed that the benefits are the same for all alternatives being considered, then the task is to minimize the cost of obtaining them through cost-effectiveness analysis. This method may be used in cases where uncertainties are substantial or where important values cannot be quantified. For such instances, alternatives that yield equivalent benefits may be evaluated based on their cost-effectiveness. A regulatory analysis incorporating this method may also be used if there are multiple ways to achieve compliance or reach a level of adequate protection and the Commission finds it necessary or appropriate to specify the way to achieve that level of protection. A cost effectiveness analysis of the various alternatives under consideration improves technical efficiency toward achieving a desired outcome which may be valuable to a decisionmaker. The cost-effectiveness of an alternative is calculated by dividing the present value of total costs of the option by the present value of a non-monetary quantitative measure of the benefits it generates. The ratio is an estimate of the amount of costs incurred to achieve a unit of the outcome from a particular policy option. For example, in a security scenario, what is the amount of costs expressed in dollars incurred in order to save a person's life or mitigate a security event? Presumably, there are alternative ways to achieve these objectives and determine their costs. The analysis does not evaluate benefits in monetized terms but is an attempt to find the least-cost option to achieve a desired quantitative outcome. One technique for comparing and prioritizing a list of alternatives is the decision matrix. It is a flexible technique that may be used to evaluate most quantitative and non-quantitative costs and benefits. The criteria are either monetized, which are objective or quantifiable, or non-monetized, which are subjective and not directly quantifiable. While both types of criteria can be used in costbenefit analyses, the financial criteria demand a more thorough analysis specifically because they are objective and quantifiable and thereby less influenced by subjective assessment. If both monetized criteria and non-monetized criteria are evaluated in a decision matrix, the analysts would apply subjective evaluation to the monetized data, which may weaken or degrade the value of the data. Therefore, monetized and non-monetized criteria should not be combined in a decision matrix. The optimum approach is to use a decision matrix to evaluate the non-monetized criteria, evaluate the monetized data separately, and then consider both monetizedl and non-monetized data to develop a recommendation. An example of this technique is provided in Tables A-1 and A-2. <sup>&</sup>lt;sup>3</sup> A cost-effectiveness analysis is also known as a least-cost analysis. DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. | T-1-1- A 4. | C | D = = ! = ! = = . M = 4 = ! | 0 | of the town with the Down of the | |-------------|----------------|-----------------------------|------------------|----------------------------------| | Table A-1: | Example of a I | Decision Matrix - | · Quantification | of Intangible Benefits | | | | Alternative 1 | | Alternative 2 | | Alternative 3 | | | | | |--------------------------|---------------------|---------------------|--------|---------------|---------------------|---------------|-------|---------------|--------|-------| | Criteria | Weighting<br>Factor | Data | Rating | Score | Data | Rating | Score | Data | Rating | Score | | Maintenance<br>Downtime | .40 | 10<br>hrs. | 9 | 3.6 | 7 hrs. | 7 | 2.8 | 14 hrs. | 4 | 1.6 | | Reduced<br>Error Rate | .25 | 5 per<br>100 | 5 | 1.25 | 2.5<br>per<br>100 | 7 | 1.75 | 8 per<br>100 | 2 | .50 | | Suitability | .20 | Very<br>Good | 4 | .80 | Good | 2 | .40 | Excellent | 6 | 1.20 | | Improved<br>Productivity | .15 | 240<br>per<br>cycle | 8 | 1.20 | 230<br>per<br>cycle | 7 | 1.05 | 200 per cycle | 6 | .90 | | Total Weight | 1.00 | Total | Score | 6.85 | Total | Score | 6 | Total S | Score | 4.2 | For each criterion, the score is determined by multiplying the weighting factor for the criterion by the rating for the alternative (the weighting factor and rating being subjective numbers). The cost of the alternatives would be divided by the total scores in the bottom row to produce a cost-benefit index (CBI) in order to arrive at a recommendation. An example is provided in Table A-2. Table A-2: Example of Cost-Benefit Index | Cost-Benefit Index | Alternative 1 | Alternative 2 | Alternative 3 | | |--------------------|---------------|---------------|---------------|--| | Cost | 24 | 20 | 19 | | | Benefit Score | 6.85 | 6 | 4.2 | | | Cost-Benefit Index | 3.50 | 3.33 | 4.52 | | Cost-effectiveness results based on averages need to be considered carefully. They are limited by the same drawbacks as cost-benefit ratios. The alternative that exhibits the smallest cost-effectiveness ratio, or the alternative with the highest cost-benefit ratio may not be the preferred alternative that maximizes net benefits. Incremental cost-effectiveness analysis <sup>4</sup>can help to avoid mistakes that can occur when proposed regulatory actions are based on average cost-effectiveness. Cost-effectiveness analysis can also be misleading when the "effectiveness" measure does not appropriately weigh the consequences of the alternatives. For example, when effectiveness is measured in a quantity of reduced emissions, cost-effectiveness estimates may be misleading unless the reduced emission outcomes result in the same health and environmental benefits. When faced with a situation where there are several alternatives but only one can be selected, then the competing choice method of cost-effectiveness analysis requires the use of the incremental costeffectiveness ratio method. The incremental cost-effectiveness ratio determines the marginal or incremental cost for an additional unit of benefit when choosing between mutually exclusive alternatives DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. Likewise if the range of alternatives considered result in different levels of stringency, the analysts should determine the cost-effectiveness of each option compared with the baseline as well as its incremental cost-effectiveness compared with successively more stringent requirements. The analysts should attempt to prepare an array of cost-effectiveness estimates that would allow for the comparison across different alternatives. However, if analyzing all possible combinations is not practical because there are many alternatives or possible interaction effects, then the analysts should use professional judgment to choose reasonable alternatives for consideration. Some caveats exist for the measurement of the associated costs using the cost-effectiveness technique: - The marginal cost-effectiveness should be calculated. It is the marginal or incremental cost-effectiveness of the alternative that should be compared with the baseline cost-effectiveness alternative (i.e., status quo). The policy that has the lowest marginal cost per unit of effectiveness will be the most efficient way to use resources. - The costs include all compliance costs incurred by both the private and public sectors. Such costs should be based on resource or opportunity costs, not merely the monetized costs of goods and services. - The costs should be properly defined and measured in the calculation of cost-effectiveness. - The costs incurred may be capital or operating expenditures that are spread over many years. Both the costs and benefits should be discounted to a common time period in order to make a comparison of alternative options. For example, if the benefits are measured in physical units instead of monetary values, than the non-monetized benefits (i.e., the measure of effectiveness) should be discounted to the same date in time as the costs to achieve these benefits.<sup>5</sup> There are shortcomings inherent in the cost-effectiveness approach. It is a poor measure of the consumers' willingness-to-pay (WTP)<sup>6</sup> principle because there is no monetary value placed on the benefits. Moreover, in the calculation of cost-effectiveness, the cost numerator does not take into account the scale of alternative options. Nevertheless, the cost-effectiveness ratio is a useful criterion for selection of alternative regulatory options when the benefits cannot be monetized. OMB does not require agencies to use any specific measure of effectiveness. In fact, OMB encourages agencies to report results with multiple measures of effectiveness that offer different insights and perspectives. The regulatory analysis should explain which measures were selected and why, and how they were implemented.<sup>7</sup> OMB Circular A-4, "Time Preference for Non-Monetized Benefits and Costs." Willingness-to-pay is defined as that amount of money that, if taken away from income, would make an individual exactly indifferent between experiencing the specified outcome and not experiencing either the improvement or any change in income. OMB Circular A-4. ## A.4.3 Threshold Analysis Break-even analysis is one alternative that can be used when either risk data or valuation data are lacking. Analysts who have per-unit estimates of economic value but lack risk estimates cannot quantify net benefits. They can, however, estimate the number of cases (each valued at the per-unit value estimate) at which overall net benefits become positive, or where the regulatory action will break-even. Consider a proposed regulatory action that is expected to reduce the number of cases resulting in outcome X with an associated cost estimate of 1 million. Further, suppose that the analysts estimate that the WTP to avoid a case resulting in outcome X is \$200, but because of limitations in data, it is not possible to generate an estimate of the number of cases of this outcome reduced by this regulatory action. In this case, the proposed regulatory action must reduce the number of cases by 5,000 in order to "break-even." This estimate then can be assessed for plausibility either quantitatively or qualitatively. Decisionmakers must determine if the break-even value is acceptable or plausible. Similar analyses can be performed when analysts lack valuation estimates that produces a break-even value requiring assessment for credibility and plausibility. Continuing with the example above, suppose the analyst estimates that the proposed policy would reduce the number of cases of endpoint X by 5,000 but does not have an estimate of WTP to avoid a case of this outcome. In this case, the policy can be considered to break-even if WTP is at least \$200. One way to assess the credibility of economic breakeven values is to compare them to effects that are more or less severe than the outcome being evaluated. For the break-even value to be plausible, it should fall between the estimates for these more and less severe effects. For the example above, if the estimate of WTP to avoid a case of a more serious effect was only \$100, the above break-even point may not be considered plausible. Break-even analysis is most effective when there is only one missing value (i.e., unknown) in the analysis. For example, analysts missing estimates for two different unknowns (but having valuation estimates for both), must consider a "break-even frontier" that allows the values of both unknowns to vary. Using this approach, it is possible to construct such a frontier, but it is difficult to determine which points on the frontier are relevant for regulatory analysis. An NRC regulatory analysis performed in 1992 used break-even analysis in the evaluation for the adoption of a proposed rule (Ref. 11) regarding air gaps to avert radiation exposure resulting from NRC-licensed users of industrial gauges. The NRC found insufficient data to determine the averted radiation exposure. To estimate the reduction in radiation exposure, the NRC performed a breakeven analysis. The NRC assumed a source strength of one curie for a device with a large air gap, which produces 1.3 rem per hour at a distance of 20 inches from a cesium (Cs)-137 source. Assuming half this dose rate would be produced, on average, in the air gap, and that a worker is within the air gap for four hours annually, the NRC estimated the worker would receive a radiation dose of 2.6 rem per year. The NRC estimated that adopting the proposed air-gap rule would be cost-effective if 347 person-rem per year were saved. At an averted occupational radiation dose of 2.6 person-rem per year for each gauge licensee, incidents involving at least 133 gauges would have to be eliminated. Given the roughly <sup>8</sup> OMB Circular A-4 refers to these values as "switch point" in its discussion of sensitivity analysis. DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. 3,000 gauges currently used by these licensees, the proposed rule would only have to reduce the incident rate by roughly 4%, a value the NRC believed to be easily achievable. As a result, the NRC staff recommended adoption of the air-gap rule. ## A.4.4 Bounding Analysis Bounding analysis may be used when analysts lack value estimates for a particular outcome. As suggested above, reducing the risk of health effects that are more severe and of longer duration should be valued more highly than those that are less severe and of shorter duration, all else being equal. If valuation estimates are available for effects that are unambiguously "worse" and others that are unambiguously "not as bad," then the analysts can use these estimates as the upper and lower bounds on the value of the effect of concern. Presenting alternative benefit estimates based on each of these bounds can provide valuable information to decisionmakers. If the sign of the net benefit estimate is positive across this range, there is confidence that the proposed regulatory action is welfare enhancing. Analysts should carefully describe judgments or assumptions made in selecting appropriate bounding values. ### A.4.5 Pros and Cons Analysis Pros and cons analysis is a qualitative comparison method in which good things (pros) and bad things (cons) are identified about each alternative. Lists of the pros and cons are compared one to another for each alternative. The alternative with the strongest pros and weakest cons is preferred. It requires no mathematical skill and is relatively easy to implement. #### A.4.6 Trade-Off Analysis Trade-off (or opportunity cost) analysis is a method that evaluates a situation where resources are limited, requiring the pursuit of one action over another. The opportunity cost of an item is what you give up to obtain that item. The opportunity cost of any action is the next best alternative to that action - or put more simply, "What you would have done if you didn't make the choice that you did?" For a trade-off analysis, each alternative is evaluated in terms of what must be given up in order to be pursued. Identifying trade-offs is conducted by evaluating each alternative individually. Tradeoffs can be described in monetized and non-monetized terms such as describing an activity to carry out which precludes doing something else. Where feasible, the analysts should attempt to describe the tradeoffs and quantify them. For example, an alternative is to conduct more training of plant maintenance workers. This means that the company's maintenance workers will attend training classes and sit for qualification exams more frequently. As a result, the plant maintenance workers will have less time (XX hours or days per week) and/or opportunity to perform equipment maintenance. #### A.4.7 Rank Order / Weight Based Analysis Allows for selection based on quantifiable and non-quantifiable costs and benefits. Allows for the Commission to adjust criteria based on perceived importance. A major drawback to this method is that it implies objectivity when there is no reliable basis for the ranking, which may DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. garner criticism and be difficult to make quantitative statements about the actual difference between alternatives. #### A.4.8 A Fortiori Analysis An "a fortiori" analysis is made to intentionally favor alternative solutions when compared to the solution that is initially judged as best. The other alternatives are deliberately weighted to make them look better. If the judged-best solution still remains the best, its position as the likely choice is further strengthened. #### A.4.9 Maximin and Maximax Analysis The maximin and maximax analysis are two criteria of decision theory where multiple alternatives can be compared against one another under conditions of uncertainty. In the maximin analysis, we look at the worst that could happen in each alternative for a given outcome and then choose the least worst alternative. I.e. we select the alternative whose loss is the better loss of all other alternatives given the circumstances at hand. This decision making is based on pessimistic loss, where we assume that the worst can happen will, and choose the alternative with the best worst case scenario. In the maximax analysis we look at the best that can happen in each alternative for a given outcome and then choose the alternative that is the best of the best. I.e. the alternative whose gain is the best of the best of all other alternatives given the circumstances at hand. This decision making is based on optimistic gain, where we assume that we will get the most possible in an alternative under conditions of uncertainty, then choose the alternative with the best case scenario. An example of applying the maximin and maximax analysis would be to alternatives that pertain to the modification of drug testing for fitness for duty. In this hypothetical regulatory action, there are three alternatives for drug testing with the first alternative representing the status quo. These alternatives have to do with modifying the procedures and cut off levels for drug testing in order to reduce false positives. The exception is the first alternative (the status quo) which Black's Law Dictionary, Sixth Edition, defines a fortiori as "with stronger reason; much more. A term used in logic to denote an argument to the effect that because one ascertained fact exists, therefore another, which is included in it, or analogous to it, and which is less improbable, unusual, or surprising, must also exist." DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. represents the current procedures for conducting drug testing. There are three possible outcomes for drug testing - 1) Test 10 times a year. - 2) Test 15 times a year. - 3) Test 20 times a year. For each alternative, the expected number of false positives for each outcome of drug testing is determined by a panel of medical experts and given in the table below. | Frequency of Drug Tests Per Year> | 10 | 15 | 20 | |-----------------------------------|----|----|----| | Alternative 1 | 3 | 4 | 5 | | Alternative 2 | 1 | 2 | 5 | | Alternative 3 | 2 | 3 | 4 | In the maximin analysis, we look at the highest number of false positives (worst gain) for each alternative over all possible outcomes and chose the alternative with the lowest number of the false positives (best of the worst) for some outcome. Looking at each alternative we have the following: - 1) For alternative 1, the highest number of false positives is 5 for testing 20 times a year. - 2) For alternative 2, the highest number of false positives is 5 for testing 20 times a year. - 3) For alternative 3, the highest number of false positives is 4 for testing 20 times a year. According to the maximin analysis we would choose alternative 3 for testing 20 times a year, since this alternative has the lowest of the three highest number of false positives I.e. 4 is the smaller than 5. In the maximax analysis, we look at the lowest number of false positives (best gain) for each alternative over all possible outcomes and chose the alternative with the lowest number of false positives for some outcome. Looking at each alternative we have the following: - 1) For alternative 1, the lowest number of false positives is 3 for testing 10 times a year. - 2) For alternative 2, the lowest number of false positives is 1 for testing 10 times a year. - 3) For alternative 3, the lowest number of false positives is 2 for testing 10 times a year. According to the maximax analysis we would choose alternative 2 for testing 10 times a year, since it has the lowest number of false positives. I.e. 1 is smaller than 2 and 3. As to which result to choose (maximin or maximax) depends on personal preference of the decision maker. The maximin criteria involves selecting the alternative that maximises the minimum pay-off achievable and so a decision maker who values a guaranteed minimum at the risk of loosing the opportunity to make big gains would opt for the maximin result. The maximax DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. criteria involves selecting the alternative that maximizes the maximum payoff available and hence this approach would be more suitable for an optimist, or 'risk-seeking' investor, who seeks to achieve the best results if the best happens. ## A.4.10 Conjunctive and Disjunctive Analysis The conjunctive and disjunctive analysis method require satisfactory rather than best performance in each decision criterion. The conjunctive step requires that an alternative must meet a minimal performance threshold for all criteria. The disjunctive step requires that the alternative should exceed the given threshold for at least one criterion. Any alternative that does not meet the conjunctive or disjunctive rules is deleted from the further consideration. These screening rules can be used to select a subset of alternatives for analysis by other, more complex methods. ## A.4.11 Lexicographic Analysis This analysis involves lexicographic ordering, which ranks alternatives one at a time, starting with the most important and heavly weighted criterion. If two or more alternatives are preferencially tied for the most important criterion, then they are compared on the second most important criterion. The surviving alternatives are then compared on the third most important criterion, and so on, until the tie is broken, resulting in the chosen alternative. This method is appealing beause of it simplicity, however it will require subjective agreement by participants on the ordering of criteria and the assumption of independent assessments when considering two or more criteria simulataneously. One example of lexicographic ordering would be the evaluation of alternatives where attributes of each alternative are considered. For example, such an evaluation could consider six attributes over three alternatives. This can be represented by a 6 x 3 matrix of potential evaluative information where the information can be contained on six attributes for three alternatives. An example set of attributues could consist of: - (1) Averted Occupational Exposure - (2) Reduction in Core Damage Frequency - (3) Training and certifications - (4) Required operator actions outside the control room - (5) Nuclear Consequence Management - (6) Standard Operation Procedures (SOP's) Using this information, questionnaires can be prepared that will collect and present evaluative information in a format similar to that found in product ratings summaries. The questionaries can then be distributed to a populace, where subjects can then be asked to evaluate the information provided by the questionnaire and rank order the attributes in terms of decreasing preference. In addition to the ranking task, the subjects can be asked to assign importance weights to various characteristics of each attribute, rate each alternative's characteristics on a desirability scale, and identify a minimum acceptability limit on each attribute's characteristic contained in the questionnaire. #### A.4.12 Decision Matrix The decision matrix is a popular method for comparing and prioritizing a list of alternatives. It is a highly flexible tool able to effectively evaluate non-monetized and non-quantitative costs and benefits. Decision criteria are monetized, which are objective and quantifiable, or non-monetized, which are subjective and not directly quantifiable. While both types of criteria are considered when preparing a cost-benefit analysis, the monetized criteria demand a more rigorous analysis specifically because they are objective and quantifiable and less influenced by subjective assessment. If the monetized criteria and non-monetized criteria are used in a single decision matrix, then the analysts would have to apply subjective evaluation to the monetized data, which would weaken or degrade the value of that data. Therefore, quantified cost and benefits should be kept separate from non-monetized costs and benefits, and not combined in a single decision matrix. The best approach is to use a decision matrix to evaluate the subjective criteria, evaluate the quantified monetized data separately, and then consider both monetized and non-monetized data in order to develop a staff recommendation. When considering a regulatory issue in generalized form with m qualitative criteria and n alternatives, let $\mathbf{C}_1,...,\mathbf{C}_m$ and $\mathbf{A}_1,...,\mathbf{A}_n$ denote the qualitative criteria and alternatives, respectively. As shown in Figure A-1, each row belongs to a qualitative criterion and each column describes the performance of an alternative. The score $a_{ij}$ describes the performance of alternative $\mathbf{A}_j$ against qualitative criterion $\mathbf{C}_i$ . For the sake of simplicity, the specified convention is that a higher score value means a better performance since any goal of minimization can be easily transformed into a goal of maximization. Figure A-1: The Decision Matrix As shown in Figure A-1, weights $w_1,...,w_m$ are assigned to the criteria. Weight $w_i$ reflects the relative importance of criteria $\mathbf{C}_i$ to the decision, and by convention is assumed to be positive. The weights of the criteria are usually determined on subjective basis and represent the opinion of the analysts or the synthesized opinions of a group of experts using a group decision technique. The values $x_1, ..., x_n$ associated with the alternatives in the decision table are the final ranking values of the alternatives. By convention, a higher ranking value means a better performance of the alternative, so the alternative with the highest ranking value is the best of the alternatives. This technique can partially or completely rank the alternatives: a single most preferred alternative can be identified or a short list of a limited number of alternatives can be selected for subsequent detailed appraisal using other methods. The multi-attribute utility theory (MAUT) and outranking methods are two main techniques for assigning weights in decision matrices. #### A.4.12.1 Multi-attribute Utility Theory Technique The family of MAUT methods consists of aggregating the different criteria into a function, which is maximized. Thereby the mathematical conditions of aggregations are examined. This theory allows for the complete compensation between criteria (i.e. the gain on one criterion can compensate the lost on another) (Ref. 1). In most of the approaches based on the MAUT, the weights associated with the criteria can properly reflect the relative importance of the criteria only if the scores $a_{ij}$ are from a common, dimensionless scale. The basis of MAUT is the use of utility functions. Utility functions can be applied to transform the raw performance values of the alternatives against diverse criteria, both factual (objective, quantitative) and judgmental (subjective, qualitative), to a common, dimensionless scale. In practice, the intervals [0,1] or [0,100] are used for this purpose. Utility functions play another very important role: they convert the raw performance values so that a more preferred performance obtains a higher utility value. A good example is a criterion reflecting the goal of cost minimization. The associated utility function must result in higher utility values for lower cost values. It is common that some normalization is performed on a nonnegative row in the matrix of the $a_{ij}$ entries. The entries in a row can be divided by the sum of the entries in the row, by the maximum element in the row, or by a desired value greater than any entry in the row. These normalizations can be also formalized as applying utility functions. #### A.4.12.2 Simple Multi-attribute Rating Technique (SMART) SMART is the simplest form of the MAUT methods. The ranking value $x_i$ of alternative $\mathbf{A}_j$ is obtained simply as the weighted algebraic mean of the utility values associated with it as shown in the equation below: $$x_j = \frac{\sum_{i=1}^m w_i a_{ij}}{\sum_{i=1}^m w_i}$$ , $j = 1, ..., n$ . Where; a = alternative m = number of criteria (i.e., 1 to m) n = number of alternatives (i.e., 1 to n) w = weights (i.e., $w_1$ reflects the relative importance of criteria $\mathbf{a}_1$ to the decision $x_i$ = ranking value of alternative $A_i$ Besides the above additive model, another method is to assess weights for each of the criteria to reflect its relative importance to the decision. First, the criteria are ranked in order of DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. importance and 10 points are assigned to the least important criterion. Then, the next-least-important criterion is chosen, more points are assigned to it, and so on, to reflect their relative importance. The final weights are obtained by normalizing the sum of the points to one. However, the comparison of the importance of the decision criteria is meaningless if it does not also reflect the range of the utility values of the alternatives. #### A.4.12.3 Generalized Means Technique In a decision problem the vector $\mathbf{x} = (\mathbf{x}_{1,\dots,\mathbf{x}_n})$ plays a role of aggregation taking the performance scores for every criterion with the given weight into account. This means that the vector $\mathbf{x}$ should fit into the rows of the decision matrix as well as possible. Mészáros and Rapcsák (1996) (Ref. 2) showed that the optimal solution is a positive multiple of the vector of the weighted geometric means of the columns, consequently, with: $$w = \sum_{i=1}^{m} w_i$$ With the values $$x_j = \prod_{i=1}^m a_{ij}^{w_i/w}$$ , $i = 1, ..., n$ where: $a_{ij}$ = the alternative listed in the ith row and jth column w = total of all weighting factors, wi $x_i$ = ranking value of alternative $a_i$ ## A.4.12.4 Analytic Hierarchy Process The basic idea of the Analytic Hierarchy Process (AHP) is to convert subjective assessments of relative importance to a set of overall scores or weights. The AHP is one of the more widely applied multi-attribute decision making methods. The AHP methodology is based on pairwise comparisons of the following type: "How important is criterion $\mathbf{C}_i$ relative to criterion $\mathbf{C}_j$ ?" Questions of this type are used to establish the weights for criteria and similar questions are to be answered to assess the performance scores for alternatives on the subjective (judgmental) criteria. To derive the weights of each criteria, the analysts must respond to a pairwise comparison question asking the relative importance of the two criteria. The analyst responses use the following nine-point scale to express the intensity of the preference for one criterion versus another: 1 = Equal importance or preference. 3 = Moderate importance or preference of one over another. 5 = Strong or essential importance or preference. 7 = Very strong or demonstrated importance or preference. 9 = Extreme importance or preference. If the analyst judges that criterion $\mathbf{C}_j$ is more important than criterion $\mathbf{C}$ , then the reciprocal of the relevant index value is assigned. Let $c_{ij}$ denote the value obtained by comparing criterion $C_i$ relative to criterion $C_j$ . Because the analyst is assumed to be consistent in making judgments about any one pair of criteria and since all criteria will always rank equally when compared to themselves, then: $$c_{ji} = \frac{1}{c_{ij}}$$ and $c_{ii} = 1$ This means that it is only necessary to make $\frac{1}{2}$ m (m-1) comparisons to establish the full set of pairwise judgments for m criteria. The entries $c_{ij}$ , i,j=1,...,m can be arranged in a pairwise comparison matrix C of size $m \times m$ . Therefore, analysts must perform 15 pairwise judgments to establish the full set of pairwise judgments for 6 criteria. The next step is to estimate the set of weights that are most consistent with the relativities expressed in the comparison matrix. Note that while there is complete consistency in the (reciprocal) judgments made about any one pair, consistency of judgments between pairs (i.e., $c_{ij}c_{kj}=c_{ik}$ ) for all i,j,k, is not guaranteed. Thus the task is to search for an m-vector of the weights such that the $m \times m$ matrix W of entries $w_i/w_j$ will provide the best fit to the judgments recorded in the pairwise comparison matrix C. The weighting method is one of the simplest multi-objective optimization that has been widely applied to find the non-inferior optimum solution. $^{10}$ Similarly to calculation of the weights for the criteria, AHP uses the same technique based on pairwise comparisons to determine the relative performance scores of the decision table for each of the alternatives on each subjective (judgmental) criterion. Now, the pairwise questions to be answered ask about the relative importance of the performances of pairs of alternatives relating the considered criterion. Responses use the same set of nine index assessments as before, and the same techniques can be used as at computing the weights of criteria. With the weights and performance scores determined by the pairwise comparison technique above, and after further possible normalization, alternatives are evaluated using any of the decision table aggregation techniques of the MAUT methods. The so-called additive AHP uses the same weighted algebraic means as SMART, and the multiplicative AHP is essentially based on the computation of the weighted geometric means. #### A.4.13 Outranking Methods Technique The outranking method is based on evaluating each pair of alternatives by considering two conditions as follows. Alternative $\mathbf{A}_i$ outranks $\mathbf{A}_i$ if generally the criteria $\mathbf{A}_i$ performs at least as This method may not be capable of generating the efficient solutions of the efficient frontier. Also, the optimal solution of a weighting problem should not be used as the best compromise solution, if the weights do not reflect the Commission's preferences or if the Commission does not accept the assumption of a linear utility function. DISCLAIMER: This is a working draft document for discussion purposes only. All information contained herein is subject to change upon further review by the U.S. Nuclear Regulatory Commission. good as $\mathbf{A}_{j}$ (concordance condition), while worse performance is still acceptable on the other criteria (non-discordance condition). After having determined for each pair of alternatives whether one alternative outranks another, these pairwise outranking assessments are combined into a partial or complete ranking. Contrary to the MAUT methods, where the alternative with the best value of the aggregated function can be obtained and considered as the best one, a partial ranking of an outranking method may not render the best alternative directly. A subset of alternatives can be determined such that any alternative not in the subset be outranked by at least one member of the subset. The aim is to make this subset as small as possible. This subset of alternatives can be used to screen a large list of alternatives into a shortlist, within which a good compromise alternative could be found by using other methods. The principal outranking methods assume data availability broadly similar to that required for the MAUT methods. This method requires that alternatives and criteria be specified, and uses the same data of the decision table, namely the values represented by $a_{ij}$ and $w_i$ . #### A.4.13.1 The ELECTRE I Method The ELECTRE I methodology is based on the concordance and discordance indices defined as follows. The analyst starts with the decision matrix data and normalizes the weighting so that the sum of the weights of all criteria equals 1. For an ordered pair of alternatives ( $\mathbf{A}_j$ , $\mathbf{A}_k$ ), the concordance index $\mathbf{c}_{jk}$ is the sum of all the weights for those criteria where the performance score of $\mathbf{A}_j$ is least as high as that of $\mathbf{A}_k$ . This is shown mathematically as: $$c_{jk} = \sum_{i: a_{ij} \ge a_{ik}} w_i, \ j, k = 1, ..., n \text{ where } j \ne k$$ Where the concordance index lies between 0 and 1. The computation of the discordance index $d_{jk}$ is a bit more complicated. The discordance index is zero if $\mathbf{A}_j$ performs better than $\mathbf{A}_k$ on all criteria. Otherwise, for each criterion where $\mathbf{A}_k$ outperforms $\mathbf{A}_j$ , the ratio is calculated between the difference in performance level between $\mathbf{A}_k$ and $\mathbf{A}_j$ , and the maximum difference in score on the criterion concerned between any pair of alternatives. This is shown mathematically as: or $$d_{jk}=0 \ if \ a_{ij}>a_{ik} \ , \ i=1,...,m$$ $$d_{jk}=\max_{i=1,...,m}\frac{a_{ik}-a_{ij}}{\max\limits_{j=1,...,n}a_{ij}-\min\limits_{j=1,...,n}a_{ij}} \ , \qquad j,k=1,...,n, \ j\neq k$$ The maximum of these ratios is the discordance index, which has a value between 0 and 1. A concordance threshold $c^*$ and discordance threshold $d^*$ are defined such that $0 < d^* < c^* < 1$ . Then, $\mathbf{A}_j$ outranks $\mathbf{A}_k$ if the $c_{ij} > c^*$ and $d_{ik} < d^*$ (i.e. the concordance index is above its threshold and the discordance index is below its threshold, respectively). #### Appendix A: Qualitative Factors Assessment Tools This outranking defines a partial ranking on the set of alternatives by identifying the set of alternatives that outrank at least one other alternative and are themselves not outranked. By using this method, the analysts identify the most promising alternatives. By interactively changing the level thresholds, the analyst also can change the size of this set. As shown, the ELECTRE I method may be used to construct a partial ranking and choose a set of promising alternatives. See Figueira et al (2004) (Ref 5) for more details regarding the ELECTRE methods. #### A.5. References - U.S. Nuclear Regulatory Commission (NRC). 2015. "Reassessment of NRC's Dollar per Person-Rem Conversion Factor Policy." NUREG-1530, revision 1, Draft for Comment, Washington, D.C. ADAMS Accession Number ML15237A211. Accessed at <a href="http://pbadupws.nrc.gov/docs/ML1523/ML15237A211.pdf">http://pbadupws.nrc.gov/docs/ML1523/ML15237A211.pdf</a> - U.S. Nuclear Regulatory Commission (NRC). 2014. SECY-14-0087, "Qualitative Consideration of Factors in the Development of Regulatory Analyses and Backfit Analyses,". ADAMS Accession Number ML14127A451. Accessed at http://pbadupws.nrc.gov/docs/ML1412/ML14127A451.pdf - 3 Keeney, R.L. and Raiffa, H. 1976. "Decisions with Multiple Objectives: Performances and Value Trade-Offs." Wiley, New York. - 4 Mészáros, Cs. and Rapcsák, T. 1996. "On sensitivity analysis for a class of decision systems." Decision Support Systems 16, 231-240. - 5 Figueira, J., Greco, S. and Ehrgott, M. (Eds.) 2004. "Multiple Criteria Decision Analysis: State of the Art Surveys." Springer, New York. - 6 Fulop, J. "Introduction to Decision Making Methods." Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences. Accessed at http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf - 7 Dalkey, N. and Helmer, O. 1963. "An Experimental Application of the Delphi Method to the use of Experts." Management Science 9 (3): 458–467. Accessed at http://www.rand.org/content/dam/rand/pubs/research\_memoranda/2009/RM727.1.pdf - 8 Bernice B. Brown. 1968. "Delphi Process: A Methodology Used for the Elicitation of Opinions of Experts." Paper published by RAND (Document No: P-3925, 1968, 15 pages). Accessed at http://www.rand.org/content/dam/rand/pubs/papers/2006/P3925.pdf - 9 U.S. Office of Management and Budget (OMB). 2003. "Informing Regulatory Decisions: 2003 Report to Congress on the Costs and Benefits of Federal Regulations and Unfunded Mandates on State, Local, and Tribal Entities." Accessed at <a href="https://www.whitehouse.gov/sites/default/files/omb/inforeg/2003">https://www.whitehouse.gov/sites/default/files/omb/inforeg/2003</a> cost-ben final rpt.pdf. 10 U.S. Office of Management and Budget (OMB). 2003. "Regulatory Analysis." Circular No. A-4. September 17, 2003. Accessed at <a href="https://www.whitehouse.gov/omb/circulars-a004-a-4/">https://www.whitehouse.gov/omb/circulars-a004-a-4/</a> 11 57 FR 56287; November 27, 1992