

Appendix J Data Quality Indicators and Quality Assurance / Quality Control Review

J1. Data Quality Indicators

Specific data quality indicator (DQI) limits for the Stage 5 EA works were adopted in accordance with the ASC NEPM (NEPC 2013) and standard JBS&G procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data was assessed against appropriate DQIs established in relation to precision, accuracy, representativeness, comparability and completeness and sensitivity (PARCCS parameters), as follows:

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples;
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that are generated during this study is a measure of the closeness of the analytical results obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards;
- **Representativeness** expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy;
- **Comparability** expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples, ensuring analysing laboratories use consistent analysis techniques and reporting methods;
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study; and
- Sensitivity expresses the appropriateness of the chosen laboratory methods, including the limits of reporting.

The DQIs adopted as part of the assessment are summarised in Table J1.1.

Table J1.1: Summary of DQIs

Data Quality Indicators	Frequency & Data Quality Criteria
Precision	
Intra-laboratory Duplicate	 1 in 20 samples. RPD <30%.
Inter-laboratory Duplicate	 1 in 20 samples. RPD <30%.
Laboratory Internal Duplicates	 1 in 20 samples. RPD <30%.
Accuracy	
Laboratory control samples	 1 per laboratory batch. Within laboratory prescribed recovery range
Matrix spikes	 1 per laboratory batch. Within laboratory prescribed recovery range
Representativeness	within aboratory presended recovery range.
Sampling appropriate media and analytes	All sampling conducted in accordance with JBS&G procedures.
Samples extracted within holding time	All samples extracted within holding time (groundwater samples).
No potential ingress of ambient air into samples during transport	 No more than -5 inHg loss per sample during transit for Summa canister samples.
Leak test (soil vapour sampling)	 Shroud samples collected at 1 in 20. All samples <10% tracer (helium or isopropanol).
No potential cross contamination	 Approximate decontamination procedures implemented for use of non- dedicated equipment and collection of rinsate samples to validate these decontamination procedures (installation of groundwater wells and soil vapour probes, and sampling of groundwater wells). Dedicated equipment used for collection of all samples (soil vapour / crawlspace / service pit samples).
Laboratory blanks	 1 per laboratory batch. All results < laboratory limits of reporting (LOR).
Trip blanks	 1 per laboratory batch. All results < LOR.
Trip spikes	 1 per laboratory batch. All results within 70 to 130 %.
Comparability	
Standard operating procedures for sample collection and handling	 All sampling conducted in accordance with JBS&G procedures. Consistent field staff to complete program using consistent operating procedure.
Standard analytical methods used for all analyses	 Use of National Association of Testing Authorities (NATA) accredited laboratories. Standard analytical methods (details on the laboratory certificates of analysis).
Consistent field conditions, sampling staff and laboratory analysis	 Field program completed in September and October 2017. Consistent field staff to complete program using consistent operating procedure. Consistent primary laboratory (Eurofins MGT for groundwater; Envirolab for soil vapour / crawlspace / service pit samples; SMS Geotechnical for geotechnical samples) and secondary laboratory for QC purposes (Envirolab for groundwater; ALS for soil vapour / crawlspace / service pit samples).
Limits of reporting appropriate and consistent	 Maximum groundwater sample LORs as follows: Tetrachloroethene: 1 µg/L; Trichloroethene: 1 µg/L; cis-1,2-dichloroethene: 1 µg/L; trans-1,2-dichloroethene: 1 µg/L; 1,1-dichloroethene: 1 µg/L; and Vinyl chloride: 0.05 µg/L.

Data Quality Indicators	Frequency & Data Quality Criteria
	Maximum soil vapour sample LORs as follows:
	 Tetrachloroethene: 10 μg/m³; Trichloroethene: 5 μg/m³; cis-1,2-dichloroethene: 10 μg/m³; trans-1,2-dichloroethene: 10 μg/m³; 1,1-dichloroethene: 10 μg/m³; and Vinyl chloride: 5 μg/m³. Maximum crawlspace / service pit sample LORs as follows:
	 Tetrachloroethene: 5 µg/m³; Trichloroethene: 2 µg/m³; cis-1,2-dichloroethene: 2 µg/m³; trans-1,2-dichloroethene: 2 µg/m³; 1,1-dichloroethene: 2 µg/m³; and Vinyl chloride: 2 µg/m³.
Completeness	
Sample description and Chain of Custody (COC) documentation completed and appropriate	All COCs to be completed appropriately.
Satisfactory frequency and result for QC samples	 QC samples to be collected at frequencies as outlined above.
Sensitivity	
Analytical methods and limits of recovery appropriate for media and adopted assessment criteria	 Use of NATA accredited laboratories. Maximum LORs as detailed above.

J2. Groundwater

Table J2.1 summarises the quality assurance (QA) and quality control (QC) activities undertaken to ensure integrity of the groundwater data collected and conformance with the DQIs outlined in **Section J1**. Any departures from the DQIs are noted in **Table J2.1**.

QA/QC Item	Detail
QA	
Field Procedures	Field procedures were undertaken in accordance with relevant guidelines outlined in Section 6 .
Decontamination of Equipment	All drilling equipment used during the installation of groundwater wells (MW38- MW43) was decontaminated prior to the commencement of drilling at each location with phosphate free detergent followed by rinsing with deionised water. Rinsate samples were collected on every day of groundwater well drilling / installation works to validate the decontamination process.
	All low-density polyethylene (LDPE) tubing and footvalves used during the development of wells was dedicated to a specific well.
	All LDPE twin tubing used during the sampling of wells were dedicated to a specific well. The IP, low flow pump and water quality meter were used for all wells sampled and hence were decontaminated prior to the commencement of sampling at each groundwater well with phosphate free detergent followed by rinsing with deionised water. Rinsate samples were collected on every day of groundwater sampling to validate the decontamination process.
Laboratories used and NATA accreditation	Eurofins MGT (primary laboratory) and Envirolab (secondary laboratory for QC purposes) are NATA accredited for the analyses undertaken.

Table J2.1: Groundwater	r QA/QC Pro	gram
-------------------------	-------------	------

QA/QC Item	Detail
Sample Tracking	COC documentation was used for the transport of all samples to the laboratory and is included in Appendix K (along with the laboratory certificates of analysis).
Sample Preservation and Storage	Samples were collected in laboratory supplied bottles with specific preservation for the chemicals of interest, and were kept in a chilled insulated box and transported to the laboratory.
Holding Times	Samples were analysed within specified holding times by both the primary and secondary laboratory.
Data Transcription	Summary results tables are appended to this report, which were generated from laboratory supplied ESdat files, minimising the potential for transcription errors.
Laboratory Limits of Reporting (LORs)	The LORs are presented in the groundwater laboratory certificates of analysis (Appendix K) and included in the Summary Tables . The LORs outlined in the DQIs were achieved with the exception of the required LOR for VC for 7 primary samples (MW12, MW36, MW37, MW39-MW41 and MW43). It is noted ultra-trace analysis was undertaken for all chlorinated hydrocarbons (including VC), however, the LORs were raised due to matrix interference for some samples which resulted in VC having an LOR above the adopted screening level in some samples.
QC	
Intra-laboratory Duplicate Samples	One intra-laboratory duplicate sample was collected during the groundwater monitoring program. This frequency was in accordance with the DQIs. The following intra-laboratory duplicate sample pair was collected:
	 'DUP01' was collected with primary sample 'MW37' on 29 September 2017. Both samples were analysed for CEs.
	A total of six RPD values were calculated. All RPD results were within the acceptable range (0 % to 30%) outlined in the DQIs.
	The groundwater intra-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables .
Inter-laboratory Duplicate Samples	One inter-laboratory duplicate sample was collected during the groundwater monitoring program. This frequency was in accordance with the DQIs. The following inter-laboratory duplicate sample pair was collected:
	 'SPLIT01' was collected with primary sample 'MW37' on 29 September 2017. Both samples were analysed for CEs.
	A total of six RPD values were calculated. All RPD results were within the acceptable range (0 % to 30%) outlined in the DQIs.
	The groundwater inter-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables .
Rinsate Blank Samples	Groundwater Well Installation
	Rinsate samples were collected on every day of groundwater well installation works in order to validate the decontamination procedures undertaken for the drilling equipment. This frequency was in accordance with the DQIs.
	Three rinsate samples were collected during the installation of groundwater wells, as follows:
	• 'RB01' on 21 September 2017;
	'RB02' on 22 September 2017; and
	• 'RB03' on 25 September 2017.
	All rinsate samples were collected by running deionised water over the clean lead auger head. All rinsate samples were analysed for CEs. All results were below laboratory reporting limits, as required by the DQIs.
	Groundwater Well Sampling
	Rinsate samples were collected on every day of groundwater sampling works in order to validate the decontamination procedures undertaken for the sampling equipment. This frequency was in accordance with the DQIs.

QA/QC Item	Detail
	Two rinsate samples were collected during the groundwater sampling program, as follows:
	'RB04' on 29 September 2017; and
	• 'RB05' on 3 October 2017.
	All rinsate samples were collected by running deionised water through the clean low flow pump. All rinsate samples were analysed for CEs. All results were below laboratory reporting limits, as required by the DQIs.
	The results of the rinsate samples are summarised in the Summary Tables and included in the laboratory certificates of analysis in Appendix K .
Trip Blank Samples	One trip blank sample ('TRIPBLANK01') was transported to and from site, and treated in the same manner as the groundwater samples collected on 3 and 4 October 2017 (MW12, MW24, MW36 and MW38-MW43) to ensure samples were not impacted during transport. It is noted a trip blank sample was not transported with the samples collected on 29 September 2017 (primary sample MW37 and duplicate samples) and hence the frequency of trip blank samples was not in accordance with the DQIs. Given the consistent sampling and transportation procedures implemented, this is not considered to impact on the outcomes of the investigation. In addition, it is noted the Stage 5 EA Works results for MW37 were similar (within 30 %) to the Stage 4 EA Works results for all chemicals.
	The trip blank sample was analysed for CEs. All results were below laboratory reporting limits, as required by the DQIs.
	The results of the trip blank sample are included summarised in the Summary Tables and included in the laboratory certificates of analysis in Appendix K .
Trip Spike Samples	One trip spike sample ('TRIPSPIKE01') was transported to and from site, and treated in the same manner as the groundwater samples collected on 3 and 4 October 2017 (MW12, MW24, MW36 and MW38-MW43) to ensure there was no significant loss of volatiles during transport. It is noted a trip spike sample was not transported with the samples collected on 29 September 2017 (primary sample MW37 and duplicate samples) and hence the frequency of trip spike samples was not in accordance with the DQIs. Given the consistent sampling and transportation procedures implemented, this is noted the Stage 5 EA Works results for MW37 were similar (within 30 %) to the Stage 4 EA Works results for all chemicals.
	The trip spike sample was pre-dosed with, and analysed for, benzene, toluene, ethylbenzene and xylenes (BTEX). The trip spike sample recoveries ranged between 77 % and 95 %, indicating no significant loss of volatiles during transport – this is within the acceptable range of 70 % to 130 % outlined in the DQIs. It is noted the trip spike samples were in transit for twice as long as the groundwater samples and hence any loss reported in the trip spike sample is likely to be greater than that of the groundwater samples.
	and included in the laboratory certificates of analysis in Appendix K .
Laboratory Internal QC	Eurofins MGT (primary laboratory) and Envirolab (secondary laboratory for QC purposes) undertook internal QA procedures and internal QC testing, including laboratory blank samples (both laboratories), spike samples (both laboratories) and laboratory duplicate samples (Eurofins MGT only). The following was noted:
	• Laboratory blank samples: All results were below the laboratory reporting limits;
	• Spike samples: The recoveries from the laboratory control spike samples were within the specified range for each chemical; and
	• Laboratory duplicate samples: The RPD values reported for all internal duplicate pairs were within the acceptable range outlined within the ASC NEPM (NEPC 2013).

J3. Soil Vapour

Table J3.1 summarises the QA and QC activities undertaken to ensure integrity of the soil vapour data collected and conformance with the DQIs outlined in **Section J1**. Any departures from the DQIs are noted in **Table J3.1**.

QA/QC Item	Detail
QA	
Field Procedures	Field procedures were undertaken in accordance with the references in Section 7.
Decontamination of Equipment	All drilling equipment used during the installation of soil vapour probes (VP67-VP72) was decontaminated prior to the commencement of drilling at each location with phosphate free detergent followed by rinsing with deionised water. Rinsate samples were collected on every day of soil vapour probe drilling / installation works to validate the decontamination process. Dedicated soil vapour sampling equipment was used at each sampling location.
Laboratories used and NATA accreditation	Envirolab (primary laboratory) and ALS (secondary laboratory for QC purposes) are NATA accredited for the analyses undertaken.
Sample Tracking	COC documentation was used for the transport of all samples to the laboratory.
Sample Preservation and Storage	Summa canisters were stored in laboratory supplied pelican cases and transported to the laboratory.
Data Transcription	Summary results tables are appended to this report, which were generated from laboratory supplied ESdat files, minimising the potential for transcription errors.
Laboratory Detection Limits	The LORs are presented in the soil vapour laboratory certificates of analysis (Appendix N) and included in the Summary Tables.
	The required LORs outlined in the DQIs were achieved with the exception of the following:
	 PCE – two primary samples (VP71 and VP72);
	 TCE – two primary samples (VP71 and VP72);
	 cis-1,2-DCE – 7 primary samples (VP44, VP66 and VP68-VP72);
	 trans-1,2-DCE – 7 primary samples (VP44, VP66 and VP68-VP72);
	 1,1-DCE – three primary samples (VP70-VP72); and
	 VC – 9 primary samples (VP18, VP29, VP44, VP66 and VP68-VP72).
	The LORs in VP18, VP29, VP44, VP66 and VP68-VP71 were raised due the presence of elevated concentrations of other CEs (except the LOR for isopropanol in VP18 and the LORs for CEs in VP71 which were raised due to the presence of elevated concentrations of analytes other than those being tested). With the exception of VP71 (discussed further below), the raised LORs in these soil vapour probes are not considered to impact on the conclusions of this report as the LOR outlined in the DQIs for the key chemical driving risk at the site (TCE) was achieved.
	The LORs in VP72 were raised due to the lower volume of available sample – a lower sample volume was obtained for this soil vapour probe due to low vapour yield despite an increased sampling time.
	Further consideration should be given to the potential for elevated CE vapour concentrations (particularly the key chemical driving risk at the site [TCE)]) to be present at VP71 and VP72, particularly when assessing delineation of the soil vapour plume. However, it should be noted TCE concentrations at these locations were below 80 μ g/m ³ (the LOR for the samples) which is significantly lower than the highest TCE concentration reported during the September 2017 soil vapour monitoring event (18,000 μ g/m ³ at VP29) and hence these elevated LORs for these samples are not considered to impact on the conclusions of this report regarding risks to human health.

Table J3.1: Soil Vapour QA/QC Program

QA/QC Item	Detail
QC	
Rinsate Blank Samples	As outlined above, rinsate samples were collected on every day of soil vapour probe installation works to validate the decontamination procedures undertaken for the drilling equipment. This frequency was in accordance with that outlined in the DQIs.
	Three rinsate samples were collected during the installation of soil vapour probes, as follows:
	• 'RB01' on 21 September 2017;
	'RB02' on 22 September 2017; and
	• 'RB03' on 25 September 2017.
	All rinsate samples were collected by running deionised water over the clean lead auger head. All rinsate samples were analysed for CEs. All results were below laboratory reporting limits, as required by the DQIs.
	The results of the rinsate samples are summarised in the Summary Tables and included in Laboratory Certificates of Analysis in Appendix K .
Certification of Summa Canisters	All Summa canisters were certified as clean by the primary laboratory (Envirolab) prior to dispatch, with all Summa canisters provided returning results for all VOCs below the LOR.
Integrity Testing – Helium Leak Test	All soil vapour probes passed the helium leak test, given the concentration reported in the soil vapour probes was below 10 % of that reported in the shroud, as required by the DQIs. This indicates adequate soil vapour probe construction.
	Helium leak test results are included in the Summary Tables .
Integrity Testing – Isopropanol Leak Test	One shroud sample ('SHROUD01') was collected during the soil vapour monitoring event and analysed for isopropanol. An isopropanol concentration of 1,300,000 μ g/m ³ was reported in the shroud sample.
	The concentration of isopropanol within the soil vapour samples was compared to the acceptable concentration outlined in the DQIs (10 % of that reported in the shroud sample – 130,000 μ g/m ³). All soil vapour samples reported isopropanol concentrations below this acceptable concentration and hence passed the isopropanol leak test, indicating acceptable ingress of ambient air during sampling. Isopropanol leak test results are included in the Summary Tables .
Receipt Pressure of Samples (Summa Canister Samples)	The pre- and post-sampling pressure, and the final pressure of the passivated canisters on receipt at the laboratory are summarised in the Summary Tables .
	The pre-sampling pressure was -30 inHg for all canisters used in the soil vapour sampling, indicating negligible loss of pressure between shipping from the
	the final laboratory receipt pressure, with the difference below 1 inHg for all soil vapour samples (below the maximum of 5 inHg outlined in the DQIs).
	The results indicate little loss of pressure and low potential for ambient air ingress during transit for all summa canister samples.
Intra-Laboratory Duplicate Samples	One intra-laboratory duplicate sample pair was collected and analysed as part of the soil vapour monitoring program for a total of 11 primary samples. This frequency is in accordance with the required frequency outlined in the DQIs. The following intra- laboratory duplicate sample was collected:
	• DOPOT was collected with primary sample VP/0 on 27 September 2017. The intra-laboratory duplicate sample pair was analysed for the chemicals of interest (CEs). A total of six RPD values were calculated – all RPDs were within the acceptable range (0 % to 30 %) outlined in the DQIs.
	The soil vapour intra-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables . Laboratory results are included in Laboratory Certificates of Analysis in Appendix N .
Inter-Laboratory Duplicate Samples	One inter-laboratory duplicate sample pair was collected and analysed as part of the soil vapour monitoring program for a total of 11 primary samples. This frequency is

QA/QC Item	Detail
	in accordance with the required frequency outlined in the DQIs. The following inter- laboratory duplicate sample was collected:
	• 'DUP02' was collected with primary sample 'VP67' on 27 September 2017.
	The inter-laboratory duplicate sample pair was analysed for the chemicals of interest (CEs). A total of six RPD values were calculated – all RPDs were within the acceptable range (0 % to 30%) outlined in the DQIs.
	The soil vapour inter-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables . Laboratory results are included in Laboratory Certificates of Analysis in Appendix N .
Laboratory Internal QC	Envirolab (primary laboratory) and ALS (secondary laboratory for QC purposes) undertook internal QA procedures and internal QC testing, including:
	• Laboratory blank samples - All results were below the laboratory reporting limits.
	• Duplicate samples - The RPD values reported for all internal duplicate pairs within the acceptable range; and
	• Spike samples - The recoveries from the laboratory control spike samples were within the specified range for each chemical.

J4. Service Pits

Table J4.1 summarises the QA and QC activities undertaken to ensure integrity of the service pit data collected and conformance with the DQIs outlined in **Section J1**. Any departures from the DQIs are noted in **Table J4.1**.

QA/QC Item	Detail
QA	
Field Procedures	Field procedures were undertaken in accordance with the references in Section 7.
Decontamination of Equipment	Dedicated sampling equipment was used at each sampling location.
Laboratories used and NATA accreditation	Envirolab (primary laboratory) and ALS (secondary laboratory for QC purposes) are NATA accredited for the analyses undertaken.
Sample Tracking	COC documentation was used for the transport of all samples to the laboratory.
Sample Preservation and Storage	Radiello samplers were wrapped in bubble wrap and placed in a transport box for transit to the laboratory.
Data Transcription	Summary results tables are appended to this report, which were generated from laboratory supplied ESdat files, minimising the potential for transcription errors.
Laboratory Detection Limits	The LORs are presented in the soil vapour laboratory certificates of analysis (Appendix P) and included in the Summary Tables.
	The LORs outlined in the DQIs were achieved.
QC	
Intra-Laboratory Duplicate Samples	One intra-laboratory duplicate sample pair was collected and analysed as part of the service pit monitoring program for a total of 10 primary samples. This frequency is in accordance with the required frequency outlined in the DQIs. The following intra- laboratory duplicate sample was collected:
	• 'DUP_SP01' was collected with primary sample 'SP01' on 4 October 2017.
	The intra-laboratory duplicate sample pair was analysed for the chemicals of interest (CEs). A total of 6 RPD values were calculated – all RPDs were within the acceptable range (0 % to 30 %) outlined in the DQIs with the exception of that for PCE which slightly exceeded the acceptable range (33 %). This elevated RPD is attributed to the low concentrations reported in these samples (2.5 μ g/m ³ for SPO1; 3.5 μ g/m ³ for DUP SPO1). The higher PCE concentration was reported in the

Table J4.1: Service Pit QA/QC Program

QA/QC Item	Detail
	duplicate sample and this concentration has been adopted in the assessment of results.
	The service pit intra-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables . Laboratory results are included in Laboratory Certificates of Analysis in Appendix P.
Inter-Laboratory Duplicate Samples	One inter-laboratory duplicate sample pair was collected and analysed as part of the service pit monitoring program for a total of 10 primary samples. This frequency is in accordance with the required frequency outlined in the DQIs. The following inter-laboratory duplicate sample was collected:
	• 'DUP_SP02' was collected with primary sample 'SP02' on 4 October 2017.
	The inter-laboratory duplicate sample pair was analysed for PCE and TCE. A total of two RPD values were calculated – both RPDs exceeded the acceptable range (0 % to 30 %) outlined in the DQIs, with significantly higher concentrations reported for both chemicals in the primary sample, as follows:
	 PCE (RPD of 155 %): 19 μg/m³ in SP02; 2.41 μg/m³ in DUP_SP02; and
	 TCE (RPD of 128 %): 19 μg/m³ in SP02; 4.15 μg/m³ in DUP_SP02.
	These results were reviewed and it was considered that the discrepancy was between the total concentrations (in ng/tube) reported by the laboratories for the samples (i.e. calculation of concentration in μ g/m ³ had been completed correctly as based on sampling time).
	Both laboratories were contacted regarding these results (correspondence is included in Appendix T). The following was noted:
	 Envirolab (primary laboratory): The results were reviewed by the analyst – no errors were identified and the QC was appropriate. The laboratory noted these results were above the calibration range (i.e. the results may be higher than those reported); and
	 ALS (secondary laboratory for QC purposes): The results were reviewed by the analyst – no errors were identified and the QC was appropriate. The sample was re-analysed, and results of the second analysis confirmed the initial results.
	Based on the above, analytical procedure does not appear to be the cause of the discrepancy in results between the two laboratories. There is a possibility the difference in the concentrations may be attributed to potential issues with the diffusive body used for sampling (i.e. blockages etc), however, no visible abnormalities were observed during sampling. The higher PCE and TCE concentrations reported (those in the primary sample) have been adopted in the assessment of results.
	The service pit inter-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables . Laboratory results are included in Laboratory Certificates of Analysis in Appendix P.
Trip Blank Samples (Radiello Samples)	One trip blank Radiello sample ('Blank 01') was collected as part of the service pit monitoring program for a total of 10 primary service pit samples. This frequency is in accordance with the frequency outlined in the DQIs.
	The trip blank Radiello sample was transported to and from site and treated in the same manner as the primary samples in order to ensure elevated concentrations of the chemicals of interest (PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE and VC) were not introduced during transport.
	All trip blank Radiello samples were analysed for the chemicals of interest (PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE and VC). All results were below laboratory reporting limits, as required by the DQIs.
	The results of the trip blank Radiello samples are summarised in the Summary Tables and included in Laboratory Certificates of Analysis in Appendix P .
Laboratory Internal QC	Envirolab (primary laboratory) and ALS (secondary laboratory for QC purposes) undertook internal QA procedures and internal QC testing, including:
	 Laboratory blank samples - All results were below the laboratory reporting limits; and

QA/QC Item	Detail
	• Spike samples - The recoveries from the laboratory control spike samples were within the specified range for each chemical.

J5. Crawlspace Sampling

Table J5.1 summarises the QA and QC activities undertaken to ensure integrity of the crawlspace data collected and conformance with the DQIs outlined in **Section J1**. Any departures from the DQIs are noted in **Table J5.1**.

Table J5.1:	Crawlspace	Sample	QA/QC	Program
-------------	------------	--------	-------	---------

QA/QC Item	Detail
QA	
Field Procedures	Field procedures were undertaken in accordance with the references in Section 7 .
Decontamination of Equipment	Dedicated crawlspace sampling equipment was used at each sampling location.
Laboratories used and NATA accreditation	Envirolab (primary laboratory) are NATA accredited for the analyses undertaken. It is noted inter-laboratory duplicate sample analysis was completed at EPAs request (and hence no secondary laboratory for QC purposes was employed).
Sample Tracking	COC documentation was used for the transport of all samples to the laboratory.
Sample Preservation and Storage	Summa canisters were stored in laboratory supplied pelican cases and transported to the laboratory.
Data Transcription	Summary results tables are appended to this report, which were generated from laboratory supplied ESdat files, minimising the potential for transcription errors.
Laboratory Detection Limits	The LORs are presented in the crawlspace laboratory certificates of analysis (Appendix R) and included in the Summary Tables.
Certification of Summa Canisters	All Summa canisters were certified as clean by the primary laboratory (Envirolab) prior to dispatch, with all Summa canisters provided returning results for all VOCs below the LOR.
Integrity Testing – Helium Leak Test	All soil vapour probes passed the helium leak test, given the concentration reported in the crawlspace sample train was below 10 % of that reported in the shroud, as required by the DQIs. This indicates adequate crawlspace sample setup. Helium leak test results are included in the Summary Tables .
Receipt Pressure of Samples (Summa Canister Samples)	The pre- and post-sampling pressure, and the final pressure of the Summa canisters on receipt at the laboratory are summarised in the Summary Tables .
	The pre-sampling pressure was -30 inHg for all canisters used in the crawlspace sampling, indicating negligible loss of pressure between shipping from the laboratory to receipt for sampling. The post-sampling pressure was compared to the final laboratory receipt pressure, with the difference below 1 inHg for all crawlspace samples (below the maximum of 5 inHg outlined in the DQIs).
	The results indicate little loss of pressure and low potential for ambient air ingress during transit for all crawlspace samples.
Intra-Laboratory Duplicate Samples	One intra-laboratory duplicate sample pair was collected and analysed as part of the crawlspace monitoring program for a total of three primary samples. This frequency is in accordance with the required frequency outlined in the DQIs. The following intra-laboratory duplicate sample was collected:
	• 'DUPC1' was collected with primary sample 'P01_C2' on 24 October 2017.
	The intra-laboratory duplicate sample pair was analysed for the chemicals of interest (CEs). A total of 6 RPD values were calculated – all RPDs were within the acceptable range (0 % to 30 %) outlined in the DQIs.

QA/QC Item	Detail
	The crawlspace sample intra-laboratory duplicate sample pair results and RPD values have been summarised in the Summary Tables . Laboratory results are included in Laboratory Certificates of Analysis in Appendix R .
Inter-Laboratory Duplicate Samples	No inter-laboratory duplicate sample collection / analysis was completed at EPA's request.
Laboratory Internal QC	Envirolab (primary laboratory) undertook internal QA procedures and internal QC testing, including:
	 Laboratory blank samples - All results were below the laboratory reporting limits.
	 Duplicate samples - The RPD values reported for all internal duplicate pairs within the acceptable range; and
	• Spike samples - The recoveries from the laboratory control spike samples were within the specified range for each chemical.

Appendix K Groundwater Laboratory Certificates of Analysis and Chain of Custody Documentation

JBS & G Australia (SA) P/L 38 Dequetteville Terrace Kent Town SA 5067

Attention:

Luke Silvester

Report
Project name
Project ID
Received Date

565138-W EDWARDSTOWN 54089 Sep 27, 2017

Client Sample ID			RB01	RB02	RB03
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Se32661	M17-Se32662	M17-Se32663
Date Sampled			Sep 21, 2017	Sep 22, 2017	Sep 25, 2017
Test/Reference	LOR	Unit			
Volatile Organics					
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

ωµi,

acemr/

4 Julia

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			RB01	RB02	RB03
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Se32661	M17-Se32662	M17-Se32663
Date Sampled			Sep 21, 2017	Sep 22, 2017	Sep 25, 2017
Test/Reference	LOR	Unit			
Volatile Organics					
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	76	73	67
Toluene-d8 (surr.)	1	%	82	80	74

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

mgt

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Volatile Organics	Melbourne	Sep 27, 2017	7 Days

- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices

Sydney Unit F3, Building F	46 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217										
, Close	14 5000 14 5000 71	pany Name: 'ess:	JBS & G Aus 38 Dequettev Kent Town SA 5067	stralia (SA) P/l ville Terrace	L			Order No.: Report #: Phone: Fax:	565138 08 8431 7113 08 8431 7115	ustralia, 3166	Received:Sep 27, 2017 9:14 AMDue:Oct 5, 2017Priority:5 DayContact Name:Luke Silvester
lbourne Kingston Towr	eign vic 316t one : +61 3856 7A # 1261 9 # 1261 201 201 42	ect Name: ect ID:	EDWARDST 54089	OWN				1		agh, Victoria, A	SEurofins mgt Analytical Services Manager : Sarah Gould
25 Me	Oa ABN- 50 005 085 521 Phy e.mail : EnviroSales@eurofins.com NA web : www.eurofins.com.au Siti		Sa	mple Detail			Volatile Organics			Eurofins mgt 2-5 Kingston Town Close, Oakle	ABN : 50 005 085 521 Telephone: +61 3 8564
	əlbo	urne Laborato	ory - NATA Site	# 1254 & 142	71		Х				
	<mark>rdne</mark>	y Laboratory	- NATA Site # 1	8217				-			
	isba	ine Laboratory	/ - NATA Site #	20794				-			
	erth	Laboratory - N	IATA Site # 237	36							
1	teri م	al Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
	E	RB01	Sep 21, 2017		Water	M17-Se32661	Х]			
	$-\Box$	RB02	Sep 22, 2017		Water	M17-Se32662	Х				
S		RB03	Sep 25, 2017		Water	M17-Se32663	Х				
Ë	st C	ounts					3]			
🛟 eurofi											Date Reported: Oct 05, 2017

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

mg/L: milligrams per litre

NTU: Nephelometric Turbidity Units

ppm: Parts per million

%: Percentage

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ppb: Parts per billion org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

1011110	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Volatile Organics						
1.1-Dichloroethane	mg/L	< 0.001		0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001		0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001		0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001		0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001		0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001		0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001		0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001		0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001		0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001		0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001		0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001		0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001		0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001		0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001		0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001		0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001		0.001	Pass	
Allyl chloride	mg/L	< 0.001		0.001	Pass	
Benzene	mg/L	< 0.001		0.001	Pass	
Bromobenzene	mg/L	< 0.001		0.001	Pass	
Bromochloromethane	mg/L	< 0.001		0.001	Pass	
Bromodichloromethane	mg/L	< 0.001		0.001	Pass	
Bromoform	mg/L	< 0.001		0.001	Pass	
Bromomethane	mg/L	< 0.001		0.001	Pass	
Carbon disulfide	mg/L	< 0.001		0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001		0.001	Pass	
Chlorobenzene	mg/L	< 0.001		0.001	Pass	
Chloroethane	mg/L	< 0.001		0.001	Pass	
Chloroform	mg/L	< 0.005		0.005	Pass	
Chloromethane	mg/L	< 0.001		0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001		0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001		0.001	Pass	
Dibromochloromethane	mg/L	< 0.001		0.001	Pass	
Dibromomethane	mg/L	< 0.001		0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
Iodomethane	mg/L	< 0.001		0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
Methylene Chloride	mg/L	< 0.001		0.001	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Styrene	mg/L	< 0.001		0.001	Pass	
Tetrachloroethene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001		0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001		0.001	Pass	
Trichloroethene	mg/L	< 0.001		0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
LCS - % Recovery					
Volatile Organics					
1.1-Dichloroethene	%	87	70-130	Pass	
1.2-Dichlorobenzene	%	126	70-130	Pass	
1.2-Dichloroethane	%	106	70-130	Pass	
Benzene	%	121	70-130	Pass	
Ethylbenzene	%	121	70-130	Pass	
m&p-Xylenes	%	125	70-130	Pass	
Toluene	%	119	70-130	Pass	
Trichloroethene	%	95	70-130	Pass	
Xylenes - Total	%	124	70-130	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Sarah Gould Harry Bacalis Analytical Services Manager Senior Analyst-Volatile (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY D	OCUME	ITATI	NO	JBS&G (Australia) Pty Ltd	Ads 381	laide lequettevil 61 8 8431	o Toe KEN 113 ↔ F:	T TOWN SJ +61 8 843 ACH	4 5067 1 7115 1 10a 220 47	0 - 0RN C	74 055 001 0	đ			Dasar C
CLIENT: EPA			LABOF	ATORY: MGT		ILABC	RATORY	BATCH	0							
SITE/PROJECT NAME: Edwardstown			COCR	leference #: 4736		SAMI	PRS-		51							
SEND REPORT TO: JBS&G Australia Pty Lt	P		SEND	INVOICE TO: JBS&G Australia Pty Ltd		ЮНа	E: 08 843	1 7113	FAX: 08 8-	431 7115						
DATA NEEDED BY: 5 day T/A			REPOR	RT NEEDED BY: 5 day T/A		REP(RT FORM	AT: HA	RD: NO	FAX: NO	F-MAI	YES				
SITE/PROJECT NUMBER: 54089			QUOTI			JBS&	3 OFFICE	TO SEN	DRESUL	TS: South	Australi		20102203023	AN AN AN AN		
	REL	INQUISHED	BY: Lui	te Silvester			1			RE	CEIVED	<u>.</u>				METHOD OF SHIDMENT, Avamant
NAME : Luke Silvester			DATE:	27/09/17		NAM	47	Ď		1			DATE	0		
OF: JBS&G (Australia) Pty Ltd			TIME			b	0						TIME			
NAME: kate Lough			DATE	27/09/17		NAMI	5						DATE			
OF:			TIME			Ь							TIME			
P.O. NO.: COI	MMENTS/SPE	CIAL HAND	ILING/S1	ORAGE OR DISPOSAL:						ANALY	SIS REO	IRED				
FOR LAB USE ONLY	ase forward r	esults and i	nvoicet									 		-		Container Type and Preservative Codes:
COOLER SEAL	results@jbsg	.com.au, klo	ugh@jb	isg.com.au												P = Neutral Plastic, N = Nitric Acid Preserved; C = Sodium
Yes No						<u> </u>										Glass Bottle; VC = HCL Preserved Vial; PC = HCL Preserved Vial; PC = HCL Preserved
Broken					-	Г										Plastic; PS = Sulturic Acid Preserved Plastic; BS = Sulturic Acid
COOLER TEMP: deg.C						T										Preserved Class Bottle; Z = Zinc Acetate Preserved Bottle; ST
SAMPLE D/	ATA			CONTAINER DAT	V	s T										=Sodium I hosuphate Preserved Plastic, E = EDTA Preserved
SAMPLE ID N	ATRIX	DATE	TIME	TYPE & PRESERVATIVE	NO DH	.00.										boldes; SI = Sterre Bolte; U = Other,
RB01 Wat	E	21-09-17		JN .		\ > 						-		_		NOLES
RB02 Wat	er	22-09-17		VC.		< >	-							_		
RB03 IWat		36.00.17				(), 	-					+				
	Ū.	11-00-27				×	╉									
							_		_		_	-		+		
							_		_		_	_		_		
											_	_		_		
						_								-		
						_	-				_			_		
						_						_		_	_	
													_			
					_	_			_		_					
							_		_			_				
						-			_		_	_				
						_					_	_				
							_		_				_	_		
						_				_						
						_										
						_										
							_									
											_					
-																
					101	AL 3	0	0	0	0	0	0	0		0	0

821383

Page 1 of 1

:stnemdosttA :tosldu2 :01 :tnə2 :mori

Tbq.8574_setesniA_OOO FW: 54089 COC Rinsates Enviro Sample Vic Wednesday, 27 September 2017 9:14 AM Sarah Gould

Completed

du wollo¹

sutet2 pelf Follow Up Flag:

Email: SarahGould@eurofins.com Phone : +61 3 8564 5053 Sarah Gould

Subject: 54089 COC Rinsates **Cc:** Kate Lough Divo Aarah Gould Sent: Wednesday, 27 September 2017 9:13 AM From: Luke Silvester [mailto:lsilvester@jbsg.com.au]

HI Sarah

Please see attached COC for samples you would have received yesterday sorry for the delay on the COC.

Please let me know if there are any issues.

Kind Regards

əynŋ

Luke Silvester | Project Scientist | JBS&G

Sydney | Melbourne | Adelaide | Perth | Brisbane

T: 08 8431 7113 | M: 0418 623 800 | WWW. jbsg.com.au 38 Dequetteville Terrace, Kent Town Adelaide SA 5067

viilideiJ bne songelig aud | sleitsteM zuobrezeH bne Contaminated Land | Groundwater Remediation | Environmental Impact Assessment | Auditing and Compliance | Hygiene

advice provided in or attached to this email is subject to limitations. Vor tepresentation is responsible for undertably of the security are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended

Click here to report this email as spam.

ScannedByWebsenseForEurofins

JBS & G Australia (SA) P/L 38 Dequetteville Terrace Kent Town SA 5067

Attention:

Luke Silvester

Report
Project name
Received Date

565866-W EDWARDSTOWN Oct 02, 2017

ACC-MRA	
	ACCREDITATION

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			MW37	DUP01	RB04
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Oc01676	M17-Oc01677	M17-Oc01678
Date Sampled			Sep 29, 2017	Sep 29, 2017	Sep 29, 2017
Test/Reference	LOR	Unit			
Volatile Organics					
1.1-Dichloroethene	0.001	mg/L	0.054	0.055	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	0.010	0.011	< 0.001
Tetrachloroethene	0.001	mg/L	0.17	0.18	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	0.39	0.40	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Volatile Organics	Melbourne	Oct 05, 2017	7 Days

- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices

Sydney Unit F3, Building F	Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217														
rne gston Town Close	+61 3 8564 5000 ppp	pany Name: ress: ect Name:	JBS & G Aus 38 Dequetter Kent Town SA 5067 EDWARDST	stralia (SA) P/I ville Terrace OWN	L			Or Re Ph Fa	der N port i ione: x:	lo.: #:	5 0 0	65866 8 843 8 843	5 1 7113 1 7115	Victoria, Australia, 3166	Received: Oct 2, 2017 10:26 PM Due: Oct 10, 2017 Priority: 5 Day Contact Name: Luke Silvester
Melbou 2-5 rking	ABN- 50 005 085 521 Phone e.mail : EnviroSales@eurofins.com NATA # web : www.eurofins.com.au Site # 1		Sa	mple Detail			1.1-Dichloroethene	cis-1.2-Dichloroethene	Tetrachloroethene	trans-1.2-Dichloroethene	Trichloroethene	Vinyl chloride		Eurofins mgt 2-5 Kingston Town Close, Oakleigh,	ABN : 50 005 085 521 Telephone: +61 3 8564 500
	əlbo	urne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	х			
	<u>dne</u>	y Laboratory	- NATA Site # 1	8217											
	isba	ne Laboratory	y - NATA Site #	20794											
	ter	al Laboratory	ATA Sile # 237	30											
	0	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
	<u> </u>	1W37	Sep 29, 2017		Water	M17-Oc01676	Х	Х	Х	Х	Х	х			
i	- 	UP01	Sep 29, 2017		Water	M17-Oc01677	X	X	X	X	X	X			
		KBU4	Sep 29, 2017		vvater	M17-Oc01678	X	X	X	X	X	X			
🔅 eurofins		ouno											1		Date Reported:Oct 10, 2017

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

mg/L: milligrams per litre

NTU: Nephelometric Turbidity Units

ppm: Parts per million

%: Percentage

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ppb: Parts per billion org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

1011110	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Volatile Organics									
1.1-Dichloroethene			mg/L	< 0.001			0.001	Pass	
cis-1.2-Dichloroethene			mg/L	< 0.001			0.001	Pass	
Tetrachloroethene			mg/L	< 0.001			0.001	Pass	
trans-1.2-Dichloroethene			mg/L	< 0.001			0.001	Pass	
Trichloroethene			mg/L	< 0.001			0.001	Pass	
Vinyl chloride			mg/L	< 0.001			0.001	Pass	
LCS - % Recovery									
Volatile Organics									
1.1-Dichloroethene			%	114			70-130	Pass	
Trichloroethene			%	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Volatile Organics				Result 1					
1.1-Dichloroethene	M17-Se34202	NCP	%	121			70-130	Pass	
Trichloroethene	M17-Se34202	NCP	%	84			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethene	M17-Se34191	NCP	mg/L	0.001	0.001	<1	30%	Pass	
cis-1.2-Dichloroethene	M17-Se34191	NCP	mg/L	0.16	0.17	6.0	30%	Pass	
Tetrachloroethene	M17-Se34191	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	M17-Se34191	NCP	mg/L	0.002	0.002	<1	30%	Pass	
Trichloroethene	M17-Se34191	NCP	mg/L	0.004	0.005	6.0	30%	Pass	
Vinyl chloride	M17-Se34191	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Sarah Gould Harry Bacalis Analytical Services Manager Senior Analyst-Volatile (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY DOCUMENTATION

1

JBS&G (Australia) Pty Ltd

Adelaide 38 Dequetteville Tce KENT TOWN SA 5067 T: + 61 8 8431 7113 · F: + 61 8 8431 7115 ACN 100 220 479 · ABN 62 100 220 479

CLIENI: EPA			LABOR	ATORY: MGT	er fens	ALC: NOT	LAB	ORAT	TORY	BATCH	INO .:				112			-	-		4 (2)
SITE/PROJECT NAME: Edwardstown			COC R	eference #: 4738	1	1.03	SAM	PLEF	RS:			LS	- 11	1			-	-	-	-	
SEND REPORT TO: JBS&G Australia I	Pty Ltd	-	SENDI	NVOICE TO: JBS&G Australia Pty Ltd	10.00	Dest.	PHC	NE: 0	08 8431	17113	FAX	(: 08	8431 7	7115	0.0			_		1.72	
DATA NEEDED BY: 5 Day T/A			REPOR	RT NEEDED BY: 5 day T/A	a ce	100	REP	ORT	FORM	AT: H	ARD:	NO	FAX	NO	E-MAII	YES	-				
SITE/PROJECT NUMBER:			QUOTE	E #:			JBS	G OI	FFICE	TO SE	ND R	ESU	LTS: S	South A	ustralia		Sec. 10	Partie		a support the	a section of the sect
1986 - 1 L L L		RELINQUISHED	BY: Luk	e Silvester					1000	1	AND THE OLDER	112.212.		RECE	IVED	RY .					METHOD OF SHIPMENT: Oversight
NAME : Luke Silvester			DATE:	29/09/17	uses -	and the	NAM	IE :	Pa	28	m	a	P				D	ATE	29	109	CONSIGNMENT NOTE NO
OF: JBS&G (Australia) Pty Ltd			TIME:				OF:	Ei	296	the	En	0	ma	17	2.0	-	T	IME:	Li	ZODM	CONSIGNMENT NOTE NO.
NAME: Kate Lough			DATE:	29/09/17	-	1	NAM	E:	PI	K	200	~	0		-	-	D	ATE	17	40	TRANSPORT CO NAME
OF:			TIME:	W.B.			OF:	-	Ci	11		Õ	5	>	1	1	TI	ME.	110	5	TRANSPORT CO. NAME.
P.O. NO.:	COMMENTS	SPECIAL HAND	DLING/ST	ORAGE OR DISPOSAL:								d	AN	AL YSIS	REOL	IRED		inite.		~	The second se
FOR LAB USE ONLY COOLER SEAL	Please forwa labresults@j	rd results and i bsg.com.au, klo	nvoice to ough@jb	o; sg.com.au		i A											4				*Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Jar; S = Solvent
Yes No Broken Intact COOLER TEMP: deg.C									2 - DCE	1.2 - DCE		- Particle	noride								Glass Bottle; VC = HCL Preserved Vial; PC = HCL Preserve Plastic; PS = Sulfuric Acid Preserved Plastic; BS = Sulfuric Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; Sodium Thiosuphate Preserved Plastic E = EDIA Preserved
SAMP	LE DATA			CONTAINER DATA]			-st	a .	C T	5								Bottles: ST = Sterile Bottle: O = Other
· SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	NO.	pH field	1 12	Da	CIS CIS	Trai	1.	1 mil				1	1			100	'NOTES
MW37	Water	. 29/09/2017	-	VC	5	100	X	X	X	X	X	X							1		All samples need to be tested for ultra trace
Dup 01	Water	29/09/2017	-	VC	5	-	X	X	X	X	X	X							9	N 100	
Split 01	Water	29/09/2017	-	VC	5	- 1	X	X	X	X	X	X	(En	virolat))						Please send Split01 to Envirolab with a copy of this CO
RB04	Water	29/09/2017	-	VC	5	-	X	X	X	X	X	X									
			_													1					
																1					
		· · · · · · · · · · · · · · · · · · ·																			
			-														1				
							1														
							¥													-	
			1																		2
						6															
										1	47										
										1											dis.
									1												
-																					
										-											
5.											18										
						TOTAL	4	4	4	4	4	4	1 1	0	0	0	0	0	0 0	0 0	

CHAIN OF CUSTODY DOCUMENTATION

JBS&G (Australia) Pty Ltd

Adelaide 38 Dequetleville Tce KENT TOWN SA 5067 T: + 61 8 8431 7113 · F: + 61 8 8431 7115 ACN 100 220 479 · ABN 52 100 220 479

LUBORATORY: BPA LABORATORY: MGT LABORATORY BATCH NO.: STEPPOJECT NAME: Edwardstown COC Reference #: 4738 SAMPLERS: LS SEND REPORT TO: JBS&G Justifia Py Ltd GEND INVOICE TO.: JBS&G Justifia Py Ltd PHONE: 08 433 1715 FAX: 08 431 1715 FAX: 08 441 1716 FAX: 08 441 FAX: 08 44	
SITEPROJECT NAME: Edwardslown COC Reference #: 4738 SAMPLERS: Ls SEND REPORT TO: JSS& Australia PY Lid SEND NVOICE TO: JSS& Gaustralia PY Lid PHONE:06 8431 7113 FAX: 06 8431 7115 DATA NEEEDD PY: 5 Day T/A REPORT NEEED BY: 5 day T/A REPORT FORMAT: HARD: NO. FAX: NO. E-MAIL: YES SITE/PROJECT NUMBER: QUOTE #: JBS&G OFFICE TO SEND RESULTS: South Australia METHOD OF SHIPMENT: Overright NAME: Live Silvester RECLINQUISHED BY: Live Silvester RECLINQUISHED BY: Live Silvester OCONSIGNMENT NOTE NO. OF: JBS&G (Australia) PIY Lid DATE: 2909/17 NAME: Live Silvester RECLINQUISHED BY: Live Silvester CONSIGNMENT NOTE NO. NAME: Kate Lough DATE: 2909/17 NAME: VO.CF. DATE: TRANSPORT CO. NAME. PO. NO: COMMENT SISPECIAL HANDLING/STORAGE OR DISPOSAL: OF: TIME: Container Type and Preservative Cr. PO. NO: CONLER TEMP. Ibaresults and invoice to: Ibaresults and invoice to: Ibaresults and invoice to: Ibaresult Result Resu	and the second second second
SEND REPORT TO: JBS&G Australia Ply Ltd SEND INVOICE TO: JBS&G,Australia Ply Ltd PHONE: 08 8431 7113 FAX: 08 8431 7115 DATA MEEDED BY: 5 Day T/A REPORT NEEDED BY: 5 day T/A REPORT FORMAT: HARD: NO FAX: NO E-MAIL: YES SITE/PROJECT NUMBER: JUDOTE #: JBS&G OFFICE TO SEND RESULTS: South Australia NAME: Luke Silvester DATE: 200917 NAME: 'A CONSIGNMENT NOTE NO. OF: JBS&G OFFICE TO SEND RESULTS: South Australia CONSIGNMENT NOTE NO. OF: JBS&G OFFICE TO SEND RESULTS: South Australia CONSIGNMENT NOTE NO. OF: JBS&G OFFICE TO SEND RESULTS: South Australia CONSIGNMENT NOTE NO. OF: JBS&G OFFICE TO SEND RESULTS: South Australia CONSIGNMENT NOTE NO. OF: JBS&G OFFICE TO SEND RESULTS: South Australia CONSIGNMENT NOTE NO. OF: JBS&G OFFICE TO SEND RESULTS: South Australia CONSIGNMENT NOTE NO. OF: TIME: OATE: 200917 TIME: CONSIGNMENT CO. NAME: PO.NO: COMMENT/SPECIAL HANDLING/STORAGE OR DISPOSAL: ANALYSIS RECURED Container Type and Preservative Cr. Yes	
DATA NEEDED BY: 5 Day T/A REPORT NEEDED BY: 5 day T/A REPORT FORMAT: HAD: NO FAX: NO E-MAIL: YES SITE/PROJECT NUMBER: QUOTE #: JBS&G OFFICE TO SEND RESULTS: South Australia METHOD OF SHIPMENT: Overnight NAME: Luke Silvester RELINQUISHED BY: Luke Silvester METHOD OF SHIPMENT: Overnight METHOD OF SHIPMENT: Overnight NAME: Luke Silvester DATE: 29/09/17 NAME: OF: SUS of Australia METHOD OF SHIPMENT: OVErnight NAME: Kate Lough DATE: 29/09/17 NAME: OF: DATE: DATE: TRANSPORT CO, NAME. OF: TIME: OF: TIME: DATE: DATE: TRANSPORT CO, NAME. PO. NO. COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: NAME: DATE: TRANSPORT CO, NAME. FOR LAB USE ONLY Please forward results and invoice to: Intric Acid Preserved Vie C P = Neutral Plastic, N = Nitric Acid Preserved Vie C P = Neutral Plastic, N = Nitric Acid Preserved Vie C W37 No Intal Torreared Plast Shifter Acid Preserved Plast Bodile; O = Other. Ye = Acid Plastic, PS = Sulfuric Acid Preserved Vie C SAMPLE ID MATRIX DATE CONTAINER DATA Ye = CONTAINER DATA	
SITE/PROJECT NUMBER: QUOTE #: JBS&G OFFICE TO SEND RESULTS: South Australia METHOD OF SHIPMENT: Overright NAME: Luke Silvester RECEIVED BY METHOD OF SHIPMENT: Overright CONSIGNMENT NOTE NO. OF: JSS&G (Australia) PV LId TIME: OF: DATE: 23.07 CONSIGNMENT NOTE NO. NAME: Luke Silvester OF: DATE: 23.09/17 CONSIGNMENT NOTE NO. CONSIGNMENT NOTE NO. NAME: DATE: 23.09/17 NAME: DATE: 23.07/07 CONSIGNMENT NOTE NO. NAME: DATE: 23.09/17 NAME: DATE: 23.07/07 CONSIGNMENT NOTE NO. NAME: DATE: 23.09/17 NAME: DATE: 24.07/07 TIME: DATE: 24.07/07 CONSIGNMENT NOTE NO. PO: NO: COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: OF: TTME: DATE: 70.07 TIME: P= Neutral Plastic, N = Nitic Acid Preserved NW asi COOLER SEAL Iabresuits@ibsg.com.au Keick Preserved / Y Solution Acid Preserved Plastic Preserved / Y Solution Acid Preserved Plast Bottle; ST = Solutin Acid Prese	
RELINQUISHED BY: Luke Silvester RECEIVED BY METHOD OF SHIPMENT: Overnight NAME: Luke Silvester DATE: 23/9 / 7 OCONSIGNMENT NOTE NO. OF: JSBG (Australia) Py Lid TIME: OF: DATE: 24/9 / 7 CONSIGNMENT NOTE NO. OF: JSBG (Australia) Py Lid DATE: 29/09/17 NAME: DATE: 29/09/17 TIME: OF: TRANSPORT CO. NAME. OF: TIME: OF: TIME: DATE: TRANSPORT CO. NAME. TIME: OF: TIME: OF: Container Type and Preservative CO. PO. NO.: COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: OF: TIME: VContainer Type and Preservative CO. P = Neutral Plastic; N = Nitric Add Pres FOR LAB USE ONLY Please forward results and invoice to: ANALYSIS REQUIRED Container Type and Preservative CC. P = Neutral Plastic; N = Nitric Add Pres Hydroxide Preserved; J = Solvent Wasi Good Execution Intaict Intaite: Solvent Wasi Solvent Wasi Gass Bottle; Z = Zin Cade Solvent Wasi SAMPLE ID MATRIX DATE TIME CONT	1 12 14 14 14 14 14 14 14 14 14 14 14 14 14
NAME: DATE: 29/09/17 NAME: Value DATE: 24/04 CONSIGNMENT NOTE NO. OF: JBS&G (Australia) Pty Ltd TIME: OF: Status MAME: DATE: 24/04 CONSIGNMENT NOTE NO. NAME: DATE: 29/09/17 NAME: OF: DATE: 24/04 CONSIGNMENT NOTE NO. NAME: DATE: 29/09/17 NAME: DATE: 30/07 TIME: DATE: TRANSPORT CO. NAME. PO: TIME: OF: TIME: OF: TIME: Preservative Cr. PO. NO: COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: ANALYSIS REQUIRED ANALYSIS REQUIRED Preserved: Presolintr: Preserved	
OF: JBS&G (Australia) Pty Ltd TIME: OF: Euglifier Mining TIME: OF: Euglifier Mining OATE: TIME: Euglifier Mi	
NAME: DATE: 29/09/17 NAME: DATE: DATE: TRANSPORT CO. NAME. OF: TIME: OF: TIME: OF: TIME:	
OF: TIME: OF: Container Type and Preserver (J = 5) Or: Or:< Or:	
P.O. NO.: COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: VALYSIS REQUIRED VALYSIS REQUIRED Container Type and Preservative C. FOR LAB USE ONLY Please forward results and invoice to: Intersults@jbsg.com.au Intersults@jbsg.com.au <td< td=""><td></td></td<>	
FOR LAB USE ONLY Please forward results and invoice to: Intersults (N = Nitric Acid Preservative C P = Neutral Plastic; N = Nitric Acid Preservative C P = Neutral Pl	
Broken Intact	des: rved; C = Sodium ed Jar; S = Solvent Wa PC = HCL Preserved astic: BS = Sulfuric Ac
COOLER TEMP: deg.C CONTAINER DATA CONTAINER DATA NO pH field Image: Solution of the served Plast Bottle; C = Other. Solution of the served Plast B	e Preserved Bottle: ST
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, E = EDTA Preserved
SAMPLE ID MATRIX DATE TIME TYPE & PRESERVATIVE NO. pH field PI PI </td <td></td>	
MW37 Water 29/09/2017 - VC 5 - X	
Dup 01 Water 29/09/2017 - VC 5 - X	a trace
Split 01 Water 29/09/2017 - VC 5 - X X X X X Envirolable Please send Split01 to Envirolab with R804 Water 29/09/2017 - V/C 5 - X X X X X Envirolable Please send Split01 to Envirolab with	
R804 Water 29/09/2017 - VC 5 - X X X X X X	a copy of this COC

JBS & G Australia (SA) P/L 38 Dequetteville Terrace Kent Town SA 5067

Attention:

Kate Lough

Report	566437-W-V2
Project name	EDWARDSTOWN
Received Date	Oct 05, 2017

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			MW12 Water	MW24 Water	MW36 Water	MW38 Water
Eurofins mgt Sample No.			M17-Oc05998	M17-Oc05999	M17-Oc06000	M17-Oc06001
Date Sampled			Oct 03, 2017	Oct 04, 2017	Oct 03, 2017	Oct 03, 2017
Test/Reference	LOR	Unit				
Halogenated Volatile Organics (selected analytes by	/ SIM)					
1.1-Dichloroethene	0.001	mg/L	0.042	< 0.001	0.040	0.013
cis-1.2-Dichloroethene (SIM)	0.00001	mg/L	0.015	< 0.00001	0.014	0.0037
Tetrachloroethene (SIM)	0.00002	mg/L	0.13	0.00007	0.16	0.096
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene (SIM)	0.00001	mg/L	0.51	0.0011	0.54	0.086
Vinyl chloride (SIM)	0.00005	mg/L	< 0.001	< 0.00005	< 0.001	< 0.00005
Fluorobenzene (surr.)	1	%	68	80	61	74

Client Sample ID Sample Matrix			MW39 Water	MW40 Water	MW41 Water	MW42 Water
Eurofins mgt Sample No.			M17-Oc06002	M17-Oc06003	M17-Oc06004	M17-Oc06005
Date Sampled			Oct 03, 2017	Oct 03, 2017	Oct 03, 2017	Oct 03, 2017
Test/Reference	LOR	Unit				
Halogenated Volatile Organics (selected analytes by	r SIM)					
1.1-Dichloroethene	0.001	mg/L	0.016	0.060	0.043	< 0.001
cis-1.2-Dichloroethene (SIM)	0.00001	mg/L	0.0022	0.011	0.011	0.0014
Tetrachloroethene (SIM)	0.00002	mg/L	0.052	0.093	0.096	0.0056
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene (SIM)	0.00001	mg/L	0.32	0.74	0.43	0.078
Vinyl chloride (SIM)	0.00005	mg/L	< 0.001	< 0.001	< 0.001	< 0.00005
Fluorobenzene (surr.)	1	%	76	80	83	85

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			MW43 Water M17-Oc06006 Oct 03, 2017	RB05 Water M17-Oc06007 Oct 03, 2017	TRIP BLANK 01 Water M17-Oc06008 Oct 03, 2017	TRIP SPIKE 01 Water M17-Oc06009 Oct 03, 2017
Test/Reference	LOR	Unit				
втех						
Comments						R20
Benzene	0.001	mg/L	-	-	-	110
Toluene	0.001	mg/L	-	-	-	77
Ethylbenzene	0.001	mg/L	-	-	-	95
m&p-Xylenes	0.002	mg/L	-	-	-	94

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			MW43 Water M17-Oc06006 Oct 03, 2017	RB05 Water M17-Oc06007 Oct 03, 2017	TRIP BLANK 01 Water M17-Oc06008 Oct 03, 2017	TRIP SPIKE 01 Water M17-Oc06009 Oct 03, 2017
Test/Reference	LOR	Unit				
втех						
o-Xylene	0.001	mg/L	-	-	-	84
Xylenes - Total	0.003	mg/L	-	-	-	91
4-Bromofluorobenzene (surr.)	1	%	-	-	-	125
Halogenated Volatile Organics (selected analytes by	r SIM)					
1.1-Dichloroethene	0.001	mg/L	0.002	< 0.001	< 0.001	-
cis-1.2-Dichloroethene (SIM)	0.00001	mg/L	0.0026	< 0.00001	< 0.00001	-
Tetrachloroethene (SIM)	0.00002	mg/L	0.052	< 0.00002	< 0.00002	-
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Trichloroethene (SIM)	0.00001	mg/L	0.37	< 0.00001	< 0.00001	-
Vinyl chloride (SIM)	0.00005	mg/L	< 0.001	< 0.00005	< 0.00005	-
Fluorobenzene (surr.)	1	%	74	70	67	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
BTEX	Melbourne	Oct 11, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Halogenated Volatile Organics (selected analytes by SIM)	Melbourne	Oct 06, 2017	7 Day
- Method: USEPA 8260 MGT 350A Halogenated Volatile Organics			

First Reported: Oct 13, 2017 Date Reported: Oct 16, 2017

Sydney Unit F3. Building F	16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217										
Fown Close	3166 B564 5000 B4271 B4271 B4271	pany Name: JBS & G Australia (SA) P/L ress: 38 Dequetteville Terrace Kent Town SA 5067							ler No.: port #: 566437 pne: 08 8431 7113 (: 08 8431 7115	ia, Australia, 3166	Received: Oct 5, 2017 10:18 AM Due: Oct 12, 2017 Priority: 5 Day Contact Name: Kate Lough
ston	1 VIC +61 3 1261	ject Name.	LDWARDST	OWN						/ictor	Eurofins mgt Analytical Services Manager : Sarah Gould
Melbour 2-5 Kino	ABN-50 005 085 521 Cakleig e.mail: EnviroSales@eurofins.com NATA # web: www.eurofins.com.au		Sa	mple Detail			BTEX	Halogenated Volatile Organics (selected analytes by SIM)		Eurofins mgt 2-5 Kingston Town Close, Oakleigh,	ABN : 50 005 085 521 Telephone: +61 3 8564 500
	elbo	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	X			
	rdn Tish	ey Laboratory	- NATA Site # 1	8217 20704							
	erth	Laboratory -	y - NATA Site # 237	736							
	ter	nal Laboratory									
	t <mark>°</mark>	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
		MW12	Oct 03, 2017		Water	M17-Oc05998		X			
		MW24	Oct 04, 2017		Water	M17-Oc05999		Х			
	-+	MW36	Oct 03, 2017		Water	M17-Oc06000		X			
S	-	NW38	Oct 03, 2017		Water	M17-Oc06001		X			
	-	NW39	Oct 03, 2017		Water	M17-Oc06002		X			
ų.		NVV40	Oct 03, 2017		Water	M17-Oc06003		X			
Ö	-	1/1//41	Oct 03, 2017		vvater	M17-Oc06004		X		17	217
<u> </u>	-	111/1/42	Oct 03, 2017		vvater	M17 O-00005		X		3, 20	<i>6</i> , <i>2C</i>
			Oct 03, 2017		vvater	N17 0-0000		X		lct 13	Det 1
	' 		00100, 2017	1	ויימוטו		<u> </u>			First Reported:C	Date Reported:1

1 Town Close Unit F3, Building F	C 3105 16 Mars Road 38564 5000 Date Cove West NSW 2066 34564 5000 Date State 3900 8400 4271 Date NTA # 1261 Site # 18217	pany Name: 'ess: ect Name:	JBS & G Aus 38 Dequette Kent Town SA 5067 EDWARDST	stralia (SA) P/ ville Terrace FOWN	L			Orc Rej Pho Fax	er No.: ort #: 566437 ne: 08 8431 7113 08 8431 7115	oria, Australia, 3166	Received:Oct 5, 2017 10:18 AMDue:Oct 12, 2017Priority:5 DayContact Name:Kate Lough
Melbourne 2-5 Kingsto	ABN-50 005 085 521 Caklegh vi e-mail : EnviroSales@eurofins.com NATA #124 web : www.eurofins.com.au Site # 1254	Sample Detail					BTEX	Halogenated Volatile Organics (selected analytes by SIM)		Eurofins mgt 2-5 Kingston Town Close, Oakleigh, Vict	Eurofins mgt Analytical Services Manager : Sarah Gould
	elbo	urne Laborato	ory - NATA Site	# 1254 & 142	271		х	Х			
	rdne jsbe	y Laboratory	- NATA Site # 1	20794				$\left - \right $			
	rth	Laboratory - N	ATA Site # 237	736							
		RIP BLANK	Oct 03, 2017		Water	M17-Oc06008		x			
1		1 RIP SPIKE 1	Oct 03, 2017		Water	M17-Oc06009	x				
	Est	ounts	I	I	L	1	1	11			
🛟 eurofins										First Reported:Oct 13, 2017	Date Reported:Oct 16, 2017

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

mg/L: milligrams per litre

NTU: Nephelometric Turbidity Units

ppm: Parts per million

%: Percentage

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ppb: Parts per billion org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
BTEX									
Benzene	mg/L	< 0.001			0.001	Pass			
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
Method Blank									
Halogenated Volatile Organics (sel	lected analytes by	/ SIM)							
1.1-Dichloroethene			mg/L	< 0.001			0.001	Pass	
cis-1.2-Dichloroethene (SIM)			mg/L	< 0.00001			0.00001	Pass	
Tetrachloroethene (SIM)			mg/L	< 0.00002			0.00002	Pass	
trans-1.2-Dichloroethene			mg/L	< 0.001			0.001	Pass	
Trichloroethene (SIM)			mg/L	< 0.00001			0.00001	Pass	
Vinyl chloride (SIM)			mg/L	< 0.00005			0.00005	Pass	
LCS - % Recovery									
BTEX									
Benzene			%	111			70-130	Pass	
Toluene			%	95			70-130	Pass	
Ethylbenzene			%	92			70-130	Pass	
m&p-Xylenes			%	104			70-130	Pass	
Xylenes - Total			%	105			70-130	Pass	
LCS - % Recovery									
Halogenated Volatile Organics (sel	lected analytes by	/ SIM)							
1.1-Dichloroethene			%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1			1		
BTEX				Result 1	Result 2	RPD			
Benzene	M17-Oc04730	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M17-Oc04730	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
thylbenzene M17-Oc04730 NCP		mg/L	< 0.001 < 0.001		<1	30%	Pass		
m&p-Xylenes	m&p-Xylenes M17-Oc04730 NCP		mg/L	< 0.002	< 0.002 <1		30%	Pass	
o-Xylene M17-Oc04730 NCP				< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M17-Oc04730	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

V2 - amended report to show analytes of interest

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code

R20

This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Sarah Gould Harry Bacalis Analytical Services Manager Senior Analyst-Volatile (VIC)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag to liable for cost, observation and the person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine | rag to liable for cost, observation and the person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine | rag to liable for cost, observation and regord to the encourced except in full and relates only to the intert sincicated otherwate.

CLIENT: EPA LABORATORY: MGT																					
SITE/PROJECT NAME: Edwardstown			COC Re	ference #: 4740			SAMPLERS: IS														
SEND REPORT TO: JBS&G Australia F	tv I td		SEND IN	VOICE TO: IBS&G Australia Ptv I td			0AMPLEK5: L5 DHONE-08 8431 7113 EAV-08 8431 7115														
DATA NEEDED BY: 5 Day T/A	() Eld		REPOR	T NEEDED BY: 5 day T/A	1000 1		PHUNE: 05 8431 /113 FAX: 08 8431 /115														
							IRSEG OFFICE TO SEND RESULTS' South Australia														
	R	ELINQUISHED	BY: Luke	Silvester			RECEIVED BY											METHOD OF SHIPMENT: Oversight			
NAME : Luke Silvester			DATE:	04/10/17		12	RECEIVED BY										CONSIGNMENT NOTE NO				
OF: JBS&G (Australia) Pty Ltd			TIME:				OF		F	ET.	<u>~</u>	0 -					TIME	31	10	17	CONSIGNMENT NOTE NO.
NAME: Kate Lough			DATE: 0	4/10/17			NAM	F٠	U	-	M	en	1				DATE	19	118	as	
OF:			TIME:				OF										TIME				TRANSFORT CO. NAME.
P.O. NO.:	COMMENTS/S	SPECIAL HAND	LING/STC	DRAGE OR DISPOSAL:			01.							YSIS F	REOLII	RED	T TIVIC.				
												Í									*Container Tune and Presentative Codes
FOR LAB USE ONLY	Please forwar	d results and i	nvoice to	B																	P = Neutral Plastic: N = Nitric Acid Preserved: C = Sodium
COOLER SEAL	labresults@jb	sg.com.au, klo	ugh@jbs	g.com.au																	Hydroxide Preserved; J = Solvent Washed Jar: S = Solvent Washed
Yes No																					Glass Bottle; VC = HCL Preserved Vial; PC = HCL Preserved
Broken	-						1		щ	BC		e									Plastic; PS = Sulfuric Acid Preserved Plastic; BS = Sulfuric Acid
COOLED TEMP: deg C							-		2	2-1		orid									Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; ST
SAMPI	ΕΠΑΤΑ			CONTAINED DATA			-		1,2	-	B	CH									=Sodium Thiosuplhate Preserved Plastic, E = EDTA Preserved
SAMPLEID	MATRIX	DATE	TIME		NO	nLl field	빙	빙	S.	rans	÷	IV									Bottles; ST = Sterile Bottle; O = Other.
MW12	Water	03-10-17	TIME	VC	NU.	pri neid	F	<u>a</u>		E V		>	-	-	+			-	-		NOTES
MW/24	Water	04-10-17		VC	4	-	- ×		×	×	×	X	-	-	-					_	All samples need to be tested for ultra trace
MW36	Water	03-10-17		VC	4	-	×	×	Ŷ	~	~	×		-			+	-			
MW38	Water	03-10-17		VC	4		Ŷ	Ŷ	Ŷ	×	~	×		-	-	-		-	-	_	
MW39	Water	03-10-17		VC	4	-	Ŷ	Ŷ	Ŷ	~	Ŷ	Ŷ	-		-	-			-	-	
MW40	Water	03-10-17		VC	4		Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ		-	-					_	
MW41	Water	03-10-17		VC	4		Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	-	-+	-	-					
MW42	Water	03-10-17		VC	4	-	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	-	-		+					
MW43	Water	03-10-17		VC	4		x	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	-+	-		+	+			_	
BB05	Water	03-10-17		VC	4		X	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ				+	+			-	
Trip Blank 01	Water	03-10-17		VC	4		X	X	x	X	x	Ŷ	-	\rightarrow	-	-	+	-			
Trip Spike 01	Water	03-10-17		VC	4		X	Ŷ	X	Y	X	Y		-	-						
	17. A.B.ATA				4.1			^	~	~	~	_	-+-	-+	+			-	-		
							-			-	-	-		-	-	-		-	-		<u> </u>
			16.						-		-			-	-	+					
															-	1			-	-	
				4						-	-	-	-	-	-	-		-	-		
					-									-			\vdash		-		
											-			+	-	-	\vdash	-	-	-	
											-	-	-	-		-		-	-		
														-+	-		\vdash	-+			
											-						+	-	-	-	
										-	-	-	-	-		-	\vdash			+	
											-	-+		-+			\vdash	-	-	_	
										_						_					

566437

Page 1 of 1

1

5

0.01

Enviro Sample Vic

Fron: Sent: To: Subject: Attachments: Sarah Gould Thursday, 5 October 2017 8:40 AM Enviro Sample Vic FW: 54089 Groundwater Samples COC Edwardstown Amendment COC_4740 GW sampling COC.PDF

Sarah Gould Phone: +61 3 8564 5053 Email: SarahGould@eurofins.com

From: Luke Silvester [mailto:lsilvester@jbsg.com.au]
Sent: Wednesday, 4 October 2017 5:42 PM
To: Sarah Gould
Cc: Kate Lough
Subject: 54089 Groundwater Samples COC Edwardstown Amendment

Hi Sarah

Disregard the first email this is an updated COC for samples, please note I forgot to label Trip Spike and Trip Blank samples, could you please refer to the COC for those un labeled QA/QC samples?

If you have any issues let me know.

Kind Regards

Luke

Luke Silvester |Project Scientist| JBS&G

Sydney | Melbourne | Adelaide | Perth | Brisbane 38 Dequetteville Terrace, Kent Town Adelaide SA 5067

T: 08 8431 7113 | M: 0418 623 800 | www.jbsg.com.au

Contaminated Land | Groundwater Remediation | Environmental Impact Assessment | Auditing and Compliance | Hygiene and Hazardous Materials | Due Diligence and Liability

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that this email or any attachments are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subject to <u>limitations</u>.

Click here to report this email as spam.

ScannedByWebsenseForEurofins

1

9 sliolia 566437

1 Dalmore Drive, Scoresby VIC 3179 +61 3 9763 2500

melbourne@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Melbourne | ABN 37 112 645 - 002

11950

04/10/2017

/

Client:	
JBS & G Australia Pty Ltd	
Level 2, 155 Queen Street	
Melbourne	
VIC 3000	
Attention: Luke Silvester	
Sample log in details:	
Your Reference:	Edwardstown
No. of samples:	1 water

CERTIFICATE OF ANALYSIS

Υου No. of samples: Date samples received / completed instructions received

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 11/10/17 / 11/10/17 Date of Preliminary Report: Not Issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025 - Testing Tests not covered by NATA are denoted with *.

04/10/2017

Results Approved By:

Pamela Adams Laboratory Manager

Client Reference: Edwardstown

VHC's in water		11950-1
Your Reference		Split 01
Date Sampled		29/09/2017
Type of sample		Water
Date extracted	-	09/10/2017
Date analysed	-	09/10/2017
Dichlorodifluoromethane	µg/L	<100
Chloromethane	µg/L	<100
Vinyl Chloride	µg/L	<100
Bromomethane	µg/L	<100
Chloroethane	µg/L	<100
Trichlorofluoromethane	µg/L	<100
1,1-Dichloroethene	µg/L	45
Trans-1,2-dichloroethene	µg/L	<10
1,1-dichloroethane	μg/L	<10
Cis-1,2-dichloroethene	μg/L	10
Bromochloromethane	μg/L	<10
Chloroform	μg/L	<10
2,2-dichloropropane	µg/L	<10
1,2-dichloroethane	µg/L	<10
1,1,1-trichloroethane	µg/L	<10
1,1-dichloropropene	µg/L	<10
Carbon tetrachloride	µg/L	<10
Dibromomethane	µg/L	<10
1,2-dichloropropane	µg/L	<10
Trichloroethene	µg/L	470
Bromodichloromethane	µg/L	<10
trans-1,3-dichloropropene	µg/L	<10
cis-1,3-dichloropropene	µg/L	<10
1,1,2-trichloroethane	µg/L	<10
1,3-dichloropropane	µg/L	<10
Dibromochloromethane	µg/L	<10
1,2-dibromoethane	µg/L	<10
Tetrachloroethene	µg/L	130
1,1,1,2-tetrachloroethane	µg/L	<10
Chlorobenzene	µg/L	<10
Bromoform	µg/L	<10
1,1,2,2-tetrachloroethane	µg/L	<10
1,2,3-trichloropropane	μg/L	<10
Bromobenzene	μg/L	<10
2-chlorotoluene	μg/L	<10
4-chlorotoluene	µg/L	<10
1,3-dichlorobenzene	μg/L	<10
1,4-dichlorobenzene	μg/L	<10

Envirolab Reference: 11950 Revision No:

Client Reference: Edwardstown

VHC's in water		
Our Reference:	UNITS	11950-1
Your Reference		Split 01
Date Sampled		29/09/2017
Type of sample		Water
1,2-dichlorobenzene	µg/L	<10
1,2-dibromo-3-chloropropane	µg/L	<10
1,2,4-trichlorobenzene	µg/L	<10
Hexachlorobutadiene	µg/L	<10
1,2,3-trichlorobenzene	µg/L	<10
Surrogate Dibromofluoromethane	%	92
Surrogate toluene-d8	%	96
Surrogate 4-BFB	%	115

Client Reference: Edwardstown

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.

Envirolab Reference: 11950 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

Client Reference: Edwardstown											
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
VHC's in water						Base II Duplicate II % RPD					
Date extracted	-			09/10/2 017	[NT]	[TN]	LCS-1	09/10/2017			
Date analysed	-			09/10/2 017	[NT]	[NT]	LCS-1	09/10/2017			
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Chloromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Bromomethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Chloroethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	96%			
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Chloroform	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	102%			
2,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	96%			
1,1,1-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	99%			
1,1-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Dibromomethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Trichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	98%			
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	99%			
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Dibromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	94%			
1,2-dibromoethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Tetrachloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-1	96%			
1,1,1,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Chlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromoform	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2,2- tetrachloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2,3-trichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			

Envirolab Reference: 11950 Revision No:

Client Reference: Edwardstown												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
VHC's in water						Base II Duplicate II % RPD						
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
<i>Surrogate</i> Dibromofluoromethane	%		Org-013	102	[NT]	[NT]	LCS-1	96%				
Surrogate toluene-d8	%		Org-013	101	[NT]	[NT]	LCS-1	100%				
Surrogate 4-BFB	%		Org-013	106	[NT]	[NT]	LCS-1	100%				

Envirolab Reference: 11950 Revision No:

Report Comments:

VCH: PQL has been raised due to the high concentration of analytes in the sample/s, resulting in the sample/s requiring dilution.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than

PQL: Practical Quantitation Limit **RPD: Relative Percent Difference** >: Greater than

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Envirolab Reference: **Revision No:**

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

CHAIN OF CUSTODY DOCUMENTATION

JBS&G (Australia) Pty Ltd

Adelaide 38 Dequetteville Tce KENT TOWN SA 5067 T: +61 8 8431 7113 · F: +61 8 8431 7115 ACN 100 220 479 · ABN 82 180 220 479

CUENT: EPA									_			ACN	100 22	0 479	ABN 6	2 100 22	20 479					
SITE/PRO/ECT NAME: Edwardstown			CCC D		_		LABORATORY BATCH NO.:															
SEMID DEPORT TO: IDS&C Australia	Divitia			elerence #: 4738			SAM	(PLER:	S:			LS			-							
DATA NEEDED BY: 6 Day T/A			ISEND II	VOICE TO: JBS&G Australia Pty Ltd			PHUNE: 08 0431 /113 FAX: 08 0431 /115															
SITE/PRO JECT NI IMPER			REPUR	I NEEDED BY 3 day I/A			REP	ORT F	ORM/	AT: H	ARD:	NO I	FAX:	NO E	-MAIL	: YES						
CITER NOBEL				#:	_		JBS8	&G OF	FICE 1	TO SE	ND RE	ESULT	FS: So	outh Au	ustralia	1	_					
NU23E Luko Siluonton		KELINQUISHED	BY: LUKE				RECEIVED BY								METHOD OF SHIPMENT: Overnight							
OF: IDSSC (Australia) Divided			DATE:	29/09/17			NAM	IE:	10-1	7	<u>in</u>	aj					1	DATE:	19	109		CONSIGNMENT NOTE NO.
NAME: Lote Level			TIME:				OF:	20	20	17	n	o n	ME	7			1	TIME:	4	30	'n	
IVANIE, Kale Lough			DATE: 2	9/09/17	_		NAM	IE :		L.'		_			_		[DATE:				TRANSPORT CO. NAME.
			TIME:				OF:										1	TIME:				
P.0. NO.;	COMMENTS/	SPECIAL HAND	LING/STO	DRAGE OR DISPOSAL:									ANA	lysis	REQL	JIRED						
FOR LAB USE ONLY	Plasea forma	rd require and i					1						Τ		-					T		*Container Type and Preservative Codes:
CCOLER SEAL	labresults@i	bso.com au kic	nvoice to							1											í I	P = Neutral Plastic: N = Nitric Acid Preserved: C = Sodium
Ma			agnegos				-					1									Į –	Hydroxide Preserved; J = Solvent Washed Jar; S = Solvent Washed
NO							1			μ											[Glass Bottle; VC = HCL Preserved Vial; PC = HCL Preserved
Broken intact	••							1.	빙	8		-8		1								Plastic; PS = Sulfuric Acid Pleserved Plastic; BS = Sulfuric Acid
CCOLER TEMP: deg.C							1		•	2	[ш]	<u>i</u>										Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; ST
SAMP	LE DATA			CONTAINER DATA					12	i.	2	5										=Sodium Thiosuphate Preserved Plactic, E = EDTA Preserved
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	NO.	nH field	빙	l y	si i	La I	- <u>-</u>											Bottles; S1 = Sterile Bottle; O = Other.
MW37	Water	29/09/2017		VC	5	-	t Σ	X	x x	Γ Υ	Ŧ		<u> </u>					-+-		- · · ·		NOTES
Dup 01	Water	29/09/2017	-	VC	5		x	T X	Î	Ŷ	Ŷ	÷		<u> </u>				_				All samples need to be tested for ultra trace
Split 01	Water	29/09/2017		VC	5	<u> </u>	T X	Î	Ŷ	Ŷ	÷	-	(Env)	irolah					_	-		
RB04	Water	29/09/2017	-	VC VC	5	<u> </u>	$\frac{\pi}{x}$	T _x	Ŷ	Ŷ	$-\hat{\mathbf{x}}$	Ŷ	(617	T	1	+	- +	-+-				Please send Spirtul to Envirolab with a copy of this COC
						+	<u> </u>	<u>+^-</u>	<u></u>	<u> </u>	^											<u> </u>
			1												-+							
			1					1					<u> </u>	·			\rightarrow		_	-		
							<u></u>						<u> </u>			_		_				
																		_		_		
							<u></u>	+		├												Envimiair terror
			-			<u> </u>				<u> </u>								+		-		ENVIROLAB 1a Daimore Orive
[+		-		Caribbean Park
						<u> </u>										_	_	<u> </u>	_			Scoresby Vic 3179
						<u> </u>		<u>-</u>										_	_			<u>300 NO.</u> 10 03) 9763 2500
			<u> </u>					+		\vdash		-		-	+				_			
															-	\rightarrow	-+-					Date Received: # 10/1 / 2 30/
-				`											-			_				Ime Received: 9:6
																				+	_	Received by: P(4)
																-	_		_	1		Temp: Cool Ambient
									[_	+		Cooling: Ice/icepack
								<u> </u>												1 1		Security: Intact/Broken/None
						<u> </u>								-			_					
	· · · ·							<u> </u>			-+									1		
								<u> </u>								_			_			
						TOT		<u> </u>											_			
<u> </u>						TOTAL	- 4	i 41	41	41	4	4	1	- al	- ai	01	<u>^</u>	ΔI .	01 0	ו וו	0	

Appendix L Soil Vapour Probe Logs and Soil Vapour Probe Construction Detail

Project Number: 54089 Client: EPA Project Name: South East Edwardstown Site Address: Edwardstown

Date: 21-Sep-17 Logged By: LS Contractor: A&S Drilling Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 55 Eastings (GDA 94): 278259.53 Northings (GDA 94): 6125690.92 Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m): 27.31 Surface Finish: Gatic Construction: Teflon 5mm Probe Depth (mbgs): 1.45 Probe Depth (mbgs): Probe Depth (mbgs):

	Method	Probe (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
	Push Tube		1	_			Fill	Fill - Gravelly SAND, light grey brown, fine to medium grained sand, fine to coarse gravels with brick inclusions and trace slag inclusions, dry	VP67_0.0 PID = 0 ppm	
STD AUSTRALIA.GDT 23-11-17			11111111111111111111111111111111111111		0.30		Fill	Fill - Silty Sandy CLAY, red brown with dark brown mottling, medium plasticity, silt fines and fine to coarse grained sand, with fine gravel inclusions, moist	VP67_0.3 PID = 0 ppm	
SPJ GINTS				<u>1.5</u>	1.40		Fill	Fin - Sanay GRAVEL, brown, Fine to medium gravels, fine to medium grained sand, moist	VP67_1.4 PID = 0 ppm	
WELL JBSG SV - 2017.(_	1.50			Borehole VP67 terminated at 1.5m		

Project Number: 54089 Client: EPA Project Name: South East Edwardstown Site Address: Edwardstown

Date: 22-Sep-17 Logged By: LS Contractor: A&S Drilling Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 55 Eastings (GDA 94): 278341.6 Northings (GDA 94): 6125613.18 Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m): 27.96 Surface Finish: Gatic Construction: Teflon 5mm Probe Depth (mbgs): 1.45 Probe Depth (mbgs): Probe Depth (mbgs):

11-11-11-11-11-11-11-11-11-11-11-11-11-	Metrod	Probe (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
	agn						Fill	Fill - Bitumen		
	usna			_	0.05		Fill	Fill - Gravelly SAND, grey, fine to medium grained sand, fine to medium gravels, dry to moist	VP68_0.05 PID = 0 ppm	
				-	0.20		CL-ML	Silty CLAY, red brown, medium plasticity, silt fines, moist to dry	VP68_0.2 PID = 0 ppm	
			<u>, , , , , , , , , , , , , , , , , , , </u>	0.5						
			717×717×717×717×717×717×717×717×717×717	_ 1 <u>.0</u>	1.10		CL-SC	Sandy CLAY, orange brown, medium plasticity, fine grain sand, dry		
NT STD AUSTRALIA.GDT 23-11-17				_					VP68_1.1 PID = 0 ppm	
VELL JBSG SV - 2017.GPJ GIN				1.5	1.50			Borehole VP68 terminated at 1.5m		

Project Number: 54089 Client: EPA Project Name: South East Edwardstown Site Address: Edwardstown

Date: 21-Sep-17 Logged By: LS Contractor: A&S Drilling Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 55 Eastings (GDA 94): 278270.98 Northings (GDA 94): 6125559.96 Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m): 27.16 Surface Finish: Gatic Construction: Teflon 5mm Probe Depth (mbgs): 1.45 Probe Depth (mbgs): Probe Depth (mbgs):

Method	Probe (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Push Tube Method	Probe (mbgs)	1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X V 1 X	1.0	Contact (mbgs)	00000000000000000000000000000000000000	leoiogical CF-WF	Fill - Bitumen Fill - Gravelly SAND, dark brown, fine to medium grained sand, fine to medium gravels, dry Sitly CLAY, red brown, medium to high plasticity, silt fines, with trace fine to coarse gravels, moist to dry	Samples Tests Remarks	Additional Observations
			_ 	1.50			Borehole VP69 terminated at 1.5m		

WELL JBSG SV - 2017.GPJ GINT STD AUSTRALIA.GDT 23-11-17

Project Number: 54089 Client: EPA Project Name: South East Edwardstown Site Address: Edwardstown

Date: 25-Sep-17 Logged By: LS Contractor: A&S Drilling Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 55 Eastings (GDA 94): 278203.6 Northings (GDA 94): 6125495.35 Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m): 26.4 Surface Finish: Gatic Construction: Teflon 5mm Probe Depth (mbgs): 1.45 Probe Depth (mbgs): Probe Depth (mbgs):

Method	Well Details	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Push Tube	711X4117X111X4117X111X4117X4117X	111X111X111X111X111X111X111X111X	_	0.05		Fill	Fill - Gravelly SAND, red brown, fine to medium grained sand, fine to coarse gravels with trace brick and slag inclusions, dry Fill - Sandy CLAY, dark brown, medium plasticity, fine to medium grained sand, dry	VP70_0.05 PID = 0 ppm	
	XA11XA11XA11XA11XA11XA11XA11XA11XA11XA	2011/2011/2011/2011/2011/2011/2011/2011	0 <u>.5</u> _ _ _ 1 <u>.0</u>	0.50		CL-ML	Silty CLAY, red brown, medium to high plasticity, silt fines, dry	VP70_0.5 PID = 0 ppm	
				1.10		CL-ML	Silty CLAY, brown with cream mottling, medium plasticity, silt fines, with trace fine to coarse gravels, dry Borehole VP70 terminated at 1.5m	VP70_1.1 PID = 0 ppm	

WELL JBSG SV - 2017.GPJ GINT STD AUSTRALIA.GDT 23-11-17

Project Number: 54089 Client: EPA Project Name: South East Edwardstown Site Address: Edwardstown

Date: 25-Sep-17 Logged By: LS Contractor: A&S Drilling Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): 55 Eastings (GDA 94): 278331.31 Northings (GDA 94): 6125480.17 Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m): 27.4 Surface Finish: Gatic Construction: Teflon 5mm Probe Depth (mbgs): 1.45 Probe Depth (mbgs): Probe Depth (mbgs):

	Probe (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
H H C	×///×///×///×		_			Fill	Fill - Silty SAND, dark brown, Fine - medium grained sand, silt fines with fine to medium gravel inclusions, moist	VP71_0.0 PID = 0 ppm	
			_	0.20		Fill	Fill - Silty SAND, dark grey/ black, fine to medium grained sand, silt fines with fine gravel inclusions, moist	VP71_0.2 PID = 0 ppm	
			0 <u>.5</u>	0.40		CL-ML	Silty CLAY, orange brown, medium to high plasticity, silt fines with fine gravel inclusions, moist to dry	VP71_0.4 PID = 0 ppm	
			_						
			 1 <u>.0</u>						
23-11-17			_						
STD AUSTRALIA.GDT			_						
SG SV - 2017.GPJ GINT			1.5	1.50			Borehole VP71 terminated at 1.5m		
WELL JB									

Project Number: 54089 Client: EPA Project Name: South East Edwardstown Site Address: Edwardstown

Date: 22-Sep-17 Logged By: LS Contractor: A&S Drilling Total Hole Depth (mbgs): 1.55 Bore Diameter (mm): 55 Eastings (GDA 94): 278420.11 Northings (GDA 94): 6125397.32 Zone/Area/Permit#: Reference Level: Ground Surface Elevation (m): 28.04 Surface Finish: Gatic Construction: Teflon 5mm Probe Depth (mbgs): 1.45 Probe Depth (mbgs): Probe Depth (mbgs):

Method	Probe (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Tube		ĬĬ				Fill	Fill - Bitumen		
Push		11X/11X/11X/11X/11X/11	_	0.05		Fill	Fill - Gravelly SAND, yellow brown, fine to medium grained sand, fine to coarse gravels, moist	VP72_0.05 PID = 0.1 ppm	
		1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	 0 <u>.5</u>	0.30		CL-ML	Silty CLAY, red brown, medium to high plasticity, silt fines, with trace fine grain sand, dry	VP72_0.3 PID = 0.1 ppm	
			 1 <u>.0</u>	1.00		CL-ML	Silty CLAY, dark brown, medium plasticity, silt fines, with trace fine grain		
							sana, moist to dry	VP72_1.0 PID = 0 ppm	
				1.50			Borehole VP72 terminated at 1.55m		

WELL JBSG SV - 2017.GPJ GINT STD AUSTRALIA.GDT 23-11-17