

Applican

Final Project Design
Team #2

BY:

HARRISON LUO

EMILIA PAZ

TRENTON POTTER

JUSTIN RODERMAN

ALEX SHADLEY

Project Synopsis
Applican matches vetted students with software engineering internships and full time positions through

quick adaptive quizzes and an interview.

Project Description
Applican connects vetted students with technical internships. Internship searches are easier, and

companies recruit faster, better, and cheaper.
Candidates take a technical screen followed by a one-on-one interview. Applican presents companies

with student profiles, each with assessment results, company culture preferences, projects, past
experience. This allows companies to have a more accurate and holistic view of a candidate.

Whether a 200 head recruiting department or a 10 head start-up, Applican gets your company more
candidates alongside the information to quickly make decisions.

Project Milestones

Mont
h

Milestones

Product Acquiring Students Acquiring Companies Administrative

Nov

1. Landing page
hosted

2. Ability to gather
company
interests page

1. Sales pitch
outline

2. Schedule
meetings with HR
departments

1. Emails through
domain name

2. Cap table/ vesting
schedule / etc.

Dec

1. Gather company
requirements

2. Plan and
Implement
Company Reqs

3. Student
Evaluation
rolled-out

1. Plan marketing
campaign

1. Info/Sales
meetings with
companies

2. Follow-up
meetings
scheduled

1. Bank account
2. Tracking expenses
3. Freelance software

engineer (?)

Jan
1. Company

dashboard
completed

1. Tabling
2. Execute

marketing
campaign

1. Contracts created
and signed

1. Legal structure in
place

Feb
1. Iterative

improvements on
product

1. Student
interviews

2. Execute
marketing
campaign

1. Training/ support
for company
users

1. Plan funding goals
2. Incubator

applications/ pitch
competitions/ etc.

Mar

1. Bug fixes and
maintenance

2. Plan next
iteration of
product

1. Schedule
interviews with
companies

1. Schedule
interviews with
candidates

1. Charge companies

Apr
1. Plan next dev

cycle

1. Schedule
Comp.
Interviews

2. Gather
feedback

1. Schedule Cand.
interviews

2. Gather feedback
1. Charge companies

Project Budget

Resource Cost Per Unit Units Monthly Monthly Expense Total Expense

EC2 Compute $0.0128 / hr 744 $9.52 $85.68

RDS $0.0030/GBhr ~1200 $3.60 $32.40

Networking ~$4.30 1 $4.30 $38.70

Domain Hosting $12.00 1 One Time $12.00

Marketing $50 10 500 $500

TOTAL $668.78

Work Plan
- Business planning: Trenton Potter
- Company acquisition: Harry
- Student acquisition: Emilia
- Back end: Harry, Trenton
- Full stack: Alex
- Front end: Emilia, Justin

Preliminary Project Design

Software Stack
Applican’s product is a web application, meaning it fundamentally consists of a web frontend, web

API (backend), and a database. These three pieces are fairly interchangeable, and this shows in the course
of our architecture decisions. Our API technology has been straightforward with little change over the
course of the project. We chose Flask, a Python web framework that is designed to allow rapid
prototyping. Flask achieves this by allowing more fluidity and customization to developers, as opposed to

other frameworks such as Django and Ruby on Rails. In our experience, this has been a beneficial
experience, since it allows us to select which modules we need and not worry about learning those we
don’t. For example, we use a Python library for JSON validation, to handle user logins, and to abstract
database access.

The last type of library mentioned is referred to as an Object Relation Mapper (ORM). This class of
library abstracts the process of interfacing with a database, making it possible to swap out the underlying
database without changing any code. This has allowed us to develop with SQLite3 in development
environments, and to use PostgreSQL in production. This is convenient because SQLite3 is a
no-configuration database, meaning developers do not need to configure a database server in order to
write new features. PostgreSQL however, is more performant, making it desirable in production settings.

Front end technologies have been something of a contentious point in our development group.
Since we need to build a highly interactive web page, which will provide users with a timed quiz,
animations, and a dynamic dashboard, a web framework is certainly advisable. Initially, we chose Angular
as our framework, since one of our developers had some prior experience working in it. However as time
went on, we realized two things: first, that we were spending much more time working on Applican than
on anything in the past; and second, we hated working in Angular. These two facts led us to devalue the
importance of prior experience, and consider changing framework. One of the major pitfalls of Angular is
that for any simple task there exist at least several, possibly many, ways of accomplishing it. This results in
a higher, more confusing learning curve, as developers need to learn multiple ways to read code.

Two frontrunners emerged: Elm and React. React is a very popular framework for frontend
technology that uses vanilla javascript, albeit much more functionally than is typical, to render frontends.
Elm by contrast is a functional language designed for web development. Given their extended learning
curve, functional languages would normally have been a non-starter, but our team had 3 members who
were somewhat acquainted with the language, and all of us had some experience with functional
programming. However, React is a much more proven framework, with much higher industry adoption.
This theoretically increases our ability to quickly onboard new developers, and makes finding
documentation easier. Ultimately, we chose React for all new development, which entails the company
dashboard. The student-facing application, which was written in Angular, would continue in Angular.
Ideally a rewrite will take place at some point for this component, but realistically this is not in the near
future.

We use AWS as our hosting provider. One of our team members worked at AWS last year, so we
had the advantage of being somewhat familiar with the system already. To improve portability, all of our
application is containerized. We have 3 containers -- one container contains Nginx, which we use to route
traffic. The Nginx container is networked to our Flask container, which serves the API, and the Express
container, which serves our Angular application. Normal deployments of Angular applications do not
require a web server, but we do because we are using Server Side Rendering (SSR). SSR renders parts of
the page on the server before sending it to the client. This has two advantages: first, pages load faster,
since fewer calls back to the server are required; and second, page crawlers (such as those used by
search engines to index pages) have a much easier time crawling these, since many do not execute
javascript on the page. ECS (EC2 Container Service) is the container orchestration service we use, which
pulls containers from ECR (Elastic Container Repository). We have a simple deploy script which builds
containers on the developer’s machine and uploads them to ECR, then transitions the new containers into

production.

Product
Our initial concept was to have the user

complete a quiz of about 45 minutes. The quiz
would be multiple-choice and cover a variety
of CS topics. These results would be stored in a

database and could be scored later, producing category-specific scores that would allow us to gauge the
candidate’s skills in an automated fashion. After this process, an Applican team member would reach out
to set up an interview with the candidate. Finally, the candidate would be entered into our matching
system, where an algorithm would find compatible companies for the applicant. These companies would
reach out to candidates they found promising, and the hiring process would continue from there.

We launched this product in the fall, and it became immediately apparent that this system would
not be effective. A 45 minute quiz was incredibly off-putting to students, many of whom were skeptical of
our platform to begin with. However, we needed to ask a good number of questions to get enough data to
assess a candidate fairly. To solve this problem, we pivoted to a system of bite-size quizzes, built for
specific categories of CS
knowledge, such as
Databases and Front End.
The system is tied
together with a dashboard
that informs the applicant
of their progress through
the quizzes, as well as
providing an interface for
filling out information and
uploading a resume.

The company dashboard
is where companies will
be able to see the skill
profiles of potential
candidates, and decide which to schedule interviews with. This dashboard will offer a variety of filtering
and sorting options, for aspects such as Major, GPA, Year, and technical proficiencies as measured by our
quizzes. Company users will also have the ability to favorite and comment on candidates. This data will be
shared between company users, allowing them to collaborate more effectively.

Technical Constraints

Programming Language

While we have not explicitly set language restraints, by choosing to work with Flask and Angular
technologies, we are siloed into using Python and Angular for these portions of the project. Further, we
have explicitly decided to use Python 3.7 for our implementations due to current support and widespread
acceptance.

Target Platform

We have decided to make our application and process web-first. This means we are designing
with web in mind. This design constraint allows us to focus on the most relevant version of the product
but could also hurt us in the long term should we need to transition into desktop application or mobile
application development.

Hosting Service

Goto Intern is using AWS as our sole hosting provider. This allows us to have a cohesive
deployment ecosystem alongside services meant to be used with one another. A potential downside to
this decision is our reliance on a single provider not allowing us to shop around for the best deals. To

remedy this in the future, our architecture could be refactored into another service or differently ported
into a multi-deployment framework such as terraform.

Libraries and Frameworks

As mentioned briefly in the languages constraint section, we have decided to use Flask and
Angular for our front and back ends respectively. This forces our reliance on the continued maintenance
of both projects. Transitioning from these frameworks to another would require a significant refactoring
process.

Business Constraints

Schedule

We have both self-imposed and academic constraints on our planned schedule. In order to
provide a valuable tool before recruiting season is over, we plan to have our product fully launched
before the spring career fair at KU. In addition, we are faced with constraints from EECS 581. These
include presentations, reports, charts, and updates. More explicit listing of constraints on both sides can
be found with our gantt chart above.

Budget

While not a seriously concerning
constraint, we are limited to the support from
the EECS department for our project. Since our
only costs currently are associated with hosting
the web server, we are not currently accruing
large expenses. In the future as usage
increases, we’ll have to be wary of increases to
our budget.

In addition, it is important to note that our
budget could increase should we gain
acceptance to the KU Catalyst program and
receive funding for our project. This would
alleviate any budget constraints we may face
with hosting while also introducing additional
costs relative to legal, marketing, and accounting expenses.

Personnel

During the course of this capstone, we are restricted to maintaining the team we started with. This
disallows both additions and removals from our current team. While this is not currently an issue, it is
important we address problems regarding personnel early and seriously to avoid problems.

Gantt Charts

TASK
NAME

TA
RT

N
D

T
EAM
MEMB
ER

CO
MP
LE
TE

SEP OCT NOV DEC JAN FEB MAR APR MAY

Project definition

Brainstorm
project ideas

9/
16

9/
18 All

10
0%

Career Fair
field research

9/
18

9/
19 All

10
0%

Design

Design UI/UX
9/
24

9/
29 J/E

10
0%

Front End basic
functionality

9/
30

10
/1
8 J/E

10
0%

Database table
design

10
/3
0

10
0/
3 A/H

10
0%

Back end basic
functionality

10
/3
0

10
/1
5 A/H/T

10
0%

EC2 and
domain routing

10
/3
0

11
/1 T

10
0%

MVP

Front end:
Home screen
functionality

10
/7

11
/1 J/E

70
%

Front end: Quiz
screen
functionality

10
/9

11
/1 J/E

80
%

Back end:
Endpoints

10
/5

10
/2
5 A/H/T

10
0%

Front end
design

10
/2
8

11
/1
5 J/E

10
%

Questions
dataset

09
/2
5

12
/1
2 All

50
%

Test run

11
/2
2

11
/2
2 All

50
%

Full product

Front end
implementatio
n

01
/2
1

01
/3
1 J/E

20
%

Back end
implementatio
n

01
/7

01
/7 J

20
%

Talk with
companies

01
/2
1

02
/8 All 0%

Test run #2
02
/8

02
/8 All 0%

Work with
companies

02
/8

5/
1 All 0%

Ethical Issues
One potential ethical issue comes from our screening quiz. If our prescreen assessment is not well

made and well tested, we may be unfairly judging some candidates’ skills over others’. Some of our
candidates may have come from a background where lower-level skills are not learned, but their
programming skills may surpass those of another candidate who can answer exam questions but can’t
write a Hello, World script.

To mitigate this risk, we will be taking a two step process to the creation of our assessment. The
first phase is the creation phase, which involves writing the questions. In the effort to make questions as
fair to users as possible, we will be taking our heaviest inspiration from existing interview questions from
large tech companies such as Microsoft, Google, and Facebook, as well as taking more inspiration from
school and personal knowledge. This phase also includes the research of interview practices. In order to
make sure our prescreen assessment is as close to a screening interview from a tech company as
possible, we will be participating in heavy research to find out how screening interviews are accomplished
in order to most effectively craft our quiz. After the creation of a large bank of potential questions, we will
move onto phase two, which involves verification. The first step of verification involves testing our
questions with a large group of students. We are looking for an even distribution of correct/incorrect
answers, depending on the student’s skill level. If a question is too hard or too easy, it will be tweaked until
it is fair. Concurrently, we will be checking with recruiters and the KU Career Center to see if our questions
accurately portray the screening process. College recruiters are our main focus here, as their opinion of
our assessment will determine if their company trusts our system or not. With this two step process in
place, we can mitigate the risk of an unbalanced assessment judging students unfairly.

A variety of ethical issues come from the sources of potential revenue this company can receive.
We have three potential sources of revenue: charging companies for access to candidates, charging
candidates for access to companies, and charging candidates with access to additional prep material.

We will start by discussing the primary potential source of revenue: our company partnerships. The

way this will work is that a company will pay us a sum of money in order to gain access to our list of
candidates and their scores. Differing amounts of money can provide companies with different lists of
candidates. For example, a small company paying a small sum of money may not receive a large list of
candidates, and the skill levels of the candidates received may not be as strong as the company has to
offer. However, a large company with a large checkbook may receive a massive list of candidates with the
highest tiered candidates first. This causes an issue with companies, as smaller companies are punished
for not having a high budget by receiving lower-quality candidates. This can be mitigated by giving a
lower paying company access to a randomized subset of candidates with an even distribution of skill
levels across the candidates. This however raises an ethical problem for the candidates, as now the
candidates are potentially not being connected with their correct fit just because of luck.

Another potential revenue source comes from the other side of the project: the candidates. We

have two potential avenues for gaining revenue from candidates, and they both have ethical issues
associated with them. The first revenue stream comes from charging candidates for access to higher
tiered companies. The way this will work is that we will only put the lower paying candidates on lists given
to less prestigious companies, while higher paying candidates will be put on lists handed out to much
more prestigious companies (for example, Microsoft and Google). This causes a problem for smaller
companies as they are receiving much fewer and potentially lower quality candidates due to their status
as a smaller company. This also causes a problem for larger companies, as they may not be able to have
access to stronger candidates that can’t afford to pay the money to get on their radar. This same problem
applies to the candidates. The second revenue stream associated with gaining revenue from candidates
involves giving higher paying candidates access to prep materials, such as practice questions,
one-on-one tutoring, and resume access. This gives an unfair advantage to people who can afford the
price of additional practice. However, this solution is more ethical than the alternative. Ultimately, all of our
pricing models are not entirely ethical. However, these problems can be balanced with our need to meet
the bottom line by balancing revenue coming from companies by using a pay-for-access model and
revenue coming from candidates by giving them access to prep materials.

Another ethical issue comes from the release of data concerning candidates (including skill

level in various subjects, graduation date, and email). For a company to utilize our system to the fullest
extent, they must have access to a candidate’s skill levels in various subjects. This will allow them to
determine who would work best for their company. This may raise a problem for some candidates, but
hopefully this will be mitigated by having a fair pre screen assessment that accurately describes a
candidate’s skill levels. Another metric companies can have access to is graduation date. The graduation
date will give companies an idea of the age level / expected skill level of a candidate. This could raise
issues of companies favoring closer graduation dates as it theoretically indicates a higher level of
knowledge, which can leave some of our younger candidates unfairly disadvantaged. The final thing
companies need to have access to is a candidate’s email in order to get in contact with them. This may
pose an issue for some candidates who do not wish to give out that kind of personal information. This can
be mitigated by the system acting as a buffer between the candidate and the company. If the company is
interested in a candidate, it can reach out to GOTOintern in order to communicate with the candidate.
Then, GOTOintern can receive consent from the candidate to give the company its contact information.
The downside to this solution is it makes our job a lot more difficult. Alternatively, all the issues of data
privacy can be mitigated with a statement of consent before the assessment, allowing GOTOintern to
distribute a candidates’ skill levels, graduation date, and email.

Intellectual Property Issues
There are a few companies that have a similar business model to Applican. The most notable one

is Triplebyte, who has a very similar way of evaluating its applicants. The notable difference here is that
Triplebyte is focused on procuring full-time offers for seasoned professionals in the industry, while
Applican’s target demographic is students looking for summer internship opportunities. Triplebyte’s model
is very similar to ours’ - software developers will take a short quiz that goes over a wide variety of different
topics to get a good idea of your strengths and weaknesses. Then, after the quiz, the developer will have a
one-on-one interview with a recruiter at Triplebyte. So far, this is very similar to our platform. The
difference comes with our matching algorithm. Triplebyte gives users who pass the one-on-one a
recruiter that will find them opportunities for full-time positions. This is expensive and time consuming, so
for Applican we use a machine learning algorithm that connects students to companies, and instead
offload the job of reaching out to students to the companies themselves, which will cut down on cost and
time. Also, Triplebyte’s market is the top 5% of all software developers, while Applican targets all students,
and is able to offer most of its users internship experiences thanks to the breadth of quiz categories we
have and the ability for companies to focus on those specific skills.

Another intellectual property issue that may arise comes from the development of questions for
the variety of quizzes. Due to our low budget, all of the questions for the quiz are generated by our own
team. However, to make sure that they are accurate and indicative of what companies use in their job
searching, we strive to create questions that are similar to questions either that we have seen before or
questions that are published from interviews with different companies. Due to this, we run into potential
issues of questions being identical between ours and company onboarding questions. While this shouldn’t
land us into any trouble, it is something to be aware of, especially if a company is hyper aware of people
stealing their interview questions.

Change Log
● New name! GOTOIntern would restrict us to only CS internships. We wanted to leave ourselves

open to other disciplines in the future, which inspired our name change to Applican.

● Our software design section now includes a discussion of React and Elm, a journey we embarked
upon since the last design document.

● The deployment infrastructure of our application has become considerably more sophisticated.
We now containerize our application, and additionally are now using server side rendering as well.

● Our intellectual property segment now contains a more in-depth discussion of other companies
working in our space, as well as other considerations.

●

