
Copyright © 2015 by THE SOCIETY OF
MOTION PICTURE AND TELEVISION ENGINEERS
3 Barker Avenue, White Plains, NY 10601
(914) 761-1100

Approved
October 26, 2015

The attached document is a Registered Disclosure Document prepared by the sponsor
identified below. It has been examined by the appropriate SMPTE Technology Committee and
is believed to contain adequate information to satisfy the objectives defined in the Scope, and to
be technically consistent.

This document is NOT a Standard, Recommended Practice or Engineering Guideline, and does
NOT imply a finding or representation of the Society.

Every attempt has been made to ensure that the information contained in this document is
accurate. Errors in this document should be reported to the proponent identified below, with a
copy to eng@smpte.org.

All other inquiries in respect of this document, including inquiries as to intellectual property
requirements that may be attached to use of the disclosed technology, should be addressed to
the proponent identified below.

Proponent contact information:

ProRes Program Office
Apple Inc.
1 Infinite Loop, MS: 77-2YAK
Cupertino, CA 95014
USA

Email: ProRes@apple.com

SMPTE REGISTERED
DISCLOSURE DOCUMENT

Apple ProRes Bitstream Syntax
and Decoding Process

Page 1 of 39 pages

SMPTE RDD 36:2015

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 2 of 39 pages

Table of Contents Page
Introduction .. 4�
1� Scope ... 4�
2� References ... 4�
3� Notation .. 4�

3.1� Arithmetic Operators ... 4�
3.2� Logical Operators .. 5�
3.3� Relational Operators ... 5�
3.4� Bitwise Operators .. 5�
3.5� Assignment Operators ... 5�
3.6� Mathematical Functions .. 5�
3.7� Constants .. 6�

4� ProRes Frame Structure .. 6�
5� Bitstream Syntax .. 7�

5.1� Frame Syntax .. 9�
5.1.1� Frame Header Syntax ... 10�
5.1.2� Stuffing Syntax .. 11�

5.2� Picture Syntax ... 11�
5.2.1� Picture Header Syntax .. 11�
5.2.2� Slice Table Syntax .. 11�

5.3� Slice Syntax ... 12�
5.3.1� Slice Header Syntax ... 13�
5.3.2� Scanned Coefficients Syntax .. 14�
5.3.3� Scanned Alpha Syntax ... 15�

6� Bitstream Semantics .. 15�
6.1� Frame Semantics .. 15�

6.1.1� Frame Header Semantics ... 15�
6.1.2� Stuffing Semantics .. 20�

6.2� Picture Semantics ... 21�
6.2.1� Picture Header Semantics .. 22�
6.2.2� Slice Table Semantics .. 22�

6.3� Slice Semantics ... 22�
6.3.1� Slice Header Semantics ... 22�
6.3.2� Scanned Coefficients Semantics .. 23�
6.3.3� Scanned Alpha Semantics .. 23�

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 3 of 39 pages

6.4� Bitstream Versions, Version Variants, and Compatibility .. 23�
7� Decoding Process .. 24�

7.1� Entropy Decoding .. 25�
7.1.1� Scanned Coefficients .. 25�

7.1.1.1� Golomb Combination Codes .. 25�
7.1.1.2� Signed Golomb Combination Codes .. 26�
7.1.1.3� DC Coefficients .. 26�
7.1.1.4� AC Coefficients .. 27�

7.1.2� Scanned Alpha ... 28�
7.2� Inverse Scanning ... 31�

7.2.1� Slice Scanning .. 31�
7.2.2� Block Scanning ... 32�

7.3� Inverse Quantization ... 33�
7.4� Inverse Transform ... 34�
7.5� Pixel Component Sample Generation and Pixel Output ... 35�

7.5.1� Color Component Samples ... 35�
7.5.2� Alpha Component Samples .. 35�
7.5.3� Pixel Arrangement .. 36�

Annex A� IDCT Implementation Accuracy Qualification ... 38�

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 4 of 39 pages

Introduction

Apple ProRes is a video compression scheme developed by Apple Inc. for use in workflows that
require high quality and efficient performance. It is an intra-frame codec that can encode
progressive or interlaced frames with arbitrary dimensions and either 4:2:2 or 4:4:4 chroma
sampling. It operates on Y′CbCr video data; the pixel component samples can have bit depths
of 12 or even more bits per sample, which enables ProRes to be used for RGB video data (via
conversion to Y′CbCr) with high quality results. Frames can also include an alpha channel, with
up to 16 bits per alpha sample, which ProRes encodes losslessly.

1 Scope

This SMPTE Registered Disclosure Document (RDD) includes specifications for the Apple
ProRes bitstream syntax, the bitstream element semantics, and the decoding process used
to produce decompressed images. A reference implementation that reads ProRes bitstreams
from a file and decompresses the bitstreams is part of the contribution. Sample bitstreams and
the resulting decompressed images have also been contributed for exercising the reference
implementation. This RDD does not describe the Apple QuickTime file format or the details of
storing ProRes bitstreams in QuickTime files.

2 References

IEEE Std 1180-1990, IEEE Standard Specifications for the Implementations of 8x8 Inverse
Discrete Cosine Transform.

ISO/IEC 13818-2:2000, Information technology — Generic coding of moving pictures and
associated audio information: Video.

Recommendation ITU-R BT.601-7, Studio encoding parameters of digital television for standard
4:3 and wide-screen 16:9 aspect ratios.

Recommendation ITU-R BT.709-5, Parameter values for the HDTV standards for production
and international programme exchange.

Recommendation ITU-R BT.2020-1, Parameter values for ultra-high definition television
systems for production and international programme exchange.

Recommendation ITU-T H.264 (02/2014), Advanced video coding for generic audiovisual
services.

SMPTE ST 2084:2014, High Dynamic Range Electro-Optical Transfer Function of Mastering
Reference Displays.

3 Notation

3.1 Arithmetic Operators

+ Addition

− Subtraction (as a binary operator) or negation (as a unary prefix operator)

* Multiplication

÷ Division (used in mathematical equations where no truncation or rounding is
intended)

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 5 of 39 pages

x
y
 Division, x ÷ y

/ Integer division with truncation of the result toward negative infinity: x / y =
floor(x ÷ y)

n mod m Modulo operator with modulus m. Defined only for integers n and m with m > 0.
Result is remainder r after integer division of n by m, r = n − floor(n ÷ m) * m;
0 ≤ r ≤ m − 1.

xy Exponentiation, x raised to the power y

f(i)n2
i = n1

 Summation of f(i), where i, n1, and n2 are integers and n1 ≤ i ≤ n2

3.2 Logical Operators

&& Boolean logical “and”

|| Boolean logical “or”

! Boolean logical “not”

3.3 Relational Operators

> Greater than

≥, >= Greater than or equal to

< Less than

≤, <= Less than or equal to

== Equal to

!= Not equal to

3.4 Bitwise Operators

& Bitwise “and”

| Bitwise “or”

<< Left shift; vacated bits are set to ‘0’

3.5 Assignment Operators

= Assignment

++ Increment: x++ performs x = x + 1 and, if used in an expression, evaluates to the
value of x prior to the increment

−− Decrement: x−− performs x = x − 1 and, if used in an expression, evaluates to
the value of x prior to the decrement

+= Increment assignment: x += y performs x = x + y

−= Decrement assignment: x −= y performs x = x − y

3.6 Mathematical Functions

|x| Absolute value of x: x if x ≥ 0, −x if x < 0

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 6 of 39 pages

x Square root of x

ceil(x) Least integer greater than or equal to x

cos(x) Cosine of x, with x in units of radians

floor(x) Greatest integer less than or equal to x

log2(x) Base-2 logarithm of x

round(x) Integer nearest to x, for example floor(x + 1⁄2). If x = n + 1⁄2 for some integer n,
either n or n+1 is acceptable as the result.

3.7 Constants

� 3.14159 26535 89793 23846�

4 ProRes Frame Structure

ProRes can encode either progressive or interlaced frames. A progressive frame comprises a
single picture, while an interlaced frame comprises two pictures, one for each field. In the
interlaced case, the order of the compressed pictures in the bitstream matches the temporal
order of the corresponding fields.

Pictures are divided into macroblocks and then further into blocks. Macroblocks are 16×16
arrays of pixels, and blocks are 8×8 arrays of video component samples. For 4:2:2 sampling,
each macroblock thus consists of four Y′ (luma) blocks, two Cb blocks, and two Cr blocks; for
4:4:4 sampling, each consists of four Y′ blocks, four Cb blocks, and four Cr blocks.

The macroblock width and height of encoded pictures will both be integral. If the luma sample
width of the source picture is not a multiple of 16, encoders will append sufficient pixels to the
end (right) of each row of the source picture to rectify this; decoders shall discard those excess
pixels. Likewise, if the luma sample height of the source picture is not a multiple of 16, encod-
ers will append sufficient rows of pixels to the end (bottom) of the source picture to rectify this
while decoders shall discard those excess rows.

Finally, the macroblocks of a picture are grouped into slices. Each slice consists of 1, 2, 4, or 8
contiguous macroblocks all in the same macroblock row. The slice layout is identical for each
macroblock row and is determined by a bitstream parameter indicating the desired slice size:
starting from the beginning (left) of each macroblock row, slices with the desired number of
macroblocks are defined until there are insufficient remaining macroblocks in the row, at which
point slices are defined with the next-largest permissible number of macroblocks, and so forth
until the row is exhausted. Each slice can be encoded and decoded independently, which
facilitates parallel encoding and decoding.

As an example, consider a progressive frame 720 pixels wide by 486 pixels high, with a desired
slice size of 8 macroblocks. The sole source picture will be the frame itself. The width of the
source picture is a multiple of 16, making the encoded picture 720 ÷ 16 = 45 macroblocks wide.
The height of the source picture, however, is not a multiple of 16, so the encoded picture will be
ceil(486 ÷ 16) = 31 macroblocks high; encoders will pad the source picture with 31 * 16 – 486 =
10 rows of pixels at the bottom, while decoders shall discard those same 10 rows of pixels.
Starting from the left, the 45 macroblocks in each macroblock row will be grouped into five slices
of 8 macroblocks each, leaving 5 remaining macroblocks in the macroblock row. The next slice
will then consist of 4 macroblocks, and finally there will be one last slice consisting of a single
macroblock. In total each macroblock row will contain seven slices with sizes of (from left to
right) 8, 8, 8, 8, 8, 4, and 1. This is illustrated in Figure 1.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 7 of 39 pages

Figure 1 – Example picture slice arrangement

5 Bitstream Syntax

The formal description of ProRes bitstream syntax is provided by the tables in this section. The
syntax tables are similar in style to those in ISO/IEC 13818-2 and ITU-T H.264. In particular,
the tables describe syntax using pseudo-code based on the C programming language.

The syntax description involves several special constructs. Syntax elements are the fundamen-
tal parameters that describe the compressed image or direct the exact nature of the decoding
process. There are two types of syntax elements: bitstream syntax elements and derived
syntax elements. The former appear directly in ProRes bitstreams, while the latter are
calculated from bitstream syntax elements or other derived syntax elements. Both are denoted
by names using all lowercase letters with underscore characters separating words; the names
of bitstream syntax elements appear in boldface in the syntax tables where they occur in the
bitstream (though not in subsequent usage) and in the headings of their semantic descriptions.

Syntax structures are collections of syntax elements, other syntax structures, or both. They are
denoted by functions whose names use all lowercase letters with underscore characters
separating words. The functions can take arguments, which identify a specific instance of the
syntax structure or provide information relevant to the parsing or decoding process of the
structure. The sizes of some syntax structures are specified in ProRes bitstreams as described
subsequently. Decoders shall use these sizes to determine the start of the immediately
following syntax structure. (See Section 6.4, “Bitstream Versions, Version Variants, and
Compatibility,” for more detail.)

Finally, syntax variables and syntax functions are used within syntax structures as part of the
description of those structures. To distinguish them from syntax elements and structures, their
names use a mixture of lowercase and uppercase letters and do not include underscore
characters. Syntax variables are defined implicitly by their use in the syntax tables.

The syntax function endOfData() takes an argument that specifies the size in bytes of a syntax
structure and returns true if the number of remaining bits—the difference between the struc-

48
6

pi
xe

ls
, 3

1
m

ac
ro

bl
oc

k
ro

w
s

720 pixels, 45 macroblocks

8 macroblocks 4 macroblocks

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 8 of 39 pages

ture’s size in bits and the number of bits representing the preceding bitstream syntax elements
of the structure—is 31 or less and the remaining bits, if any, all have value 0; it returns false if
32 or more bits remain or if any of the remaining bits has the value 1. The syntax function
byteAligned() returns true if the number of bits representing the preceding bitstream syntax
elements of the associated syntax structure is a multiple of eight and returns false if not. The
syntax function endOfStructure() takes an argument that specifies the size in bytes of a syntax
structure and returns true if the number of remaining bits is 0 and false if one or more bits
remain. The syntax function isModuloAlphaDifference(), which returns true or false, is used in
the alpha channel decoding process and is defined in Section 7.1.2, “Scanned Alpha.”

ProRes bitstream syntax elements belong to one of three categories: fixed-length bit strings,
fixed-length numerical values, or variable-length codes. In the syntax tables, the “Descriptor”
column indicates the category to which each bitstream syntax element belongs. Fixed-length bit
strings are denoted by “f(n),” where n is the number of bits in the string. Fixed-length numerical
values are unsigned integers and are denoted by “u(n),” where n is the number of bits used to
represent the value. Variable-length codes are denoted by “vlc.” Bit strings and variable-length
codes appear in the bitstream left bit first; numerical values appear most-significant bit first.

Figure 2 gives an overview of the hierarchy of ProRes bitstream syntax structures.

Figure 2 – ProRes bitstream syntax structure hierarchy

picture()

frame()

A dataslice_header() Y′ data Cb data Cr data

picture_header() slice_table() slice()•••slice()slice()

frame_header()frame_size 'icpf' picture() stuffing()

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 9 of 39 pages

5.1 Frame Syntax

frame() { Descriptor
 frame_size u(32)
 frame_identifier f(32)
 frame_header()
 picture(“first”)
 if (interlace_mode == 1 || interlace_mode == 2)
 picture(“second”)
 if (stuffing_size > 0)
 stuffing()
}

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 10 of 39 pages

5.1.1 Frame Header Syntax

frame_header() { Descriptor
 frame_header_size u(16)
 reserved u(8)
 bitstream_version u(8)
 encoder_identifier f(32)
 horizontal_size u(16)
 vertical_size u(16)
 chroma_format u(2)
 reserved u(2)
 interlace_mode u(2)
 reserved u(2)
 aspect_ratio_information u(4)
 frame_rate_code u(4)
 color_primaries u(8)
 transfer_characteristic u(8)
 matrix_coefficients u(8)
 reserved u(4)
 alpha_channel_type u(4)
 reserved u(14)
 load_luma_quantization_matrix u(1)
 load_chroma_quantization_matrix u(1)
 if (load_luma_quantization_matrix) {
 for (v = 0; v < 8; v++)
 for (u = 0; u < 8; u++)
 luma_quantization_matrix[v][u] u(8)
 }
 if (load_chroma_quantization_matrix) {
 for (v = 0; v < 8; v++)
 for (u = 0; u < 8; u++)
 chroma_quantization_matrix[v][u] u(8)
 }
}

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 11 of 39 pages

5.1.2 Stuffing Syntax

stuffing() { Descriptor
 for (m = 0; m < stuffing_size; m++)
 zero_byte /* Equal to 0x00 */ f(8)
}

5.2 Picture Syntax

picture(temporalOrder) { Descriptor
 picture_header()
 slice_table()
 for (i = 0; i < height_in_mb; i++)
 for (j = 0; j < number_of_slices_per_mb_row; j++)
 slice(i, j)
}

5.2.1 Picture Header Syntax

picture_header() { Descriptor
 picture_header_size u(5)
 reserved u(3)
 picture_size u(32)
 deprecated_number_of_slices u(16)
 reserved u(2)
 log2_desired_slice_size_in_mb u(2)
 reserved u(4)
}

5.2.2 Slice Table Syntax

slice_table () { Descriptor
 for (i = 0; i < height_in_mb; i++)
 for (j = 0; j < number_of_slices_per_mb_row; j++)
 coded_size_of_slice[i][j] u(16)
}

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 12 of 39 pages

5.3 Slice Syntax

slice(i, j) { Descriptor
 slice_header()
 numYBlocks = 4 * slice_size_in_mb[j]
 if (chroma_format == 3) /* 4:4:4 */
 numCBlocks = 4 * slice_size_in_mb[j]
 else /* 4:2:2 */
 numCBlocks = 2 * slice_size_in_mb[j]
 codedYDataSize = coded_size_of_y_data
 codedCbDataSize = coded_size_of_cb_data
 if (alpha_channel_type != 0)
 codedCrDataSize = coded_size_of_cr_data
 else
 codedCrDataSize = coded_size_of_slice[i][j]
 - slice_header_size
 - codedYDataSize
 - codedCbDataSize

 scanned_coefficients(scannedYCoeffs, numYBlocks,
 codedYDataSize)

 scanned_coefficients(scannedCbCoeffs, numCBlocks,
 codedCbDataSize)

 scanned_coefficients(scannedCrCoeffs, numCBlocks,
 codedCrDataSize)

 if (alpha_channel_type != 0) {
 if (i < height_in_mb – 1)
 sliceVerticalSize = 16
 else
 sliceVerticalSize = picture_vertical_size
 - 16 * (height_in_mb – 1)

 numAlphaValues = 16 * slice_size_in_mb[j]
 * sliceVerticalSize

 scanned_alpha(scannedAlphaValues, numAlphaValues)
 }
}

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 13 of 39 pages

5.3.1 Slice Header Syntax

slice_header() { Descriptor
 slice_header_size u(5)
 reserved u(3)
 quantization_index u(8)
 coded_size_of_y_data u(16)
 coded_size_of_cb_data u(16)
 if (alpha_channel_type != 0)
 coded_size_of_cr_data u(16)
}

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 14 of 39 pages

5.3.2 Scanned Coefficients Syntax

scanned_coefficients(coefficients, numBlocks, dataSize) { Descriptor
 first_dc_coeff vlc
 coefficients[0] = first_dc_coeff
 previousDCCoeff = first_dc_coeff
 n = 1
 while (n < numBlocks) {
 dc_coeff_difference vlc
 DCCoeff = previousDCCoeff + dc_coeff_difference
 coefficients[n++] = DCCoeff
 previousDCCoeff = DCCoeff
 }
 while (!endOfData(dataSize)) {
 run vlc
 for (m = 0; m < run; m++)
 coefficients[n++] = 0
 abs_level_minus_1 vlc
 absLevel = abs_level_minus_1 + 1
 sign u(1)
 coefficients[n++] = absLevel * (1 – 2 * sign)
 }
 numCoefficients = numBlocks * 64
 while (n < numCoefficients)
 coefficients[n++] = 0
 while (!byteAligned())
 zero_bit /* Equal to 0 */ f(1)
 for (m = 0; m < 3; m++) {
 if (!endOfStructure(dataSize))
 zero_byte /* Equal to 0x00 */ f(8)
 }
}

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 15 of 39 pages

5.3.3 Scanned Alpha Syntax

scanned_alpha(alphaValues, numValues) { Descriptor
 if (alpha_channel_type == 1) /* 8-bit alpha */
 mask = 0xFF
 else /* 16-bit alpha */
 mask = 0xFFFF
 n = 0
 previousAlpha = -1
 do {
 alpha_difference vlc
 alpha = previousAlpha + alpha_difference
 if (isModuloAlphaDifference())
 alpha = alpha & mask
 previousAlpha = alpha
 run vlc
 for (m = 0; m < run; m++)
 alphaValues[n++] = alpha
 } while (n < numValues)
 while (!byteAligned())
 zero_bit /* Equal to 0 */ f(1)
}

6 Bitstream Semantics

6.1 Frame Semantics

frame_size
The total size of the compressed frame in bytes (including the frame_size element itself and, if
present, stuffing).

frame_identifier
A four-character code that identifies the bitstream as a ProRes frame. This will be ‘icpf’
(0x69637066).

6.1.1 Frame Header Semantics

frame_header_size
The total size of the frame header in bytes (including the frame_header_size element itself).
Decoders shall use this value to determine the start of the compressed picture following the
frame header in the bitstream.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 16 of 39 pages

bitstream_version
The version number of the bitstream. The version number is incremented when a change is
made to bitstream syntax or semantics that breaks compatibility with existing decoders. A
decoder shall abort if it encounters a bitstream with an unsupported bitstream_version value.
If 0, the value of the chroma_format syntax element shall be 2 (4:2:2 sampling) and the value
of the alpha_channel_type element shall be 0 (no encoded alpha); if 1, any permissible value
may be used for those syntax elements.

encoder_identifier
A four-character code that identifies the encoder vendor or product that generated the com-
pressed frame. Apple maintains a registry of the codes for encoder licensees. Decoders
should ignore this element.

horizontal_size
The width of the frame in luma samples.

vertical_size
The height of the frame in luma samples.

chroma_format
A code specifying the sampling format of the frame. Values and their meanings are listed in
Table 1.

Table 1 – Meaning of chroma_format

chroma_format Meaning
0 Reserved
1 Reserved
2 4:2:2
3 4:4:4

interlace_mode
A code specifying whether the frame is progressive or interlaced (as well as field order in the
latter case). Values and their meanings are listed in Table 2.

Table 2 – Meaning of interlace_mode

interlace_mode Meaning
0 Progressive frame (frame contains one full-height picture)
1 Interlaced frame (first picture is top field)
2 Interlaced frame (second picture is top field)
3 Reserved

aspect_ratio_information
A code indicating the pixel or image aspect ratio. Values and their meanings are listed in
Table 3.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 17 of 39 pages

Table 3 – Meaning of aspect_ratio_information

aspect_ratio_information Meaning
0 Unknown/unspecified
1 Square pixels
2 4:3 image aspect ratio
3 16:9 image aspect ratio
4 Reserved
� �
15 Reserved

frame_rate_code
A code indicating frame rate. Values and their meanings are listed in Table 4.

Table 4 – Meaning of frame_rate_code

frame_rate_code Meaning
0 Unknown/unspecified
1 24 ÷ 1.001 (23.976�)
2 24
3 25
4 30 ÷ 1.001 (29.97�)
5 30
6 50
7 60 ÷ 1.001 (59.94�)
8 60
9 100

10 120 ÷ 1.001 (119.88�)
11 120
12 Reserved
� �
15 Reserved

color_primaries
A code indicating the chromaticity coordinates of the source primaries and white point. Values
and their meanings are listed in Table 5.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 18 of 39 pages

Table 5 – Meaning of color_primaries

color_primaries Meaning
0 Unknown/unspecified

1

 x y
Red 0.640 0.330
Green 0.300 0.600 (ITU-R BT.709)
Blue 0.150 0.060
White (D65) 0.3127 0.3290

2 Unknown/unspecified
3 Reserved
4 Reserved

5

 x y
Red 0.640 0.330
Green 0.290 0.600 (ITU-R BT.601 625)
Blue 0.150 0.060
White (D65) 0.3127 0.3290

6

 x y
Red 0.630 0.340
Green 0.310 0.595 (ITU-R BT.601 525)
Blue 0.155 0.070
White (D65) 0.3127 0.3290

7 Reserved
8 Reserved

9

 x y
Red 0.708 0.292
Green 0.170 0.797 (ITU-R BT.2020)
Blue 0.131 0.046
White (D65) 0.3127 0.3290

10 Reserved

11

 x y
Red 0.680 0.320
Green 0.265 0.690 (DCI P3)
Blue 0.150 0.060
White (DCI) 0.314 0.351

12

 x y
Red 0.680 0.320
Green 0.265 0.690 (P3 D65)
Blue 0.150 0.060
White (D65) 0.3127 0.3290

13 Reserved
� �

255 Reserved

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 19 of 39 pages

transfer_characteristic
A code indicating the opto-electronic transfer characteristic of the source video data. The
values 0 and 2 mean unknown/unspecified; the value 1 signifies the function specified by
ITU-R BT.601/BT.709/BT.2020, namely

V�=� ��
α * L0.45 – (α – 1), β ≤ L ≤ 1

4.5 * L, 0 ≤ L ≤ β,

where L is normalized linear optical intensity, V is the corresponding non-linear (gamma pre-
corrected) signal value, α = 1.099 296 826 809 44�, and β = 0.018 053 968 510 807�; and
the value 16 signifies the Inverse-EOTF formula in Section 5.3 of SMPTE ST 2084:2014,
namely

V =
c1 + c2Lm1

1 + c3Lm1

m2

,

where L and V are as above (here L is normalized so that L = 1 corresponds to an absolute
optical intensity of 10,000 cd/m2), m1 = 0.25 * (2610 ÷ 4096), m2 = 128 * (2523 ÷ 4096),
c1 = c3 − c2 + 1 = 3424 ÷ 4096, c2 = 32 * (2413 ÷ 4096), and c3 = 32 * (2392 ÷ 4096). All other
values are reserved.

matrix_coefficients
A code indicating the matrix coefficients used to derive luma and chroma values from the red,
green, and blue primaries. Values and their meanings are listed in Table 6. For values that
specify luma coefficients (KR, KG, and KB), the derivation is E′Y = KR * E′R + KG * E′G + KB * E′B,
E′Cb = (E′B − E′Y) ÷ (2 * (1 − KB)), and E′Cr = (E′R − E′Y) ÷ (2 * (1 − KR)), where E′Y is the
normalized luma value and E′Cb and E′Cr are the normalized chroma values corresponding to
the normalized gamma pre-corrected primary values E′R, E′G, and E′B.

Table 6 – Meaning of matrix_coefficients

matrix_coefficients Meaning
0 Unknown/unspecified
1 KR = 0.2126, KG = 0.7152, KB = 0.0722 (ITU-R BT.709)
2 Unknown/unspecified
3 Reserved
4 Reserved
5 Reserved
6 KR = 0.299, KG = 0.587, KB = 0.114 (ITU-R BT.601)
7 Reserved
8 Reserved
9 KR = 0.2627, KG = 0.6780, KB = 0.0593 (ITU-R BT.2020)

10 Reserved
� �

255 Reserved

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 20 of 39 pages

alpha_channel_type
A code specifying the type of alpha channel data encoded in the bitstream, if any. Values and
their meanings are listed in Table 7. If the value of the bitstream_version syntax element
is 0, the value of this element shall be 0. There are no such restrictions for other values
of bitstream_version; in particular the value of this element may be 0 when the value of
bitstream_version is not 0. Note: Slice syntax is affected by the value of this element.

Table 7 – Meaning of alpha_channel_type

alpha_channel_type Meaning
0 No encoded alpha data present in bitstream
1 8 bits/sample integral alpha
2 16 bits/sample integral alpha
3 Reserved
� �
15 Reserved

load_luma_quantization_matrix
A flag indicating whether a custom luma quantization matrix is specified. If 0, the default
matrix shall be used.

load_chroma_quantization_matrix
A flag indicating whether a custom chroma quantization matrix is specified. If 0, the
luma matrix shall be used (i.e., the specified custom luma quantization matrix if
load_luma_quantization_matrix is 1 or the default matrix otherwise).

luma_quantization_matrix
Custom quantization weight matrix for luma coefficients. Each entry of the matrix will be in the
range 2, 3, �, 63.

chroma_quantization_matrix
Custom quantization weight matrix for chroma coefficients. Each entry of the matrix will be in
the range 2, 3, �, 63.

6.1.2 Stuffing Semantics

stuffing_size
The size of stuffing in bytes. Can be zero. It is calculated as follows:

frameDataSize = 4 + 4 + frame_header_size
 + picture(“first”).picture_size;
if (interlace_mode == 1 || interlace_mode == 2)
 frameDataSize += picture(“second”).picture_size;
stuffing_size = frame_size – frameDataSize;

zero_byte
An eight-bit number with value zero (0x00). Optionally used to pad the compressed frame up
to a desired size.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 21 of 39 pages

6.2 Picture Semantics

picture_vertical_size
The height of the picture in luma samples. Derived from vertical_size and interlace_mode:

if (interlace_mode == 0)
 picture_vertical_size = vertical_size
else {
 topFieldVerticalSize = (vertical_size + 1) / 2
 bottomFieldVerticalSize = vertical_size / 2
 if ((interlace_mode == 1 && temporalOrder == “first”) ||
 (interlace_mode == 2 && temporalOrder == “second”))
 picture_vertical_size = topFieldVerticalSize
 else
 picture_vertical_size = bottomFieldVerticalSize
}

width_in_mb
The width of the encoded picture in macroblocks. Derived from horizontal_size:

width_in_mb = (horizontal_size + 15) / 16

If the encoded picture width in luma samples, 16 * width_in_mb, exceeds horizontal_size,
encoders will append 16 * width_in_mb − horizontal_size additional pixels to the end (right)
of each row of the source picture; decoders shall discard the excess pixel(s) from the end
(right) of each row of the decoded picture. Note: When a frame consists of two pictures,
width_in_mb is the same for each.

height_in_mb
The height of the encoded picture in macroblocks. Derived from picture_vertical_size:

height_in_mb = (picture_vertical_size + 15) / 16

If the encoded picture height in luma samples, 16 * height_in_mb, exceeds
picture_vertical_size, encoders will append 16 * height_in_mb − picture_vertical_size addi-
tional rows of pixels to the end (bottom) of the source picture; decoders shall discard the
excess row(s) of pixels from the end (bottom) of the decoded picture.

slice_size_in_mb
Array of sizes (in macroblocks) of slices within a single macroblock row of the encoded
picture, starting with the first (leftmost) slice and ending with the last (rightmost) one. The
array pertains to all macroblock rows. The entries are calculated as follows:

j = 0
sliceSize = 1 << log2_desired_slice_size_in_mb
numMbsRemainingInRow = width_in_mb
do {
 while (numMbsRemainingInRow >= sliceSize) {
 slice_size_in_mb[j++] = sliceSize
 numMbsRemainingInRow -= sliceSize
 }
 sliceSize /= 2
} while (numMbsRemainingInRow > 0)
number_of_slices_per_mb_row = j

number_of_slices_per_mb_row
The number of slices in a single macroblock row of the encoded picture. This corresponds to
the number of entries in the slice_size_in_mb array; like that array, it is the same for every

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 22 of 39 pages

macroblock row. It is calculated as part of the procedure to determine the slice_size_in_mb
array entries, as shown above.

6.2.1 Picture Header Semantics

picture_header_size
The total size of the picture header in bytes (including the picture_header_size element itself).
Decoders shall use this value to determine the start of the slice table following the picture
header in the bitstream.

picture_size
The total size of the compressed picture in bytes (including the picture header). If the com-
pressed frame contains two compressed pictures, decoders shall use this value from the first
compressed picture to determine the start of the second compressed picture in the bitstream.

deprecated_number_of_slices
The product of the picture height in macroblocks and the number of slices per macroblock row
when that product is 65535 or less, otherwise 0. Decoders shall ignore this element.

log2_desired_slice_size_in_mb
The base-2 logarithm of the desired number of macroblocks constituting a slice. Permissible
values for this element are 0, 1, 2, and 3, which correspond respectively to 1, 2, 4, and 8
macroblocks per slice.

6.2.2 Slice Table Semantics

coded_size_of_slice
Two-dimensional array of compressed slice sizes in bytes. These follow the same ordering as
the slices themselves: coded_size_of_slice[i][j] gives the size of slice(i, j) in the bitstream.

6.3 Slice Semantics

6.3.1 Slice Header Semantics

slice_header_size
The total size of the slice header in bytes (including the slice_header_size element itself).
Decoders shall use this value to determine the start of the compressed luma component data
following the slice header in the bitstream.

quantization_index
A code that specifies the quantization scale factor, qScale. Permissible values are 1, �, 224;
all other values are reserved.

coded_size_of_y_data
The size of the compressed luma (Y′) component data in bytes.

coded_size_of_cb_data
The size of the compressed blue chroma (Cb) component data in bytes.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 23 of 39 pages

coded_size_of_cr_data
The size of the compressed red chroma (Cr) component data in bytes. Note: This element is
present only if the value of the alpha_channel_type syntax element is non-zero.

6.3.2 Scanned Coefficients Semantics

first_dc_coeff
The first quantized DC coefficient in the scanned coefficient array.

dc_coeff_difference
The difference between the current quantized DC coefficient and the previous one.

run
The number of consecutive zero-valued quantized AC coefficients in the scanned coefficient
array preceding one that is non-zero.

abs_level_minus_1
One less than the absolute value of the non-zero quantized AC coefficient that terminates the
preceding run of zero-valued coefficients.

sign
A code indicating the sign of the non-zero quantized AC coefficient that terminates the preced-
ing run of zero-valued coefficients. A value of 0 means the coefficient is positive; a value of 1
means it is negative.

zero_bit
A single bit with value 0. Used to ensure that the compressed color component data comprise
an integral number of bytes.

zero_byte
An eight-bit number with value zero (0x00). This syntax element serves no useful purpose but
will occasionally appear in ProRes bitstreams produced by older encoders.

6.3.3 Scanned Alpha Semantics

alpha_difference
The difference (exact or modulo) between the current alpha value and the previous one.

run
The number of consecutive occurrences of the current alpha value in the scanned alpha value
array.

zero_bit
A single bit with value 0. Used to ensure that the compressed alpha component data com-
prise an integral number of bytes.

6.4 Bitstream Versions, Version Variants, and Compatibility

ProRes bitstreams can incorporate future changes to syntax or semantics. There are two
approaches to accommodating this: bitstream versioning and version variants. Different

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 24 of 39 pages

bitstream versions denote intrinsic changes to the decoding process, while different version
variants correspond to non-essential distinctions.

A new bitstream version is required if a desired change in bitstream syntax or semantics breaks
compatibility with existing decoders, i.e., if existing decoders cannot properly decode such
bitstreams. The bitstream version will be incremented for each such change. A decoder that
can decode a ProRes bitstream with a particular bitstream version shall be able to decode a
bitstream with any earlier (lower) bitstream version. A decoder shall refuse to decode a ProRes
bitstream with an unsupported bitstream version. To maximize decoder compatibility, encoders
should use the lowest bitstream version appropriate for the frame being encoded and the
encoding parameters in effect.

Version variants correspond to the addition of informative data to ProRes bitstreams. Such
additional data will not include information that is required for correct decoding, and furthermore
will be added in a manner that does not prevent correct decoding by existing decoders that
would otherwise be capable of decoding the bitstream. As a consequence all version variants
of a ProRes bitstream version can be decoded by any decoder compatible with that bitstream
version.

ProRes bitstreams contain no explicit identification of version variant. Because unrecognized
version variant data can be present in a ProRes bitstream, for syntax structures with size
specified in the bitstream, decoders shall use the specified size—rather than inference from the
syntax itself—to determine the start of the immediately following syntax structure.

This specification describes bitstream versions 0 and 1. Version 0 bitstreams will have a value
of 2 (4:2:2 sampling) for the chroma_format syntax element and a value of 0 (no encoded alpha)
for the alpha_channel_type element; version 1 bitstreams can have any permissible value for
those elements. No version variants have been defined for either bitstream version.

7 Decoding Process

This section describes the process that a decoder shall follow to reconstruct a frame from a
ProRes bitstream. The process is carried out for each compressed slice in the bitstream and
consists of these steps:

• Entropy decoding is applied to each of the compressed video components of the slice to
produce arrays of scanned color component quantized discrete cosine transform (DCT)
coefficients and, if the ProRes bitstream includes an encoded alpha channel, an array of
raster-scanned alpha values;

• Inverse scanning is applied to each of the scanned color component quantized DCT
coefficient arrays to produce blocks of color component quantized DCT coefficients;

• Inverse quantization is applied to each of the color component quantized DCT coefficient
blocks to produce blocks of color component DCT coefficients;

• An inverse discrete cosine transform (IDCT) is applied to each of the color component
DCT coefficient blocks to produce blocks of reconstructed color component values;

• Each of the reconstructed color component values is converted to an integral sample of
desired bit depth and is written to the appropriate location in the decoded frame buffer
(as are the decoded alpha values, if any).

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 25 of 39 pages

7.1 Entropy Decoding

7.1.1 Scanned Coefficients

A ProRes compressed slice contains an entropy-coded array of scanned quantized DCT
coefficients for each color component (Y′, Cb, and Cr). Quantized DC coefficients are encoded
differentially, while quantized AC coefficients are run-length encoded. Variable-length coding is
applied to the results using codebooks based on the Golomb-Rice and exponential-Golomb
coding schemes.

7.1.1.1 Golomb Combination Codes

Golomb-Rice and exponential-Golomb codes are families of codebooks parameterized by a
non-negative integer order. All members of both families have as their symbol alphabets the
non-negative integers. Their codewords consist of three parts: a unary prefix consisting solely
of ‘0’ bits (the length of which is referred to as the code level); a separator consisting of a single
‘1’ bit; and a binary suffix. Decoding is accomplished by counting the number of prefix bits and
then appropriately combining that count with the suffix to recover the encoded symbol.

The Golomb-Rice code of order k encodes a non-negative integer symbol n by first calculating
the quotient and remainder of n with respect to 2k, q = floor(n ÷ 2k) and r = n mod 2k. Then the
codeword for n consists of a prefix of q ‘0’ bits, a single ‘1’ (separator) bit, and a k-bit suffix
containing the binary representation of r; the length of the codeword is q + 1 + k. To decode an
order-k Golomb-Rice codeword, the quotient/code level q is determined by counting the number
of ‘0’ bits preceding the first ‘1’ bit, ignoring that ‘1’ bit, taking the last k bits as the remainder r,
and finally reconstructing the encoded symbol n as q * 2k + r.

The exponential-Golomb codes have a slightly more complex structure. For these the number
of ‘0’ bits in the codeword prefix—the code level—is q = floor(log2(n + 2k)) − k, where again n is
the non-negative integer symbol being encoded and k is the code order. The suffix is the (q+k)-
bit binary representation of r = n + 2k − 2q+k, making the codeword the binary representation of
the sum n + 2k, zero-extended by q bits for a codeword length of q + 1 + (q + k) = 2q + k + 1.
The encoded symbol n can be decoded from an order-k exponential-Golomb codeword by
simply subtracting 2k from the codeword.

ProRes variable-length coding uses exponential-Golomb codes but does not directly use
Golomb-Rice codes. Rather, it uses combinations of the two, where non-negative integer
symbols n with small values are encoded with a Golomb-Rice code and those with larger values
are encoded with an exponential-Golomb code. These Golomb-Rice/exponential-Golomb
combination codes require three parameters to specify: the order of the associated Golomb-
Rice code, kRice; the order of the associated exponential-Golomb code, kExp; and an indication
of where to transition from one code to the other, lastRiceQ, defined as the largest value of
q for which the Golomb-Rice code still applies. Values of n less than (lastRiceQ + 1) * 2kRice
are encoded with the order-kRice Golomb-Rice code. For values of n greater than or equal
to (lastRiceQ + 1) * 2kRice, the combination codeword is obtained by concatenating first
lastRiceQ + 1 ‘0’ bits and then the result of encoding n − (lastRiceQ + 1) * 2kRice (itself a non-
negative integer) with the order-kExp exponential-Golomb code. Note: For all non-negative
integers k, the Golomb-Rice/exponential-Golomb combination code with lastRiceQ = 0, kRice = k,
and kExp = k + 1 is identical to the exponential-Golomb code of order k.

To decode a codeword from the Golomb-Rice/exponential-Golomb combination code with
parameters lastRiceQ, kRice, and kExp, first determine the code level q by counting the number
of ‘0’ bits preceding the first ‘1’ bit. If q is lastRiceQ or less, decode the codeword as an

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 26 of 39 pages

order-kRice Golomb-Rice codeword to obtain the encoded symbol n. Otherwise discard the first
lastRiceQ + 1 bits of the codeword (which are ‘0’s), decode the remaining bits as an order-kExp
exponential-Golomb codeword, and finally add (lastRiceQ + 1) * 2kRice to the result to obtain the
encoded symbol n.

7.1.1.2 Signed Golomb Combination Codes

The symbol alphabets of the various Golomb codes are the non-negative integers. To apply
these codes to signed integers, a signed integer-to-symbol mapping S(n) is used. For ProRes
this mapping is defined as

S(n) = ��

2|n|, n ≥ 0
2|n| � 1, n < 0,

as illustrated in Table 8.

Table 8 – Signed integer-to-symbol mapping S(n)

n S(n)
0 0

−1 1
+1 2
−2 3
+2 4
−3 5
+3 6
� �

Notice that even symbols correspond to non-negative integers while odd symbols correspond to
negative ones. The inverse mapping is thus

n = ��

S(n) / 2, S(n) even
�((S(n) + 1) / 2), S(n) odd.

7.1.1.3 DC Coefficients

The first quantized DC coefficient in the scanned coefficient array, first_dc_coeff, is determined
by decoding an order-5 exponential-Golomb code codeword from the bitstream, then applying
the inverse of the signed integer-to-symbol mapping S(n) to the decoded symbol.

The remaining quantized DC coefficients in the scanned coefficient array are encoded
differentially. Variable-length coding is done adaptively, with the codebook for one
dc_coefficient_difference syntax element determined by the absolute value of the previous
one. The adaptation is specified in Table 9, where EXP_GOLOMB_CODE(k) denotes the
exponential-Golomb code of order k, RICE_EXP_COMBO_CODE(lastRiceQ, kRice, kExp) denotes
the Golomb-Rice/exponential-Golomb combination code with the indicated parameters, and
previousDCDiff refers to the value of the previous dc_coefficient_difference.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 27 of 39 pages

Table 9 – Codebook adaptation for dc_coefficient_difference syntax element

previousDCDiff Codebook
0 EXP_GOLOMB_CODE(0)
1 EXP_GOLOMB_CODE(1)
2 RICE_EXP_COMBO_CODE(1, 2, 3)

3 and above EXP_GOLOMB_CODE(3)

To determine the value of a dc_coefficient_difference syntax element, use the entry in Table 9
corresponding to the absolute value of previousDCDiff to decode a codeword from the bit-
stream, then apply the inverse of the signed integer-to-symbol mapping S(n) to the decoded
symbol to obtain a signed integer n; dc_coefficient_difference is n if previousDCDiff ≥ 0 and
−n if previousDCDiff < 0. For each scanned coefficient array the value of previousDCDiff
is initially set to 3 (so that the exponential-Golomb code of order 3 is used for the
first dc_coefficient_difference syntax element of the array) and is updated as each
dc_coefficient_difference syntax element is determined.

7.1.1.4 AC Coefficients

The quantized AC coefficients in the scanned coefficient array are run-length encoded. Runs
consist of consecutive array elements with value zero. They are terminated either by a non-
zero array element—a level—or by reaching the end of the array. Only runs that are terminated
by levels are encoded into the bitstream; a final run, if there is one, is implicit.

Variable-length coding of runs and levels is done separately and adaptively. The codebook for
one run syntax element is determined by the value of the previous one according to Table 10.

Table 10 – Codebook adaptation for scanned coefficients run syntax element

previousRun Codebook
0 RICE_EXP_COMBO_CODE(2, 0, 1)
1 RICE_EXP_COMBO_CODE(2, 0, 1)
2 RICE_EXP_COMBO_CODE(1, 0, 1)
3 RICE_EXP_COMBO_CODE(1, 0, 1)
4 EXP_GOLOMB_CODE(0)
5 RICE_EXP_COMBO_CODE(1, 1, 2)
6 RICE_EXP_COMBO_CODE(1, 1, 2)
7 RICE_EXP_COMBO_CODE(1, 1, 2)
8 RICE_EXP_COMBO_CODE(1, 1, 2)
9 EXP_GOLOMB_CODE(1)

10 EXP_GOLOMB_CODE(1)
11 EXP_GOLOMB_CODE(1)
12 EXP_GOLOMB_CODE(1)
13 EXP_GOLOMB_CODE(1)
14 EXP_GOLOMB_CODE(1)

15 and above EXP_GOLOMB_CODE(2)

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 28 of 39 pages

The value of a run syntax element is the symbol obtained by decoding a codeword from the
bitstream using the entry in Table 10 corresponding to previousRun (the value of the previous
run syntax element). For each scanned coefficient array the value of previousRun is initially set
to 4 (so that the exponential-Golomb code of order 0 is used for the first run syntax element of
the array) and is updated as each run syntax element is determined.

Levels are encoded in sign-magnitude fashion. The abs_level_minus_1 syntax element pro-
vides the level symbol, which is one less than the absolute value of the level, and the sign
syntax element indicates the sign of the level. The codebook for one abs_level_minus_1 syntax
element is determined by the value of the previous one according to Table 11.

Table 11 – Codebook adaptation for abs_level_minus_1 syntax element

previousLevelSymbol Codebook
0 RICE_EXP_COMBO_CODE(2, 0, 2)
1 RICE_EXP_COMBO_CODE(1, 0, 1)
2 RICE_EXP_COMBO_CODE(2, 0, 1)
3 EXP_GOLOMB_CODE(0)
4 EXP_GOLOMB_CODE(1)
5 EXP_GOLOMB_CODE(1)
6 EXP_GOLOMB_CODE(1)
7 EXP_GOLOMB_CODE(1)

8 and above EXP_GOLOMB_CODE(2)

The value of an abs_level_minus_1 syntax element is the symbol obtained by decoding a
codeword from the bitstream using the entry in Table 11 corresponding to previousLevelSymbol
(the value of the previous abs_level_minus_1 syntax element). For each scanned coefficient
array the initial previous level is taken to be 2. The value of previousLevelSymbol is thus
initially set to |2| − 1 = 1 (so that the Golomb-Rice/exponential-Golomb combination code with
lastRiceQ 1, Rice order 0, and exponential order 1 is used for the first abs_level_minus_1
syntax element of the array) and is updated as each abs_level_minus_1 syntax element is
determined. The level itself is calculated from the values of the abs_level_minus_1 and sign
syntax elements according to the formula

level = (abs_level_minus_1 + 1) * (1 − 2 * sign).

7.1.2 Scanned Alpha

When the value of the alpha_channel_type syntax element is not zero, ProRes compressed
slices contain an entropy-coded array of raster-scanned alpha (transparency) component
values. The values in the array are run-length encoded, differences between alpha values of
successive runs are calculated, and variable-length coding is applied to the results.

Runs consist of consecutive array elements with the same value (and hence always have
length one or more). They terminate when one of the following occurs: two consecutive array
elements have different values; the end of the array is reached; or the maximum permissible run
length, 2048, is achieved. Variable-length coding of run lengths uses the code in Table 12.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 29 of 39 pages

Table 12 – Variable-length code for scanned alpha run lengths

Run length Codeword
1 1
2 00001
3 00010
� �
15 01110
16 01111
17 0000000000010000
18 0000000000010001
� �

2047 0000011111111110
2048 0000011111111111

Run lengths of one are assigned a codeword consisting of a single ‘1’ bit. Run lengths between
2 and 16, inclusive, are assigned five-bit codewords that begin with a ‘0’ bit and contain at least
one ‘1’ bit. Run lengths between 17 and 2048, inclusive, are assigned codewords consisting of
an escape code of five ‘0’ bits followed by an eleven-bit fixed-length code containing the binary
representation of one less than the run length. (Note: Each five-bit codeword also happens to
be the binary representation of one less than the run length to which it corresponds.) The value
of a run syntax element is the run length obtained by decoding a codeword from the bitstream
using Table 12.

Run alpha values are encoded differentially. Each alpha_difference syntax element provides
either the exact or the modulo difference between the alpha value of its corresponding run
and that of the immediately previous run. For the first run, the previous alpha value is taken
to be −1. Reconstruction of the alpha value of a run—denoted simply by alpha—from that
of the immediately previous run—denoted by previousAlpha—and the value of the run’s
alpha_difference syntax element is done according to the formula

alpha = previousAlpha + alpha_difference

when the value of the syntax function isModuloAlphaDifference() is false or else the formula

alpha = (previousAlpha + alpha_difference) & mask

when the value of isModuloAlphaDifference() is true, where mask is either the 8-bit value 0xFF
(when the value of the alpha_channel_type syntax element is 1) or the 16-bit value 0xFFFF
(when alpha_channel_type is 2). A two’s complement representation shall be used for the value
of the sum so that the bitwise-and corresponds to a modulo operation. Note: If it permits a
simpler or more efficient implementation, the bitwise-and (modulo) operation may also be done
when isModuloAlphaDifference() is false, as it has no effect in that case.

Variable-length coding of alpha differences uses one of two different codes depending on the
value of alpha_channel_type. When alpha_channel_type is 1 (8-bit alpha), the code in Table 13
is used.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 30 of 39 pages

Table 13 – Variable-length code for alpha differences, alpha_channel_type = 1 (8-bit
alpha)

Alpha difference Codeword
+1 00000
−1 00001
+2 00010
−2 00011
� �
+8 01110
−8 01111

Other Escaped FLC

Differences with absolute value between 1 and 8, inclusive, are assigned codewords consisting
of a ‘0’ bit followed first by the three-bit binary representation of one less than the absolute value
of the difference and then by a one-bit indicator of the sign of the difference (‘0’ for positive,
‘1’ for negative). Differences with absolute value greater than 8, or equal to 0, are assigned
codewords consisting of an escape bit of ‘1’ followed by an eight-bit fixed-length code (FLC)
containing the binary representation of the value of the difference mod 256. To determine
the value of an alpha_difference syntax element and that of the associated syntax function
isModuloAlphaDifference() when alpha_channel_type is 1, first observe whether the next bit
of the bitstream is a ‘0’ or a ‘1’. If ‘0’, isModuloAlphaDifference() is false and the subsequent
four bits of the bitstream encode the absolute value and sign of alpha_difference according to
Table 13 and the above description. If ‘1’, isModuloAlphaDifference() is true and the subse-
quent eight bits of the bitstream directly provide the binary representation of alpha_difference.
Note: If it permits a simpler or more efficient implementation, when the first bit of the codeword
representing alpha_difference is ‘1’ the full nine-bit codeword may also be used as the binary
representation of alpha_difference; the effect of including the escape bit will be eliminated by
the bitwise-and (modulo) operation in the reconstruction calculation.

When alpha_channel_type is 2 (16-bit alpha), the code in Table 14 is used for alpha differences.

Table 14 – Variable-length code for alpha differences, alpha_channel_type = 2 (16-bit
alpha)

Alpha difference Codeword
+1 00000000
−1 00000001
+2 00000010
−2 00000011
� �

+64 01111110
−64 01111111

Other Escaped FLC

Differences with absolute value between 1 and 64, inclusive, are assigned codewords con-
sisting of a ‘0’ bit followed first by the six-bit binary representation of one less than the absolute
value of the difference and then by a one-bit indicator of the sign of the difference (‘0’ for

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 31 of 39 pages

positive, ‘1’ for negative). Differences with absolute value greater than 64, or equal to 0, are
assigned codewords consisting of an escape bit of ‘1’ followed by a sixteen-bit fixed-length
code containing the binary representation of the value of the difference mod 65536. To
determine the value of an alpha_difference syntax element and that of the associated syntax
function isModuloAlphaDifference() when alpha_channel_type is 2, first observe whether the
next bit of the bitstream is a ‘0’ or a ‘1’. If ‘0’, isModuloAlphaDifference() is false and the
subsequent seven bits of the bitstream encode the absolute value and sign of alpha_difference
according to Table 14 and the above description. If ‘1’, isModuloAlphaDifference() is true and
the subsequent sixteen bits of the bitstream directly provide the binary representation of
alpha_difference. Note: If it permits a simpler or more efficient implementation, when the first bit
of the codeword representing alpha_difference is ‘1’ the full seventeen-bit codeword may also
be used as the binary representation of alpha_difference; the effect of including the escape bit
will be eliminated by the bitwise-and (modulo) operation in the reconstruction calculation.

7.2 Inverse Scanning

ProRes uses a combination of block and slice scanning to obtain each array of scanned color
component quantized DCT coefficients from the individual quantized DCT coefficient blocks of
the corresponding color component.

7.2.1 Slice Scanning

Slice scanning groups all quantized DCT coefficients with the same scanned frequency index
together in the scanned coefficient array, ordered from those with the lowest scanned frequency
index (0) at the start of the array to those with the highest (63) at the end. For each scanned
frequency index n, the quantized DCT coefficients in the array follow the order of the corre-
sponding macroblock within the slice, and among blocks of the same macroblock, the order of
the corresponding block within the macroblock. This arrangement is illustrated in Figure 3.

Figure 3 – Arrangement of quantized DCT coefficients in scanned coefficient array

Let sliceSizeInMb refer to the number of macroblocks forming the slice and nB to the number
of blocks forming each macroblock; sliceSizeInMb is slice_size_in_mb[j] for slice(i, j) and nB
is 4 for the luma (Y′) component and nC for the chroma (Cb, Cr) components, where nC is 2
when the value of chroma_format is 2 (4:2:2 sampling) and 4 when the value of that syntax
element is 3 (4:4:4 sampling). Calling the scanned coefficient array scannedCoeffs[] and using
QFSm,b[] to refer to the scanned quantized DCT coefficient block with macroblock index m
(0 ≤ m < sliceSizeInMb) and block index b (0 ≤ b < nB), then, inverse slice scanning is given by
the formula

••••••

••• •••

••• •••

0 b

0 m

0 (DC) 1 (AC) n 63 (AC)

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 32 of 39 pages

QFSm,b[n] = scannedCoeffs[nB * sliceSizeInMb * n + nB * m + b]

(0 ≤ n < 64). Note: Because nB and sliceSizeInMb are each a power of two and furthermore
there are no carries among the addends, the above indexing calculation can be carried out with
bit shift and bitwise-or operations instead of multiplication and addition; conversely, n, m, and
b can be determined from a scanned coefficient array index using only bit shift and bit mask
operations.

7.2.2 Block Scanning

Block scanning orders each 8×8 block of quantized DCT coefficients QF[][] into a corresponding
scanned quantized DCT coefficient block QFS[] (the macroblock and block index subscripts
have been dropped as there is no need to distinguish among them). The same scan pattern is
used for all blocks and color components. The pattern does depend, however, on the value of
the interlace_mode syntax element. When the value of interlace_mode is 0—when the block is
part of a frame picture—the progressive scan pattern of Figure 4 is used.

 u

 0 1 2 3 4 5 6 7

v

0 0 1 4 5 16 17 21 22
1 2 3 6 7 18 20 23 28

2 8 9 12 13 19 24 27 29

3 10 11 14 15 25 26 30 31

4 32 33 37 38 45 46 53 54

5 34 36 39 44 47 52 55 60

6 35 40 43 48 51 56 59 61

7 41 42 49 50 57 58 62 63

Figure 4 – Block scan pattern, interlace_mode = 0 (progressive)

When on the other hand the value of interlace_mode is not 0—when the block is part of a field
picture—the interlaced scan pattern of Figure 5 is used.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 33 of 39 pages

 u

 0 1 2 3 4 5 6 7

v

0 0 2 8 10 32 34 35 41
1 1 3 9 11 33 36 40 42

2 4 6 12 14 37 39 43 49

3 5 7 13 15 38 44 48 50

4 16 18 19 25 45 47 51 57

5 17 20 24 26 46 52 56 58

6 21 23 27 30 53 55 59 62

7 22 28 29 31 54 60 61 63

Figure 5 – Block scan pattern, interlace_mode not 0 (interlaced)

Setting scan[][] to the relevant scan pattern, inverse block scanning is given by the formula

QF[v][u] = QFS[scan[v][u]]

(0 ≤ u, v < 8).

7.3 Inverse Quantization

Inverse quantization produces a block F[][] of dequantized DCT coefficients from a quantized
counterpart QF[][] using a quantization weight matrix W[][] and a quantization scale factor
qScale. The latter sets the overall level of quantization for the block while the former permits
frequency-dependent variation. Quantization weight matrices are specified in the frame header
and apply to all blocks of the frame, while quantization scale factors are specified in each slice
header and apply to all blocks of the corresponding slice.

The quantization weights W[v][u] are integers between 2 and 63, inclusive. There are distinct
quantization weight matrices for the luma (Y′) and chroma (Cb, Cr) video components, denoted
respectively by lumaQuantizationMatrix[][] and chromaQuantizationMatrix[][]. If the value of
the load_luma_quantization_matrix syntax element is 1, then the frame header includes the
luma_quantization_matrix syntax element and this is used for the luma quantization weight ma-
trix, lumaQuantizationMatrix[v][u] = luma_quantization_matrix[v][u] for 0 ≤ u, v < 8. If the value
of load_luma_quantization_matrix is 0, on the other hand, a default matrix with all 64 weights
set to 4 is used, i.e., lumaQuantizationMatrix[v][u] = 4 for 0 ≤ u, v < 8. Likewise, if the value of
the load_chroma_quantization_matrix syntax element is 1, the chroma_quantization_matrix
syntax element included in the frame header is used for the chroma quantization weight matrix,
chromaQuantizationMatrix[v][u] = chroma_quantization_matrix[v][u] for 0 ≤ u, v < 8. However
if the value of load_chroma_quantization_matrix is 0, the luma quantization weight matrix is
used for the chroma one as well, chromaQuantizationMatrix[v][u] = lumaQuantizationMatrix[v][u]
for 0 ≤ u, v < 8. W[][] is then lumaQuantizationMatrix[][] for the luma component and
chromaQuantizationMatrix[][] for the chroma components.

The quantization scale factor qScale for a slice is determined by the value of the
quantization_index syntax element in the slice header—which is restricted to be between 1 and
224 inclusive—according to Table 15.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 34 of 39 pages

Table 15 – Quantization scale factor qScale as a function of quantization_index

quantization_index qScale
1 1
2 2
� �

126 126
127 127
128 128
129 132
130 136
� �

223 508
224 512

In compact form the relationship is

qScale =
quantization_index, �����1 ≤ quantization_index ≤ 128

128 + 4 * (quantization_index � 128), 129 ≤ quantization_index ≤ 224.

The dequantized DCT coefficients are calculated from the quantized ones, the quantization
weights, and the quantization scale factor using the formula

F[v][u] = (QF[v][u] * W[v][u] * qScale) ÷ 8

(0 ≤ u, v < 8). Because the results of this calculation are not always integral, they require a
fixed-point or floating-point representation. Notice that the quantized DCT coefficients, the
quantization weights, and the quantization scale factor are all integral, so the dequantized DCT
coefficients will always be multiples of 1/8; three fraction bits are sufficient to provide exact
representation. At least two fraction bits (i.e., quarter-integer precision) shall be retained for the
subsequent inverse transform.

7.4 Inverse Transform

Reconstructed color component values f[y][x] are obtained from a block of dequantized DCT
coefficients F[][] by applying an 8×8 two-dimensional inverse discrete cosine transform (IDCT),

f[y][x] =
1
4

 C(u) C(v) F[v][u] cos
(2x+1)u�

16
 cos

(2y+1)v�
16

7

v = 0

7

u = 0

(0 ≤ x, y < 8), where C(0) = 1 2 and C(n) = 1 for n = 1, �, 7. The IDCT follows the conven-
tions of IEEE Std 1180-1990, specifically the expectation that the DCT coefficients have the
range of 12-bit signed integers while the reconstructed values have the range of 9-bit signed
integers.

Either a fixed-point or a floating-point implementation of the IDCT is acceptable. The implemen-
tation shall be capable of accommodating DCT coefficients with at least two bits of fractional
precision. To ensure that the IDCT calculation is sufficiently accurate, the implementation shall
comply with Annex A, “IDCT Implementation Accuracy Qualification.” All fraction bits of the

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 35 of 39 pages

reconstructed values arising from the implementation should be preserved for conversion of the
reconstructed values to pixel component samples.

7.5 Pixel Component Sample Generation and Pixel Output

The final step of the decoding process is to generate (integral) pixel component samples of
desired bit depth from the reconstructed color component values and decoded alpha values (if
any) and then write them to the appropriate locations in the decoded frame buffer.

7.5.1 Color Component Samples

The reconstructed color component values produced by the IDCT are offset and normalized to
a range comparable to that of 9-bit signed integers, specifically greater than or equal to −256
and less than 256. Converting these to pixel component samples requires restoring mid-range
bias and scaling to the bit depth of the component samples. Using v to denote a (fixed-point or
floating-point) reconstructed color component value and s to denote the corresponding (un-
signed integer) pixel component sample, this is

s = clamp(round(2b * (v + 256) ÷ 512)),

where b is the number of bits per component sample and clamp(n) restricts its argument to the
appropriate range,

clamp(n)�=� �

nmin, n < nmin

 nmax, n >�nmax

n, otherwise�

The clamping bounds nmin and nmax may be set respectively to 0 and 2b − 1 to produce pixel
component samples that utilize all available quantization levels or to the smallest and largest
permissible video quantization levels for b-bit samples if avoidance of ITU-R BT.601/BT.709
synchronization/timing reference quantization levels is desired.

The correspondence between the quantization levels of the resulting pixel component samples
and component video signal levels is consistent with those of ITU-R BT.601 and ITU-R BT.709.
For sample bit depths b ≥ 8, black and nominal peak white luma signal levels correspond
respectively to the luma sample quantization levels 16 * 2b−8 and 235 * 2b−8; achromatic and
nominal peak chroma signal levels correspond respectively to the chroma sample quantization
levels 128 * 2b−8, 16 * 2b−8, and 240 * 2b−8.

7.5.2 Alpha Component Samples

ProRes encodes alpha channel information losslessly. If the pixel component sample bit depth
matches that of the decoded alpha values, the pixel alpha component samples shall be the
decoded values themselves and will be identical to the encoded samples. Otherwise the
decoded alpha values shall be promoted or demoted as necessary to the pixel component
sample bit depth. This should be done by treating the smallest and largest possible alpha
sample values as respectively signifying opacities of exactly 0.0 and 1.0. For 8-bit decoded
alpha values (when the value of the alpha_channel_type syntax element is 1), the conversion is

alphaSample = round((2b − 1) * alpha ÷ 255),

while for 16-bit decoded alpha values (when alpha_channel_type is 2) it is

alphaSample = round((2b − 1) * alpha ÷ 65535),

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 36 of 39 pages

where alpha is a decoded alpha value, alphaSample is the corresponding pixel alpha compo-
nent sample, and b is the number of bits per pixel component sample.

7.5.3 Pixel Arrangement

The individual rows of pixels and pixels within each row of a frame, picture, slice, macroblock, or
block are identified using zero-based indexing sequenced from top to bottom (pixel rows) or left
to right (pixels within a row). For a frame, for instance, row 0 refers to the top row of the frame,
row 1 to the row immediately below the top one, and so forth; pixel 0 refers to the leftmost pixel
of a row of the frame, pixel 1 to the pixel immediately to the right of pixel 0, and so forth.

If the frame being decoded is progressive, it consists of a single picture, and that picture is iden-
tical to the frame: pixel n of row r of the picture is pixel n of row r of the frame. If the frame is
interlaced, however, it consists of two pictures, each of which consists of alternate rows of the
frame. Specifically, pixel n of row r of the top field picture is pixel n of row 2r of the frame while
pixel n of row r of the bottom field picture is pixel n of row 2r + 1 of the frame.

Slices are identified by the macroblock row i they occupy in their encoded picture,
0 ≤ i < height_in_mb, and an index j indicating their position within the macroblock row,
0 ≤ j < number_of_slices_per_mb_row. Calling mbOffset(j) = slice_size_in_mb[j']j - 1

j' = 0 (for
j ≥ 1; mbOffset(0) = 0), pixel n of row r of slice(i, j) is pixel 16 * mbOffset(j) + n of row 16i + r
of the encoded picture that incorporates the slice. Keep in mind that the dimensions
of the encoded picture can exceed those of the source picture. If 16 * width_in_mb >
horizontal_size, the last 16 * width_in_mb − horizontal_size pixels of each row of the decoded
slices with j = number_of_slices_per_mb_row – 1 shall be discarded, i.e., not written to the
decoded frame buffer; if 16 * height_in_mb > picture_vertical_size, the last 16 * height_in_mb −
picture_vertical_size rows of pixels of the decoded slices with i = height_in_mb − 1 shall not be
written to the decoded frame buffer.

The macroblocks that constitute a slice are indexed from left to right starting with index 0.
Hence pixel n of row r of macroblock m of a slice is pixel 16m + n of row r of that slice. Within
a macroblock, the constituent blocks are indexed separately for each (color) component. The
four luma (Y′) blocks are arranged by block index as shown in Figure 6.

0 1

2 3

Figure 6 – Order of luma (Y′) blocks within macroblock

For 4:2:2 sampling (when the value of the chroma_format syntax element is 2), the two Cb
blocks and two Cr blocks are each arranged by block index as shown in Figure 7.

0

1

Figure 7 – Order of chroma (Cb, Cr) blocks within macroblock, 4:2:2 sampling

For 4:4:4 sampling (when chroma_format is 3), the four Cb blocks and four Cr blocks are each
arranged by block index as shown in Figure 8. Note: The arrangement of the 4:4:4 chroma
blocks (Figure 8) differs from that of the luma blocks (Figure 6).

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 37 of 39 pages

0 2

1 3

Figure 8 – Order of chroma (Cb, Cr) blocks within macroblock, 4:4:4 sampling

Within a slice alpha component data are organized not as macroblocks and blocks but rather
as an array of raster-scanned values. Calling the array alphaValues[], for slice(i, j) the decoded
alpha value corresponding to pixel n of row r is alphaValues[16 * slice_size_in_mb[j] * r + n].
The array includes alpha values—which shall be discarded—for the excess pixel(s) at the end
of each row of slices with j = number_of_slices_per_mb_row – 1 when 16 * width_in_mb >
horizontal_size but does not include alpha values for the excess row(s) of pixels at the bottom of
slices with i = height_in_mb – 1 when 16 * height_in_mb > picture_vertical_size.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 38 of 39 pages

Annex A IDCT Implementation Accuracy Qualification

ProRes decoders are not required to use any particular implementation of the inverse discrete
cosine transform (IDCT) calculation. To ensure the quality of decoded image data, however,
only implementations that are sufficiently accurate are acceptable. This annex specifies how to
qualify an IDCT implementation for use in a ProRes decoder.

The qualification procedure is based on the one in Section 3 of IEEE Std 1180-1990. As in
Section 3.2 of that standard, there are seven steps involved in measuring the accuracy of a
proposed IDCT implementation. They are:

(1) Generate random integer data values in the range −L to +H using the random number
generator in the appendix of IEEE Std 1180-1990. Arrange the integer data values into
8×8 blocks of “reference-precision” (i.e., at least 64-bit) floating-point pixels by converting
them to reference-precision floating-point numbers, dividing by 8, and populating the blocks
in row-major order. Data sets of 10,000 blocks each shall be generated for (L = 2048,
H = 2047), (L = H = 40), and (L = H = 2400).

(2) For each 8×8 block of reference-precision floating-point pixels produced by step 1, perform
a separable, orthogonal FDCT (as defined in Eq 1 of IEEE Std 1180-1990) using reference-
precision floating-point arithmetic.

(3) For each 8×8 block of transformed coefficients produced by step 2, round the 64 coeffi-
cients to the nearest quarter-integer by multiplying by 4, rounding to the nearest integer,
and then dividing by 4. Clip the rounded coefficients to the range −2048 to +2047.75.
These blocks, which consist of values that can be represented using a signed binary fixed-
point format with 12 or more integer bits and 2 or more fraction bits, are the input data to
the inverse transforms.

(4) For each 8×8 block of data produced by step 3, perform a separable, orthogonal IDCT
using reference-precision floating-point arithmetic. Retaining full reference precision—
specifically, without rounding to integers or any other lesser precision—clip the resulting
values to the range −256 to +256. These blocks of 8×8 reference-precision floating-point
pixels are the “reference” IDCT output data.

(5) For each 8×8 block of data produced by step 3, perform an IDCT using the proposed
implementation (or a bit-accurate equivalent). Retaining the full precision of the results,
promote them as necessary to reference-precision floating-point numbers and clip those
values to the range −256 to +256. These blocks of 8×8 reference-precision floating-point
pixels are the “test” IDCT output data.

(6) For each of the 64 IDCT output pixels and for each of the 10,000 block data sets generated
by steps 1–5, measure the peak, mean, and mean square errors between the “reference”
data and the “test” data. The error calculation and accumulation shall be carried out with
reference-precision floating-point arithmetic.

(7) Rerun the measurements using exactly the same integer data values of step 1, but change
the sign on each one.

Note: The distinctions between the procedure described above and the one in Section 3.2 of
IEEE Std 1180-1990 are that here the pixel data produced by step 1 have three fraction bits
(rather than being integers), the transformed coefficients produced by step 2 are rounded to
the nearest quarter-integer (rather than integer) and clipped to the range −2048 to +2047.75
(rather than −2048 to +2047), the IDCT output data retain the full precision of their respective
calculations (rather than being rounded to integers) and are clipped to the range −256 to +256
(rather than −256 to +255), and the error measurements use reference-precision floating-point
(rather than integer) arithmetic.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

SMPTE RDD 36:2015

Page 39 of 39 pages

Using the error term definitions in Section 3.3 of IEEE Std 1180-1990, the (reference-precision
floating-point) errors measured according to the above procedure shall meet the following
criteria:

(1) For any pixel location, the peak error (ppe) shall not exceed 0.15 in magnitude.
(2) For any pixel location, the mean square error (pmse) shall not exceed 0.002.
(3) Overall, the mean square error (omse) shall not exceed 0.001.
(4) For any pixel location, the mean error (pme) shall not exceed 0.0015 in magnitude.
(5) Overall, the mean error (ome) shall not exceed 0.00015 in magnitude.

Authorized licensed use limited to: Apple. Downloaded on May 14,2018 at 19:29:04 UTC from IEEE Xplore. Restrictions apply.

