Appendix B. Slope Stability Analysis

Stability Analyses

Stability analyses were performed on eight cross sections of the proposed Mid-Barataria Sediment Diversion (MBSD) to assess the potential for stability concerns or problems along the channel alignment from the inlet system to the western end of the conveyance channel. Stability analyses were performed using the computer program SLOPE/W, part of the geotechnical analysis software package GeoStudio 2012, developed by GEO-SLOPE International, Ltd. SLOPE/W is a two-dimensional limit equilibrium stability analysis software program that permits slope stability calculation using various limit equilibrium methods. The Spencer (1967) method was selected for all slope stability analyses because it is a rigorous formulation that satisfies both moment equilibrium and force equilibrium.

Software integration features built into GeoStudio allow the user to import pore water pressure conditions calculated using SEEP/W into SLOPE/W. The seepage results discussed herein act as "parent" analyses for subsequent slope stability analyses. Slope-stability analyses, sometimes referred to as "child" analyses, are then dependent on the results of the parent seepage analysis. This parent/child coupling allows for identifying seepage-induced stability issues, examining the sensitivity of slope stability to selection of seepage parameters, and evaluating the effect of improvements such as seepage/stability berms or cutoff walls.

Seepage analyses were performed for the sections shown in Table B-1.

Cross section designation and station location	Rationale for selection	Exploration(s) used to develop stratigraphy and soil properties
18+00 to 45+00	Section along project centerline across MR&T Levee, inlet system, and temporary setback levee at approximate Station 42+00; point bar deposits	B-3C, IS-8A, NL-9A
35+00	Section transverse to the project centerline across the inlet system and temporary excavation setback levees, within the point bar deposits	IS-8A, NL-9A
55+00	Section at conveyance channel and guide levee; abandoned distributary channel deposits	NL-8A
67+00	Section at conveyance channel and guide levee beneath future LA 23 bridge; natural levee deposits	NL-7C, NL-10C
82+00	Section at conveyance channel and guide levee; abandoned distributary channel deposits	NL-6A
90+00	Section at conveyance channel and guide levee; at transition from natural levee deposits to marsh deposits	NL-5C, NL-11C

Table B-1. Cross sections for stability and seepage analysis

Cross section designation and station location	Rationale for selection	Exploration(s) used to develop stratigraphy and soil properties
110+00	Section at conveyance channel and guide levee; marsh deposits	NL-3A, NL-3C
130+00	Section at back structure; marsh deposits	NL-1C

Notes: LA 23 = Belle Chasse Highway; MR&T = Mississippi River and Tributary

Stability Parameter Selection

Two sets of stability parameters were developed for each cross section and applied using distinct material models. The first set consisted of fully drained strength parameters for use in steady-state stability analyses. The second set consisted of a combination of drained and undrained parameters depending on soil type (that is, undrained for non-free-draining soils and drained for free-draining soils) for use in rapid-flood stability analyses. Stability parameter selection was performed based on a review of the exploration logs associated with each cross section and available lab test results.

Drained strength parameters for steady-state stability analyses were selected primarily based on the Unified Soil Classification System (USCS). No site-specific drained strength testing was available to directly estimate drained strength parameters; therefore, drained strength parameters for analysis were conservatively assumed based primarily on USCS soil classifications. The U.S. Army Corps of Engineers (USACE) New Orleans District Engineering Division developed the *Hurricane and Storm Damage Risk Reduction System Design Guidelines*, June 2012 Revision, hereafter referred to as USACE Hurricane Guidelines. Chapter 3 of the USACE Hurricane Guidelines prescribes conservative drained strength values for various soil types for use in steady-state stability analyses when sitespecific data are unavailable. Effective cohesion was conservatively selected as zero for all soil types under drained conditions. Effective friction angles were selected from a range of 23 degrees for clay to 30 degrees for clean sand.

Undrained strength parameters for rapid-flood stability analyses were selected based on a combination of prescribed values and site-specific information. Sands were considered freedraining materials; therefore, drained parameters were used for rapid-flood stability analyses. Undrained strength parameters of silts were selected using the USACE Hurricane Guidelines. Undrained strength parameters in clays and clay/silt mixtures for rapid flood stability were selected based on unconsolidated undrained (UU) triaxial test results, geotechnical index testing, cone penetrometer test (CPT)-based strength correlations, estimated overconsolidation ratios (OCRs), an assumed normally consolidated undrained strength ratio (0.22), and field strength testing (field vane). Undrained strengths within normally consolidated clays were increased assuming an 8-foot-thick aerial preload fill (120 pounds per cubic foot [pcf]) left in place for one year and 50 percent pore pressure dissipation in foundation clays. A total undrained strength increase of up to 106 pounds per square foot (psf) was applied (that is, 8 foot fill × 50% consolidation × 120 pcf × 0.22 = 106 psf). Undrained strength parameters selected using the above methods were compared for consistency with undrained strength profiles produced by GeoEngineers for each exploration as presented in its *Draft Geotechnical 30% Design Engineering Data Report*, dated November 27, 2013. Undrained strengths used in the rapid-flood stability analyses do not match the GeoEngineers strength lines exactly, but were found to be similar within the upper soil layers that are expected to most greatly influence the critical slip circles in the stability analyses. Figures presented for each section in Appendix A show side-by-side comparisons of GeoEngineers' strength lines and undrained strength lines used in the analyses.

Stability Analysis Cases and Boundary Conditions

The levee and channel configuration analyzed at each cross section location corresponds to that shown in the drawings in Volume 1, General Civil Sitework. The levee and channel configurations, as well as that of the landside ditch (or polder), are based on operational requirements and include consideration of iterative slope stability analyses to help establish slope inclinations and the extent of the stability berm.

Stability analyses for the inlet system cross sections focused on the temporary (during construction) condition of the setback levees. Both of the analysis cases described below use steady-state seepage conditions calculated in Seepage Case 2 (flooded excavation), as described in Appendix A. No stability analyses were performed within the excavation because the cofferdam has not yet been included in the excavation model. Therefore, stability analyses of the excavation would not be representative of actual construction conditions. The following stability analysis cases were evaluated at temporary setback levees for the inlet system excavation (Section 18+00 to 45+00 and Section 35+00):

- **Case 1** Water level in the Mississippi River at elevation +12.25 feet, water level in the inlet system excavation at elevation +12.25 feet, and water level on the nonexcavation side (polder side) of the temporary setback levee at elevation -3.5 feet. This case represents the condition when the river is at flood level, the water level within the inlet system excavation matches that of the river, and the water level on the nonexcavation side of the temporary setback levee is at a relatively low groundwater level (estimated based on piezometer data recorded in piezometers PZ-13 to PZ-15). This case represents the hypothetical condition where there is a breach (such as in the MR&T Levee), causing flooding of the inlet system excavation. Analyses were performed for some time well after flooding has occurred, and assumes steady-state seepage conditions and corresponding drained conditions for soil strength. Analyses were focused on slope surfaces in the temporary setback levee in the direction away from the inlet system excavation. A 65-foot-long stability berm was added on the polder-side of the temporary setback levees so that stability criteria are met.
- **Case 2** This stability case is subjected to the same flood water levels described above for Case 1. Analyses were performed assuming rapid flood loading conditions and corresponding undrained conditions for soil strength. Analyses were focused on slope surfaces in the temporary setback levee in the direction away from the inlet system excavation. The stability berm on the polder-side of the setback levee (described for Case 1) was included in the analysis.

Stability analyses for the conveyance channel cross sections (Section 55+00 to Section 130+00) were focused on the permanent (long-term) condition of the guide levees

and channel. Stability Case 1 uses steady-state seepage conditions from Seepage Case 1. Stability Cases 2 and 3 use steady-state seepage conditions from Seepage Case 2. The seepage cases are presented in this appendix. The following stability analysis cases were evaluated for the conveyance channel cross-sections:

- **Case 1** Water level in the channel at elevation +10 feet and water level landside of the guide levee taken as corresponding to typical low groundwater level, which ranges from about elevation –3.5 feet at Station 55+00 to elevation –6.8 feet at Station 130+00. This case represents the condition when the channel is operating at its full design capacity coupled with relatively low groundwater levels in the adjacent areas. Analyses were performed assuming steady-state seepage conditions and corresponding drained conditions for soil strength. Analyses were focused on slip surfaces toward the landside direction (toward the ditch). Both global-scale slip surfaces (from about the levee crown to the ditch) and local slip surfaces (from the stability berm toe to the ditch) were analyzed.
- Case 2 Water level in the channel at elevation 0 feet; water level landside of the guide levee at elevation +10 feet. This case is approximately the inverse of Case 1 and represents the condition when there is flooding outside of the guide levees (such as may occur if there is a breach in one of the other levees) while water in the channel is at a normal operating level. Analyses were performed assuming steady-state seepage conditions and corresponding drained conditions for soil strength to represent the case where water levels are sustained at flood levels for a relatively long period of time. Both global scale slip surfaces (from about the levee crown to the channel toe) and local slip surfaces (from the stability berm toe to the channel toe) were analyzed.
- **Case 3** Water level in the channel at elevation 0 feet; water level landside of the guide levee at elevation +10 feet. This case has the same water levels as Case 2 but assumes that the water level landside of the guide levee reaches elevation +10 feet quickly, to represent the rapid-flood loading condition. Analyses were performed using undrained conditions for soil strength, but the phreatic surface within the levee and pore pressures within foundation layers were conservatively modeled using steady-state seepage conditions. Both global scale slip surfaces (from about the levee crown to the channel toe) and local slip surfaces (from the stability berm toe to the channel toe) were analyzed.

The USACE New Orleans District Section 3 Guidance Document served as a reference for developing some of the criteria used for analyses for the MBSD. Based on this document and others, the following target factors of safety (FOS) for stability were adopted for this project:

- Steady-State Stability $FOS \ge 1.5$
 - Case 1 for inlet system (Section 18+00 to 45+00 and Section 35+00)
 - Case 1 and 2 for conveyance channel (Section 55+00 to Section 130+00)
- Rapid Flood Stability FOS > 1.3
 - Case 2 for inlet system (Section 18+00 to 45+00 and Section 35+00)
 - Case 3 for conveyance channel (Section 55+00 to Section 130+00)

General Modeling Assumptions

The following discussion outlines some general modeling assumptions that are used for all stability analyses, both steady-state (drained) and rapid-flood (undrained) conditions:

- 1. All stability analyses are performed using steady-state pore pressures developed from the seepage analyses described in Appendix A. We acknowledge that this may be a conservative assumption for rapid-flood stability analyses; however, we consider the assumption to be appropriate considering the limited amount of subsurface data available at this time.
- Five-foot-deep tension cracks filled with water were applied to levee embankments and berms. This assumption is adapted from the USACE Engineering Manual that recommends applying 4-foot-deep tension cracks for clayey embankments. An extra 1 foot was added to this recommendation to account for the relatively high plasticity of the on-site clays.
- 3. Stability model geometry is identical to the seepage model geometry for all sections.
- 4. The Spencer method was selected for all stability analyses, and slip surfaces were defined using entry and exit ranges. Multiple entry and exit ranges were examined to identify different failure modes for each model. The option in SLOPE/W to optimize the critical slip surface location was not used for the analyses presented herein.

Stability Analysis Results

Results of the stability analyses are presented in the figures within this appendix. For each analysis cross section, summary figures describe soil layering, stability parameters, water level conditions, calculated critical FOS, and section-specific assumptions. Graphical SEEP/W outputs show locations of calculated critical slip surfaces and other pertinent result information. For additional discussion of stability results, refer to Sections 7.1 and 8.1.

STABILITY ANALYSIS PARAMETERS

	Steady-State Stability								Rapid Loading Stability ³																				
		Lay	ers		M-C Mode	el Parameters	Current S	trength Par	ameters			Assum	ned Strength	Increase d	ue to Surcha	arging ²						Geo-Stu	dio Mater	ial Mode	l Param	neters			
Layer	Top Elevation (ft) ¹	Bottom Elevation (ft) ¹	Soil Type	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/σ _{vo} ') _{NC} (-)	Cohesion (psf)	Friction Angle (deg)	Surcharge Load at Surface (psf)	Assumed Uniform u _e Dissipation ²	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ⁴	Phi (deg)	C (psf)	C - Top of Layer (psf)	C - Rate of Change (psf/ft)	C - Max (psf)	C ₁ (psf)	Y ₁ C ₂ (ft) (psf	Y ₂ (ft)	C ₃ (psf)	Y ₃ (ft)
1	16	3	Levee/Berm	120	0	28		600	0										M-C	0	600								
2	3	-7	CL/CH	90	0	23	0.22	325		960	50%	3	480	756	106	166	325	-33.1	M-C	0	325								
3	-7	-28	CL	90	0	23	0.22	325		960	50%	3	756	1336	166	294	325	-33.1	M-C	0	325								
4	-28	-61	ML/SM/CL Interbedded	110	0	25		200	8	960	50%	3	1336	2906					M-C	8	200								
5	-61	-91	SM	115	0	28		0	28	960	50%	3	2906	4484					M-C	28	0								
6	-91	-107	SP/SM	120	0	28		0	28	960	50%	3	4484	5406					M-C	28	0								
7	-107	-180	СН	110	0	23	0.22			960	50%	3	5406	8881	1189	1954			S = f(depth) 0		1189	10.5	1954					
8	3	-180	CL	90	0	23	0.22	325		960	50%	3	480	5531	106	1217	325	-33.1	Spatial M- C, Linear Cohesion Function	0					325	3 325	-33.1	1217	-180
9	3	-132	Soil-Cement Cutoff Wall	120	0	28		100	0	960	50%	3	8881	16657					M-C	0	100								

Notes: 1. Top Elevation and Bottom Elevation for Layers 1 to 7 vary in the model. The elevations noted in the table above correspond to approximate Stations 41+00 to 45+00, which corresponds to the slope stability area of interest (the temporary setback levee at Station 42+00). 2. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 3. Refer to Figure B-1.2 for the strength profile used in rapid flood stability analyses.

4. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; S=f(depth) indicates that undrained shear strength increases with depth; and Spatial M-C, Linear Cohesion Function indicates that the undrained shear strength profile is fully specified within the layer.

SEEPAGE ANALYSIS CASES

	Flow Regime	Water Surface E	Elevations (WSE) (fe	et)	Remarks				
Seepage Case	Mississippi River		Excavation Area	Setback Polder	Keinaks				
1	Steady-State	12.25	-50	3	Mississippi River WSE at Flood Level; Excavation area WSE at bottom of excavation; Polder WSE at Ground Surface				
2	Steady-State	12.25	12.25	-3.5	Mississippi River WSE at Flood Level; Excavation area WSE at Flood Level; Polder WSE from low water observations in PZ-15				

STABILITY ANALYSIS CASES AND RESULTS

	Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
Γ	1	2	Steady-State Stability	Drained	Polder-side	1.50	1.54	Global	1, 2, 3	Setback levee crown to polder	Berm was sized such that Steady-State stability criteria and
	2	2	Rapid Flood Loading	Undrained	Polder-side	1.30	1.75	Global	1, 2, 3, 4	Setback levee crown to polder	

NOTES

8

9

FSS

1 Excavation Cross-Section from 30% Civil Design geometry and discussions with the project team.

2 Borings IS-8A and NL-9A and CPT B-3C were considered to develop the stratigraphy shown.

DESCRIPTION

- 3 Stability is calculated using pore pressure developed from the parent steady-state seepage model.
- Model extends approximately 1100 feet waterside of the MR&T Levee Crown and approximately 600 feet polder-side of the Setback Levee crown.
 A 300 foot wide clay block is modeled polder-side of the setback levee to simulate the change to more clayey geologic conditions west
 of the point bar deposits.
- 5 of the point bar deposits.

- 6 The Spencer analysis method was used to evaluate stability.
- 7 5-foot tension cracks filled with water are applied in the embankment.
 - The Soil-Cement Cutoff Wall is 3 feet wide and extends from the top of Layer 2 to the bottom of Layer 6 The area of interest for slope stability is the temporary setback levee area (Station 41+00 to 45+00)

30 PERCENT DESIGN

COASTAL P

COASTAL PROTECTION & RESTORATION AUTHORITY ENGINEERING DIVISION

450 LAUREL STREET BATON ROUGE, LOUISIANA 70801

ON ROUGE, LOUISIANA 70801

DRAWN BY:

DESIGNED BY:

e met

NOT TO SCALE

INLET EXCAVATION STABILITY ANALYSIS STATION: **41+00 to 45+00** STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING				
STATE PROJECT NUMBER: BA-153	REPORT				
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014				
APPROVED BY:	FIGURE: B-1.1				

MATERIALS

MATERIALS

STABILITY ANALYSIS PARAMETERS

	Steady-State Stabilit															Rapid Load	ling Stability ²												
			Layers		M-C Model	Parameters ³	Current St	trength Pa	rameters			Assur	ned Strengt	n Increase d	ue to Surcha	arging ¹						Geo-St	tudio Mater	ial Mode	el Para	meters	i		
Layer	Top Elevatior (ft)	Bottom Elevation (ft)	Soil Type	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/σ _{vo} ') _{NC} (-)	Cohesior (psf)	Friction Angle (deg)	Surcharge Load at Surface ¹ (psf)	Assumed Uniform u _e Dissipation ¹	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ³	Phi (deg)	C (psf)	C - Top of Layer (psf)	C - Rate of Change (psf/ft)	C - Max (psf)	C ₁ (psf)	Y ₁ (ft)	C ₂ Y ₂ (psf) (ft	C ₃ (psf) Y ₃ (ft)
1	16	3	Levee	120	0	28		600	0										M-C	0	600								
2	3	-8.3	CL/CH	90	0	23	0.22	325		960	50%	3	480	792	106	174	325	-33.1	M-C	0	325								
3	-8.3	-32.5	CL	90	0	23	0.22	325		960	50%	3	792	1460	174	321	325	-33.1	M-C	0	325								
4	-32.5	-71	ML/SM/CL Interbedded	110	0	25		200	8	960	50%	3	1460	3292					M-C	8	200								
5	-71	-92	SM	115	0	28		0	28	960	50%	3	3292	4397					M-C	28	0								
6	-92	-114	SP/SM	120	0	28		0	28	960	50%	3	4397	5664					M-C	28	0								
7	-114	-130	СН	110	0	23	0.22			960	50%	3	5664	6426	1246	1414			S = f(depth)	0		1246	10.5	1414					
8	3	-114	Soil-Cement Cutoff Wall	120	0	28		100	0	960	50%	3	6426	13165					M-C	0	100								

Notes: 1. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 2. Refer to Figure B-2.2 for the strength profile used in rapid flood stability analyses.

3. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; and S=f(depth) indicates that undrained shear strength increases with depth.

SEEPAGE ANALYSIS CASES

Seepage		Water Surface	Elevations (WSE) (fe	eet)	Demortes
Case	Flow Regime	Mississippi River	Excavation Area Setback Pole		Remains
1	Steady-State	12.25	-50	3	Mississippi River WSE at Flood Level; Excavation area WSE at bottom of excavation; Polder WSE at Ground Surface
2	Steady-State	12.25	12.25	-3.5	Mississippi River WSE at Flood Level; Excavation area WSE at Flood Level; Polder WSE from low water observations in PZ-15

STABILITY ANALYSIS CASES AND RESULTS

Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
1	2	Steady-State Stability	Drained	Polder-side	1.50	2.47	Global	1, 2, 3	Setback levee crown to polder	
2	2	Rapid Flood Loading	Undrained	Polder-side	1.30	1.69	Global	1, 2, 3	Setback levee crown to polder	

NOTES

Excavation Cross-Section at Station 35+00 from 30% Civil Design geometry and discussions with the project team. 1

2 Borings IS-8A and NL-9A were considered to develop the stratigraphy shown.

Stability is calculated using pore pressure developed from the parent steady-state seepage model. 3

Symmetry was used to model only one side of the cross-section with respect to the channel centerline. 4

Model extends 1600 feet landward of approximate Channel centerline. 5

The Spencer analysis method was used to evaluate stability. 6

7 5-foot tension cracks filled with water are applied in the embankment.

The Soil-Cement Cutoff Wall is 3 feet wide and extends from the top of Layer 2 to the bottom of Layer 6.

30 PERCENT DESIGN

NOT TO SCALE

INLET EXCAVATION STABILITY ANALYSIS STATIONS: 35+00 STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-2.1

DESCRIPTION

DAT

DRAWN BY:

DESIGNED BY:

NOT TO SCALE								
INLET EXCAVATION STABILITY ANALYSIS								
STATIONS: 35+00 SEEPAGE CASE: 2 STABILITY CASE: 1 (Steady-Sta WSE In River: +12.25 feet WSE In Excavation: +12.25 feet WSE In Polder: -3.5 feet	te Stability)							
MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING							
STATE PROJECT NUMBER: BA-153	REPORT							
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014							
APPROVED BY:	FIGURE: B-2.3							

MATERIALS

Project: Mid-Barataria Sediment Diversion Created By: Crosariol, Victor Date: 12/2/2013 File Name: 03_Station 35+00_30% Levee.gsz Analysis: 02 - Flooded Excav w/ cutoff_Stab_Undrained

RF 1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF 2 - CL/CH +3.0 to -8.3 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 90 pcf Cohesion': 325 psf Phi': 0 ° RF_3 - CL -8.3 to -32.5 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 90 pcf Cohesion': 325 psf Phi': 0 ° RF_4 - ML/SM/CL Interbedded -32.5 to -71.0 (Kv=5x10-5 cm/sec, Kv/Kh=0.167) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 200 psf Phi': 8 ° RF_5 - SM -71.0 to -92.0 (Kv=1.2x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 0 psf Phi': 28 ° RF_6 - SP/SM -92.0 to -114.0 (Kv=2x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° RF_7 - CH -114.0 to -130.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 110 pcf C-Top of Layer: 1,246 psf C-Rate of Change: 10.5 psf/ft C-Maximum: 1,414 psf RF_8 - Soil-Cement Cutoff Wall (Kv=1x10-6 cm/sec, Kv/Kh=1.0) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 100 psf Phi': 0 °

NOT TO SCALE								
INLET EXCAVATION STABILITY ANALYSIS								
STATIONS: 35+00 SEEPAGE CASE: 2								
STABILITY CASE: 2 (Rapid Flood Stability) WSE In River: +12.25 feet WSE In Excavation: +12.25 feet WSE In Polder: -3.5 feet								
MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING							
STATE PROJECT NUMBER: BA-153	REPORT							
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014							
APPROVED BY:	FIGURE: B-2.4							

STABILITY ANALYSIS PARAMETERS

Lovero				Steady-St	Steady-State Stability			Rapid Loading Stability ²																						
Layers					M-C Model	Parameters ³	Current Strength Parameters			Assumed Strength Increase due to Surcharging ¹								Geo-Studio Material Model Parameters												
Layer	Top Elevation (ft)	Bottom Elevation (ft)	Soil Type	Total Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/ơ _{vo} ') _{NC} (-)	Cohesion (psf)	Friction Angle (deg)	Surcharge Load at Surface ¹ (psf)	Assumed Uniform u _e Dissipation ¹	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ³	Phi (deg)	C (psf) C - ⁻ of La (ps	Fop C ayer (sf)	C - Rate of Change (psf/ft)	C - Max (psf)	C ₁ (psf)	Y ₁ (ft)	C ₂ (psf)	Y ₂ (ft)	C ₃ (psf)	Y ₃ (ft)
1	13.5	1	Levee/Berm	120	0	28		600	0										M-C	0	600									
2	1	-12.5	CL/CH	113	0	23	0.22	300		960	50%	1	480	1163	106	256	300	-16.5	M-C	0	300									
3	-12.5	-17.5	SM/CL Interbedded	105	0	25	0.22	300		960	50%	1	1163	1376	256	303	300	-17.2	M-C	0	300									
4	-17.5	-23.5	ML/CL Interbedded	105	0	25		200	15	960	50%	1	1376	1632					M-C	15	200									
5	-23.5	-45.5	CL/CH with Sand and Silt Seams	105	0	23	0.22	300		960	50%	1	1632	2569	359	565	300	-17.2	S = f(depth)	0	35	9	9.4	565						
6	-45.5	-113	CL/CH	105	0	23	0.22			960	50%	1	2569	5444	565	1198			S = f(depth)	0	56	5	9.4	1198						
7	-113	-117.3	SM	122	0	28		0	28	960	50%	1	5444	5701	0	0			M-C	28	0									
8	-117.3	-130	CL/CH	100	0	23	0.22			960	50%	1	5701	6178	1254	1359			S = f(depth)	0	12	54	8.3	1359						

Notes: 1. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 2. Refer to Figure B-3.2 for the strength profile used in rapid flood stability analyses.

3. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; and S=f(depth) indicates that undrained shear strength increases with depth.

SEEPAGE ANALYSIS CASES

Seepage		Water Surface Elevations	(WSE) (feet)	
Case	Flow Regime	Channel	Polder	Remarks
1	Steady-State	10	-3.5	Polder WSE From low water observations in PZ-15
2	Steady-State	0	10	

STABILITY ANALYSIS CASES AND RESULTS

Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
1A	1	Steady-State Stability	Drained	Polder-side	1.50	2.62	Global	1, 2	Levee crown to polder-side ditch	
1B	1	Steady-State Stability	Drained	Polder-side	1.50	0.90	Local	1, 2	Berm toe to polder-side ditch	Safety map encompases all slip surfaces with FOS < 1.5
2A	2	Steady-State Stability	Drained	Channel-side	1.50	2.15	Global	1, 2, 3, 4, 5	Levee crown to channel toe	
2B	2	Steady-State Stability	Drained	Channel-side	1.50	1.16	Local	1, 2	Berm toe to channel slope	Critical slip surface consists of shallow slumping; safety ma
ЗA	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.79	Global	1, 2, 3, 4, 5, 6	Polder-side levee slope to channel toe	
3B	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.59	Local	1, 2, 3	Levee crown to channel-side berm	

NOTES

- Cross Section was developed from 30 Percent Civil Design geometry. 1
- 2 Boring NL-8A was considered to develop the stratigraphy shown.
- Stability is calculated using pore pressure developed from the parent steady-state seepage model. 3
- Model is symmetric with respect to channel centerline, therefore results are equal on each side of the model. 4
- Model extends 1600 feet landward of approximate Channel centerline. 5
- The Spencer analysis method was used to evaluate stability. 6

7 5-foot tension cracks filled with water are applied in the embankment.

ap encompases all slip surfaces with FOS < 1.5

NOT TO SCALE

STABILITY ANALYSIS STATION: **55+00** STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-3.1			

STEADY-STATE STABILITY ANALYSIS STATION: 55+00 SEEPAGE CASE: 2 STABILITY CASE: 2A WSE In Channel: +0.0 feet WSE Outside Channel: +10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-3.5			

STEADY-STATE STABILITY ANALYSIS STATION: 55+00 SEEPAGE CASE: 2 STABILITY CASE: 2B WSE In Channel: +0.0 feet WSE Outside Channel: +10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-3.6			

MATERIALS¹

Created By: Crosariol, Victor

File Name: 01_Station 55+00_30% Levee.gsz

Analysis: STAB RF Case 3A: (In: 10 ft / Out: GWT)

Date: 11/26/2013

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) (2) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF 2 - CL/CH +1.0 to -12.5 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 113 pcf Cohesion': 300 psf Phi': 0 ° RF_3 - SM/CL Interbedded -12.5 to -17.5 (Kv=5x10-6 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 300 psf Phi': 0 ° RF 4 - ML/CL Interbedded -17.5 to -23.5 (Kv=5x10-6 cm/sec, Kv/Kh=0.20) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° RF_5 - CL/CH w/Sand/Silt Seams -23.5 to -45.5 (Kv=6x10-7 cm/sec, Kv/Kh=0.20) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 359 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 565 psf RF_6 - CL/CH -45.5 to -113.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 565 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 1,198 psf RF_7 - SM -113.0 to -117.3 (Kv=2x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 122 pcf Cohesion': 0 psf Phi': 28 ° RF 8 - CL/CH -117.3 to -130.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 1,254 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,359 psf

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-3.7			
Created By: Crosariol, Victor

File Name: 01_Station 55+00_30% Levee.gsz

Analysis: STAB RF Case 3B: (In: 10 ft / Out: GWT)

Date: 11/26/2013

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) (2) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF 2 - CL/CH +1.0 to -12.5 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 113 pcf Cohesion': 300 psf Phi': 0 ° RF_3 - SM/CL Interbedded -12.5 to -17.5 (Kv=5x10-6 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 300 psf Phi': 0 ° RF_4 - ML/CL Interbedded -17.5 to -23.5 (Kv=5x10-6 cm/sec, Kv/Kh=0.20) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° RF_5 - CL/CH w/Sand/Silt Seams -23.5 to -45.5 (Kv=6x10-7 cm/sec, Kv/Kh=0.20) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 359 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 565 psf RF 6 - CL/CH -45.5 to -113.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 565 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 1,198 psf RF 7 - SM -113.0 to -117.3 (Kv=2x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 122 pcf Cohesion': 0 psf Phi': 28 ° RF 8 - CL/CH -117.3 to -130.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 1,254 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,359 psf

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-3.8

STABILITY ANALYSIS PARAMETERS

		Louise			Steady-St	tate Stability										Rapid Load	ding Stability	,2											
M-C Model Parameters ³ Current Strength Parameters								ameters			Assum	ed Strengt	h Increase d	ue to Surchar	ging ¹			Geo-Studio Material Model Parameters											
Layer	Top Elevation (ft)	Bottom Elevation (ft)	Soil Type	Total Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/ơ _{vo} ') _{NC} (-)	Cohesion (psf)	Friction Angle (deg)	Surcharge Load at Surface ¹ (psf)	Assumed Uniform u _e Dissipation ¹	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ³	Phi (deg)	C (psf)	C - Top of Layer (psf)	C - Rate of Change (psf/ft)	C - Max C ₁ (psf) (psf)	Y ₁ (ft)	C ₂ (psf)	Y ₂ (ft)	C ₃ (psf)	Y ₃ (ft)
1	13.5	0.5	Levee/Berm	120	0	28		600	0										M-C	0	600								
2	0.5	-11	CL/CH	105	0	23	0.22	300		960	50%	0.5	480	970	106	213	300	-20.2	M-C	0	300								
3	-11	-20	SM/ML/CL Interbedded	105	0	28		200	15	960	50%	0.5	970	1353					M-C	15	200								
4	-20	-28	CL	105	0	23	0.22	300		960	50%	0.5	1353	1694	298	373	300		S = f(depth)	0		300	9.4	373					
5	-28	-50	SM/ML Interbedded	110	0	28		200	10	960	50%	0.5	1694	2741					M-C	10	200								
6	-50	-103	CL/ML	110	0	25	0.22			960	50%	0.5	2741	5264	603	1158			S = f(depth)	0		603	10.5	1158					
7	-103	-128	ML/SM	120	0	28		200	15	960	50%	0.5	5264	6704	0	0			M-C	15	200								

Notes: 1. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 2. Refer to Figure B-4.2 for the strength profile used in rapid flood stability analyses.

3. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; and S=f(depth) indicates that undrained shear strength increases with depth.

SEEPAGE ANALYSIS CASES

Seepage		Water Surface Elevations	(WSE) (feet)	Demorika						
Case	Flow Regime	Channel	Polder	Remarks						
1	Steady-State	10	-3.5	Polder WSE From low water observations in PZ-15						
2	Steady-State	0	10							

STABILITY ANALYSIS CASES AND RESULTS

Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
1A	1	Steady-State Stability	Drained	Polder-side	1.50	2.40	Global	1, 2, 3, 4	Levee crown to polder-side ditch	
1B	1	Steady-State Stability	Drained	Polder-side	1.50	0.58	Local	1, 2	Berm toe to polder-side ditch	Safety map encompases all slip surfaces with FOS < 1.5
2A	2	Steady-State Stability	Drained	Channel-side	1.50	2.01	Global	1, 2, 3, 4	Channel-side levee slope to channel toe	
2B	2	Steady-State Stability	Drained	Channel-side	1.50	1.24	Local	1, 2, 3	Berm toe to channel slope	Critical slip surface consists of shallow slumping; safety ma
ЗA	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.72	Global	1, 2, 3, 4, 5	Polder-side levee slope to channel toe	
3B	2	Rapid Flood Loading	Undrained	Channel-side	1.30	2.05	Local	1, 2, 3, 4, 5	Channel-side berm to channel toe	
3C	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.72	Local	1, 2	Levee-Crown to channel-side levee toe	

NOTES

- Cross Section was developed from 30 Percent Civil Design geometry. 1
- 2 CPT's NL-7C and NL-10C were considered to develop the stratigraphy shown.
- Stability is calculated using pore pressure developed from the parent steady-state seepage model. 3
- 4 Model is symmetric with respect to channel centerline, therefore results are equal on each side of the model.
- 5 Model extends 1600 feet landward of approximate Channel centerline.
- The Spencer analysis method was used to evaluate stability. 6
- 7 5-foot tension cracks filled with water are applied in the embankment.

ap encompases all slip surfaces with FOS < 1.5

NOT TO SCALE

STABILITY ANALYSIS STATION: 67+00 STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-4.1

0 200 SHEAR STRENGTH (PSF) SHEAR STRENGTH (PSF) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 15 r 15 200 0 0 225 -20 PSF 200 200 -15 250 PSF -15 375 PSF -30 -30 -40 200 (F12-42 ELEVATION (F1)-90 -90-100 (F1)-90 **ELEVATION (FT)** -92-42 -02-42 Elevation, ft C = 8.33 PSF/FT -60 $\triangle C = 9.0 PSF/FT$ -80 -90 -90 -105 -105 -100 200 -120 -120 -135 -135 -120 200 -150 -150 **DESIGN CHARTS DESIGN CHARTS** -140 LEGEND NL-7C **NL-10C** LEGEND Mid Barataria Diversion (BA-153) Project Mid Barataria Diversion (BA-153) Project NL-7C Plaquemines Parish, Louisiana Plaquemines Parish, Louisiana **NL-10C** Design Strength Design Strength GEOENGINEERS Figure K-2m GEOENGINEERS Figure K-2p Figure above taken from "Draft Geotechnical 30% Design Engineering Data Report" by GeoEngineers, dated November 27, 2013 **30 PERCENT DESIGN** COASTAL PROTECTION & RESTORATION AUTHORITY **ENGINEERING DIVISION** FJS 450 LAUREL STREET BATON ROUGE, LOUISIANA 70801 DRAWN BY: DESIGNED BY: DESCRIPTION DAT

DESCRIPTION

DRAWN BY:

DESIGNED BY:

APPROVED BY:

FIGURE:

B-4.4

MATERIALS

Created By: Crosariol, Victor Date: 11/15/2013 File Name: 01 Station 67+00_30% Levee.gsz Analysis: STAB Case 2A: (In: 10 ft / Out: GWT) 1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° 2 - CL/CH +0.5 to -11.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 0 psf Phi': 23 ° 3 - SM/ML/CL Interbedded -11.0 to -20.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 0 psf Phi': 28 ° 4 - CL -20.0 to -28.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 0 psf Phi': 23 ° 5 - SM/ML Interbedded -28.0 to -50.0 (Kv=5x10-5 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 0 psf Phi': 28 ° 6 - CL/ML -50.0 to -103.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 0 psf Phi': 25 ° 7 - ML/SM -103.0 to -128.0 (Kv=6x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 °

STEADY-STATE STABILITY ANALYSIS STATION: 67+00 SEEPAGE CASE: 2 STABILITY CASE: 2A WSE In Channel: +0.0 feet WSE Outside Channel: +10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING					
STATE PROJECT NUMBER: BA-153	REPORT					
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014					
APPROVED BY:	FIGURE: B-4.5					

Created By: Crosariol, Victor Date: 11/20/2013

FEDERAL PROJECT NUMBER: BA-153

DATE: JULY 2014

B-4.6

FIGURE:

APPROVED BY:

Created By: Crosariol, Victor Date: 11/27/2013 File Name: 01 Station 67+00 30% Levee.gsz Analysis: STAB RF Case 3A: (In: 10 ft / Out: GWT)

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF 2 - CL/CH +0.5 to -11.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 300 psf Phi': 0 ° RF 3 - SM/ML/CL Interbedded -11.0 to -20.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° RF_4 - CL -20.0 to -28.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 300 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 373 psf RF_5 - SM/ML Interbedded -28.0 to -50.0 (Kv=5x10-5 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 200 psf Phi': 10 ° RF 6 - CL/ML -50.0 to -103.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 110 pcf C-Top of Layer: 603 psf C-Rate of Change: 10.5 psf/ft C-Maximum: 1,158 psf RF 7 - ML/SM -103.0 to -128.0 (Kv=6x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 200 psf Phi': 15 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-4.7

Created By: Crosariol, Victor Date: 11/27/2013 File Name: 01 Station 67+00 30% Levee.gsz Analysis: STAB RF Case 3B: (In: 10 ft / Out: GWT)

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CL/CH +0.5 to -11.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 300 psf Phi': 0 ° RF_3 - SM/ML/CL Interbedded -11.0 to -20.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° RF_4 - CL -20.0 to -28.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 300 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 373 psf RF 5 - SM/ML Interbedded -28.0 to -50.0 (Kv=5x10-5 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 200 psf Phi': 10° RF_6 - CL/ML -50.0 to -103.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 110 pcf C-Top of Layer: 603 psf C-Rate of Change: 10.5 psf/ft C-Maximum: 1,158 psf RF 7 - ML/SM -103.0 to -128.0 (Kv=6x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 200 psf Phi': 15 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-4.8

Created By: Crosariol, Victor Date: 11/27/2013 File Name: 01 Station 67+00 30% Levee.gsz Analysis: STAB RF Case 3C: (In: 10 ft / Out: GWT)

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CL/CH +0.5 to -11.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 300 psf Phi': 0 ° RF 3 - SM/ML/CL Interbedded -11.0 to -20.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° RF_4 - CL -20.0 to -28.0 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 300 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 373 psf RF_5 - SM/ML Interbedded -28.0 to -50.0 (Kv=5x10-5 cm/sec, Kv/Kh=0.10) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 200 psf Phi': 10 ° RF 6 - CL/ML -50.0 to -103.0 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 110 pcf C-Top of Layer: 603 psf C-Rate of Change: 10.5 psf/ft C-Maximum: 1,158 psf RF 7 - ML/SM -103.0 to -128.0 (Kv=6x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 200 psf Phi': 15 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-4.9

STABILITY ANALYSIS PARAMETERS

		Lavara			Steady-St	tate Stability										Rapid Load	ling Stability	2											
		Layers			M-C Model	Parameters ³	Current S	trength Para	ameters			Assum	ed Strengt	h Increase c	lue to Surcha	rging						Geo-Stu	udio Mater	ial Model I	Parame	eters			
Layer	Top Elevation (ft)	Bottom Elevation (ft)	Soil Type	Total Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/ơ _{vo} ') _{NC} (-)	Cohesion (psf)	Friction Angle (deg)	Surcharge Load at Surface ¹ (psf)	Assumed Uniform u _e Dissipation ¹	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ³	Phi (deg)	C (psf)	C - Top of Layer (psf)	C - Rate of Change (psf/ft)	C - Max (psf)	C ₁ (psf)	Y ₁ (ft)	C ₂ Y (psf) (f	2 C) (ps	3 Y3 3f) (ft)
1	13.5	0	Levee/Berm	120	0	28		600	0										M-C	0	600								
2	0	-11	CL/CH	105	0	23	0.22	300		960	50%	0	480	949	106	209	300	-20.7	M-C	0	300								
3	-11	-14.4	SM	105	0	28		200	15	960	50%	0	949	1093					M-C	15	200								
4	-14.4	-19.2	SM/CH/ML Interbedded	105	0	28		200	15	960	50%	0	1093	1298					M-C	15	200								
5	-19.2	-23.4	ML	105	0	28		200	15	960	50%	0	1298	1477					M-C	15	200								
6	-23.4	-24.4	SP	120	0	30		0	30	960	50%	0	1477	1534					M-C	30	0								
7	-24.4	-25.4	СН	110	0	23	0.22	300		960	50%	0	1534	1582	338	348			S = f(depth)	0		338	10.5	348					
8	-25.4	-28.9	SM	120	0	28		0	28	960	50%	0	1582	1784					M-C	28	0								
9	-28.9	-33.4	CL/ML/SM Interbedded	105	0	25		200	10	960	50%	0	1784	1975					M-C	10	200								
10	-33.4	-35.4	CL	105	0	23	0.22			960	50%	0	1975	2061	435	453			S = f(depth)	0		435	9.4	453					
11	-35.4	-37.4	ML	115	0	28		200	15	960	50%	0	2061	2166					M-C	15	200								
12	-37.4	-40.7	CL	115	0	23	0.22			960	50%	0	2166	2339	476	515			S = f(depth)	0		476	11.6	515					
13	-40.7	-47.8	SC	125	0	27		0	27	960	50%	0	2339	2784					M-C	27	0								
14	-47.8	-131.4	СН	105	0	23	0.22			960	50%	0	2784	6345	612	1396			S = f(depth)	0		612	9.4	1396					

Notes: 1. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 2. Refer to Figures B-5.2 and B-5.3 for the strength profile used in rapid flood stability analyses.

3. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; and S=f(depth) indicates that undrained shear strength increases with depth.

SEEPAGE ANALYSIS CASES

Seepage Case	Flow Degime	Water Surface Elevation	s (WSE) (feet)	Demorke		
	Flow Regime	Channel	Channel Polder			
1	Steady-State	10	-4.3	Polder WSE From low water observations in PZ-14 and PZ-15		
2	Steady-State	0	10			

STABILITY ANALYSIS CASES AND RESULTS

Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
1A	1	Steady-State Stability	Drained	Polder-side	1.50	1.73	Global	1, 2	Polder-side levee slope to polder-side ditch	
1B	1	Steady-State Stability	Drained	Polder-side	1.50	0.20	Local	1, 2	Berm toe to polder-side ditch	Safety map encompases all slip surfaces with FOS < 1.5
2A	2	Steady-State Stability	Drained	Channel-side	1.50	2.71	Global	1 to 10	Levee crown to to channel toe	
2B	2	Steady-State Stability	Drained	Channel-side	1.50	1.36	Local	1, 2	Berm toe to channel slope	Critical slip surface consists of shallow slumping; safety ma
ЗA	2	Rapid Flood Loading	Undrained	Channel-side	1.30	2.14	Global	1 to 12	Polder-side levee slope to channel slope	
3B	2	Rapid Flood Loading	Undrained	Channel-side	1.30	2.53	Local	1 to 10	Channel-side berm to channel toe	
3C	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.68	Local	1, 2	Levee crown to to channel-side levee toe	

NOTES

4

- Cross Section was developed from 30 Percent Civil Design geometry. 1
- Boring NL-6A was considered to develop the stratigraphy shown. 2
- Stability is calculated using pore pressure developed from the parent steady-state seepage model. 3
 - Model is symmetric with respect to channel centerline, therefore results are equal on each side of the model.
- Model extends 1600 feet landward of approximate Channel centerline. 5

30 PERCENT DESIGN

The Spencer analysis method was used to evaluate stability. 6 7 5-foot tension cracks filled with water are applied in the embankment.

COASTAL PROTECTION & RESTORATION AUTHORITY ENGINEERING DIVISION

450 LAUREL STREET BATON ROUGE, LOUISIANA 70801

DESIGNED BY:

ap encompases all slip surfaces with FOS < 1.5

NOT TO SCALE

STABILITY ANALYSIS STATION: 82+00 STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING REPORT
STATE PROJECT NUMBER: BA-153	
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-5.1

EDERAL I ROJECT NOMBER.	DA-155
ADDOVED DV.	

psf	Phi': 28 °	
psf	Phi': 25 °	

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-5.5

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-5.7

0	
。 : 200 psf Phi': 15 ° °	
of Change: 10.5 psf/ft	C-Maximum: 348 psf
: 200 psf Phi': 10 ° e of Change: 9.4 psf/ft 15 °	C-Maximum: 453 psf
e of Change: 11.6 psf/ft	C-Maximum: 515 psf
ate of Change: 9.4 psf/ft	C-Maximum: 1,396 p

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-5.8

0	
0	
: 200 psf Phi': 15 ° °	
e of Change: 10.5 psf/ft	C-Maximum: 348 psf
: 200 psf Phi': 10 °	
e of Change: 9.4 psf/ft 15 °	C-Maximum: 453 psf
e of Change: 11.6 psf/ft	C-Maximum: 515 psf
ate of Change: 9.4 psf/ft	C-Maximum: 1,396 p

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-5.9			

0	
0	
: 200 psf Phi': 15 ° °	
of Change: 10.5 psf/ft	C-Maximum: 348 psf
: 200 psf Phi': 10 °	
e of Change: 9.4 psf/ft 15 °	C-Maximum: 453 psf
e of Change: 11.6 psf/ft	C-Maximum: 515 psf
ate of Change: 9.4 psf/ft	C-Maximum: 1,396 p

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-5.10		

STABILITY ANALYSIS PARAMETERS

		Lovero			Steady-S	tate Stability										Rapid Loa	ding Stability	2												
		Layers			M-C Mode	I Parameters ³	Current S	trength Para	ameters			Assum	ned Strengt	th Increase c	lue to Surcha	rging			Geo-Studio Material Model Parameters											
Layer	Top Elevation (ft)	Bottom Elevation (ft)	Soil Type	Total Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/ơ _{vo} ') _{NC} (-)	Cohesion (psf)	Friction Angle (deg)	Surcharge Load at Surface ¹ (psf)	Assumed Uniform u _e Dissipation ¹	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ³	Phi (deg	C (psf)	C - Top of Layer (psf)	C - Rate o Change (psf/ft)	f C - Max (psf)	C ₁ (psf)	Y ₁ (ft)	C ₂) (psf) (i	(2 ft) (C ₃ (psf)	Y ₃ (ft)
1	14	-2	Levee/Berm	120	0	28		600	0										M-C	0	600									
2	-2	-31.5	CH/OH/CL	100	0	23	0.22	300		960	50%	-1.5	480	1608	106	354	300	-25.0	Spatial M-C, Linear Cohesion Function	0					300	-1.5	300 -2	5.0	354	-31.5
3	-31.5	-38	ML	105	0	28		200	15	960	50%	-1.5	1608	1885					M-C	15	200									
4	-38	-108	CL/CH	105	0	23	0.22			960	50%	-1.5	1885	4867	415	1071			S = f(depth)	0		415	9.4	1071						
5	-108	-113	SP/SM	120	0	30		0	30	960	50%	-1.5	4867	5126					M-C	30	0									
6	-113	-126	CL	110	0	23	0.22			960	50%	-1.5	5126	5769	1128	1269			S = f(depth)	0		1128	10.5	1269						
7	-126	-135	SM	120	0	28		0	28	960	50%	-1.5	5769	6287					M-C	28	0									

Notes: 1. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 2. Refer to Figure B-6.2 for the strength profile used in rapid flood stability analyses.

3. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; S=f(depth) indicates that undrained shear strength increases with depth; and Spatial M-C, Linear Cohesion Function indicates that the undrained shear strength profile is fully specified within the layer.

SEEPAGE ANALYSIS CASES

Seepage		Water Surface Elevations (V	VSE) (feet)	Demorie
Case	Flow Regime	Channel	Polder	Kemarks
1	Steady-State	10	-4.8	Polder WSE From low water observations in PZ-14 and PZ-15
2	Steady-State	0	10	

STABILITY ANALYSIS CASES AND RESULTS

Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
1A	1	Steady-State Stability	Drained	Polder-side	1.50	2.29	Global	1, 2, 3, 4	Levee crown to polder-side ditch	
1B	1	Steady-State Stability	Drained	Polder-side	1.50	1.04	Local	1, 2	Berm toe to polder-side ditch	Safety map encompases all slip surfaces with FOS < 1.5
2A	2	Steady-State Stability	Drained	Channel-side	1.50	2.01	Global	1, 2, 3, 4	Levee crown to to channel toe	
2B	2	Steady-State Stability	Drained	Channel-side	1.50	1.43	Local	1, 2	Berm toe to channel slope	Critical slip surface consists of shallow slumping; safety ma
ЗA	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.52	Global	1, 2, 3, 4	Polder-side levee slope to channel slope	
3B	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.99	Local	1, 2	Channel-side berm to channel slope	
3C	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.20	Local	1, 2	Polder-side levee slope to channel-side berm	Safety map encompases all slip surfaces with FOS < 1.3

NOTES

- 1 Cross Section was developed from 30 Percent Civil Design geometry.
- 2 Borings NL-5C and NL-11C was considered to develop the stratigraphy shown.
- 3 Stability is calculated using pore pressure developed from the parent steady-state seepage model.
- 4 Model is symmetric with respect to channel centerline, therefore results are equal on each side of the model.
- 5 Model extends 1600 feet landward of approximate Channel centerline.
- 6 The Spencer analysis method was used to evaluate stability.
- 7 5-foot tension cracks filled with water are applied in the embankment.

30 PERCENT DESIGN							
	ы				REGORDER AUTHORS	COASTAL PROTECTION ENGINEER 450 LA BATON ROUG	& RESTORATION AUTHORITY LING DIVISION JUREL STREET GE, LOUISIANA 70801
		REV. DATE	DESCRIPTION	BY	CPRA F	DRAWN BY:	DESIGNED BY:

ap encompases all slip surfaces with FOS < 1.5

NOT TO SCALE

STABILITY ANALYSIS STATION: 90+00 STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-6.1		

1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-6.3			

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-6.4			

1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-6.5		

FX

ГАЛ

DESCRIPTION

1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 °

ENGINEERING DIVISION

450 LAUREL STREET BATON ROUGE, LOUISIANA 70801

DESIGNED BY:

DRAWN BY:

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-6.6		

Created By: Crosariol, Victor

Date: 11/21/2013

RF 1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CH/OH/CL -1.5 to -31.5 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Spatial Mohr-Coulomb Unit Weight: 100 pcf Cohesion Fn: RF_2 - CH/OH/CL -1.5 to -31.5 Phi': 0 ° RF_3 - ML -31.5 to -38 (Kv=4x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° File Name: 02 Station 90+00 30% Levee.gsz RF_4 - CL/CH -38 to -108 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 415 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 1,071 psf Analysis: STAB RF Case 3A: (Out: 10 ft / In: 0 ft) RF_5 - SP/SM -108 to -112.5 (Kv=1x10-3 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 30 ° RF 6 - CL -112.5 to -126 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 110 pcf C-Top of Layer: 1,128 psf C-Rate of Change: 10.5 psf/ft C-Maximum: 1,269 psf RF_7 - SM -126 to -135 (Kv=2x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-6.7		

NOTES: 1) "RF" IN THE MATERIALS LIST INDICATES "RAPID FLOOD"

NOT TO SCALE

RAPID FLOOD STABILITY ANALYSIS STATION: 90+00 SEEPAGE CASE: 2 STABILITY CASE: 3B WSE In Channel: +0.0 feet WSE Outside Channel: +10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-6.8		

STABILITY ANALYSIS PARAMETERS

		Lovor			Steady-St	tate Stability		Rapid Loading Stability ²																						
	Layers				M-C Model	Parameters ³	Current S	trength Para	ameters			Assum	ned Streng	th Increase o	lue to Surcha	rging						Geo-S	tudio Material	Model P	arame	eters				
Layer	Top Elevation (ft)	Bottom Elevation (ft)	Soil Type	Total Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/ơ _{vo} ') _{NC} (-)	Cohesion (psf)	Friction Angle (deg)	Surcharge Load at Surface ¹ (psf)	Assumed Uniform u _e Dissipation ¹	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ³	Phi (deg)	C (psf)	C - Top of Layer (psf)	C - Rate of Change (psf/ft)	C - Max (psf)	C ₁ (psf)	Y ₁ (ft)	C ₂ (psf)	Y ₂ (ft)	C ₃ (psf)	Y ₃ (ft)
1	13.5	-3.5	Levee/Berm	120	0	28		600	0										M-C	0	600									
2	-3.5	-22	CH/OH/CL	100	0	23	0.22	150		960	50%	-3.5	480	1176	106	259	150	-8.9	Spatial M-C, Linear Cohesion Function	0					150	-3.5	150	-8.9	259	-22
3	-22	-26	CL/ML	110	0	25		200	15	960	50%	-3.5	1176	1366					M-C	15	200									
4	-26	-116	СН	100	0	23	0.22			960	50%	-3.5	1366	4750	301	1045			S = f(depth)	0		301	8.3	1045						
5	-116	-120	SP/SC	120	0	28		0	28	960	50%	-3.5	4750	4980					M-C	28	0									
6	-120	-135	СН	100	0	23	0.22			960	50%	-3.5	4980	5544	1096	1220			S = f(depth)	0		1096	8.3	1220						

Notes: 1. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 2. Refer to Figure B-7.2 for the strength profile used in rapid flood stability analyses.

3. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; S=f(depth) indicates that undrained shear strength increases with depth; and Spatial M-C, Linear Cohesion Function indicates that the undrained shear strength profile is fully specified within the layer.

SEEPAGE ANALYSIS CASES

Seepage		Water Surface Elevations	(WSE) (feet)	Pomorko			
Case	Flow Regime	Channel	Polder	Remarks			
1	Steady-State	10	-6.1	Polder WSE From low water observations in PZ-13 and PZ-14			
2	Steady-State	0	10				

STABILITY ANALYSIS CASES AND RESULTS

Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
1A	1	Steady-State Stability	Drained	Polder-side	1.50	2.29	Global	1, 2, 3, 4	Levee crown to polder-side ditch	
1B	1	Steady-State Stability	Drained	Polder-side	1.50	1.04	Local	1, 2	Berm toe to polder-side ditch	Safety map encompases all slip surfaces with FOS < 1.5
2A	2	Steady-State Stability	Drained	Channel-side	1.50	2.01	Global	1, 2, 3, 4	Levee crown to to channel toe	
2B	2	Steady-State Stability	Drained	Channel-side	1.50	1.43	Local	1, 2	Berm toe to channel slope	Critical slip surface consists of shallow slumping; safety ma
ЗA	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.52	Global	1, 2, 3, 4	Polder-side levee slope to channel slope	
3B	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.99	Local	1, 2	Channel-side berm to channel slope	
3C	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.20	Local	1, 2	Polder-side levee slope to channel-side berm	Safety map encompases all slip surfaces with FOS < 1.3

NOTES

- 1 Cross Section was developed from 30 Percent Civil Design geometry.
- 2 Boring NL-3A and CPT NL-3C was considered to develop the stratigraphy shown.
- 3 Stability is calculated using pore pressure developed from the parent steady-state seepage model.
- 4 Model is symmetric with respect to channel centerline, therefore results are equal on each side of the model.
- 5 Model extends 1600 feet landward of approximate Channel centerline.
- 6 The Spencer analysis method was used to evaluate stability.
- 7 5-foot tension cracks filled with water are applied in the embankment.

30 PERCENT DESIGN							
	FX	REV. DATE	DESCRIPTION	BY	AND RESTORTION AUTHORITICS	COASTAL PROTECTION ENGINEER 450 LA BATON ROUG DRAWN BY:	& RESTORATION AUTHORITY ING DIVISION urel street 3e, louisiana 70801 designed by:

ap encompases all slip surfaces with FOS < 1.5

NOT TO SCALE

STABILITY ANALYSIS STATION: **110+00** STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-7.1		

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-7.3		

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING			
STATE PROJECT NUMBER: BA-153	REPORT			
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014			
APPROVED BY:	FIGURE: B-7.4			

MATERIALS

1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° Created By: Crosariol, Victor 2 - CH/OH/CL -3.5 to -22 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 23 ° Date: 11/18/2013 3 - CL/ML -22 to -26 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 0 psf Phi': 25 ° File Name: 02 Station 110+00 30% Levee.gsz 4 - CH -26 to -116 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 23 ° Analysis: STAB Case 2A: (Out: 10 ft / In: 0 ft) 5 - SP/SC -116 to -120 (Kv=5x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° 6 - CH -120 to -135 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 23 ° Distance (feet) -800 -700 -600 -500 -400 -300 -200 -100 0 150 150 Flooded Polder 100 100 NAVD88) (feet, NAVD88) 50 50 1 - Levee/Berm (CL) Ditch Invert (EL -7.6) 2.01 Flood WSE (EL +10.0) Normal Channel WSE (EL +0.0) 0 e 2 - CH/OH/CL Channel Invert (EL -25.0) Elevation 3 - CL/ML -Elevation -50 -50 4 - CH -100 -100 5 - SP/SC 6 - CH -150 -150 -400 -800 -700 -600 -500 -300 -200 -100 0 Distance (feet)

NOT TO SCALE

STEADY-STATE STABILITY ANALYSIS STATION: 110+00 SEEPAGE CASE: 2 STABILITY CASE: 2A WSE In Channel: +0.0 feet WSE Outside Channel: +10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-7.5		

MATERIALS

1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° Created By: Crosariol, Victor 2 - CH/OH/CL -3.5 to -22 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 23 ° Date: 11/18/2013 3 - CL/ML -22 to -26 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 0 psf Phi': 25 ° File Name: 02 Station 110+00 30% Levee.gsz 4 - CH -26 to -116 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 23 ° Analysis: STAB Case 2B: (Out: 10 ft / In: 0 ft) 5 - SP/SC -116 to -120 (Kv=5x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° 6 - CH -120 to -135 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 100 pcf Cohesion': 0 psf Phi': 23 ° Distance (feet) -800 -700 -600 -500 -400 -300 -200 -100 0 150 150 Flooded Polder 100 100 NAVD88) (feet, NAVD88) 50 50 1 - Levee/Berm (CL) Ditch Invert (EL -7.6) <u>1.43</u> ěť, Flood WSE (EL +10.0) Normal Channel WSE (EL +0.0) 0 e 2 - CH/OH/CL Channel Invert (EL -25.0) Elevation 3 - CL/ML -Elevation -50 -50 4 - CH -100 -100 5 - SP/SC 6 - CH -150 -150 -400 -800 -700 -600 -500 -300 -200 -100 0 Distance (feet)

NOTES:

1) RED BAND INDICATES ALL SLIP SURFACES WITH FOS < 1.5

NOT TO SCALE

STEADY-STATE STABILITY ANALYSIS STATION: 110+00 SEEPAGE CASE: 2 STABILITY CASE: 2B WSE In Channel: +0.0 feet WSE Outside Channel: +10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-7.6		

Created By: Crosariol, Victor

File Name: 02 Station 110+00 30% Levee.gsz

Analysis: STAB RF Case 3A: (Out: 10 ft / In: 0 ft)

Date: 11/21/2013

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CH/OH/CL -3.5 to -22 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Spatial Mohr-Coulomb Unit Weight: 100 pcf Cohesion Fn: RF_2 - CH/OH -3.5 to -22 RF 3 - CL/ML -22 to -26 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 200 psf Phi': 15 ° RF 4 - CH -26 to -116 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 301 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,045 psf RF_5 - SP/SC -116 to -120 (Kv=5x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° RF 6 - CH -120 to -135 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 1,096 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,220 psf

NOT TO SCALE

RAPID FLOOD STABILITY ANALYSIS STATION: **110+00** SEEPAGE CASE: 2 STABILITY CASE: 3A WSE In Channel: +0.0 feet

WSE Outside Channel: +10.0 feet

* * * * * * * * * *****

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING REPORT
STATE PROJECT NUMBER: BA-153	
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-7.7

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CH/OH/CL -3.5 to -22 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Spatial Mohr-Coulomb Unit Weight: 100 pcf Cohesion Fn: RF_2 - CH/OH -3.5 to -22 RF 3 - CL/ML -22 to -26 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 200 psf Phi': 15 ° RF 4 - CH -26 to -116 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 301 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,045 psf RF_5 - SP/SC -116 to -120 (Kv=5x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° RF 6 - CH -120 to -135 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 1,096 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,220 psf

Created By: Crosariol, Victor Date: 11/21/2013 File Name: 02_Station 110+00_30% Levee.gsz Analysis: STAB RF Case 3B: (Out: 10 ft / In: 0 ft)

NOT TO SCALE

RAPID FLOOD STABILITY ANALYSIS STATION: **110+00** SEEPAGE CASE: 2 STABILITY CASE: **3B** WSE In Channel: +0.0 feet

WSE Outside Channel: +10.0 feet

* * * * * * * * * * * * * * * * * * * *

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-7.8
MATERIALS¹

Created By: Crosariol, Victor

File Name: 02 Station 110+00 30% Levee.gsz

Analysis: STAB RF Case 3C: (Out: 10 ft / In: 0 ft)

Date: 11/21/2013

RF 1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CH/OH/CL -3.5 to -22 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Spatial Mohr-Coulomb Unit Weight: 100 pcf Cohesion Fn: RF_2 - CH/OH -3.5 to -22 RF 3 - CL/ML -22 to -26 (Kv=5x10-6 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 110 pcf Cohesion': 200 psf Phi': 15 ° RF 4 - CH -26 to -116 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 301 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,045 psf RF_5 - SP/SC -116 to -120 (Kv=5x10-4 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 0 psf Phi': 28 ° RF 6 - CH -120 to -135 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 100 pcf C-Top of Layer: 1,096 psf C-Rate of Change: 8.3 psf/ft C-Maximum: 1,220 psf

NOT TO SCALE

RAPID FLOOD STABILITY ANALYSIS STATION: **110+00** SEEPAGE CASE: 2 STABILITY CASE: **3**C WSE In Channel: +0.0 feet

WSE Outside Channel: +10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-7.9		

STABILITY ANALYSIS PARAMETERS

		Lavara			Steady-St	tate Stability		Rapid Loading Stability ²																					
		Layers			M-C Model	Parameters ³	Current S	trength Para	ameters			Assur	ned Streng	th Increase c	lue to Surchar	ging					Geo-Studio Material Model Parameters								
Layer	Top Elevation (ft)	Bottom Elevation (ft)	Soil Type	Total Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (deg)	(Su/ơ _{vo} ') _{NC} (-)	Cohesion (psf)	Friction Angle (deg)	Surcharge Load at Surface ¹ (psf)	Assumed Uniform u _e Dissipation ¹	Elevation of GWT (ft)	Top of Layer σ _v ' (psf)	Bottom of Layer σ _v ' (psf)	Top of Layer Su _{NC} (psf)	Bottom of Layer Su _{NC} (psf)	Su _{OC} MIN (psf)	Transition Depth (psf)	Model ³	Phi (deg)	C (psf)	C - Top of Layer (psf)	C - Rate of Change (psf/ft)	C - Max (psf)	C ₁ (psf)	Y ₁ (ft)	C ₂ (psf)	Y ₂ ((ft) (p	C ₃ Y ₃ psf) (ft)
1	13.5	-4.5	Levee/Berm	120	0	28		600	0										M-C	0	600								
2	-4.5	-27	СН/ОН	100	0	23	0.22	150	0	960	50%	-4.5	480	1326	106	292	150	-9.9	Spatial M-C, Linear Cohesion Function	0					150	-4.5	150	-9.9 2	92 -27
3	-27	-33	ML	105	0	28		200	15	960	50%	-4.5	1326	1582					M-C	15	200								
4	-33	-85	CL/CH	105	0	23	0.22			960	50%	-4.5	1582	3797	348	835			S = f(depth)	0		348	9.4	835					
5	-85	-110	ML	105	0	28		200	15	960	50%	-4.5	3797	4862					M-C	15	200								
6	-110	-120	ML/SM/SP	120	0	28		100	20	960	50%	-4.5	4862	5438					M-C	20	100								
7	-120	-135	ML	105	0	28		200	15	960	50%	-4.5	5438	6077					M-C	15	200								

Notes: 1. Strength increase due to surcharging is from an assumed 8 foot soil fill with a unit weight of 120 pcf. It is also assumed that by the time of construction, approximately 1 year, a condition of 50% excess pore water dissipation will be reached in the cohesive layers. 2. Refer to Figure B-8.2 for the strength profile used in rapid flood stability analyses.

3. Explanation of Models: M-C indicates a Mohr-Coulomb model using specified cohesion and friction angle; S=f(depth) indicates that undrained shear strength increases with depth; and Spatial M-C, Linear Cohesion Function indicates that the undrained shear strength profile is fully specified within the layer.

SEEPAGE ANALYSIS CASES

Seepage		Water Surface Elevations	(WSE) (feet)	Demerice
Case	Flow Regime	Channel	Polder	Remarks
1	Steady-State	10	-6.8	Polder WSE From low water observations in PZ-13
2	Steady-State	0	10	

STABILITY ANALYSIS CASES AND RESULTS

Stability Analysis Case	Seepage Case	Analysis Type	Soil Drainage Conditions	Slip Direction	Required Factor of Safety	Calculated Critical FOS	Failure Type	Soil Layers Impacted by Critical Slip Surface	Critical Slip Description	Additional Remarks
1A	1	Steady-State Stability	Drained	Polder-side	1.50	2.02	Global	1, 2	Levee crown to polder-side ditch	
1B	1	Steady-State Stability	Drained	Polder-side	1.50	0.89	Local	1, 2	Berm toe to polder-side ditch	Safety map encompases all slip surfaces with FOS <
2A	2	Steady-State Stability	Drained	Channel-side	1.50	1.95	Global	1, 2, 3, 4	Channel-side levee slope to channel toe	
2B	2	Steady-State Stability	Drained	Channel-side	1.50	1.40	Local	1, 2	Berm toe to levee toe	Critical slip surface consists of shallow slumping; safe
ЗA	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.24	Local	1, 2	Polder-side levee slope to channel-side berm	Safety map encompases all slip surfaces with FOS <
3B	2	Rapid Flood Loading	Undrained	Channel-side	1.30	1.91	Local	1, 2	Polder-side berm to channel slope	

NOTES

- 1 Cross Section was developed from 30 Percent Civil Design geometry.
- 2 CPT NL-1C was considered to develop the stratigraphy shown.
- 3 Stability is calculated using pore pressure developed from the parent steady-state seepage model.
- 4 Model is symmetric with respect to channel centerline, therefore results are equal on each side of the model.
- 5 Model extends 1600 feet landward of approximate centerline.
- 6 The Spencer analysis method was used to evaluate stability.
- 7 5-foot tension cracks filled with water are applied in the embankment.

30 PERCENT DESIGN							
	FX				A COLLINA NOLVO	COASTAL PROTECTION ENGINEER 450 LA BATON ROUG	& RESTORATION AUTHORITY LING DIVISION UREL STREET GE, LOUISIANA 70801
		REV. DATE	DESCRIPTION	BY	CPRA F	DRAWN BY:	DESIGNED BY:

1.5

ety map encompases all slip surfaces with FOS < 1.5

1.3

NOT TO SCALE

STABILITY ANALYSIS STATION: **130+00** STABILITY PARAMETERS AND RESULTS

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-8.1		

APPROVED BY:

NOT TO SCALE
STEADY-STATE STABILITY ANALYSIS
STATION: 130+00
SEEPAGE CASE: 2
STABILITY CASE: 2A
WSE In Channel: + 0.0 feet
WSE Outside Channel: ±10.0 feet

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-8.5		

STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-8.6

MATERIALS¹

Created By: Crosariol, Victor

File Name: 02 Station 130+00 30% Levee.gsz

Analysis: STAB_RF Case 3A: (Out: 10 ft / In: 0 ft)

Date: 11/21/2013

RF 1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CH/OH -4.5 to -27 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Spatial Mohr-Coulomb Unit Weight: 100 pcf Cohesion Fn: RF_2 - CH/OH -4.5 to -27 RF_3 - ML -27 to -33 (Kv=4x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15° RF 4 - CL/CH -33 to -85 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) Unit Weight: 105 pcf C-Top of Layer: 348 psf C-Rate of Change: 9.4 psf/ft C-Maximum: 835 psf RF 5 - ML -85 to -110 (Kv=4x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° RF 6 - ML/SM/SP -110 to -120 (Kv=6x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 100 psf Phi': 20 ° RF 7 - ML -120 to -135 (Kv=4x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING
STATE PROJECT NUMBER: BA-153	REPORT
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014
APPROVED BY:	FIGURE: B-8.7

MATERIALS¹

Created By: Crosariol, Victor

File Name: 02_Station 130+00_30% Levee.gsz

Analysis: STAB_RF Case 3B: (Out: 10 ft / In: 0 ft)

Date: 11/21/2013

RF_1 - Levee/Berm (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 600 psf Phi': 0 ° RF_2 - CH/OH -4.5 to -27 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: Spatial Mohr-Coulomb Unit Weight: 100 pcf Cohesion Fn: RF_2 - CH/OH -4.5 to -27 RF 3 - ML -27 to -33 (Kv=4x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15° RF⁴ - CL/CH -33 to -85 (Kv=5x10-7 cm/sec, Kv/Kh=0.25) Model: S=f(depth) RF 5 - ML -85 to -110 (Kv=4x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 ° RF 6 - ML/SM/SP -110 to -120 (Kv=6x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion': 100 psf Phi': 20 ° RF 7 - ML -120 to -135 (Kv=4x10-5 cm/sec, Kv/Kh=0.25) Model: Mohr-Coulomb Unit Weight: 105 pcf Cohesion': 200 psf Phi': 15 °

MID-BARATARIA SEDIMENT DIVERSION	GEOTECHNICAL ENGINEERING		
STATE PROJECT NUMBER: BA-153	REPORT		
FEDERAL PROJECT NUMBER: BA-153	DATE: JULY 2014		
APPROVED BY:	FIGURE: B-8.8		