
ibm.com/redbooks

Application Development
for IBM CICS Web Services

James O’Grady
Ian Burnett

Jim Harrison
San Yong Liu

Xue Yong Zhang

Overview of Web services in CICS
updated for CICS TS 5.2

New Web service performance
measurements for CICS TS 5.2

New SOA patterns for
CICS TS 5.2

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Application Development for IBM CICS Web
Services

January 2015

International Technical Support Organization

SG24-7126-02

© Copyright International Business Machines Corporation 2015. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Third Edition (January 2015)

This edition applies to Version 5, Release 2, of IBM CICS Transaction Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

IBM Redbooks promotions . xv

Preface . xvii
Authors . xvii
Now you can become a published author, too! . xix
Comments welcome. xx
Stay connected to IBM Redbooks . xx

Summary of changes . xxi
January 2015, Third Edition . xxi

Part 1. Introduction . 1

Chapter 1. Overview of Web services . 3
1.1 Introduction . 4
1.2 Service-oriented architecture . 4

1.2.1 Characteristics . 6
1.2.2 Web services versus SOAs. 6

1.3 Web services. 7
1.3.1 Properties of a Web service . 7
1.3.2 Core standards . 8
1.3.3 Web Services Interoperability group . 11
1.3.4 Additional standards . 11

1.4 IBM WebSphere Service Registry and Repository 13
1.5 SOAP . 13

1.5.1 The envelope . 13
1.5.2 Communication styles . 18
1.5.3 Encodings . 18
1.5.4 Messaging modes . 19

1.6 WSDL . 20
1.6.1 WSDL Document . 20
1.6.2 WSDL document anatomy . 21
1.6.3 WSDL definition . 25
1.6.4 WSDL bindings . 31

Chapter 2. CICS TS implementation of Web services 35
© Copyright IBM Corp. 2015. All rights reserved. iii

2.1 Support for Web services in CICS TS . 36
2.1.1 Core aspects of Web services in CICS . 36

2.2 Tools for application deployment. 38
2.2.1 CICS Web Services Assistant . 38
2.2.2 IBM Rational Developer for System z v9.1 . 39
2.2.3 Other Options . 39

2.3 CICS as a service provider . 40
2.3.1 Preparing to run a CICS application as a service provider 41
2.3.2 Processing the inbound service request . 43

2.4 CICS as a service requester . 44
2.4.1 Preparing to run a CICS application as a service requester 45
2.4.2 Processing the outbound service request . 46

2.5 The CICS resource definitions . 47
2.5.1 URIMAP . 48
2.5.2 PIPELINE . 49
2.5.3 WEBSERVICE . 52
2.5.4 The Web service binding file (WSBind). 54
2.5.5 SOAPFAULT commands . 56
2.5.6 Mapping levels . 57
2.5.7 Enhancements with CICS TS V3.2 . 59
2.5.8 Additional enhancements with CICS TS 4.1 61
2.5.9 Use of WS-Addressing in CICS TS V4.1 applications 63
2.5.10 AXIS2 Provider PIPELINEs in CICS TS V4.2 63
2.5.11 CICS Transaction Server V5.1 makes CONTAINERs easier 63
2.5.12 Further enhancements in CICS TS V5.2. 63
2.5.13 Comparing releases of CICS Transaction Server 64

Chapter 3. Development approaches . 67
3.1 Introduction . 68
3.2 Bottom-up approach . 69
3.3 Top-down approach . 71
3.4 Meet-in-the-middle approach . 72
3.5 The advantages of using Rational Developer for System z 74
3.6 Web services versus CICS TCP/IP connectivity . 76
3.7 Conclusions. 77

Chapter 4. CICS catalog manager example application 79
4.1 Samples for use with CICS Web Services . 80
4.2 Introduction to the catalog manager application . 80
4.3 Installation and setup of the base application . 81

4.3.1 Creating the VSAM data sets . 82
4.3.2 Defining the base application to CICS . 82
4.3.3 Configuring the example application . 83
iv Application Development for IBM CICS Web Services

4.3.4 Configuring code page support . 86
4.4 Web service support for the example application 87

4.4.1 The Web client front end . 87
4.4.2 The CICS Web service client front end . 88
4.4.3 Order dispatch Web services endpoints . 89
4.4.4 Alternative Web service provider configuration. 89

4.5 Web services setup . 90
4.5.1 Creating the zFS directories . 91
4.5.2 Creating the PIPELINE definition . 91
4.5.3 Creating a TCPIPSERVICE . 93
4.5.4 Dynamically installing WEBSERVICE and URIMAP resources 94
4.5.5 Creating the WEBSERVICE resources with RDO 97
4.5.6 Creating the URIMAP resources with RDO 98
4.5.7 Completing the installation . 99

4.6 Installing the client application. 99
4.6.1 FTP the client application . 100
4.6.2 Install the client . 100
4.6.3 Start the client . 105
4.6.4 Testing the client . 105

Chapter 5. Rational Developer for System z . 109
5.1 What is Rational Developer for System z? . 110
5.2 RDz and CICS application development . 110
5.3 Components of RDz . 110

5.3.1 Workspace . 111
5.3.2 Workbench . 111
5.3.3 Perspective . 112
5.3.4 View . 113
5.3.5 Editor. 115

5.4 Web services in Rational Developer for System z 116
5.5 Writing your first Java program with RDz . 117
5.6 Overview of Debugging with RDz . 120

5.6.1 Supported languages and environments . 120
5.6.2 Local and remote debug . 121
5.6.3 Basic debugging features and tools . 121

5.7 Summary . 123

Chapter 6. Exposing the Catalog Sample CICS application as
a Web service . 125

6.1 Introduction . 126
6.2 Install the provider mode resources . 128
6.3 Create the provider mode deployment artifacts 129

6.3.1 Using the CICS Web Services Assistant. 130
 Contents v

6.3.2 Use Rational Developer for System z . 136
6.4 Testing the Web service . 146

6.4.1 The Web Services Explorer . 147
6.4.2 Generate a client. 151

6.5 Publishing WSDL to WebSphere Service Registry and Repository 155
6.5.1 Use DFHLS2WS for WebSphere Service Registry and Repository in

CICS TS V5.2 . 156
6.5.2 Use DFHWS2LS for WSRR in CICS TS V5.2. 157
6.5.3 New parameters to support SSL encryption in CICS TS V4.1

and above . 159
6.6 Writing applications that process the XML directly 160

6.6.1 Creating a custom application handler . 160
6.6.2 Creating an XML-ONLY WEBSERVICE . 161

Chapter 7. Create a CICS Web service requester application using the
catalog sample . 163

7.1 Introduction . 164
7.2 Create a Web service requester using the CICS

Web Services Assistant . 167
7.2.1 Generate the required artifacts . 167
7.2.2 Set up the CICS infrastructure . 170
7.2.3 Test the requester application. 173

7.3 Creating and testing a Web service hosted in RDz. 175
7.3.1 Create a Web service skeleton with Rational Application Developer for

WebSphere Software . 176
7.3.2 Implement the WebSphere Application Server Web service 180
7.3.3 Test the Web service using Web Services Explorer 182
7.3.4 Test the Web service using the CICS sample application 184

7.4 Client mode URIMAPs . 186
7.4.1 Ease of maintenance and portability . 186
7.4.2 Control over outbound SSL configuration . 187
7.4.3 Outbound connection pooling . 187

Chapter 8. Componentization . 197
8.1 CICS applications as components . 198
8.2 Locally optimized Web services . 200
8.3 Using WSDL to describe COBOL components . 201
8.4 Further options with CICS TS 4.1 and later. 202

8.4.1 Linking to a target PROGRAM from a requester mode PIPELINE . 203
8.4.2 Invoking a local SERVICE from a requester mode PIPELINE 204

8.5 Packaging the Web Service resources in CICS Bundles 205
8.5.1 Create a CICS Bundle project . 206
8.5.2 Defining Web Services resources in CICS Bundles 207
vi Application Development for IBM CICS Web Services

Chapter 9. Service Component Architecture and CICS Cloud in CICS TS
V5.2. 213

9.1 Service Component Architecture. 214
9.1.1 Introduction to SCA . 214

9.2 CICS Transaction Server Implementation of SCA 218
9.2.1 BUNDLE resources. 218
9.2.2 Creating services from existing CICS applications 218
9.2.3 Deploying SCA services . 219
9.2.4 RDz SCA tooling . 220
9.2.5 Creating and deploying an SCA service from an existing CICS

application. 220
9.3 Web services in CICS Cloud . 222

Chapter 10. Hints and tips . 225
10.1 Custom handlers programs for pipelines. 226

10.1.1 A simple example handler program . 226
10.1.2 Handling state information . 230
10.1.3 Propagating user identity tokens. 231

10.2 The SOAP fault API. 232
10.2.1 How to create a SOAP Fault in an application 232
10.2.2 Parsing SOAP Fault messages in CICS TS V5.2 233

10.3 Handling variably recurring XML elements . 239
10.3.1 In-lined variably recurring data . 239
10.3.2 Container-based variably recurring data: inbound 241
10.3.3 Container-based variably recurring data: outbound 246

10.4 Handling undefined XML (xsd:any) . 248
10.5 Handling enumerated XML constructs . 250
10.6 Modifying generated WSDL . 251

10.6.1 Background to MTOM/XOP . 252
10.6.2 Support for xsd:base64Binary and MTOM/XOP 253
10.6.3 Mapping a single field as binary data with DFHLS2WS 253
10.6.4 Handling variable length values and white space 254

10.7 WSDL types not supported by DFHWS2LS . 259
10.8 Problem determination . 261

10.8.1 Problems using DFHWS2LS and DFHLS2WS 262
10.8.2 Using the execution diagnostic facility to debug Web services. . . 263
10.8.3 Debugging CICS SFR applications . 263
10.8.4 Runtime SOAP validation . 265

10.9 XML parsing in CICS application. 266
10.9.1 XML Toolkit for z/OS . 267
10.9.2 COBOL high-speed XML parser . 268
10.9.3 CICS API: EXEC CICS TRANSFORM . 270
 Contents vii

Chapter 11. COBOL samples . 271
11.1 Introduction . 272
11.2 Example 1: The <xsd:any> tag . 272

11.2.1 The WSDL. 273
11.2.2 Web Services Assistant: z/OS . 278
11.2.3 The COBOL program . 279
11.2.4 CICS resource definitions . 291

11.3 Example 2: The <choice> tag . 292
11.3.1 The WSDL. 292
11.3.2 Generation of COBOL and CICS artifacts. 293
11.3.3 The COBOL program . 293
11.3.4 CICS Resource Definitions . 296

11.4 Example 3: minoccurs and maxoccurs . 297
11.4.1 Generation of COBOL and CICS artifacts. 298
11.4.2 The COBOL program . 298
11.4.3 CICS resource definitions . 300
11.4.4 Results of calling the service. 300

11.5 Example 4: OCCURS DEPENDING ON Web Service Provider 301
11.5.1 COBOL Program CATOCCUR . 301
11.5.2 Generating the Web Service resources . 303
11.5.3 Defining resources to CICS. 304
11.5.4 Testing the service and results . 305

Part 2. Performance . 315

Chapter 12. Performance introduction . 317
12.1 Measuring Web service performance . 318

12.1.1 Key performance indicators . 318
12.1.2 Scenarios . 319
12.1.3 Transactions involved in Web service requests 320
12.1.4 Workloads . 322
12.1.5 Running the scenario tests . 323

12.2 Collecting CICS Monitoring Facility data . 325
12.3 Interpreting CMF performance data . 326

Chapter 13. Environment overview . 329
13.1 Architectural overview . 330
13.2 Hardware and operating system configuration 331
13.3 Web service provider configuration . 332

13.3.1 Generate the provider WSBind and WSDL artifacts 333
13.3.2 Create a provider PIPELINE . 337
13.3.3 Create a TCPIPSERVICE resource definition. 338
13.3.4 Install the Web service CICS resource definitions 340
13.3.5 User provider application . 343
viii Application Development for IBM CICS Web Services

13.3.6 User provider application CICS resource definitions. 344
13.4 Web service requester configuration. 346

13.4.1 Generate the requester WSBind artifacts 347
13.4.2 Create a requester PIPELINE . 350
13.4.3 Create requester URIMAP resource definitions 351
13.4.4 User requester application . 353

13.5 TPNS definitions . 354
13.5.1 Network . 355
13.5.2 Message deck . 356

Chapter 14. Scenarios. 359
14.1 Scenarios overview . 360
14.2 Baseline. 361

14.2.1 Baseline scenario description . 361
14.2.2 Provider CICS Monitoring Facility data analysis 362
14.2.3 Provider RMF data analysis . 365
14.2.4 Provider summary . 366
14.2.5 Requester CMF data analysis. 366
14.2.6 Requester RMF data analysis. 367
14.2.7 Requester summary . 368

14.3 Scalability as a function of connected clients . 369
14.3.1 Client scalability scenario description . 369
14.3.2 Client scalability scenario provider results 369
14.3.3 Client scalability scenario requester results 370
14.3.4 Client scalability scenario conclusions . 372

14.4 Scalability as a function of inbound request rate. 372
14.4.1 Request rate scalability scenario description 373
14.4.2 Request rate scalability scenario provider results. 373
14.4.3 Request rate scalability scenario requester results. 374
14.4.4 Request rate scalability scenario conclusions. 376

14.5 Varying payload size . 376
14.5.1 Varying payload size scenario description 377
14.5.2 Varying payload size scenario provider results. 377
14.5.3 Varying payload size scenario requester results. 379
14.5.4 Varying payload size scenario conclusions. 382

14.6 Varying payload size using a channel . 382
14.6.1 Varying payload size with a channel scenario description 383
14.6.2 Varying payload size with a channel scenario provider results . . . 383
14.6.3 Varying payload size with a channel requester results 384
14.6.4 Varying payload size with a channel scenario conclusion 386

14.7 Varying payload complexity. 386
14.7.1 Varying payload complexity scenario description 386
14.7.2 Varying payload complexity scenario provider results 387
 Contents ix

14.7.3 Varying payload complexity scenario requester results 388
14.7.4 Varying payload complexity scenario conclusions 389

14.8 HTTP persistent connections . 389
14.8.1 HTTP persistent connections scenario description 390
14.8.2 HTTP persistent connections scenario provider results 390
14.8.3 HTTP persistent connection scenario requester results 391
14.8.4 HTTP persistent connections TCP/IP results 393
14.8.5 HTTP persistent connections scenario conclusions 394

14.9 Secure Web services using SSL . 396
14.9.1 SSL scenario description . 397
14.9.2 SSL scenario provider results . 397
14.9.3 SSL scenario requester results . 398
14.9.4 SSL scenario conclusions . 400

14.10 SSL with persistent connections . 404
14.10.1 SSL with persistent connections description. 404
14.10.2 SSL with persistent connections provider results 405
14.10.3 SSL with persistent connections requester results 406
14.10.4 SSL with persistent connections conclusions 407

14.11 Overall conclusions . 410

Part 3. Appendixes . 413

Appendix A. Sample Web services . 415
Preparation of your RDz environment . 416
Loading an .ear file into a new or existing project . 417
Description of examples A1–A3 . 419

The XML any pass-through Web service example 419
The XML choice Web service example. 423
The XML occurs Web service example. 427

Appendix B. Sample programs . 433
Program to call <xsd:any> example service. 434
WSDL - <xsd:any> . 440
Request Language Structure - inlinI01. 444
Response Language Structure - inlinO01 . 447
Program to call <xsd:choice> example service . 450
WSDL <xsd:choice>. 456
Request Language Structure - choicI01. 460
Response Language Structure - choicO01 . 462
Program to call minOccurs/maxOccurs example service. 464
WSDL - minOccurs/maxOccurs . 470
Request Language Structure - redboI01 . 474
Response Language Structure - redboO01 . 476
Program to implement OCCURS DEPENDING service. 477
x Application Development for IBM CICS Web Services

Request Language Structure “OCCURIN” . 481
Response Language Structure “OCCUROUT” . 481
WSDL for OCCURS DEPENDING ON . 481

Program to implement PUT CONTAINER APPEND service 486
Request Language Structure VARIN01 . 491
Response Language Structure VAROUT01 . 492
WSDL for PUT CONTAINER APPEND service . 495

Program to implement GET CONTAINER FROMBYTE requester service . . 500
Request Language Structure REQIN01 . 503
Response Language Structure RSPOUT01 . 503
WSDL for GET CONTAINER FROMBYTE requester service 506

AMODE(64) assembler program to invoke a Web service. 506

Appendix C. Additional material . 515
Locating the Web material . 515

How to use the Web material . 515

Related publications . 517
IBM Redbooks . 517
Other publications . 517
Online resources . 517
How to get Redbooks . 518
Help from IBM . 518

Index . 519
 Contents xi

xii Application Development for IBM CICS Web Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your
local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the materials
for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any
obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing
application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2015. All rights reserved. xiii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
CICS Explorer®
CICSPlex®
DataPower®
DB2®
IBM®
IMS™

Language Environment®
MVS™
Rational®
Redbooks®
Redbooks (logo) ®
Resource Measurement

Facility™

RMF™
System z®
Tivoli®
VTAM®
WebSphere®
z/OS®
zEnterprise®

The following terms are trademarks of other companies:

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
xiv Application Development for IBM CICS Web Services

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Promote your business in an
IBM Redbooks publication

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Find and read thousands
of IBM Redbooks publications

Search, bookmark, save and organize favorites

Get up-to-the-minute Redbooks news and announcements

Link to the latest Redbooks blogs and videos

Download
NowiO

S

Android

Get the latest version of the Redbooks Mobile App

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

https://itunes.apple.com/bw/app/ibm-redbooks/id778694354
https://play.google.com/store/apps/details?id=com.ibm.homeScreen
http://www.redbooks.ibm.com/redbooks.nsf/pages/partnerprograms?Open
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication focuses on developing Web service
applications in IBM CICS®. It takes the broad view of developing and
modernizing CICS applications for XML, Web services, SOAP, and SOA support,
and lays out a reference architecture for developing these kinds of applications.

We start by discussing Web services in general, then review how CICS
implements Web services. We offer an overview of different development
approaches: bottom-up, top-down, and meet-in-the-middle.

We then look at how you would go about exposing a CICS application as a Web
service provider, again looking at the different approaches. The book then steps
through the process of creating a CICS Web service requester.

We follow this by looking at CICS application aggregation (including 3270
applications) with IBM Rational® Application Developer for IBM System z® and
how to implement CICS Web Services using CICS Cloud technology. The first
part is concluded with hints and tips to help you when implementing this
technology.

Part two of this publication provides performance figures for a basic Web service.
We investigate some common variables and examine their effects on the
performance of CICS as both a requester and provider of Web services.

Authors

This book was produced by a team of specialists from around the world working
at the IBM Hursley Lab, Hursley Park UK.
© Copyright IBM Corp. 2015. All rights reserved. xvii

James O’Grady is a Software Tester for CICS Transaction
Server based at IBM Hursley since 2006. Before working for
IBM, he worked as a Systems Programmer on a client site. His
expertise includes CICS Web Services and WS-Security. He
was part of the team that produced Securing Access to CICS
Within an SOA, SG24-5756 and Introduction to CICS Dynamic
Scripting, SG24-7924. He holds a Bachelor's degree in History
from Warwick University.

Ian Burnett is the CICS Transaction Server performance team
lead working for IBM United Kingdom. He has worked in IBM
since 2001 as part of the development teams for several
products including IBM WebSphere® Application Server,
WebSphere MQ, and IBM CICSPlex® System Manager. Since
2009 Ian has led the performance team in Hursley, with
experience in a wide range of CICS performance topics. He
holds a Bachelor’s degree in Computer Science from the
University of Warwick in the UK.

Jim Harrison is a Software Support Specialist working for IBM
United Kingdom, based in Warwick. He has worked in IBM
since 1987, providing defect support for CICS products. Before
joining IBM, he worked as a CICS application and systems
programmer for customers in the retail sector. He holds a
degree in Computer Science from De Montfort University,
Leicester. He teaches education classes on CICS Problem
Solving and Problem Determination Principles.

San Yong Liu is a Senior IT Specialist with Technical Sales
Support for the IBM software products in China. His expertise
includes CICS Transaction Server, WebSphere Application
Server, WebSphere MQ, and WebSphere software portfolio for
SOA. He has several years of customer experience for
consulting and supporting large banks in China with IBM
mainframe solutions. He holds a Bachelor’s degree in Software
Engineering from XiDian University.
xviii Application Development for IBM CICS Web Services

Thanks to the authors of the previous editions of this book.

� Authors of the second edition, Application Development for IBM CICS Web
Services, published in January 2010, were:

Chris Rayns, George Burgess, Tony Fitzgerald, Ankur Goyal, Peter Klein, Guo
Qiang Li, SanYong Liu, Yan Sun

� Authors of the first edition, Application Development for IBM CICS Web
Services, published in May 2006, were:

Isabel Arnold, Chris Backhouse, Leigh Compton, David Evans, Jim
Hollingsworth, William Yates

Thanks to the following people for their past contributions to this project:

Richard Conway, Rufus P. Credle Jr.
International Technical Support Organization, Poughkeepsie Center

Mark Pocock, CICS 390 Change Team
IBM Hursley

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Xue Yong Zhang is a Software Engineer with the China CICS
Team, which is the first team in CDL working on CICS
Transaction Server. He focuses on CICS Web Services in CICS
Cloud testing and CICS Foundation development. His
experiences on CICS include CPSM and Web services. He
graduated from Tianjin University with a Master’s degree in
2006 and joined the China CICS Team in 2010.
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

https://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xx Application Development for IBM CICS Web Services

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://twitter.com/ibmredbooks
http://www.redbooks.ibm.com/rss.html
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://www.linkedin.com/groups?home=&gid=2130806

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition might also include minor corrections and
editorial changes that are not identified.

January 2015, Third Edition

This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� Chapter 5 Rational Developer for System z (RDz)
� Chapter 9 Componentization
� Chapter 10 SCA
� Chapter 11 COBOL Samples
� Part 2 Performance
� Appendix A Sample Web services
� Appendix B Sample COBOL programs

Changed information
� All chapters have been updated to reflect the changes in CICS TS 5.2
© Copyright IBM Corp. 2015. All rights reserved. xxi

xxii Application Development for IBM CICS Web Services

Part 1 Introduction

In this part, we introduce key concepts of Web services, then discuss how a Web
service is implemented in IBM CICS Transaction Server (CICS TS). Several
development approaches are described and evaluated, with a full walkthrough of
enabling a sample application.

The part concludes with a look at the Service Component Architecture and Cloud
in a CICS TS environment and hints and tips for deploying your own Web
services.

Part 1
© Copyright IBM Corp. 2015. All rights reserved. 1

2 Application Development for IBM CICS Web Services

Chapter 1. Overview of Web services

In this chapter, we focus on some of the architectural concepts that have to be
considered in a Web services project. We define and discuss service-oriented
architecture (SOA) and the relationship between SOAs and Web services.

We then take a closer look at Web services, a technology that enables you to
invoke applications using Internet protocols and standards. The technology is
called Web services because it integrates services (applications) using Web
technologies (the Internet and its standards).

1

© Copyright IBM Corp. 2015. All rights reserved. 3

1.1 Introduction
There is a strong trend for companies to integrate existing systems to implement
IT support for business processes that cover the entire business cycle. Today,
interactions already exist using various schemes that range from rigid
point-to-point electronic data interchange (EDI) interactions to open Web
auctions. Many companies have already made some of their IT systems available
to all of their divisions and departments, or even their customers or partners on
the Web. However, techniques for collaboration vary from one case to another
and are thus proprietary solutions. Systems often collaborate without any vision
or architecture.

Thus, there is an increasing demand for technologies that support the connecting
or sharing of resources and data in a flexible and standardized manner. Because
technologies and implementations vary across companies and even within
divisions or departments, unified business processes cannot be smoothly
supported by technology. Integration has been developed only between units that
are already aware of each other and that use the same static applications.

Furthermore, there is a requirement to further structure large applications into
building blocks to use well-defined components within different business
processes. A shift towards a service-oriented architecture (SOA) not only can
standardize interaction, but also allows for more flexibility in the process. The
complete value chain within a company is divided into small modular functional
units, or services. A SOA thus has to focus on how services are described and
organized to support their dynamic, automated discovery and use.

Companies and their subunits need to be able to provide services easily. Other
business units can use these services to implement their business processes.
This integration can ideally be performed during the run time of the system, not
just at the design time.

1.2 Service-oriented architecture

This section is a short introduction to the key concepts of a service-oriented
architecture (SOA). The architecture makes no statements about the
infrastructure or protocols it uses. Therefore, you can implement a SOA using
technologies other than Web technologies.
4 Application Development for IBM CICS Web Services

As shown in Figure 1-1, an SOA contains three basic components:

� Service provider

The service provider creates a Web service and possibly publishes to the
service broker the information necessary to access and interface with the
Web service.

� Service broker

The service broker (also known as a service registry) makes the Web service
access and interface information available to any potential service requester.

� Service requester

The service requester binds to the service provider to invoke one of its Web
services, having optionally placed entries in the broker registry using various
find operations.

Figure 1-1 Web services components and operations

Each component can also act as one of the two other components. For example,
if a service provider requires information that it can only acquire from some other
service, it acts as a service requester while still serving the original request.

� The service provider creates a Web service and possibly publishes its
interface and access information to the service broker.

� The service broker (also known as service registry) is responsible for making
the Web service interface and implementation access information available to
any potential service requester.

� The service requester binds to the service provider to invoke one of its Web
services, having optionally placed entries in the broker registry using various
find operations.

Service
Broker

Service
Requester

Service
Provider

Publish Discover

Request / Response
 Chapter 1. Overview of Web services 5

1.2.1 Characteristics

The SOA uses a loose coupling between the participants. Such a loose coupling
provides greater flexibility as follows:

� Old and new functional blocks are encapsulated into components that work
as services.

� Functional components and their interfaces are separated. Therefore, new
interfaces can be plugged in more easily.

� Within complex applications, the control of business processes can be
isolated. A business rule engine can be incorporated to control the workflow
of a defined business process. Depending on the state of the workflow, the
engine calls the respective services.

1.2.2 Web services versus SOAs

SOAs have been used under various guises for many years. It can be, and has
been, implemented using a number of different distributed computing
technologies, such as CORBA or messaging middleware. The effectiveness of
SOAs in the past has always been limited by the ability of the underlying
technology to interoperate across the enterprise.

Web services technology is an ideal technology choice for implementing a SOA:

� Web services are standards-based. Interoperability is a key business
advantage within the enterprise and is crucial in business-to-business (B2B)
scenarios.

� Web services are widely supported across the industry. For the first time, all
major vendors are recognizing and providing support for Web services.

� Web services are platform and language neutral. There is no bias for or
against a particular hardware or software platform. Web services can be
implemented in any programming language or toolset. This is important
because continued industry support exists for the development of standards
and interoperability between vendor implementations.

� This technology provides a migration path to enable existing business
functions gradually, as Web services are required.

� This technology supports synchronous and asynchronous, RPC-based, and
complex message-oriented exchange patterns.

Conversely, there are many Web services implementations that are not a SOA.
For example, the use of Web services to connect two heterogeneous systems
directly together is not a SOA. These uses of Web services solve real problems
6 Application Development for IBM CICS Web Services

and provide significant value on their own. They can form the starting point of a
SOA.

In general, a SOA has to be implemented at an enterprise or organizational level
to harvest many of the benefits.

For more information about the relationship between Web services and SOAs, or
the application of IBM Patterns for e-business to a Web services project, refer to
Patterns: Service-Oriented Architecture and Web Services, SG24-6303.

1.3 Web services

Web services perform encapsulated business functions, ranging from simple
request-reply to full business process interactions. These services can be new
applications or just wrapped around existing business functions to make them
network-enabled. Services can rely on other services to achieve their goals.

It is important to note from this definition that a Web service is not constrained to
using SOAP over HTTP/S as the transport mechanism. Web services are equally
at home in the messaging world.

1.3.1 Properties of a Web service

All Web services share the following properties:

� Self-contained

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, an HTTP server and a SOAP server are required.

� Self-describing

Using Web Services Description Language (WSDL), all the information
required to implement a Web service as a provider, or to invoke a Web
service as a requester, is provided.

� Published, located, and invoked across the Web

This technology uses established lightweight Internet standards such as
HTTP. It makes use of the existing infrastructure.

� Modular

Simple Web services can be aggregated to more complex ones, either using
workflow techniques or by calling lower-layer Web services from a Web
service implementation. Web services can be chained together to perform
 Chapter 1. Overview of Web services 7

higher-level business functions. This shortens development time and enables
best-of-breed implementations.

� Language-independent and interoperable

The client and server can be implemented in different environments.
Theoretically, any language can be used to implement Web service clients
and servers.

� Inherently open and standard-based

XML and HTTP are the major technical foundations for Web services. A large
part of the Web service technology has been built using open source projects.
Vendor independence and interoperability are realistic goals.

� Loosely coupled

Traditionally, application design has depended on tight interconnections at
both ends. Web services require a simpler level of coordination that allows a
more flexible reconfiguration for an integration of the services in question.

� Programmatic access

The approach provides no graphical user interface. It operates at the code
level. Service consumers have to know the interfaces to Web services, but do
not have to know the implementation details of services.

� Wraps existing applications

Already existing stand-alone applications can easily be integrated into the
SOA by implementing a Web service as an interface.

1.3.2 Core standards

Web services are built upon four core standards, as explained in the following
sections.

Extensible Markup Language (XML)
XML is the foundation of Web services. However, because much information has
already been written about XML, we do not describe it in this document. You can
find information about XML at the following Web page:

http://www.w3.org/XML
8 Application Development for IBM CICS Web Services

http://www.w3.org/XML/

SOAP
Originally proposed by Microsoft, SOAP was designed to be a simple and
extensible specification for the exchange of structured, XML-based information in
a decentralized, distributed environment. As such, it represents the main means
of communication between the three actors in an SOA:

� Service provider
� Service requester
� Service broker

A group of companies, including IBM, submitted SOAP to the W3C for
consideration by its XML Protocol Working Group. There are currently two
versions of SOAP: Version 1.1 and Version 1.2.

The SOAP 1.1 specification contains three parts:

� An envelope that defines a framework for describing message content and
processing instructions. Each SOAP message consists of an envelope that
contains an arbitrary number of headers and one body that carries the
payload. SOAP messages might contain faults. Faults report failures or
unexpected conditions.

� A set of encoding rules for expressing instances of application-defined data
types.

� A convention for representing remote procedure calls and responses.

A SOAP message is, in principle, independent of the transport protocol that is
used, and can therefore potentially be used with various protocols, such as
HTTP, JMS, SMTP, or FTP. Right now, the most common way of exchanging
SOAP messages is through HTTP.

The way SOAP applications communicate when exchanging messages is often
referred to as the message exchange pattern (MEP). The communication can be
either one-way messaging, where the SOAP message only goes in one direction,
or two-way messaging, where the receiver is expected to send back a reply.

Due to the characteristics of SOAP, it does not matter what technology is used to
implement the client, as long as the client can issue XML messages. Similarly,
the service can be implemented in any language, as long as it can process XML
messages.

Note: The authors of the SOAP 1.1 specification declared that the acronym
SOAP stands for Simple Object Access Protocol. The authors of the SOAP
1.2 specification decided not to give any meaning to the acronym SOAP.
 Chapter 1. Overview of Web services 9

Web Services Description Language (WSDL)
This standard describes Web services as abstract service end points that
operate on messages. Both the operations and the messages are defined in an
abstract manner, while the actual protocol used to carry the message and the
endpoint’s address are concrete.

WSDL is not bound to any particular protocol or network service. It can be
extended to support many different message formats and network protocols.
However, because Web services are mainly implemented using SOAP and
HTTP, the corresponding bindings are part of this standard.

The WSDL 1.1 specification only defines bindings that describe how to use
WSDL in conjunction with SOAP 1.1, HTTP GET and POST, and MIME. The
specification for WSDL 1.1 can be found at the following Web page:

http://www.w3.org/TR/wsdl

WSDL 2.0 provides a model and an XML format for describing Web services. It
enables you to separate the description of the abstract functionality offered by a
service from the concrete details of a service description. It also describes
extensions for MEPs, SOAP modules, and a language for describing such
concrete details for SOAP1.2 and HTTP.

There are eight MEPs defined. CICS TS V5.2 supports four of them:

� In-Only

A request message is sent to the Web service provider, but the provider is not
allowed to send any type of response to the Web service requester.

� In-Out

A request message is sent to the Web service provider, and a response
message is returned. The response message can be a normal SOAP
message or a SOAP fault.

� In-Optional-Out

A request message is sent to the Web service provider, and a response
message is optionally returned to the requester. The response message can
be a normal SOAP message or a SOAP fault.

� Robust-In-Only

A request message is sent to the Web service provider, and no response
message is returned to the requester unless an error occurs. In this case, a
SOAP fault message is sent to the requester.

The four MEPs that CICS TS V5.2 does not support are:

� Out-Only
10 Application Development for IBM CICS Web Services

http://www.w3.org/TR/wsdl

� Robust-Out-Only
� Out-In
� Out-Optional-In

The specification for WSDL 2.0 can be found at the following web page:

http://www.w3.org/TR/wsdl20

Universal Description, Discovery, and Integration standard
The Universal Description, Discovery, and Integration (UDDI) standard defines a
means to publish and to discover Web services. As of this writing, UDDI Version
3.0 has been finalized, but UDDI Version 2.0 is still more commonly used. For
more information, refer to the following web pages:

http://www.uddi.org
http://www.oasis-open.org/specs/index.php#wssv1.0

1.3.3 Web Services Interoperability group

Web services can be used to connect computer systems together across
organizational boundaries. Therefore, a set of open non-proprietary standards
that all Web services adhere to maximizes the ability to connect disparate
systems together.

The Web Service Interoperability (WS-I) group is an organization that promotes
open interoperability between Web services regardless of platform, operating
systems, and programming languages. To promote this cause, the WS-I group
has released a basic profile that outlines a set of specifications to which WSDL
documents and Web services traffic (SOAP over HTTP transport) must adhere to
be WS-I compliant. The full list of specifications can be found at the WS-I
website:

http://www.ws-i.org

IBM is a member of the WS-I community, and CICS TS support for Web services
is fully compliant with the WS-I basic profile 1.0.

1.3.4 Additional standards

There are other Web services specifications that are now supported by CICS TS.
For a list of the limitations of CICS TS support, refer to CICS TS Web Services
Guide, SC34-7301.
 Chapter 1. Overview of Web services 11

http://www.w3.org/TR/wsdl20
http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.ws-i.org/

Web Services Atomic Transaction
This specification, commonly known as WS-Atomic Transaction, defines the
atomic transaction coordination type for transactions of a short duration.
Together with the Web Services Coordination specification, it defines protocols
for short-term transactions that enable transaction processing systems to
interoperate in a Web services environment. Transactions that use WS-Atomic
Transaction have the properties of atomicity, consistency, isolation, and durability
(ACID).

Web Services Security: SOAP Message Security
This specification is a set of enhancements to SOAP messaging that provides
message integrity and confidentiality. The specification provides three main
mechanisms that can be used independently or together:

� The ability to send security tokens as part of a message, and for associating
the security tokens with message content

� The ability to protect the contents of a message from unauthorized and
undetected modification (message integrity)

� The ability to protect the contents of a message from unauthorized disclosure
(message confidentiality)

Web Services Trust Language
This specification, commonly known as WS-Trust, defines extensions that build
on Web Services Security to provide a framework for requesting and issuing
security tokens, and broker trust relationships.

SOAP Message Transmission Optimization Mechanism
(MTOM)

This specification is one of a related pair of specifications that define how to
optimize the transmission and format of a SOAP message. MTOM defines:

� How to optimize the transmission of base64 binary data in SOAP messages.

� How to implement optimized MIME multipart serialization of SOAP messages
in a binding, independent way.

� The implementation of MTOM relies on the related XML-binary Optimized
Packaging (XOP) specification. As these two specifications are so closely
linked, they are normally referred to as MTOM/XOP.

Web Services Addressing
This specification, usually referred to as WS-Addressing, provides a standard
way to address Web services and to provide addressing information in SOAP
12 Application Development for IBM CICS Web Services

messages. The WS-Addressing specification introduces two primary concepts:
endpoint references, and message addressing properties.

� Endpoint reference

This is a way to encapsulate information about specific Web service
endpoints. Endpoint references can be propagated to other parties and then
used to target the Web service endpoint that they represent.

� Message addressing properties (MAPs)

MAPs are a set of defined WS-Addressing properties that can be represented
as elements in SOAP headers and provide a standard way of conveying
information, such as the endpoint to which message replies must be directed,
or information about the relationship that the message has with other
messages.

1.4 IBM WebSphere Service Registry and Repository

IBM provides an enterprise strength solution that enables governance of SOA
artifacts, most of which are related to Web services. The IBM WebSphere
Service Registry and Repository product is such a solution.

The product provides an integrated service metadata repository to govern
services and manage the service lifecycle, promoting visibility and consistency,
and reducing redundancy in your organization. You can seamlessly publish and
find capabilities across all phases of SOA, enriching connectivity with dynamic
and efficient interactions between services at run time.

1.5 SOAP

In this section, we focus mainly on SOAP 1.1.

1.5.1 The envelope

A SOAP message is an envelope containing zero or more headers and one
body:

� The envelope is the root element of the XML document, providing a container
for control information, the addressee of a message, and the message itself.

� Headers contain control information, such as quality of service attributes.

� The body contains the message identification and its parameters.

� Both the headers and the body are child elements of the envelope element.
 Chapter 1. Overview of Web services 13

Figure 1-2 shows a simple SOAP request message.

� The header tells who must deal with the message and how to deal with it.
When the actor is next or when the actor is omitted, the receiver of the
message must do what the body says. Furthermore, the receiver must
understand and process the application-defined <TranID> element.

� The body tells what has to be done: Dispatch an order for quantityRequired 1
of itemRefNumber 0010 to customerID CB1 in chargeDepartment ITSO.

Figure 1-2 Example of a simple SOAP message

Namespaces
Namespaces play an important role in SOAP messages. A namespace is simply
a way of adding a qualifier to an element name to ensure that it is unique.

For example, we might have a message that contains an element <customer>.
Customers are fairly common, so it is likely that many Web services have
customer elements. To ensure that we know what customer we are talking about,
we declare a namespace for it, for example, as follows:

xmlns:itso=”http://itso.ibm.com/CICS/catalogApplication

This identifies the prefix itso with the declared namespace. Then, whenever we
reference the element <customer> we prefix it with the namespace as follows:
<itso:customer>. This identifies it uniquely as a customer type for our application.
Namespaces can be defined as any unique string. They are often defined as
URLs because URLs are generally globally unique, and they have to be in URL
format. These URLs do not have to physically exist though.

The WS-I Basic Profile 1.0 requires that all application-specific elements in the
body must be namespace-qualified to avoid collisions between names.

<Envelope>
<Header>

<actor>http:// ...org/soap/actor/next</actor>
<TranID mustUnderstand=”1”>ABCD</TranID>

</Header>
<Body>

<dispachOrderRequest>
<itemRefNumber>0010</itemRefNumber>
<quantityRequired>1</quantityRequired>
<customerID>CB1</customerID>
<chargeDepartment>ITSO</chargeDepartment>

</dispatchOrderRequest>
</Body>
</Envelope>

Envelope

Header
[0..n]

Body
[1]
14 Application Development for IBM CICS Web Services

Table 1-1 shows the namespaces of SOAP and WS-I Basic Profile 1.0 used in
this book.

Table 1-1 SOAP namespaces

SOAP envelope
The Envelope is the root element of the XML document representing the
message. It has the following structure:

<SOAP-ENV:Envelope >
<SOAP-ENV:Header>

<SOAP-ENV:HeaderEntry.... />
</SOAP-ENV:Header>
<SOAP-ENV:Body>

[message payload]
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In general, a SOAP message is a (possibly empty) set of headers plus one body.
The SOAP envelope also defines the namespace for structuring messages. The
entire SOAP message (headers and body) is wrapped in this envelope.

Headers
Headers are a generic and flexible mechanism for extending a SOAP message in
a decentralized and modular way without prior agreement between the parties
involved. They allow control information to pass to the receiving SOAP server
and also provide extensibility for message structures.

Headers are optional elements in the envelope. If present, the Header element
must be the first immediate child element of a SOAP Envelope element. All
immediate child elements of the Header element are called header entries.

Namespace URI Explanation

http://schemas.xmlsoap.org/soap/envelope/ SOAP 1.1 envelope namespace

http://schemas.xmlsoap.org/soap/encoding/ SOAP 1.1 encoding namespace

http://www.w3.org/2001/XMLSchema-instance Schema instance namespace

http://www.w3.org/2001/XMLSchema XML Schema namespace

http://schemas.xmlsoap.org/wsdl WSDL namespace for WSDL
framework

http://schemas.xmlsoap.org/wsdl/soap WSDL namespace for WSDL
SOAP binding

http://ws-i.org/schemas/conformanceClaim/ WS-I Basic Profile
 Chapter 1. Overview of Web services 15

There is a predefined header attribute called SOAP-ENV:mustUnderstand. The
value of the mustUnderstand attribute is either 1 or 0. The absence of the SOAP
mustUnderstand attribute is semantically equivalent to the value 0.

If the mustUnderstand attribute is present in a header entry and set to 1, the
service provider must implement the semantics defined by the element:

<Header>
<thens:TranID mustUnderstand=”1”>ABCD</thens:TranID>

</Header>

In the example, the header entry specifies that a service invocation must fail if the
service provider does not support the ability to process the TranID header.

A SOAP intermediary is an application that is capable of both receiving and
forwarding SOAP messages on their way to the final destination. In realistic
situations, not all parts of a SOAP message might be intended for the ultimate
destination of the SOAP message, but, instead, might be intended for one or
more of the intermediaries on the message path. Therefore, a second predefined
header attribute, SOAP-ENV:actor, is used to identify the recipient of the header
information. In SOAP 1.2 the actor attribute is renamed SOAP-ENV:role. The
value of the SOAP actor attribute is the URI of the mediator, which is also the
final destination of the particular header element (the mediator does not forward
the header).

If the actor is omitted or set to the predefined default value, the header is for the
actual recipient and the actual recipient is also the final destination of the
message (body). The predefined value is:

http://schemas.xmlsoap.org/soap/actor/next

If a node on the message path does not recognize a mustUnderstand header
and the node plays the role specified by the actor attribute, the node must
generate a SOAP MustUnderstand fault. Whether the fault is sent back to the
sender depends on the message exchange pattern in use. For request/response,
WS-I BP 1.0 requires the fault to be sent back to the sender. Also, according to
WS-I BP 1.0, the receiver node must discontinue normal processing of the SOAP
message after generating the fault message.

Headers can carry authentication data, digital signatures, encryption information,
and transactional settings. They can also carry client-specific or project-specific
controls and extensions to the protocol. The definition of headers is not just up to
standards bodies.

Note: The header must not include service instructions (that would be used by
the service implementation).
16 Application Development for IBM CICS Web Services

Body
The SOAP Body element provides a mechanism for exchanging information
intended for the ultimate recipient of the message. The Body element is encoded
as an immediate child element of the SOAP Envelope element. If a Header
element is present, the Body element must immediately follow the Header
element. Otherwise, it must be the first immediate child element of the Envelope
element.

All immediate child elements of the Body element are called body entries. Each
body entry is encoded as an independent element within the SOAP Body
element. In the most simple case, the body of a basic SOAP message consists of
an XML message as defined by the schema in the types section of the WSDL
document. It is legal to have any valid XML as the body of the SOAP message,
but WS-I conformance requires that the elements be namespace qualified.

Error handling
One area where there are significant differences between the SOAP 1.1 and 1.2
specifications is in the handling of errors. Here we focus on the SOAP 1.1
specification for error handling.

SOAP itself predefines one body element, the fault element, which is used for
reporting errors. If present, the fault element must appear as a body entry and
must not appear more than once. The children of the fault element are defined as
follows:

� faultcode is a code that indicates the type of the fault. SOAP defines a small
set of SOAP fault codes covering basic SOAP faults:

– soapenv:Client

This code indicates that the client sent an incorrectly formatted message

– soapenv:Server,

This code is for delivery problems

– soapenv:VersionMismatch,

This code can report any invalid namespaces specified on the Envelope
element

– soapenv:MustUnderstand

This code is for errors regarding the processing of header content

� faultstring is a human-readable description of the fault. It must be present in a
fault element.
 Chapter 1. Overview of Web services 17

� faultactor is an optional field that indicates the URI of the source of the fault.
The value of the faultactor attribute is a URI identifying the source that caused
the error. Applications that do not act as the ultimate destination of the SOAP
message must include the faultactor element in a SOAP fault element.

� detail is an application-specific field that contains detailed information about
the fault. It must not be used to carry information about errors belonging to
header entries. The absence of the detail element in the fault element
indicates that the fault is not related to the processing of the body element
(the actual message).

For example, a soapenv:Server fault message is returned if the service
implementation throws a SOAP exception. The exception text is transmitted in
the faultstring field.

Although SOAP 1.1 permits the use of custom-defined faultcodes, the WS-I
Basic Profile only permits the use of the four codes defined in SOAP 1.1.

1.5.2 Communication styles

SOAP supports two different communication styles:

� Document

Also known as message-oriented style, this is a flexible communication style
that provides the best interoperability. The message body is any legal XML as
defined in the types section of the WSDL document.

� Remote procedure call (RPC)

The remote procedure call is a synchronous invocation of an operation that
returns a result; it is conceptually similar to other RPCs.

1.5.3 Encodings

In distributed computing environments, encodings define how data values
defined in the application can be translated to and from a protocol format. We
refer to these translation steps as serialization and deserialization, or,
synonymously, marshalling and unmarshalling.

When implementing a Web service, we have to choose one of the tools and
programming or scripting languages that support the Web services model.
However, the protocol format for Web services is XML, which is independent of
the programming language. Thus, SOAP encodings tell the SOAP runtime
environment how to translate from data structures constructed in a specific
programming language into SOAP XML and vice versa.
18 Application Development for IBM CICS Web Services

The following encodings are defined:

� SOAP encoding

SOAP encoding enables marshalling/unmarshalling of values of data types
from the SOAP data model. This encoding is defined in the SOAP 1.1
standard.

� Literal

The literal encoding is a simple XML message that does not carry encoding
information. Usually, an XML Schema describes the format and data types of
the XML message.

1.5.4 Messaging modes

The two styles (RPC and document) and the two common encodings (SOAP
encoding and literal) can be freely intermixed to produce what is called a SOAP
messaging mode. Although SOAP supports four modes, only three of the four
modes are generally used, and further, only two are preferred by the WS-I Basic
Profile.

� Document/literal

Provides the best interoperability between language environments. The WS-I
Basic Profile states that all Web service interactions should use the
Document/literal mode.

� RPC/literal

Possible choice between certain implementations. Although RPC/literal is
WS-I compliant, it is not frequently used in practice. There are a number of
usability issues associated with RPC/literal.

� RPC/encoded

Early Java implementations supported this combination, but it does not
provide interoperability with other implementations and is not recommended

� Document/encoded

Not used in practice.

You can find the SOAP 1.1 specification at the following web page:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

The SOAP 1.2 specification is at the following web page:

http://www.w3.org/TR/SOAP12
 Chapter 1. Overview of Web services 19

http://www.w3.org/2000/xp/Group/
http://www.w3.org/TR/SOAP12

1.6 WSDL

This section introduces Web Services Description Language (WSDL) 1.1. WSDL
uses XML to specify the characteristics of a Web service: what the Web service
can do, where it resides, and how it is invoked. WSDL can be extended to allow
descriptions of different bindings, regardless of what message formats or
network protocols are used to communicate. WSDL enables a service provider to
specify the following characteristics of a Web service:

� Name of the Web service and addressing information

� Protocol and encoding style to be used when accessing the public operations
of the Web service

� Type information—Operations, parameters, and data types comprising the
interface of the Web service, plus a name for this interface

1.6.1 WSDL Document
A WSDL document contains the following main elements:

� Types

This element is a container for data type definitions using some type system,
usually XML Schema.

� Message

This element is an abstract, typed definition of the data being communicated.
A message can have one or more typed parts.

� Port type

This element is an abstract set of one or more operations supported by one or
more ports.

� Operation

This element is an abstract description of an action supported by the service
that defines the input and output message and optional fault message.

� Binding

This element is a concrete protocol and data format specification for a
particular port type. The binding information contains the protocol name, the
invocation style, a service ID, and the encoding for each operation.

� Port

This element is a single endpoint, which is defined as an aggregation of a
binding and a network address.

� Service

This element is a collection of related ports.
20 Application Development for IBM CICS Web Services

WSDL does not introduce a new type definition language. WSDL recognizes the
requirement for rich type systems for describing message formats and supports
the XML Schema Definition (XSD) specification.

WSDL 1.1 introduces specific binding extensions for various protocols and
message formats. There is a WSDL SOAP binding, which is capable of
describing SOAP over HTTP. WSDL does not define any mappings to a
programming language. Rather, the bindings deal with transport protocols. This
is a major difference from interface description languages, such as the CORBA
Interface Definition Language (IDL), which has language bindings.

You can find the WSDL 1.1 specification at the following web page:

http://www.w3.org/TR/wsdl

1.6.2 WSDL document anatomy

Figure 1-3 on page 22 shows the elements comprising a WSDL document and
the various relationships between them.
 Chapter 1. Overview of Web services 21

http://www.w3.org/TR/wsdl

Figure 1-3 WSDL elements and relationships

The diagram is interpreted in the following way:

� One WSDL document contains zero or more services. A service contains
zero or more port definitions (service endpoints), and a port definition
contains a specific protocol extension.

� The same WSDL document contains zero or more bindings. A binding is
referenced by zero or more ports. The binding contains one protocol
extension, where the style and transport are defined, and zero or more
operations bindings. Each of these operation bindings is composed of one
protocol extension, where the action and style are defined, and one to three
messages bindings, where the encoding is defined.

� The same WSDL document contains zero or more port types. A port type is
referenced by zero or more bindings. This port type contains zero or more
operations, which are referenced by zero or more operations bindings.

type

binding

service
port

Input

Output

portType

message

definition

operation

abstract
service
interface
definition

how the
service is
implemented

location of
service
22 Application Development for IBM CICS Web Services

� The same WSDL document contains zero or more messages. An operation
usually points to an input and an output message, and optionally to some
faults. A message is composed of zero or more parts.

� The same WSDL document contains zero or more types. A type can be
referenced by zero or more parts.

� The same WSDL document points to zero or more XML schemas. An XML
schema contains zero or more XSD types that define the different data types.

Example
Example 1-1 is an example of a simple, complete, and valid WSDL file. As
Example 1-1 shows, even a simple WSDL document contains quite a few
elements with various relationships to each other. Example 1-1 contains the
WSDL file example. This example is analyzed in detail later in this section.

Example 1-1 Complete WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:resns="http://www.exampleApp.dispatchOrder.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.exampleApp.dispatchOrder.com"
targetNamespace="http://www.exampleApp.dispatchOrder.com">

 <types>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Request.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com">

 <xsd:element name="dispatchOrderRequest" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="itemReferenceNumber" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="quantityRequired" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 Chapter 1. Overview of Web services 23

 </xsd:simpleType>
 </xsd:element>

</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Response.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Response.com">

 <xsd:element name="dispatchOrderResponse" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="confirmation" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>
 <message name="dispatchOrderResponse">
 <part element="resns:dispatchOrderResponse" name="ResponsePart"/>
 </message>
 <message name="dispatchOrderRequest">
 <part element="reqns:dispatchOrderRequest" name="RequestPart"/>
 </message>
 <portType name="dispatchOrderPort">
 <operation name="dispatchOrder">
 <input message="tns:dispatchOrderRequest" name="DFH0XODSRequest"/>
 <output message="tns:dispatchOrderResponse" name="DFH0XODSResponse"/>
 </operation>
 </portType>
 <binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="dispatchOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="DFH0XODSRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="DFH0XODSResponse">
 <soap:body parts="ResponsePart" use="literal"/>
24 Application Development for IBM CICS Web Services

 </output>
 </operation>
 </binding>
 <service name="dispatchOrderService">
 <port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">
 <soap:address

location="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>
 </port>
 </service>
</definitions>

Namespaces
WSDL uses the XML namespaces listed in Table 1-2.

Table 1-2 WSDL namespaces

The first three namespaces are defined by the WSDL specification itself. The
next definition references a namespace that is defined in the SOAP and XSD
standards. The last one is local to each specification.

1.6.3 WSDL definition

The WSDL definition contains types, messages, operations, port types, bindings,
ports, and services.

Also, WSDL provides an optional element called wsdl:document as a container
for human-readable documentation.

Namespace URI Explanation

http://schemas.xmlsoap.org/wsdl/ Namespace for WSDL framework.

http://schemas.xmlsoap.org/wsdl/soap/ SOAP binding.

http://schemas.xmlsoap.org/wsdl/http/ HTTP binding.

http://www.w3.org/2000/10/
XMLSchema

Schema namespace as defined by XSD.

(URL to WSDL file) The this namespace (tns) prefix is used as
a convention to refer to the current
document. Do not confuse it with the XSD
target namespace, which is a different
concept.
 Chapter 1. Overview of Web services 25

Types
The types element encloses data type definitions used by the exchanged
messages. WSDL uses XML Schema Definition (XSD) as its canonical and
built-in type system:

<definitions >
<types>

<xsd:schema /> (0 or more)
</types>

</definitions>

The XSD type system can be used to define the types in a message regardless
of whether or not the resulting wire format is XML. In our example, we have two
schema sections. One defines the message format for the input and the other
defines the message format for the output.

In our example, the types definition, shown in Example 1-2, is where we specify
that there is a complex type called dispatchOrderRequest, which is composed of
two elements:

� itemReferenceNumber
� quantityRequired

Example 1-2 Types definition of our WSDL example for the input

<types>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Request.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com">

 <xsd:element name="dispatchOrderRequest" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="itemReferenceNumber" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="quantityRequired" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
26 Application Development for IBM CICS Web Services

 </xsd:simpleType>
 </xsd:element>

</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
.
.
</types>

Messages
A message represents one interaction between a service requester and a
service provider. If an operation is bidirectional at least two message definitions
are used to specify the transmissions to and from the service provider. A
message consists of one or more logical parts.

<definitions >
<message name="nmtoken"> (0 or more)

<part name="nmtoken" element="qname"(0 or 1) type="qname" (0 or 1)/>
(0 or more)

</message>
</definitions>

The abstract message definitions are used by the operation element. Multiple
operations can refer to the same message definition.

Operations and messages are modeled separately to support flexibility and
simplify reuse of existing definitions. For example, two operations with the same
parameters can share one abstract message definition.

In our example, the messages definition, shown in Example 1-3, is where we
specify the different parts that compose each message. The request message
dispatchOrderRequest is composed of an element dispatchOrderRequest as
defined in the schema in the parts section. The response message
dispatchOrderResponse is similarly defined by the element
dispatchOrderResponse in the schema. There is no requirement for the names
of the message and the schema-defined element to match. In our example, we
did this merely for convenience.

Example 1-3 Message definition in our WSDL document

<message name="dispatchOrderResponse">
<part element="resns:dispatchOrderResponse" name="ResponsePart"/>

</message>
<message name="dispatchOrderRequest">

<part element="reqns:dispatchOrderRequest" name="RequestPart"/>
</message>
 Chapter 1. Overview of Web services 27

Port types
A port type is a named set of abstract operations and the abstract messages
involved:

<definitions >
<portType name="nmtoken">

<operation name="nmtoken" /> (0 or more)
</portType>

</definitions>

WSDL defines four types of operations that a port can support:

� One-way

In this operation, the port receives a message. There is an input message
only.

� Request-response

In this operation, the port receives a message and sends a correlated
message. There is an input message followed by an output message.

� Solicit-response

In this operation, the port sends a message and receives a correlated
message. There is an output message followed by an input message.

� Notification

In this operation, the port sends a message. There is an output message only.
This type of operation can be used in a publish/subscribe scenario.

Each of these operation types can be supported by variations of the following
syntax. Presence and order of the input, output, and fault messages determine
the type of message:

<definitions >
<portType > (0 or more)

<operation name="nmtoken" parameterOrder="nmtokens">
<input name="nmtoken"(0 or 1) message="qname"/> (0 or 1)
<output name="nmtoken"(0 or 1) message="qname"/> (0 or 1)
<fault name="nmtoken" message="qname"/> (0 or more)

</operation>
</portType >

</definitions>

A request-response operation is an abstract notion. A particular binding must be
consulted to determine how the messages are actually sent:

� Within a single transport-level operation, such as an HTTP request/response
message pair, which is the preferred option
28 Application Development for IBM CICS Web Services

� As two independent transport-level operations, which can be required if the
transport protocol only supports one-way communication

In our example, the portType and operation definitions, shown in Example 1-4,
are where we specify the port type, called dispatchOrderPort, and a set of
operations. In this case, there is only one operation, called dispatchOrder. We
specify the interface the Web service provides to possible clients, with the input
message DFH0XODSRequest and the output message DFH0XODSResponse.
Because the input element appears before the output element in the operation
element, our example shows a request-response type of operation.

Example 1-4 Port type and operation definitions in our WSDL document example

<portType name="dispatchOrderPort">
<operation name="dispatchOrder">

<input message="tns:dispatchOrderRequest" name="DFH0XODSRequest"/>
<output message="tns:dispatchOrderResponse" name="DFH0XODSResponse"/>

</operation>
</portType>

Bindings
A binding contains:

� Protocol-specific general binding data, such as the underlying transport
protocol and the communication style for SOAP.

� Protocol extensions for operations and their messages.

Each binding references one port type. One port type can be used in multiple
bindings. All operations defined within the port type must be bound in the
binding. The pseudo XSD for the binding looks like this:

<definitions >
<binding name="nmtoken" type="qname"> (0 or more)

<-- extensibility element (1) --> (0 or more)
<operation name="nmtoken"> (0 or more)

<-- extensibility element (2) --> (0 or more)
<input name="nmtoken"(0 or 1) > (0 or 1)

<-- extensibility element (3) -->
</input>
<output name="nmtoken"(0 or 1) > (0 or 1)

<-- extensibility element (4) --> (0 or more)
</output>
<fault name="nmtoken"> (0 or more)

<-- extensibility element (5) --> (0 or more)
</fault>

</operation>
 Chapter 1. Overview of Web services 29

</binding>
</definitions>

As we have already seen, a port references a binding. The port and binding are
modeled as separate entities to support flexibility and location transparency. Two
ports that merely differ in their network address can share the same protocol
binding.

The extensibility elements <-- extensibility element (x) --> use XML namespaces
to incorporate protocol-specific information into the language- and
protocol-independent WSDL specification.

In our example, the binding definition, shown in Example 1-5, is where we specify
our binding name, dispatchOrderSoapBinding. The connection must be SOAP
HTTP, and the style must be document. We provide a reference to our operation,
dispatchOrder, and we define the input message DFH0XODSRequest and the
output message DFH0XODSResponse, both to be SOAP literal.

Example 1-5 Binding definition in our WSDL document example

<binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
<soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="dispatchOrder">
<soap:operation soapAction="" style="document"/>
<input name="DFH0XODSRequest">

<soap:body parts="RequestPart" use="literal"/>
</input>
<output name="DFH0XODSResponse">

<soap:body parts="ResponsePart" use="literal"/>
</output>

 </operation>
</binding>

Service definition
A service definition merely bundles a set of ports together under a name, as the
following pseudo XSD definition of the service element shows.

<definitions >
<service name="nmtoken"> (0 or more)

<port /> (0 or more)
</service>

</definitions>

Multiple service definitions can appear in a single WSDL document.
30 Application Development for IBM CICS Web Services

Port definition
A port definition describes an individual endpoint by specifying a single address
for a binding:

<definitions >
<service > (0 or more)

<port name="nmtoken" binding="qname"> (0 or more)
<-- extensibility element (1) -->
</port>

</service>
</definitions>

The binding attribute is of type QName, which is a qualified name (equivalent to
the one used in SOAP). It refers to a binding. A port contains exactly one network
address. All other protocol-specific information is contained in the binding.

Any port in the implementation part must reference exactly one binding in the
interface part.

The <-- extensibility element (1) --> is a placeholder for additional XML elements
that can hold protocol-specific information. This mechanism is required because
WSDL is designed to support multiple runtime protocols.

In our example, the service and port definition, shown in Example 1-6, is where
we specify our service, called dispatchOrderService, which contains a collection
of our ports. In this case, there is only one that uses the
dispatchOrderSoapBinding and is called dispatchOrderPort. In this port, we
specify our connection point as, for example,
http://myserver:54321/exampleApp/services/dispatchOrderPort.

Example 1-6 Service and port definition in our WSDL document example

<service name="dispatchOrderService">
<port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">

<soap:address
location="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>

</port>
</service>

1.6.4 WSDL bindings

We now investigate the WSDL extensibility elements supporting the SOAP
transport binding.
 Chapter 1. Overview of Web services 31

SOAP binding
WSDL includes a binding for SOAP 1.1 endpoints, which supports the
specification of the following protocol-specific information:

� An indication that a binding is bound to the SOAP 1.1 protocol

� A way of specifying an address for a SOAP endpoint

� The URI for the SOAPAction HTTP header for the HTTP binding of SOAP

� A list of definitions for headers that are transmitted as part of the SOAP
envelope
32 Application Development for IBM CICS Web Services

Table 1-3 lists the corresponding extension elements.

Table 1-3 SOAP extensibility elements in WSDL

Extension and attributes Explanation

<soap:binding ...> Binding level; specifies defaults for all operations.

 transport="uri"
(0 or 1)

Binding level; transport is the runtime transport protocol used
by SOAP (HTTP, SMTP, and so on).

style="rpc|document"
(0 or 1)

The style is one of the two SOAP communication styles, rpc or
document.

<soap:operation ... > Extends operation definition.

soapAction="uri"
(0 or 1)

URN.

style="rpc|document"
(0 or 1)

See binding level.

<soap:body ... > Extends operation definition; specifies how message parts
appear inside the SOAP body.

parts="nmtokens" Optional; allows externalizing message parts.

use="encoded|literal" literal: messages reference concrete XSD (no WSDL type)

encoded: messages reference abstract WSDL type elements

encodingStyle extension used.

encodingStyle=
"uri-list"(0 or 1)

List of supported message encoding styles.

namespace="uri"
(0 or 1)

URN of the service.

<soap:fault ... > Extends operation definition; contents of fault details element.

name="nmtoken" Relates soap:fault to wsdl:fault for operation.

use, encodingStyle,
namespace

See soap:body.

<soap:address ... > Extends port definition.

location="uri" Network address of RPC router.

<soap:header ... > Operation level; shaped after <soap:body ...>.

<soap:headerfault ... > Operation level; shaped after <soap:body ...>.
 Chapter 1. Overview of Web services 33

34 Application Development for IBM CICS Web Services

Chapter 2. CICS TS implementation of
Web services

Chapter 1, “Overview of Web services” on page 3 defines that a Web service is a
software system identified by a Uniform Resource Identifier (URI), whose public
interfaces and bindings are defined and described using XML. Other systems
might interact with the Web service in a manner prescribed by its definition, using
XML-based messages conveyed by Internet protocols.

In this chapter, we discuss how CICS TS V3, V4, and V5 implement Web
services. We begin by reviewing the support for SOAP that CICS provides with
CICS TS V3. We then discuss the enhancements that CICS TS V4.1, 4.2, 5.1,
and 5.2 bring to CICS support for SOAP and Web services.

We continue by showing you how to prepare for running a CICS application as a
service provider and what happens inside CICS when a service request arrives
for a service provider application. Likewise, we discuss preparing to run a CICS
application as a service requester and how CICS processes the outbound
service request. This leads us to a discussion of the resource definitions that
support Web services, namely, the URIMAP, PIPELINE, and WEBSERVICE
definitions.

2

© Copyright IBM Corp. 2015. All rights reserved. 35

2.1 Support for Web services in CICS TS

The CICS TS implementation of Web services consists of several components.
There are tools that are used by the application developer to prepare applications
for use with the CICS TS Web services infrastructure. There are resources for
administering Web services, and there are optional enhancements that an
administrator can enable to extend the capabilities of CICS Transaction Server.

In this chapter, we focus on subjects relevant to application development, but will
consider other subjects that might be of interest to application developers outside
the typical application development role.

2.1.1 Core aspects of Web services in CICS

Web services first became available as an integral part of CICS in CICS TS V3.1.
The core part of that infrastructure is common to all subsequent versions of CICS
TS, and provides the following functions:

� It includes the Web Services Assistant utility.

The Web Services Assistant is the part of CICS that is most relevant for
application developers. It consists of JCL-based tooling for preparing
applications for Web services. It is made up of two programs, DFHWS2LS
and DFHLS2WS.

� It supports several different approaches to developing your CICS applications
in a Web services environment.

– You can enable CICS TS to convert SOAP messages to application data
structures and back again.

You can use either the Web Services Assistant or Rational Developer for
System z (RDz) to generate artifacts that can be deployed to CICS. These
artifacts interface between the application and the rest of CICS and handle
all of the SOAP-based messaging. This approach minimizes the
application programming effort.

In this scenario, an artifact referred to as the Web service binding file (also
known as the WSBind file) is generated and deployed to CICS TS.

– You can take complete control of the processing of your data.

If you prefer to write applications that handle XML natively, or have existing
in-house or commercial XML processing tools, you might use them instead
of using the Web Services Assistant.
36 Application Development for IBM CICS Web Services

� It has the concept of a PIPELINE resource. A CICS pipeline is shared by
many different Web services, and is used to configure shared qualities of
service. It is usually the CICS system programmer who is responsible for
configuring PIPELINE resources. This is done using a pipeline configuration
file.

WSBind files are installed into a PIPELINE resource in CICS. For each
WSBind file that is installed CICS creates a WEBSERVICE resource.

� It has the concept of handler programs that can be added to a pipeline by the
system programmer. Handler programs enable sophisticated additional
processing to be performed as part of the process of sending and receiving
SOAP messages in CICS.

Several handler programs are supplied with CICS and can be used to add
support for additional services such as WS-Security (for identity propagation)
and WS-AT (for distributed two-phase commit).

� It has the concept of a URIMAP resource. A URIMAP associates a particular
WEBSERVICE and PIPELINE combination with a specific URI. The system
programmer is usually responsible for the URIMAPs, though the application
developer might be responsible for selecting the URI for a Web service.

If a SOAP message is received by a CICS region, CICS begins processing it
using the associated URI. CICS looks for a URIMAP resource that has been
installed for that URI. If a match is found, the URIMAP indicates which
PIPELINE to use for the subsequent processing. It also indicates which
WEBSERVICE resource CICS should use to transform the XML into
application data.

� It provides an application programming interface (API) to allow CICS
applications to interact with the Web services support in CICS. The main
commands for doing this are:

– SOAPFAULT ADD | CREATE | DELETE

This is used by provider mode applications that want to return
application-specific diagnostics as a SOAP Fault message

– INVOKE WEBSERVICE

This is used by requester mode applications that want to invoke a remote
Web service.

� It conforms to open standards including:

– SOAP 1.1 and 1.2
– HTTP 1.1
– WSDL 1.1
 Chapter 2. CICS TS implementation of Web services 37

� It ensures maximum interoperability with other Web services implementations
by conforming with the Web Services Interoperability Organization (WS-I)
Basic Profile 1.0. This profile is a set of non-proprietary Web services
specifications, along with clarifications and amendments to those
specifications, which, taken together, promote interoperability between
different implementations of Web services.

2.2 Tools for application deployment

In this section, we provide a brief overview of the main application development
tools for CICS Web services.

2.2.1 CICS Web Services Assistant

The CICS Web Services Assistant is a pair of JCL utilities that are used by
application developers to prepare applications as Web services. It contains two
utility programs:

� DFHLS2WS

DFHLS2WS is used to expose existing CICS applications as provider mode
Web services. It takes as input a pair of language structures (typically COBOL
copybooks) that define the commarea for the application, and generates a
Web Services Description Language (WSDL) document that describes a
SOAP interface to that same application.

� DFHWS2LS

DFHWS2LS does the reverse of DFHLS2WS. It takes as input a WSDL
document, and generates language structures suitable for use in a new
application program. This new application can either implement a Web
service in CICS, or invoke a remote Web service from CICS.

Both DFHLS2WS and DFHWS2LS generate a file called the WSBind file. This is
installed into a CICS region and contains the metadata that CICS needs to
transform SOAP messages to and from application data.

The Web Services Assistant supports the following programming languages:

� COBOL
� PL/I
� C
� C++
38 Application Development for IBM CICS Web Services

However, the assistant does have some limitations. There are some WSDL
documents that are not supported by DFHWS2LS, and some language
structures that are not supported by DFHLS2WS.

2.2.2 IBM Rational Developer for System z v9.1

IBM Rational Developer for System z is an integrated development environment
that helps application developers create applications for the mainframe. RDz
offers a significant range of tools of interest to CICS application developers. In
this book, however, we focus on those tools that are relevant for CICS Web
services.

The Enterprise Services Toolkit (EST) perspective within RDz can be used to
simplify the process of exposing existing CICS applications as Web services. It
has wizards that guide you through the process of generating and deploying
WSBind files for CICS. It also has a compiled technology that complements the
capabilities of DFHLS2WS, but goes beyond it by removing many of the
limitations of DFHLS2WS.

Other capabilities that might be of interest to a CICS application developer
include:

� Editors and interactive development environments (IDEs) for Java, COBOL,
PL/I, including language understanding, syntax checking, and unit testing in
CICS

� Support for JSON in the Enterprise Service Tools (EST), simplifying the use
of existing CICS services by mobile applications

� Remote IBM z/OS® support including data set access, job submission, queue
management, UNIX file system management, and TSO command processing

� Interactive testing and remote debugging for applications running within CICS

� A local CICS development environment.

2.2.3 Other Options

There are scenarios where you might decide not to use the Web Services
Assistants or RDz. For example:

� You want to create XML aware Web services.

You might want to handle the XML from the body of a SOAP message in your
applications rather than allowing CICS to do so.
 Chapter 2. CICS TS implementation of Web services 39

� You do not want to use SOAP messages.

If you prefer to use a non-SOAP protocol for your messages, you can do so.
However, your application programs will be responsible for parsing inbound
messages and constructing outbound messages.

� You have an application written in an unsupported programming language.

In this case, you should either write a wrapper program in a supported
language, or write a program to process the XML in your preferred language.

� The CICS Web Services Assistant does not support your application’s data
structure.

Although the CICS Web Services Assistant supports the most common data
types and structures, some exist that are not supported. That is, there might
not always be a one-to-one mapping between XML data types and the data
types in your language structure. In this situation, you should first consider
providing a “wrapper” program that maps your application’s data to a format
that the assistant can support. If this is not possible, consider using Rational
Developer for System z. As a last resort, you might need to change your
application’s data structure or use a meet-in-the-middle approach. This is
discussed in Chapter 3, “Development approaches” on page 67.

� Your Web Service developers are Java developers who prefer to use tooling
based on community standards JAX-WS and JAXB. In this case, you may
consider using WebSphere Liberty Profile in CICS Transaction Server V5.2 to
process the SOAP web service.

2.3 CICS as a service provider

When CICS is acting in the role of a Web service provider, it receives SOAP
messages from the Internet Protocol network or a WebSphere MQ for z/OS
Trigger Queue and passes them through a pipeline to a target application
program. The response from the application is returned to the service requester
through the same pipeline. In this section, we discuss how to prepare for running
a CICS application as a service provider, and how CICS processes the incoming
service request.

Most of the actions described in this section are performed by a system
programmer. It is helpful for the application developer to be aware of how CICS
handles provider mode Web services, but typical service provider applications
are unaware that they are being driven as Web services. The following
information is therefore provided for background understanding.
40 Application Development for IBM CICS Web Services

2.3.1 Preparing to run a CICS application as a service provider

Suppose that we have an existing commarea-based CICS application that we
want to expose as a Web service through HTTP. Suppose also that we want to
use the Web Services Assistant to expose the application as a Web service. We
go through the following steps:

1. Generate the WSBind and WSDL files (application developer).

a. Create an HFS directory in which to store the generated files. For
example, we might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceProvider.

b. Run the JCL for DFHLS2WS. The input we provide includes:

• The name of the CICS PROGRAM resource for the application

• The names of the partitioned data set members that contain the
high-level language structures used by the application program to
describe the input and output commarea formats

• The fully qualified zFS names of the WSBind file and of the file into
which the Web service description is to be written (the WSDL file)

• The URI that a client will use to access the Web service

• How CICS should pass data to the target application program
(COMMAREA or container)

Typically, an application developer would perform this step.

2. Create a TCPIPSERVICE resource definition (system programmer).

The resource definition should specify PROTOCOL(HTTP) and supply
information about the port on which inbound requests are received.

Typically, a system programmer would perform this step.

3. Create a PIPELINE resource definition (system programmer).

a. Create a service provider pipeline configuration file.

A pipeline configuration file is an XML file that describes, among other
things, the message handler programs and the SOAP header processing
programs that CICS invokes when it processes the pipeline.

b. Create a zFS directory in which to store installable WSBind and WSDL
files.

We call this directory the pickup directory, as CICS will pick up the
WSBind and WSDL files from this directory and store them on a shelf
directory.

c. Create an HFS directory for CICS to store installed WSBind files.

We call this directory the shelf directory.
 Chapter 2. CICS TS implementation of Web services 41

The CICS region user ID must have full read and write access to files
within the shelf directory. CICS creates a directory for each CICS region
and pipeline, so the shelf directory can be shared. Do not delete files
within the shelf directory manually.

d. Create a PIPELINE resource definition to handle the Web service request.

i. Specify the CONFIGFILE attribute to point to the file created in step 3
on page 41a on page 41.

ii. Specify the WSDIR attribute to point to the directory created in step 3
on page 41b on page 41.

iii. Specify the SHELF attribute to point to the directory created in step 3
on page 41c on page 41.

e. Copy the WSBind and WSDL files created in step 1 on page 41 to the
pickup directory created in step 3 on page 41b on page 41.

4. Install the TCPIPSERVICE and PIPELINE resource definitions (system
programmer).

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for WSBind files. When CICS finds the WSBind file
created in step 1 on page 41, CICS dynamically creates and installs a
WEBSERVICE resource definition. CICS derives the name of the
WEBSERVICE definition from the name of the WSBind file. The
WEBSERVICE definition identifies the name of the associated PIPELINE
definition and points to the location of the WSBind file in the HFS.

During the installation of the WEBSERVICE resource:

– CICS dynamically creates and installs a URIMAP resource definition.
CICS bases the definition on the URI specified in the input to DFHLS2WS
in step 1 on page 41 and stored by DFHLS2WS in the WSBind file.

– CICS uses the WSBind file to create main storage control blocks to map
the inbound service request (XML) to a COMMAREA or a container and to
map to XML the outbound COMMAREA or container that contains the
response data.

5. Publish WSDL to clients.

a. Customize the location attribute on the <address> element in the WSDL
file so that its value specifies the TCP/IP server name of the machine
hosting the service and the port number defined in step 2 on page 41.

b. Publish the WSDL to any parties wanting to create clients to this Web
service.
42 Application Development for IBM CICS Web Services

2.3.2 Processing the inbound service request

Figure 2-1 shows the processing that occurs when a service requester sends a
SOAP message over HTTP to a service provider application running in a CICS
TS V5.2 region.

Figure 2-1 Web service run time service provider processing

The CICS supplied sockets listener transaction (CSOL) monitors the port
specified in the TCPIPSERVICE resource definition for incoming HTTP requests.
When the SOAP message arrives, CSOL attaches the transaction specified in
the TRANSACTION attribute of the TCPIPSERVICE definition. Normally, this will
be the CICS-supplied Web attach transaction CWXN.

CWXN finds the URI in the HTTP request and scans the URIMAP resource
definitions for a URIMAP that has its USAGE attribute set to PIPELINE and its
PATH attribute set to the URI found in the HTTP request. If CWXN finds such a
URIMAP, it uses the PIPELINE and WEBSERVICE attributes of the URIMAP
definition to get the name of the PIPELINE and WEBSERVICE definitions that it
uses to process the incoming request. CWXN also uses the TRANSACTION
attribute of the URIMAP definition to determine the name of the transaction that it
should attach to process the pipeline. Often, this will be the CPIH transaction.

Service
Requester

dynamic
install

CPIH

pipeline
config

Language
structure

WSBIND

WSDL

URIMAP matching

CICS Web services
assistant

CSOL

CWXN

zFS

dynamic
install

CICS TS

Pipeline

data mapping

handlers

handlers

handlers

TCPIPESERVICE

URIMAP

PIPELINE

WEBSERVICE

SOAP
message

Business
Logic
 Chapter 2. CICS TS implementation of Web services 43

CPIH starts the pipeline processing. It uses the PIPELINE definition to find the
name of the pipeline configuration file. CPIH uses the pipeline configuration file
to determine which pipeline handler programs and SOAP header processing
programs to invoke.

A message handler in the pipeline (typically, a CICS supplied SOAP message
handler) removes the SOAP envelope from the inbound request and passes the
SOAP body to the application handler program. Usually this will be the CICS
supplied application handler, DFHPITP.

DFHPITP uses the DFHWS-WEBSERVICE container to pass the name of the
required WEBSERVICE definition to the data mapper. The data mapper uses the
WEBSERVICE definition to locate the main storage control blocks that it needs to
map the inbound service request (XML) to a COMMAREA or a container.

The data mapper links to the target service provider application program,
providing input in the format that it expects. The application program is not aware
that it is being executed as a Web service. The program performs its normal
processing, then returns an output COMMAREA or container to the data mapper.

The output data from the CICS application program cannot just be sent back to
the pipeline code. The data mapper must first convert the output from the
COMMAREA or container format into a SOAP body.

The response message is passed back through the pipeline handler programs
and is returned to the requester over HTTP.

2.4 CICS as a service requester

When CICS is acting in the role of a Web service requester, a CICS application
program sends a SOAP message to a remote Web service through a requester
mode pipeline. The response from the service provider is returned to the
application program through the same pipeline. In this section, we discuss how to
prepare for running a CICS application as a service requester, and how CICS
processes the outbound service request.

This scenario always involves the creation of a new application program, so it
does involve more actions for the application developer than is typically required
in provider mode.
44 Application Development for IBM CICS Web Services

2.4.1 Preparing to run a CICS application as a service requester

Suppose we want to write a new CICS application that invokes a remote Web
service. Suppose also that we want to use the Web Services Assistant rather
than taking control of the processing ourselves.

We go through the following steps:

1. Generate the WSBind file and the language structures (application
developer).

a. Create a z/OS File Structure (zFS) directory in which to store the WSBind
file. For example, we might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceRequester. This can be
done using the ISPF Shell for UNIX System Services, ishell, by using
Rational Developer for System z, or the z/OS Perspective of the IBM CICS
Explorer®.

b. Run the JCL for DFHWS2LS. The input we provide to the program
includes:

• The fully qualified zFS name of the WSDL file that describes the Web
service that we want to invoke.

• The names of the partitioned data set members into which DFHWS2LS
should put the high-level language structures that it generates. The
application program uses the language structures to describe the Web
service request and the Web service response.

2. Create a PIPELINE resource definition (system programmer).

a. Create a service requester pipeline configuration file.

A pipeline configuration file is an XML file that describes, among other
things, the pipeline handler programs and the SOAP header processing
programs that CICS invokes when it processes the pipeline.

b. Create a zFS directory in which to store installable WSBind files.

We call this directory the pickup directory because CICS will pick up the
WSBIND file from this directory and store it on a shelf directory.

c. Create a zFS directory for CICS to store installed WSBind files.

We call this directory the shelf directory.

d. Create a PIPELINE resource definition to handle the Web service request:

i. Specify the CONFIGFILE attribute to point to the file created in step 2a.
ii. Specify the WSDIR attribute to point to the directory created in step 2b.
iii. Specify the SHELF attribute to point to the directory created in step 2c.
 Chapter 2. CICS TS implementation of Web services 45

e. Copy the WSBind file created in step 1 on page 45 to the pickup directory
from step 2 on page 45b on page 45.

3. Install the PIPELINE resource definition (system programmer).

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for WSBind files. When CICS finds the WSBind file
created in step 1 on page 45, CICS dynamically creates and installs a
WEBSERVICE resource definition for it. CICS derives the name of the
WEBSERVICE definition from the name of the WSBind file. The
WEBSERVICE definition identifies the name of the associated PIPELINE
definition and points to the location of the WSBind file in the HFS.

During the installation of the WEBSERVICE resource, CICS uses the WSBind
file to create main storage control blocks to map the outbound service request
to an XML document and to map the inbound XML response document to a
language structure.

4. Use the language structure generated in step 1 on page 45 to write the
application program (application developer).

a. It issues the following command to place the outbound data into container
DFHWS-DATA:

EXEC CICS PUT CONTAINER(DFHWS-DATA) CHANNEL(name_of_channel)
FROM(data_area)

b. It issues the following command to invoke the Web service:

EXEC CICS INVOKE WEBSERVICE(name_of_WEBSERVICE_definition)
CHANNEL(name_of_channel) OPERATION(name_of_operation)

2.4.2 Processing the outbound service request

Figure 2-2 on page 47 shows the processing that occurs when a service
requester running in a CICS TS V5.2 region sends a SOAP message to a service
provider.

Note: From CICS TS 4.1 onwards, the EXEC CICS INVOKE SERVICE command
should be used for all new Web service applications, rather than the INVOKE
WEBSERVICE command, which is a synonym.
46 Application Development for IBM CICS Web Services

Figure 2-2 Web service requester resources

When the service requester issues the EXEC CICS INVOKE SERVICE
command, CICS uses the information found in the WSBind file that is associated
with the specified WEBSERVICE definition to convert the language structure into
an XML document. CICS then invokes the pipeline handlers specified in the
pipeline configuration file, and they convert the XML document into a SOAP
message.

CICS will send the request SOAP message to the remote service provider either
through HTTP (with or without SSL) or WebSphere MQ.

When the response SOAP message is received, CICS will pass it back through
the pipeline. The message handlers will extract the SOAP body from the SOAP
envelope, and the data mapping function will convert the XML in the SOAP body
into a language structure that is passed to the application program in container
DFHWS-DATA.

2.5 The CICS resource definitions

We now look in more detail at what CICS resources a systems programmer must
provide to enable Web services in a CICS environment. Some of these resources
are influenced by decisions made by the application developer.

Service
Provider

Language
structure

SOAP
message

CICS TS

CICS Web services
assistant

Business
Logic

Pipeline

data mapping

User Transaction

dynamic
install

PIPELINE

WEBSERVICE

pipeline
config

WSBIND

WSDL

zFS

handlers

handlers

handlers
 Chapter 2. CICS TS implementation of Web services 47

2.5.1 URIMAP

URIMAP definitions are relevant in both provider and requester mode for
associating CICS processing with a URI. They are also used with the EXEC
CICS WEB API, but that usage scenario is not considered here.

� Provider mode

URIMAP definitions for Web service requests have a USAGE attribute of
PIPELINE. These URIMAP definitions associate a URI for an inbound Web
service request (that is, a request by which a client invokes a Web service in
CICS) with a PIPELINE or WEBSERVICE resource that specifies the
processing to be performed. They might also be used to specify:

– The name of the transaction that CICS should use to run the pipeline. If
one is not specified, the default of CPIH is used.

– The user ID under which the pipeline transaction runs.

� Requester mode

Under CICS TS V3.2 and later, including CICS TS V5.2, URIMAP resources
with a USAGE of CLIENT can be used with the INVOKE command.

In CICS TS V3.2, a client mode URIMAP can be used to specify
cryptographic information for INVOKE commands that involve SSL. CICS will
look for an appropriate client mode URIMAP as the outbound HTTPS
connection is established and will use the characteristics of a matching
URIMAP.

In CICS TS V4.1 and later, the application program might specify the name of
a client mode URIMAP as a parameter in the INVOKE command. This
provides the same cryptographic benefits as in CICS TS V3.2, but it also
allows the URI for the remote Web service to be defined declaratively in a
CICS resource. This makes it easier for the system programmer to customize
the URI between Test and Production environments without having to make
the application programmer change their code.

In CICS TS V5.2, the use of client mode URIMAPs offers the use of
connection pooling which may provide performance benefits. This is
discussed in 7.4, “Client mode URIMAPs” on page 186.

You can create URIMAP resource definitions in the following ways:

� Using the Web Services Assistant (using a PIPELINE SCAN)
� Using the CEDA transaction
� Using the DFHCSDUP batch utility
� Using CICSPlex SM Business Application Services
� Using the EXEC CICS CREATE URIMAP command
48 Application Development for IBM CICS Web Services

� Using the CICS Explorer to create a URIMAP in the CICS System Definition
file (CSD), CICSPlex SM Business Application Services (BAS), or in a CICS
Bundle

The most common mechanism for creating the provider mode URIMAP is for the
application developer to decide (in consultation with the system programmer) on
the URI to use, and to specify it when the Web Services Assistant is used. This
will result in the URI being stored within the WSBind file.

The application developer can choose a transaction add to the URIMAP, instead
of CPIH. The application developer might also indicate a default user ID under
which the Web service should execute. These options are also specified using
the Web Services Assistant and are stored in the WSBind file.

When you issue a PERFORM PIPELINE SCAN command (using CEMT or the
CICS system programming interface), CICS scans the directory specified in the
PIPELINE’s WSDIR attribute (the pickup directory), and creates URIMAP and
WEBSERVICE resources dynamically using the information from the WSBind
files. For each Web service binding file in the directory (that is, for each file with
the .wsbind suffix), CICS installs a WEBSERVICE and a URIMAP if one does not
already exist. Existing resources are replaced if the information in the binding file
is newer than the existing resources.

2.5.2 PIPELINE

A PIPELINE resource definition provides information about the pipeline handlers
that will act on a service request and on the response. The information about the
pipeline handlers is supplied indirectly. The PIPELINE definition specifies the
name of a zFS file, called the pipeline configuration file, which contains an XML
description of the pipeline configuration. The most important attributes of the
PIPELINE resource definition are as follows:

� WSDIR

The WSDIR attribute specifies the name of the Web service binding directory
(also known as the pickup directory). The Web service binding directory
contains Web service binding files that are associated with the PIPELINE,
and that are to be installed automatically by the CICS scanning mechanism.
When the PIPELINE definition is installed, CICS scans the directory and
automatically installs any Web service binding files it finds there.

If you specify a value for the WSDIR attribute, it must refer to a valid zFS
directory to which the CICS region has at least read access. If this is not the
case, any attempt to install the PIPELINE resource will fail.
 Chapter 2. CICS TS implementation of Web services 49

If you do not specify a value for WSDIR, no automatic scan takes place on
installation of the PIPELINE, and PIPELINE SCAN commands will fail.

� SHELF

The SHELF attribute specifies the name of a zFS directory where CICS will
copy information about installed Web services. CICS regions into which the
PIPELINE definition is installed must have full permission to the shelf
directory: read, write, and the ability to create subdirectories.

A single shelf directory can be shared by multiple CICS regions and by
multiple PIPELINE definitions. Within a shelf directory, each CICS region uses
a separate subdirectory to keep its files separate from those of other CICS
regions. Within each region’s directory, each PIPELINE uses a separate
subdirectory. After a CICS region performs a cold or initial start, it deletes its
subdirectories from the shelf before trying to use the shelf.

� CONFIGFILE

This attribute specifies the name of the PIPELINE configuration file.

Figure 2-3 illustrates the function of the PIPELINE resource definition.

Figure 2-3 Function of PIPELINE resource

pipeline
config

WSBIND

WSDL

zFS

CICS TS

CPIH

Pipeline

data mapping

Business
Logic

handlers
URIMAP

PIPELINE

WEBSERVICE

dynamic
install

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers
50 Application Development for IBM CICS Web Services

Pipeline configuration file
When CICS processes a Web service request, it uses a pipeline of one or more
handler programs to process the request. The configuration of the pipeline is
something that the application developer rarely needs to know about. The system
programmer is responsible for the PIPELINE configuration and decides what
handler programs are required.

The configuration of a pipeline that is used to handle a Web service request is
specified in an XML document, known as a pipeline configuration file. Use a
suitable XML editor or text editor to work with your pipeline configuration files.

There are two distinct types of PIPELINE, a requester mode PIPELINE, and a
provider mode PIPELINE. This indicates the directionality of the communication.
The WSBind files have to be installed into a PIPELINE of the appropriate type.
Provider mode PIPELINEs are used when exposing CICS applications as Web
services. Requester mode PIPELINEs are used for invoking remote Web
services.

In requester mode, and from CICS TS V3.2 forwards, PIPELINEs can specify a
timeout value using the RESPWAIT attribute. This is the length of time that CICS
will wait for a response before returning a TIMEDOUT condition to the issuer of
the INVOKE SERVICE command.

It is often sufficient to use one of the example pipeline configuration files that
CICS provides. These are:

� basicsoap11provider.xml

This file defines the pipeline configuration for a service provider that uses the
SOAP 1.1 message handler supplied by CICS.

� basicsoap11requester.xml

This file defines the pipeline configuration for a service requester that uses
the SOAP 1.1 message handler supplied by CICS.

For most deployments, this is all that the application developer needs to know
about the PIPELINE resources, as Qualities of Service such as WS-Atomic
Transaction and WS-Security are implemented by the Pipeline and do not require
changes to the Web Service applications in CICS. More information about the
content of the PIPELINE configuration files and the nature of pipeline handler
programs can be found in the CICS IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
 Chapter 2. CICS TS implementation of Web services 51

http://www-01.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

2.5.3 WEBSERVICE

This resource encapsulates a WSBind file in CICS.

Three artifacts define the execution environment that enables a CICS application
program to operate as a Web service provider or a Web service requester:

� The Web service description (WSDL)
� The Web service binding file (WSBind)
� The pipeline

These three objects are defined to CICS on the following attributes of the
WEBSERVICE resource definition:

� WSDLFILE
� WSBIND
� PIPELINE

The WEBSERVICE definition has a fourth attribute, VALIDATION, which
specifies whether full validation of SOAP messages against the corresponding
schema in the Web service description should be performed at run time.
Validation of a SOAP message against a schema incurs considerable processing
overhead.

You should normally specify VALIDATION(NO) in a production environment.
VALIDATION(YES) ensures that all SOAP messages that are sent and received
are valid XML regarding the WSDL. If VALIDATION(NO) is specified, sufficient
validation is performed to ensure that the message contains well-formed XML,
but more subtle errors might not be detected by CICS. Web Service validation is
discussed in 10.8.4, “Runtime SOAP validation” on page 265.

Figure 2-4 on page 53 illustrates the function of the WEBSERVICE resource
definition.
52 Application Development for IBM CICS Web Services

Figure 2-4 Function of WEBSERVICE resource

You can create WEBSERVICE resource definitions in the following ways:

� Using the Web Services Assistant (using a PIPELINE SCAN)
� Using the CEDA transaction
� Using the DFHCSDUP batch utility
� Using CICSPlex SM Business Application Services
� Using the EXEC CICS CREATE WEBSERVICE command
� Using the CICS Explorer to update the CICS System Definition file (CSD) to

create a CICSPlex SM Business Application Services (BAS) resource, or to
create a resource inside a CICS Bundle

When you install a PIPELINE resource, or when you issue a PERFORM
PIPELINE SCAN command (using CEMT or the CICS system programming
interface or the CICS Explorer), CICS scans the directory specified in the
PIPELINE’s WSDIR attribute (the pickup directory), and creates URIMAP and
WEBSERVICE resources dynamically. For each Web service binding file in the
directory (that is, for each file with the .wsbind suffix), CICS installs a
WEBSERVICE and a URIMAP if one does not already exist. Existing resources

pipeline
config

WSBIND

WSDL

zFS

CICS TS

CPIH

Pipeline

data mapping

Business
Logic

handlers

WEBSERVICE

Language
structure

CICS Web services
assistant

handlers

handlers
 Chapter 2. CICS TS implementation of Web services 53

are replaced if the information in the binding file is newer than the existing
resources.

The CEMT INQUIRE WEBSERVICE command is used to obtain information
about a WEBSERVICE resource definition. The data that is returned depends
slightly on the type of Web service. Table 2-1 shows the types and the data
returned for each.

Table 2-1 CEMT INQUIRE WEBSERVICE command output

2.5.4 The Web service binding file (WSBind)

The WSBind file is a key artifact in the CICS Web services infrastructure as it
bridges the gap between the application development tasks, and the CICS
runtime. It contains the transformation instructions that CICS uses for
transforming application data to and from XML. It also contains deployment
information used for creating the WEBSERVICE and URIMAP resources.

Attributes Service Provider Service
Requester to a
local service

Service
Requester to a
remote service

WSDLFILE Yes Yes Yes

WSBIND Yes Yes Yes

PIPELINE Yes Yes Yes

URIMAP Yes, if dynamically
installed

Empty Empty

BINDING Yes Yes Yes

ENDPOINT Empty Empty Yes

PROGRAM Yes Yes Empty

PGMINTERFACE Yes Yes No

CONTAINER Yes, if channel
used

Yes, if channel
used

No

VALIDATIONST Yes Yes Yes

LASTMODTIME Yes Yes Yes

STATE Yes Yes Yes
54 Application Development for IBM CICS Web Services

The connection between the tooling and the runtime, apart from the language
structures that the application programs use, is the WSBind file, as shown in
Figure 2-5.

Figure 2-5 WSBind file as the central artifact in CICS Web services

The application developer is usually responsible for creating the WSBind file, but
it is typically the system programmer who will deploy it into the CICS region.

Application development: CICS TS Web service

§ CICS provides the necessary tools and runtime

• WSDL can be generated from a utility
• a bottom up approach from an existing application

• Utility can generate language structures from WSDL
• a top down approach to a new CICS service provider programs
• for CICS service requester programs

• CICS provides XML - language structure (COMMAREA) conversion

IDE tools WSDL

Conversionpipeline
Service

Requester

• COBOL
• PL/I
• C/C++

CICS Web service

CICS

binding
file

lang.
structure

CICS
Web services

assistant

business
logic

top down

bottom down
 Chapter 2. CICS TS implementation of Web services 55

Figure 2-6 shows CICS usage of the WSBind file as part of the data mapping
process within provider and requester mode pipelines.

Figure 2-6 CICS usage of the WSBind file

2.5.5 SOAPFAULT commands

Provider mode Web services that are attached using a Channel have the option
of sending a SOAP Fault message in response to the requester instead of
sending the normal response message. There are three API commands to
manage SOAP faults, though for most applications the first one is sufficient:

� EXEC CICS SOAPFAULT CREATE

Use this command to create a SOAP fault. If a SOAP fault already exists in
the context of the SOAP message that is being processed by the message
handler, the existing fault is overwritten. When the application returns control
to CICS the SOAP Fault message will be generated and sent as a response
to the requester.

 CICS as a service provider

 CICS as a service requester

CICS usage of the WSBind file

business
logic

pipeline
Service

Requester

CICS

Data mapping

WSDL

CICS Web services

business
logic

pipeline Service

Provider

CICS

Data mapping

WSDL

CICS Web services

HLL data structureSOAP body

SOAP bodyHLL data structure

WSBind
file

WEBSERVICE
resource

WEBSERVICE
resource

WSBind
file
56 Application Development for IBM CICS Web Services

� EXEC CICS SOAPFAULT ADD

Use this command to add either of the following items to a SOAPFAULT
object that was created with an earlier SOAPFAULT CREATE command:

– A subcode

– A fault string for a particular national language

If the fault already contains a fault string for the language, then this
command replaces the fault string for that language. In SOAP 1.1, only the
fault string for the original language is used.

� EXEC CICS SOAPFAULT DELETE

Use this command to delete a SOAPFAULT object that was created with an
earlier SOAPFAULT CREATE command.

These commands require information that is held in containers on the channel of
the CICS supplied SOAP message handler. To use these commands, you must
have access to the channel. Only the following types of programs have this
access:

� Programs that are invoked directly from a CICS supplied SOAP message
handler, including SOAP header processing programs

� Programs deployed with the Web Services Assistant that have a channel
interface. Programs with a COMMAREA interface do not have access to the
channel.

Many of the options on the SOAPFAULT CREATE and SOAPFAULT ADD
commands apply to SOAP 1.1 and SOAP 1.2 faults, although their behavior is
slightly different for each level of SOAP. Other options apply to one SOAP level or
the other, but not to both, and if you specify any of them when the message uses
a different level of SOAP, the command will raise an INVREQ condition. To help
determine which SOAP level applies to the message, container
DFHWS-SOAPLEVEL contains a binary fullword with one of the following values:

� 1: The request or response is a SOAP 1.1 message.
� 2: The request or response is a SOAP 1.2 message.
� 10: The request or response is not a SOAP message.

2.5.6 Mapping levels

The Web Services Assistant has evolved over time. Many new capabilities have
been added to the Assistant beyond the original capabilities. In some cases
those enhancements involve changes to the application bindings shared
between CICS and the applications. Where this happens there’s a version
number, called the mapping level, that is used to allow the application developer
to select precisely which version of the mapping rules to apply.
 Chapter 2. CICS TS implementation of Web services 57

It is suggested that you use the most recent mapping level that is available to
you.

The options are:

� Mapping Level 1.0

This was the initial level of capability introduced with CICS TS V3.1.

� Mapping Level 1.1

This level was introduced in APAR PK15904 for CICS TS V3.1. This APAR
introduced a number of changes, including support for xsd:list and xsd:union
data types in the XML schema language.

� Mapping Level 1.2

This level was introduced in APAR PK23547 for CICS TS V3.1. This APAR
extended the support for COBOL data types and for supporting variable
length data values.

� Mapping Level 2.0

This was the initial level of capability introduced with CICS TS V3.2. It is
similar to mapping level 1.2.

� Mapping Level 2.1

This level was introduced in APAR PK59794 for CICS TS V3.2. It adds
support for xsd:any and xsd:anyType.

� Mapping Level 2.2

This level was introduced in APAR PK69738 for CICS TS V3.2. It adds
support for substitution groups and abstract data types.

� Mapping Level 3.0

This is the initial level of capability introduced for CICS TS V4.1. It adds
support for timestamps and truncated data structures.

� Mapping Level 4.0

This is the initial level of capability introduced for CICS TS V5.2. It adds
support for the OCCURS DEPENDING ON structure in COBOL, as well as
support for data encoded in UTF-16 Unicode.

For a more complete list of capabilities added at each new mapping level, refer to
the IBM Knowledge Center or the CICS Information Center. Some additional
information is supplied in the following sections.
58 Application Development for IBM CICS Web Services

2.5.7 Enhancements with CICS TS V3.2

In this section, we briefly describe some of the changes to the Web services
support in CICS TS V3.2:

� Web Services Assistant

– Under CICS TS 3.2 several new mapping levels are introduced. In the
previous section we briefly described some of the new capabilities. It is
strongly recommended that applications are developed at the most recent
mapping level possible. For CICS TS V3.2 that is currently mapping level
2.2.

– At mapping level 2.1 DFHWS2LS adds ‘pass-through’ support for xsd:any,
and in-line support for variably repeating data.

• Pass-through support for xsd:any

This provides a mechanism at mapping level 2.1 by which WSDL
documents that make use of the xsd:any and xsd:anyType constructs
can be supported by DFHWS2LS. There is an example of this
technique in the chapter on ‘Hints & Tips’.

• In-line support for variably recurring data

A new parameter has been added to DFHWS2LS at mapping level 2.1,
which allows simple variably recurring data to be handled in arrays.
This can significantly simplify the application programming model
involved. There is an example of this technique in the chapter on ‘Hints
& Tips’.

– At mapping level 2.2 DFHWS2LS adds support for enumerated content
models. This includes improved support for xsd:choice constructs,
together with support for abstract data types and substitution groups.
There is an example of this technique in the chapter on ‘Hints & Tips’.

� CICS TS V3.2 support for external standards

– WSDL 2.0 support

WSDL 2.0 is a newer, updated version of the WSDL specification.
However, it is not widely implemented in Web services implementations
from other vendors. DFHLS2WS can generate WSDL 2.0 documents, and
DFHWS2LS can parse them, but until there is wider support for WSDL 2.0
from other vendors it is advisable to continue to use WSDL 1.1.
 Chapter 2. CICS TS implementation of Web services 59

– Support for binary attachments (MTOM/XOP)

This is a wire-level optimization that the system programmer might
implement in the PIPELINE configuration file that will result in improved
efficiency in moving binary data that is embedded within SOAP messages
compared to normal techniques.

Any Web service that involves xsd:base64Binary data types is eligible for
this optimization. If they are enabled, the optimizations happen
automatically within the pipeline without application changes.
An example of the use of binary data is included in Chapter 10, “Hints and
tips” on page 225.

– CICS TS 3.2 support of WS-TRUST

This is a special purpose specification that can be used in combination
with WS-Security to use exotic security tokens with CICS Web services.
The security infrastructure for Web services is not exposed to the CICS
applications, so this is not something most application developers will
need to know about. However, the following discussion might be of interest
for readers who are familiar with the details of WS-Security.

The Web Services Trust Language specification enhances Web Services
Security further by providing a framework for requesting and issuing
security tokens, and managing trust relationships between Web service
requesters and providers.

This extension to the authentication of SOAP messages enables Web
services to validate and exchange security tokens of different types using
a trusted third party. This third party is called a Security Token Service
(STS).

CICS support for securing Web services has been enhanced to include an
implementation of the Web Services Trust Language (or WS-Trust)
specification. CICS can now interoperate with a Security Token Service
(STS), such as IBM Tivoli® Federated Identity Manager, to validate and
issue security tokens in Web services. This enables CICS to send and
receive messages that contain a wide variety of security tokens, such as
SAML assertions and Kerberos tokens, to interoperate securely with other
Web services.

You can configure the CICS supplied security handler to define how CICS
should interact with an STS. The <wsse_handler> element in the pipeline
configuration file includes additional elements and attributes to configure
this support. CICS can either validate or exchange the first security token
or the first security token of a specific type in the message header. If you
want more sophisticated processing to take place, CICS provides a
60 Application Development for IBM CICS Web Services

separate Trust client interface that you can use in a custom message
handler. You can use the Trust client instead of the security handler or in
addition to it.

2.5.8 Additional enhancements with CICS TS 4.1

In this section, we briefly describe some of the changes to the Web services
support introduced with CICS TS V4.1:

� CICS generic XML mapping

Under CICS TS V4.1, you can use the CICS XML transformation capability
programmatically from within your applications. The CICS XML Assistant is
provided to perform the equivalent function of the CICS Web Services
Assistant. This utility helps you to create the required artifacts to transform
application binary data to XML or transform XML to application binary data.

The XML assistant can create the artifacts in a bundle directory or another
specified location on z/OS UNIX.

– Create the mappings using the CICS XML assistant.

– Create the resources in CICS to make the mappings available.

– Create or update an application program to use the TRANSFORM API
command. The application must use a channel-based interface.

– Run the application to test that the transformation works as you intended.
You can turn on validation to check that CICS converts the data correctly.

� CICS V4.1 mapping improvements

CICS TS V4.1 supports mapping level 3.0 which in turn adds support for:

– Timestamps. xsd:dateTime fields can be mapped as CICS ABSTIME
fields.

– Truncated data structures. If an application provides less data to CICS
than was expected, CICS can be configured to tolerate this.

– Bottom-up Web service enablement of sophisticated channel-based
applications in DFHLS2WS. You can provide an XML channel description
file that tells CICS about the set of containers expected by the application.
The channel description file identifies each of the containers used by the
application, together with an indication of whether they are optional or
required, and whether they have text, binary, or structured content.
 Chapter 2. CICS TS implementation of Web services 61

� CICS Web Services Addressing in CICS TS V4.1

Figure 2-7 is an example of a Web service that used WS-Addressing to route
the reply message to a network address other than the one used by the
requester.

Figure 2-7 A Web service that uses WS-Addressing to route the reply message to a
network address other than the one used by the requester

CICS TS V4.1 implements the World Wide Web Consortium (W3C) Web
Services Addressing (WS-Addressing) specifications. This family of
specifications provides transport-neutral mechanisms to address Web services
and facilitate end-to-end addressing.

WS-Addressing can be used to construct applications with loosely coupled
semantics and exotic message exchange patterns.

CICS implements both the W3C WS-Addressing 1.0 Core and W3C
WS-Addressing 1.0 SOAP Binding specifications that are identified by the
http://www.w3.org/2005/08/addressing namespace.

For interoperability, CICS uses the W3C WS-Addressing Submission
specification with the http://schemas.xmlsoap.org/ws/2004/08/addressing
namespace.

CICS Transaction Server

© 2014 IBM Corporation1 XML and Web Services

CICS Web Services Addressing…

CICS2

CICS1

response

request
request

response

Reply To:
endpoint CICS2

to:
endpoint CICS1

to:
endpoint CICS2
62 Application Development for IBM CICS Web Services

2.5.9 Use of WS-Addressing in CICS TS V4.1 applications

WS-Addressing is not something most applications will need to be concerned
with. Its most common use is as a middleware service used when servers, such
as WebSphere Application Server and CICS, communicate with each other.

However, there are advanced scenarios in which WS-Addressing aware
applications can participate in the decisions made by the middleware. There are
new EXEC CICS API commands available in CICS TS V4.1 to facilitate these
scenarios. Developers who want to know more about the EXEC CICS
WSACONTEXT and EXEC CICS WSAEPR commands are advised to review the
CICS Information Center for details.

2.5.10 AXIS2 Provider PIPELINEs in CICS TS V4.2

CICS Transaction Server V4.2 introduced pipelines where the conversion of data
between SOAP and language structures is performed by a JVM server running
AXIS2. For large and complex Web services, this offers the potential of saving
General Purpose (GP) CPU by offloading XML parsing to a zAAP speciality
processor.

2.5.11 CICS Transaction Server V5.1 makes CONTAINERs easier

CICS Transaction Server for z/OS V5.1 delivers a set of capabilities that position
CICS users for the next era in technology by moving them towards a service
delivery platform for cloud computing as well as improved support for Secure
Sockets Layer (SSL) and password phrases.

The new option, BYTEOFFSET, on the GET CONTAINER command, and the
new option, APPEND, on the PUT CONTAINER can be used to simplify the use
of repeated content in web services. This is covered in greater detail in CICS
Transaction Server V5R2 Channels and Containers, SG24-7227-01.

2.5.12 Further enhancements in CICS TS V5.2

CICS Transaction Server V5.2 introduced Mapping Level 4.0, with support for
COBOL OCCURS DEPENDING ON, and UTF-16 data. It also added support for
Web Service resources in CICS Bundles, which is discussed further in
Chapter 9, “Service Component Architecture and CICS Cloud in CICS TS V5.2”
on page 213. Support for Web services using JavaScript Object Notation
(JSON), first available in the CICS TS Feature Pack for Mobile Extensions, is now
available as part of CICS. JSON support is covered in Implementing IBM CICS
JSON Web Services for Mobile Applications, SG24-8161.
 Chapter 2. CICS TS implementation of Web services 63

CICS Transaction Server V5.2 also supports WebSphere Liberty Profile V8.5.5,
which contains Java API for XML Web Services (JAX-WS), providing support for
SOAP web services.

2.5.13 Comparing releases of CICS Transaction Server

Table 2-2 summarizes some of the differences between the support for Web
services found in CICS TS V3.1, CICS TS V3.2, and CICS TS V4.1.

Table 2-2 Comparison of CICS Transaction Server across multiple releases Table 2-3 on page 65

Description CICS TS V3.1 CICS TS V3.2 CICS TS 4.1

MTOM Support No Yes Yes

SOAP version 1.1 and 1.2 1.1 and 1.2 1.1 and 1.2

Mapping level 1.0, 1.1, 1.2 1.0, 1.1, 1.2, 2.1, 2.2 1.0, 1.1, 1.2, 2.1, 2.2, 3.0

WSDL version 1.1 1.1, 2.0 1.1, 2.0

Pipeline container
names

� DFHWS-APPHANDLER
� DFHWS-BODY
� DFHWS-DATA
� DFHWS-OPERATION
� DFHWS-PIPELINE
� DFHWS-SOAPACTION
� DFHWS-SOAPLEVEL
� DFHWS-TRANID
� DFHWS-URI
� DFHWS-USERID
� DFHWS-WEBSERVICE
� DFHWS-XMLNS
� DFHERROR
� DFHFUNCTION
� DFHHEADER
� DFHNORESPONSE
� DFHREQUEST
� DFHRESPONSE
� DFH-HANDLERPLIST
� DFH-SERVICEPLIST

Additional Containers
� DFHWS-CID-DOMAIN
� DFHWS-MTOM-IN
� DFHWS-MTOM-OUT
� DFHWS-XOP-IN
� DFHWS-XOP-OUT
� DFHWS-MEP
� DFHWS-CTX

Additional Containers
� DFH-XML-ERRORMSG

CICS resource
definitions

� PIPELINE
� URIMAP
� WEBSERVICE

� PIPELINE
� URIMAP
� WEBSERVICE

� PIPELINE
� URIMAP
� WEBSERVICE
64 Application Development for IBM CICS Web Services

Table 2-3 summarizes some of the differences between the support for Web
services found in CICS TS V4.2, CICS TS V5.1, and CICS TS V5.2.

Table 2-3 Comparison of CICS Transaction Server across multiple releases

CICS API and SPI � CREATE PIPELINE
� CREATE URIMAP
� CREATE

WEBSERVICE
� INQUIRE

WEBSERVICE
� INVOKE

WEBSERVICE
� PERFORM PIPELINE

SCAN
� SOAPFAULT ADD
� SOAPFAULT CREATE
� SOAPFAULT DELETE

� INQ PIPELINE
– New information

returned
� SET PIPELINE

– RESPWAIT might
be changed

� INQ WEBSERVICE
– New information

returned

� WSAEPR CREATE
� WSACONTEXT

BUILD
� WSACONTEXT GET
� WSACONTEXT

DELETE
� SET / INQ

XMLTRANSFORM
� INVOKE SERVICE

XML parsing CICS WSBind file
generated by either CICS
Web Services Assistant or
RDz

CICS WSBind file
generated by either CICS
Web Services Assistant or
RDz

CICS WSBind file
generated by either CICS
Web Services Assistant or
RDz, and CICS
XMLTRANSFORM
resource

Description CICS TS V3.1 CICS TS V3.2 CICS TS 4.1

Description CICS TS V4.2 and V5.1 CICS TS V5.2

Mapping Level 1.0, 1.1, 1.2, 2.1, 2.2, 3.0 1.0, 1.1, 1.2, 2.1, 2.2, 3.0, 4.0

DFHTRANSACTION Channel No Yes

Java support for Web Services � AXIS2 JVM server can
process wsbind files.

� AXIS2 JVMServer can
process wsbind files.

� WebSphere Liberty Profile
supports JAX-WS Web
Services.

JSON Web Service support Must install CICS TS Feature
Pack for Mobile Extensions.

Yes, as part of base product.

Web Service Assistant supports
UTF-16?

No Yes

Password Phrase support? Yes, up to 100 character
password phrases supported by
WS-Security.

Yes, up to 100 character
password phrases supported by
WS-Security.
 Chapter 2. CICS TS implementation of Web services 65

SAML Assertion support? Web Service provider pipelines
can validate inbound SAML
Assertions if CICS Transaction
Server for z/OS Feature Pack for
Security Token Extensions V1.0
is installed.

Inbound SAML Assertions can
be validated in provider pipelines.
Web service applications in CICS
can then modify and re-sign
SAML Assertions for onward
transmission as Web service
requesters.

Kerberos Ticket support? No Inbound Kerberos Tickets can be
validated using EXEC CICS
VERIFY TOKEN or the IBM
supplied pipeline handler.

Description CICS TS V4.2 and V5.1 CICS TS V5.2
66 Application Development for IBM CICS Web Services

Chapter 3. Development approaches

This chapter looks at the application interface and discusses three alternative
approaches to developing an application. We also consider the advantages of
Rational Developer for System z (RDz) for developing CICS Web services, and
compare typical high-function, highly coupled approaches with the Web services
style.

3

© Copyright IBM Corp. 2015. All rights reserved. 67

3.1 Introduction
There are three major application development scenarios involving CICS Web
services applications:

� We have an existing application that we want to expose as a Web service.

� We want to develop a new application and make it available as a Web service.

� We want to invoke an existing Web service, probably hosted on another
platform.

In all three of these scenarios, we have either an existing application or a Web
Services Description Language (WSDL) description of a Web service.

In the first scenario, we want to expose an existing application as a Web service.
We usually use an approach referred to as bottom-up Web service enablement.
(See 3.2, “Bottom-up approach” on page 69.) We start with the language
structures that describe the commarea for the existing application. From them,
we generate the WSDL and other infrastructure elements until we have a full
fledged, published Web service. This approach involves the use of either
DFHLS2WS or Rational Developer for System z (RDz).

In the second scenario, we want to host a new Web service in CICS. We usually
use an approach referred to as top-down Web service enablement. (See 3.3,
“Top-down approach” on page 71.) We start with the WSDL description of the
service. From that, we generate a set of language structures from which a new
application can be constructed. This approach involves the use of either
DFHWS2LS or RDz.

In the third scenario, we want to invoke a remote Web service from CICS. We
usually use the top-down approach in this scenario too, and generate language
structures from the WSDL description of the remote Web service. This approach
involves the use of either DFHWS2LS or RDz.

There is a special variation of the first scenario in which there is both an existing
application in CICS, an existing WSDL description of a service, and a
requirement to match the existing application to the existing WSDL. The
approach used is referred to as meet-in-the-middle. (See 3.4,
“Meet-in-the-middle approach” on page 72.) One common scenario where this
approach is used is where bottom-up enablement of an existing application is
performed, followed by customization of the resultant WSDL. After which it is
necessary to match the existing application to the new WSDL. This method often
involves the use of a wrapper or driver program.

See Figure 3-1 on page 69 for a diagram showing the different approaches.
68 Application Development for IBM CICS Web Services

In some advanced scenarios, it might be desirable to write applications that are
XML-aware and opt-out of the CICS supplied and RDz-supplied Web services
tooling. In this case, you can write applications that interface directly with the
CICS pipeline.

Figure 3-1 Development approaches

In summary, the three approaches can be mapped as shown in Table 3-1.

Table 3-1 The different approaches

3.2 Bottom-up approach
This approach is usually the starting point when we have an existing CICS
application that is already in production and has either a COMMAREA or
Channel-based interface. See Figure 3-2 on page 70. We now want to expose
this application to remote client applications using CICS Web services support.

Approach Application WSDL Type

Bottom-up Existing New Service provider

Top-down New Existing Service provider

Top-down New Existing Service requester

Meet-in-the-middle Existing Existing Service provider

Development approaches

 “Top down” approach

• create a service from an existing WSDL
– create a new Web service application

> better interfaces for the requester

> development cost

 “Bottom up” approach

• create a WSDL from an existing application
– expose the application as a Web service

> quicker implementation of the service

> more complex interface for the requester

 “Meet in the middle” approach

• create a WSDL from an existing application,

modify the WSDL and create a wrapper from

the modified WSDL
– indirectly expose the application as a Web service

> more suitable interface for the requester

> minimum development

Service

WSDL

 location
 protocol
 operation
 message format

Service

WSDL

 location
 protocol
 operation
 message format

Service

WSDL

 location
 protocol
 operation
 message format

Wrapper
 Chapter 3. Development approaches 69

We can either use DFHLS2WS to do this, or RDz.

Figure 3-2 Bottom-up approach

Typically the process works this way:

1. Identify the language structures that document the input and output
COMMAREA formats for the application:

– If DFHLS2WS is used, ensure that the language structures are available
as separate copybooks in a partitioned data set. Also, ensure that the
language structures restrict themselves to constructs that are supported
by DFHLS2WS. This might involve creating simplified versions of the
copybooks if the originals are complicated.

– If using RDz rather than DFHLS2WS, there is no requirement to separate
the language structures out into separate copybooks, and the range of
supported language constructs is broader.

2. Generate the WSDL file and the WSBind file for the Web service using either
DFHLS2WS or RDz. You must specify the name of the existing PROGRAM
resource in CICS and the URI under which you want the Web service to be
exposed as input parameters.

3. Identify a PIPELINE into which the WSBind file can be deployed. For unit
testing purposes, it is common to have a shared PIPELINE in the CICS
region. The PIPELINE must be a provider mode PIPELINE. Cause the
WSBind file to be placed in the WSDIR for the PIPELINE. This can be done
by manually copying the file to the relevant destination on the UNIX file
system, or by using RDz.

CICS Web services assistant

 DFHLS2WS (Language structure to Web service)
• For a bottom up approach development
• Input

– Programming language data structure
> In COBOL or PL/I or C or C++
> Interface to the program can be COMMAREA or CHANNEL

– Control statements (SYSIN)

• Output
– Web services binding file
– Web services description (WSDL)

Service definition
(WSDL)

generate

DFHLS2WS

WSBind
file

language
structure

input COBOL
PL/I

C/C++
70 Application Development for IBM CICS Web Services

4. Cause a PIPELINE SCAN command to be issued that will install a
WEBSERVICE and URIMAP resource for you. This can be done using the
CEMT transaction in CICS, or by allowing RDz to install the artifacts on your
behalf.

3.3 Top-down approach
This approach is usually the starting point when we have an existing WSDL
document for a Web service, and we want to either implement or invoke the Web
service within CICS.

We can either use DFHWS2LS to do this, or RDz, as shown in Figure 3-3.

Figure 3-3 Top-down approach

Typically the process works this way:

1. Identify the WSDL that describes the Web service. If using DFHWS2LS, store
a copy of the WSDL in a directory in the UNIX file system.

2. Generate the language structures and WSBind file for the new application
from the WSDL using either DFHWS2LS or RDz. If the service is being
implemented in CICS, you will have to specify the name of the new
PROGRAM resource and the URI under which you want the Web service to
be exposed as input parameters. If the service is being invoked from CICS, do
not specify the name of a PROGRAM resource.

CICS Web services assistant

 DFHWS2LS (Web service to language structure)
• For a top down approach and service requester development
• Input

– Web services description (WSDL)

• Output
– Web services binding file
– high level language data structure

> In COBOL or PL/I or C or C++
> Interface to the program can be COMMAREA or CHANNEL

Service definition
(WSDL)

generate

DFHWS2LS

WSBind
file

language
structure

input COBOL
PL/I

C/C++
 Chapter 3. Development approaches 71

3. Identify a PIPELINE into which the WSBind file can be deployed. For unit
testing purposes it is common to have a shared PIPELINE in the CICS region.
The PIPELINE must be of the correct type. If the Web service is being
implemented in CICS, it must be a provider mode PIPELINE. If the Web
service is being invoked from CICS, it must be a requester mode PIPELINE.
Cause the WSBind file to be placed in the WSDIR for the PIPELINE. This can
be done by manually copying the file to the relevant destination on the UNIX
file system, or by using RDz.

4. Cause a PIPELINE SCAN command to be issued, which will install a
WEBSERVICE resource and, in provider mode, a URIMAP resource for you.
This can be done using the CEMT transaction in CICS, or by allowing RDz to
install the artifacts on your behalf.

5. Implement the new application using the generated language structures.

6. Test and deploy the Web service.

3.4 Meet-in-the-middle approach
This third approach can be used in more complicated scenarios. For example:

� If an existing application’s COMMAREA interface has fields that are
unsupported by DFHLS2WS

� If the programming language used is not supported by DFHLS2WS (for
example an assembler program)

� If WSDL generated by DFHLS2WS is modified to make it more fully address a
business requirement

� If an industry standard WSDL document is to be implemented in CICS using
existing applications that are known to satisfy the requirements

This is a hybrid technique and often involves the use of a wrapper program that
maps between the data format generated by DFHWS2LS (or RDz) and the
wanted data format used by the existing application. In some cases, the existing
application can be modified to use the language structures generated by
DFHWS2LS (or RDz). See Figure 3-4 on page 73.
72 Application Development for IBM CICS Web Services

Figure 3-4 Meet-in-the-middle approach

The process flow for this approach is as follows:

1. Start with the WSDL. In some scenarios, this might have been generated by
DFHLS2WS (or RDz) following the bottom-up approach described in 3.2,
“Bottom-up approach” on page 69 (perhaps using a simplified version of the
language structures). In some scenarios generated WSDL might have been
modified so that it is no longer suitable for use with the original application.

2. Generate new language structures and a WSBind file from the WSDL using
DFHWS2LS or RDz.

3. Create a new application that expects input in the form described by the new
language structures and which LINKs to the existing PROGRAM using data in
the form described by the old language structures.

4. Deploy and test the artifacts as previously described.

RDz contains a set of tools that can simplify the process of performing
meet-in-the-middle application development. It can be used to match an existing
application to an existing WSDL without writing new application code.

Meet In The Middle

 If you have an existing application and…
• an existing WSDL is to be used as interface to the client

– e.g. WSDL defined from a requesters perspective

• only want to expose fields that are necessary to the requester
– existing language structure may be complex, contain unnecessary fields for the requester
– use an interface more suitable for the requester

• the existing language structure uses data types not supported by the utility
– wrapper program converts the data type to a supported data type

• the existing application is written in a language not supported by the utility
– Assembler or Java programs

• etc.

existing
business

logic

Wrapper

program
pipeline conversion

binding
file

existing
commarea
structure

new
language
structure

CICS Web service

CICS
Web services

assistant new lang.
structure

•COBOL
•PL/I
•C/C++

WSDL
 Chapter 3. Development approaches 73

3.5 The advantages of using Rational Developer for
System z

Rational Developer for System z (RDz) contains many tools that simplify the
application development exercise for CICS Web services.

For bottom-up development RDz supports two different technologies for
transforming SOAP data into application data:

� Interpreted conversion
� Compiled conversion

For top-down development, it only has Interpreted conversion.

It also has additional capabilities, such as the ability to deploy generated artifacts
to a unit testing CICS region, or the ability to view the contents of a WSBind file
and to change the deployment information within that file. It can validate that
WSDL documents are standards-compliant, and it can be used to test Web
services deployed in CICS.

The Interpretive XML Conversion (see Figure 3-5 on page 75):

� Provides a wizard that invokes the CICS Web Services Assistant Java
classes “under the covers” within RDz to produce the WSDL and WSBind file

� Uses the same CICS supplied SOAP transformation technology as used by
DFHLS2WS and DFHWS2LS

� Provides additional options beyond the capabilities of the Web Services
Assistants, such as the ability to identify language structures from anywhere
within a COBOL program, or the ability to suppress undesirable fields from
the WSDL interface during bottom-up enablement

� Generates source code for a skeleton service implementation for top-down
provider mode scenarios

� Generates source code for a skeleton program containing the Web service
INVOKE command for top-down requester mode scenarios
74 Application Development for IBM CICS Web Services

Figure 3-5 RDz interpretive XML conversion

The Compiled XML Conversion (see Figure 3-6 on page 76):

� Provides a similar wizard to the Interpreted conversion that also generates a
WSBind file and WSDL.

� Generates the source code for a COBOL converter program that implements
the XML transformations. This converter program can make use of the z/OS
XML System Services XML parser.

� Supports a broader range of COBOL data structures than are supported by
DFHLS2WS, including OCCURS DEPENDING ON.

� Allows you to modify the generated code for local requirements.

� Provides the same additional capabilities available with the Interpreted
conversions (advanced input selection and field suppression), along with
further options to control the mappings on a field by field basis.

� Requires the generated converter program to be compiled and deployed to
the CICS environment.

RDz “Interpretive” XML Conversion

WSDL

COBOL
source

import

XML Enablement
tool

Web Services
wizard

IDE tools

generate

create

xsd

pipeline
Service

Requester DFHPITP

WSDL

CICS Web services

HLL data structureSOAP body

WSBind
file

WEBSERVICE
resource

CICS

 Invokes the CICS Web Services Assistant

– Same Java classes as used on mainframe supplied with CICS

– Graphical user interface

– WSBind and WSDL file generation is performed on your workstation

business
logic

business
logic
 Chapter 3. Development approaches 75

Figure 3-6 RDz compiled XML conversion

3.6 Web services versus CICS TCP/IP connectivity
It is worth looking at the key differences between CICS Web services and the
other ways for interacting with CICS over TCP/IP. The main alternative options
are:

� CICS Web Support (the EXEC CICS WEB api)
� CICS Transaction Gateway
� z/OS Communications Server IP CICS Socket Interface
� Link3270 Bridge

All of these components involve a tightly coupled approach. The CICS programs
might have to be Web or Sockets aware. The client programs often require
detailed knowledge of the commarea (or equivalent) interface with CICS, or are
limited to a browser-like interface to the CICS application.

This contrasts with the whole philosophy of Web services where, due to the
published WSDL, the client application can determine the required interface and
is totally unaware of the language and environment of the runtime executable.

Most developers who write Web service client applications do not know or care
that the target service is implemented in COBOL or hosted in CICS.

RDz “Compiled” XML Conversion

WSDL

import

XML Enablement
tool

Web Services
wizardIDE tools

generate

create

xsd

pipeline
Service

Requester DFHPITP

WSDL

CICS Web services

HLL data structureSOAP body

WSBind
file

WEBSERVICE
resource

Input/output
converter

CICS

 Generates COBOL programs that have to be compiled

– Graphical user interface

– WSBind and WSDL file generation is performed on your workstation

– Use of a “Vendor Segment” in the WSBind file tells DFHPITP to use the converter
program instead of using its own conversion mechanism.

COBOL
source

business
logic

business
logic
76 Application Development for IBM CICS Web Services

3.7 Conclusions
This chapter looked at the application interface and discuss the current
approaches to developing a Web service, especially in light of the additional
CICS Transaction Server tools (such as the Web Services Assistant) that are
now available.

We looked at the bottom-up, top-down, and meet-in-the-middle approaches and
examined when each was most appropriate.

We also attempted to put into perspective how the Web services facilities in
CICS Transaction Server differed from the plethora of components in the CICS
Web Support area, the key difference being the concepts behind tightly coupled
and loosely coupled interfaces.
 Chapter 3. Development approaches 77

78 Application Development for IBM CICS Web Services

Chapter 4. CICS catalog manager
example application

The CICS catalog example application is a working COBOL application that is
designed to illustrate suggested practice when connecting CICS applications to
external clients and servers. This sample is available in CICS TS 5.2.

In this chapter, we review the steps that are required to install this in your CICS
environment.

4

© Copyright IBM Corp. 2015. All rights reserved. 79

4.1 Samples for use with CICS Web Services

There are several sample applications available to demonstrate the use of Web
services in CICS. In this chapter, we focus on the CICS Catalog Sample
Application, which is a sample distributed with CICS and that demonstrates many
different aspects of the CICS Web services infrastructure.

There are other samples available that also demonstrate CICS Web Services. In
particular, it is recommended that you review the samples in CICS SupportPac
CA1P, which is available at the following Web page:

http://www-01.ibm.com/support/docview.wss?uid=swg24020774

Chapter 6, “Exposing the Catalog Sample CICS application as a Web service” on
page 125 demonstrates how to expose the catalog sample application as a Web
service, and how to test it using the Web Services Explorer in Rational Developer
for System z (RDz) (or the no-charge Eclipse product).

4.2 Introduction to the catalog manager application

The Web services example application demonstrates how you can use SOAP
and Web services to make existing, CICS controlled information available to SOA
service requesters.

The catalog manager example application accesses an order catalog stored in a
VSAM file.

The example application is a catalog-management, purchase order style
application. It is a simple application that provides the functions to list details of
an item in the catalog and then select a quantity of that item to order. The catalog
is then updated to reflect the new stock levels. If selected in the application
configuration, an outbound Web service call is then made to an external dispatch
manager Web service. Figure 4-1 on page 81 shows an overview of this.

Before we can consider the Web service enablement of this sample, it is first
necessary to install the sample.
80 Application Development for IBM CICS Web Services

http://www-01.ibm.com/support/docview.wss?uid=swg24020774

Figure 4-1 Catalog sample overview

4.3 Installation and setup of the base application

The base application is an implementation of the catalog manager application
using a 3270 interface initiated by running transaction EGUI.

Before you can run the base application, you must define and populate two
VSAM data sets:

� EXMPCAT: The application configuration file
� EXMPCONF: The VSAM catalog data file

 Catalog manager
 (DFH0XCMN)

or

 Outbound WebService?
 N Y

or

 Datastore Type =
 STUB VSAM

Catalog data
(EXMPCAT) VSAM

CICS1
 BMS
 presentation manager
 (DFH0XGUI)

EGUI

Order dispatch endpoint
(DispatchOrderV6.ear)

 Outbound WebService URI

Order dispatch endpoint
 (DFH0XODE)

Websphere Application ServerCICS2

SOAP RequestSOAP Request

commareas

 Dummy
stock manager
 (DFH0XSSM)

 VSAM
 data handler
(DFH0XVDS)

 Dummy
dispatch manager
 (DFH0XSOD)

 Dispatch
 manager
(DFH0XWOD)

 Dummy
 data handler
(DFH0XSDS)

01STKO...01DSPO...01INQS...01INQC... 01ORDR...

01INQS...01INQC... 01ORDR...

CA-REQUEST-ID Explanation
01INQC Inquire catalog
01INQS Inquire single item
01ORDR Place order
01 DSPO Dispatch order
01STKO Notify stock mgr

 Pipeline
(EXPIPE02)

Item #
Description
Dept, Cost
in stock
on order

Mapsets
DFH0XS1
DFH0XS2

commareas
 Chapter 4. CICS catalog manager example application 81

You must also install two transaction definitions:

� ECFG
� EGUI

4.3.1 Creating the VSAM data sets

The SDFHINST data set, created when you installed CICS TS 4.1, supplies JCL
to create and load both the configuration file and the catalog data file.

The two members required are as follows:

� DFH$ECNF

This member contains the JCL required to generate the configuration data
set. The job contains two IDCAMS steps. The first defines the data set and
the second loads the configuration data for the application. The configuration
data can be changed after the data set is loaded by using the ECFG
transaction as shown by Figure 4-2.

� DFH$ECAT

This member contains the JCL required to generate the catalog data set. The
job contains two steps. The first defines the data set and the second loads the
data set with the all the items in the catalog.

Both of these jobs should be modified as necessary and run.

Figure 4-2 Catalog sample configuration

4.3.2 Defining the base application to CICS

The example application is supplied with a 3270 interface to customize and run
the application. This interface consists of two transactions (EGUI and ECFG)
which, along with the two files created earlier (EXMPCAT and EXMPCONF),
must be defined to CICS.

Configuring the sample application

ECFG

Config data
(EXMPCONF)

key (bytes 1-9)

EXMP-CONF
OUTBNDURL
VSAM-NAME
WS-SERVER

VSAM KSDS
CICS1

mapset
DFH0XS3

Configuration
manager

(DFH0XCFG)
82 Application Development for IBM CICS Web Services

The definitions for these (and related) resources can be found in CICS-supplied
CSD group DFH$EXBS. You will need to modify the definitions for the two files to
use the DSNAMEs that you have selected.

Copy the definitions into your own CSD group from the CICS-supplied group:
DFH$EXBS (for example, SOADEV). Your group should be similar to that in
Example 4-1

Example 4-1 Base application files

EXMPCAT FILE SOADEV
EXMPCONF FILE SOADEV

Ensure that both the files are defined with Add, BRowse, DELete, READ, and
UPDATE all set to Yes, as in Example 4-2.

Example 4-2 Catalog file attributes in CICS

OPERATIONS
 Add : Yes No | Yes
 BRowse : Yes No | Yes
 DELete : Yes No | Yes
 READ : Yes Yes | No
 UPDATE : Yes No | Yes

Now install this group in CICS using CEDA I G(SOADEV).

4.3.3 Configuring the example application

The base application includes a transaction (ECFG) that can be used to
configure the example application.

The configuration transaction uses mixed-case information. You must use a
terminal that can handle mixed-case information correctly. Use the CEOT
transaction (CEOT UCTRAN) to switch off uppercase translation.

The transaction enables you to specify several aspects of the example
application, including:

� The overall configuration of the application, such as the use of Web services

� The network addresses used by the Web services components of the
application

� The names of resources, such as the file used for the data store

� The names of programs used for each component of the application
 Chapter 4. CICS catalog manager example application 83

The configuration transaction enables you to replace CICS supplied components
of the example application with your own, without restarting the application.

Enter the transaction ECFG to start the configuration application. CICS displays
the window shown in Figure 4-3.

Figure 4-3 shows that the application is configured to use the VSAM datastore
and that we will not use an outbound Webservice at this stage (that is, the
dummy dispatch manager program DFH0XSOD program will be used).

Figure 4-3 Configure CICS Catalog sample application

A full description for each of the fields on the configuration window follows:

� Datastore Type

– Specify STUB if you want to use the Data Store Stub program.
– Specify VSAM if you want to use the VSAM data store program.

� Outbound WebService

– Specify YES if you want to use a remote Web service for your Order
Dispatch function (that is, if you want the catalog manager program to link
to the Order Dispatch Web service program).

– Specify NO if you want to use a stub program for your Order Dispatch
function (that is, if you want the catalog manager program to link to the
Order Dispatch Stub program).

� Catalog Manager

Specify the name of the catalog manager program. The program supplied
with the example application is DFH0XCMN.

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> NO YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> example.com:55559
 Outbound WebService URI ==>
http://example.com:55559/exampleApp/dispatchOrder
84 Application Development for IBM CICS Web Services

� Data Store Stub

If you specified STUB in the Datastore Type field, specify the name of the
Data Store Stub program. The program supplied with the example application
is DFH0XSDS.

� Data Store VSAM

If you specified VSAM in the Datastore Type field, specify the name of the
VSAM data store program. The program supplied with the example
application is DFH0XVDS.

� Order Dispatch Stub

If you specified NO in the Outbound WebService field, specify the name of the
Order Dispatch Stub program. The program supplied with the example
application is DFH0XSOD.

� Order Dispatch WebService

If you specified YES in the Outbound WebService field, specify the name of
the program that functions as a service requester. The program supplied with
the example application is DFH0XWOD.

� Stock Manager

Specify the name of the Stock Manager program. The program supplied with
the example application is DFH0XSSM.

� VSAM File Name

If you specified VSAM in the Datastore Type field, specify the name of the
CICS FILE definition. The name used in the example application as supplied
is EXMPCAT.

� Server Address and Port

If you are using the CICS Web service client, specify the IP address and port
of the system on which the example application is deployed as a Web service

� Outbound WebService URI

If you specified YES in the Outbound WebService field, specify the location of
the Web service that implements the dispatch order function. If you are using
the supplied CICS endpoint, set this to:

http://myserver:myport/exampleApp/dispatchOrder

In the above location, myserver and myport are your CICS server address
and port, respectively.
 Chapter 4. CICS catalog manager example application 85

4.3.4 Configuring code page support

As supplied, the example application uses two coded character sets. You must
configure your system to enable data conversion between the two character sets.

The CCSID description for the coded character sets used in the example
application are:

� 037 EBCDIC Group 1: USA, Canada (z/OS), Netherlands, Portugal, Brazil,
Australia, New Zealand)

� 1208 UTF-8 Level 3

You must have support for the following statements added to the conversion
image for your z/OS system:

� CONVERSION 037,1208;
� CONVERSION 1208,037;

To determine whether support is already there, issue the following command
from SDSF:

/DISPLAY UNI,ALL

This returns a display similar to Figure 4-4.

Figure 4-4 DISPLAY UNI, ALL command

If the conversion is not evident, this should be discussed with the z/OS system
programmer to have such support added. This will involve the system
programmer in generating a conversion image using the CUNMIUTL utility

RESPONSE=system
 CUN3000I 13.50.10 UNI DISPLAY 611
 ENVIRONMENT: CREATED 07/02/2005 AT 08.59.15
 MODIFIED 07/02/2005 AT 08.59.17
 IMAGE CREATED 10/22/2004 AT 10.43.15
 SERVICE: CHARACTER CASE NORMALIZATION COLLATION
 STORAGE: ACTIVE 440 PAGES
 LIMIT 51200 PAGES
 CASECONV: NORMAL
 NORMALIZE: DISABLED
 COLLATE: DISABLED
 CONVERSION: 00850-01047-ER 01047-00850-ER
 00037-01200-ER 01200-00037-ER
 00037-01208-ER 01208-00037-ER
 00437-01208-ER 01208-00437-ER
 00037-00367-ER 01252-00037-ER
86 Application Development for IBM CICS Web Services

program and enabling access to the image through the corresponding
SYS1.PARMLIB member updates. For more details about conversion images,
read z/OS Support for Unicode: Using Conversion Services, SA22-7649.

4.4 Web service support for the example application

After the base application has been implemented successfully, we extend it
further to use Web services. Web service support extends the example
application by providing:

� A Web client front end
� A CICS Web service client
� Two versions of a Web service endpoint for the order dispatcher component

4.4.1 The Web client front end

The Web client front end is a Web-based front end to the catalog manager
application, which can be used in place of the 3270 front end used in the base
application.

The Web client front end is supplied as an enterprise archive (EAR) file that can
be deployed into an application server such as WebSphere Application Server
Version 6 or later.

The supplied EAR file is ExampleAppClientV6.ear.

The Web client front end is configured to call the catalog manager application as
a Web service provider that has three endpoints in CICS. These correspond to
the three commarea interfaces that the catalog manager program (DFH0XCMN)
uses in the base application. This client replaces the BMS interface used in the
base application (DFH0XGUI).

The Web client front end can be seen in Figure 4-5 on page 88.
 Chapter 4. CICS catalog manager example application 87

Figure 4-5 Web service client enablement

4.4.2 The CICS Web service client front end

As shown in the Web client front end, we were able to replace the BMS
presentation layer in the base application with a client application that runs on an
application server such as WebSphere Application Server. This client application
makes a Web service call to one of three end points.

CICS also provides a CICS client application that runs within CICS and uses a
CICS INVOKE SERVICE call to call the catalog manager application.

This is invoked in CICS by running the transaction ECLI. The configuration
transaction ECFG must be used to change the server address and port field to
specify where the CICS Web service client will find the catalog manager service
endpoint.

 Client's calls
 (DFH0XECC)

PUT CONTAINER('DFHWS-DATA')
 CHANNEL('Service-Channel')
 FROM(data in input commarea)

INVOKE WEBSERVICE(........)
 CHANNEL('Service-Channel')
 OPERATION('DFH0XCMN')

CICS1

ECLI

 Dispatch
 manager
(DFH0XWOD)

01DSPO...

 VSAM
 data handler
(DFH0XVDS)

01INQS...01INQC... 01ORDR...

 Dummy stock
 manager
 (DFH0XSSM)

01STKO...

 SOAP
 Request

 Pipeline
(EXPIPE01)

CPIH
 BMS
 presentation manager
 (DFH0XCUI)

inquire
Catalog
Client.

commareas

Order dispatch endpoint
 (DFH0XODE)

CICS3

SOAP Request
 Pipeline
(EXPIPE02)

Catalog data
(EXMPCAT)VSAM

Item #
Description
Dept, Cost
in stock
on order

01INQS...01INQC... 01ORDR...

 Catalog manager
 (DFH0XCMN)

01INQS... 01ORDR...01INQC...

place
Order
Client.

inquire
Catalog
Client.

inquire
Single
Client.

W
E

B
S

E
R

V
IC

E
s

 Pipeline
(EXPIPE02)

CICS2

Websphere Application Server or RDz

Workstation

Browser
Servlet JSPs

ExampleAppClientV6.ear
Mapsets

DFH0XS1
DFH0XS2

Order dispatch endpoint
 (DispatchOrderV6.ear)

Websphere Application Server
88 Application Development for IBM CICS Web Services

This can also be seen in Figure 4-5 on page 88.

4.4.3 Order dispatch Web services endpoints

The catalog manager supplies two endpoints for the dispatch order component of
the application.

The first version of the dispatch order endpoint is supplied as an EAR file
(DispatchOrderV6.ear) that can be deployed to WebSphere Application Server.
Using this version of the order dispatch endpoint demonstrates how CICS can
call a Web Service that runs in an application server such as WebSphere
Application Server.

The external dispatch order endpoint will be called when the “Outbound
WebService?” field is set to Yes in the configuration file.

The second version of the dispatch order endpoint is supplied as a CICS service
provider application program (DFH0XODE). This will be called when the
“Outbound WebService?” field is set to No in the configuration file.

The dispatch order endpoints can be seen in Figure 4-5 on page 88.

4.4.4 Alternative Web service provider configuration

In this configuration, the Web browser client is connected to WebSphere
Application Server, in which ExampleAppWrapperClient.ear is deployed. In CICS,
three wrapper applications (for the inquire catalog, inquire single, and place order
functions) are deployed as service provider applications. They link to the base
application. This configuration can be seen in Figure 4-6 on page 90.
 Chapter 4. CICS catalog manager example application 89

Figure 4-6 Web service provider alternate configuration

4.5 Web services setup

Before you can run the Web service support for the example application, you
must create two zFS directories, and create and install several CICS resource
definitions.

CICS1

 Pipeline
(EXPIPE01)

CPIH

01ORDR...commareas 01INQC... 01INQS...

 Catalog manager
 (DFH0XCMN)

01DSPO...01INQS...01INQC... 01ORDR... 01STKO...

Dispatch manager
 (DFH0XWOD)

 Dummy stock manager
 (DFH0XSSM)

 Pipeline
(EXPIPE02)

SOAP Request
Catalog data
(EXMPCAT)VSAM
Item #r
Description
Dept, Cost
in stock
on order

Websphere Application Server or RDz

Workstation

Browser
ServletJSPs

ExampleAppWrapperClient.ear

SOAP Request

Container
DFHWS-DATA

VSAM data handler
 (DFH0XVDS)

 Wrapper for
 place order
(DFH0XPOW)

 Wrapper for
inquire catalog
(DFH0XICW)

 Wrapper for
inquire single
(DFH0XISW)

Order dispatch endpoint
 (DFH0XODE)

CICS2

Order dispatch endpoint
 (DispatchOrderV6.ear)

Websphere Application
Server
90 Application Development for IBM CICS Web Services

4.5.1 Creating the zFS directories

Web service support for the example application requires two directories to be
created in the zFS (zSeries file system):

� A shelf directory
� A pickup directory

Shelf
The shelf directory is used to store the Web service binding files that are
associated with WEBSERVICE resources. Each WEBSERVICE resource is, in
turn, associated with a PIPELINE. The shelf directory is managed by the
PIPELINE resource, and you should not modify its contents directly. Several
PIPELINES can use the same shelf directory, as CICS ensures a unique
directory structure beneath the shelf directory for each PIPELINE.

The example application uses /var/cicsts for the shelf directory.

Pickup
The pickup directory contains the Web service binding files associated with a
PIPELINE. When a PIPELINE is installed, or in response to a PERFORM
PIPELINE SCAN command, information in the binding files is used to
dynamically create the WEBSERVICE and URIMAP definitions associated with
the PIPELINE.

A pipeline will read an XML pipeline configuration file at install time. It is therefore
also useful to define a directory in which to store these.

4.5.2 Creating the PIPELINE definition

The complete definition of a pipeline consists of a PIPELINE resource and a
pipeline configuration file. The file is an XML file that contains the details of the
message handlers that will act on Web service requests and responses as they
pass through the pipeline.

The example application uses the CICS supplied SOAP 1.1 handler to deal with
the SOAP envelopes of inbound and outbound requests. CICS provides sample
pipeline configuration files that you can use in your service provider and service
requester.

More than one WEBSERVICE can share a single PIPELINE, so you only have to
define one pipeline for the inbound requests of the example application, but you
must define a second PIPELINE for the outbound requests because a single
 Chapter 4. CICS catalog manager example application 91

PIPELINE cannot be configured to be both a provider and requester pipeline at
the same time.

You can copy the PIPELINE definition from CICS supplied group DFH$EXWS.
You must update the following additional attributes (Figure 4-7 and Figure 4-8 on
page 93 show our details):

STATUS(Enabled)
CONFIGFILE(/usr/lpp/cicsts/cicsts52/samples/pipelines/basicsoap11provid
er.xml) SHELF(var/cicsts)
WSDIR(/usr/lpp/cicsts/cicsts/cicsts52/samples/Webservices/wsbind/provid
er/)

Figure 4-7 EXPIPE01 definition

Note: The zFS entries are case-sensitive and assume a default CICS zFS
installation root of /usr/lpp/cicsts.

OBJECT CHARACTERISTICS CICS RELEASE = 0690
 CEDA View PIpeline(EXPIPE01)
 PIpeline : EXPIPE01
 Group : CATMGR
 DEScription :
 STatus : Enabled Enabled | Disabled
 Respwait : Deft Default | 0-9999
 COnfigfile : /usr/lpp/cicsts/cicsts52/samples/pipelines/basicsoap11prov
 (Mixed Case) : ider.xml
 :
 :
 :
 SHelf : /var/cicsts/
 (Mixed Case) :
 :
 :
 :
 Wsdir : /usr/lpp/cicsts/cicsts52/samples/webservices/wsbind/provid
 (Mixed Case) : er
92 Application Development for IBM CICS Web Services

Figure 4-8 EXPIPE02 definition

4.5.3 Creating a TCPIPSERVICE

As the client connects to your Web services over an HTTP transport, you must
define a TCPIPSERVICE to receive the inbound HTTP traffic. Figure 4-9 on
page 94 shows our example:

1. Use the CEDA transaction to create a TCPIPSERVICE definition to handle
inbound HTTP requests.

2. Enter CEDA DEF TCPIPSERVICE(EXMPPPORT) G(EXAMPLE)

Alternatively, you can copy the TCPIPSERVICE definition from CICS supplied
group DFH$EXWS.

3. Enter the following additional attributes:

– URM(NONE) PORTNUMBER(port)

port is an unused port number in your CICS system.

– PROTOCOL(HTTP) TRANSACTION(CWXN)

Use the default values for all other attributes.

OBJECT CHARACTERISTICS CICS RELEASE = 0690
 CEDA View PIpeline(EXPIPE02)
 PIpeline : EXPIPE02
 Group : CATMGR
 DEScription :
 STatus : Enabled Enabled | Disabled
 Respwait : Deft Default | 0-9999
 COnfigfile : /usr/lpp/cicsts/cicsts52/samples/pipelines/basicsoap11req
 (Mixed Case) : uester.xml
 :
 :
 :
 SHelf : /var/cicsts/
 (Mixed Case) :
 :
 :
 :
 Wsdir : /usr/lpp/cicsts/cicsts52/samples/webservices/wsbind/reque
 (Mixed Case) : ster.xml
 Chapter 4. CICS catalog manager example application 93

Figure 4-9 EXMPPORT example

4.5.4 Dynamically installing WEBSERVICE and URIMAP resources

Each function exposed as a Web service requires:

� A WEBSERVICE resource to map the incoming XML of the SOAP BODY and
the COMMAREA interface of the program

� A URIMAP resource that routes incoming requests to the correct PIPELINE
and WEBSERVICE

OBJECT CHARACTERISTICS CICS RELEASE=0690
 CEDA View TCpipservice(EXMPPORT)
 TCpipservice : EXMPPORT
 GROup : EXAMPLE
 DEScription :
 Urm : DFHWBAAX
 POrtnumber : 55551 1-65535
 STatus : Open Open | Closed
 PROtocol : Http Http | Eci | User | IPic
 TRansaction : CWXN
 Backlog : 00000 0-32767
 TSqprefix :
 Host : ANY
 (Mixed Case) :
 Ipaddress : ANY
 SPeciftcps :
 SOcketclose : No No | 0-240000 (HHMMSS)
 MAXPersist : No No | 0-65535
 MAXDatalen : 000032 3-524288
SECURITY
 SSl : No Yes | No | Clientauth
 CErtificate :
 (Mixed Case)
 PRIvacy : Notsupported | Required | Supported
 CIphers :
 (Mixed Case)
 AUthenticate : No No | Basic | Certificate | AUTORegister
 | AUTOMatic
 Realm :
 (Mixed Case)
 ATtachsec : Local | Verify
DNS CONNECTION BALANCING
 DNsgroup :
 GRPcritical : No No | Yes
94 Application Development for IBM CICS Web Services

Although you can use RDO to define and install your WEBSERVICE and
URIMAP resources, you can also have CICS create them dynamically when you
install a PIPELINE resource.

Install the PIPELINE resources. Use the following commands:

CEDA INSTALL PIPELINE(EXPIPE01) G(DFH$EXWS)
CEDA INSTALL PIPELINE(EXPIPE02) G(DFH$EXWS)

When you install each PIPELINE resource, CICS scans the directory specified in
the PIPELINE’s WSDIR attribute (the pickup directory). For each Web service
binding file in the directory (that is, for each file with the .wsbind suffix), CICS
installs a WEBSERVICE and a URIMAP if one does not already exist. Existing
resources are replaced if the information in the binding file is newer than the
existing resources.

If the PIPELINE is later disabled and discarded, all associated WEBSERVICE
and URIMAP resources will also be discarded.

If you have already installed the PIPELINE and later update the wsbind files in
the WSDIR directory, use the PERFORM PIPELINE SCAN command to initiate
the scan of the PIPELINE’s pickup directory. CICS will then install any new files.
Any files that are already installed will be reinstalled if the file in the directory is
newer than the one currently in use.

When you have installed the PIPELINEs, the following WEBSERVICEs and their
associated URIMAPs will be installed in your system:

� dispatchOrder
� dispatchOrderEndpoint
� inquireCatalog
� inquireSingle
� placeOrder

The names of the WEBSERVICEs are derived from the names of the Web
service binding files. The names of the URIMAPs are generated dynamically. You
can view the resources with a CEMT INQUIRE WEBSERVICE command, as
shown in Figure 4-10 on page 96.
 Chapter 4. CICS catalog manager example application 95

Figure 4-10 CEMT inquire Web command

For each WEBSERVICE the display shows the following information that is
associated with each WEBSERVICE:

� The PIPELINE name
� The URIMAP
� The target program

I WEBS
STATUS: RESULTS - OVERTYPE TO MODIFY
 Webs(dispatchOrder) Pip(EXPIPE02)
 Ins Ccs(00000)
 Webs(dispatchOrderEndpoint) Pip(EXPIPE01)
 Ins Ccs(00000) Uri($246340) Pro(DFH0XODE) Com
 Webs(inquireCatalog) Pip(EXPIPE01)
 Ins Ccs(00000) Uri($246341) Pro(DFH0XCMN) Com
 Webs(inquireCatalogClient) Pip(EXPIPE02)
 Ins Ccs(00000)
 Webs(inquireCatalogWrapper) Pip(EXPIPE01)
 Ins Ccs(00000) Uri($246344) Pro(DFH0XICW) Cha
 Webs(inquireSingle) Pip(EXPIPE01)
 Ins Ccs(00000) Uri($246342) Pro(DFH0XCMN) Com
 Webs(inquireSingleClient) Pip(EXPIPE02)
 Ins Ccs(00000)
 Webs(inquireSingleWrapper) Pip(EXPIPE01)
 Ins Ccs(00000) Uri($246345) Pro(DFH0XISW) Cha
 Webs(placeOrder) Pip(EXPIPE01)
 Ins Ccs(00000) Uri($246343) Pro(DFH0XCMN) Com

Note: In this example, there is no URIMAP or target program displayed for
WEBSERVICE(dispatchOrder) because the WEBSERVICE is for an outbound
request.

Also, in this example note that WEBSERVICE(dispatchOrderEndpoint)
represents the local CICS implementation of the dispatch order service.
96 Application Development for IBM CICS Web Services

4.5.5 Creating the WEBSERVICE resources with RDO

As an alternative to using the PIPELINE scanning mechanism to install
WEBSERVICE resources, you can create and install them using Resource
Definition Online (RDO).

� Use the CEDA transaction to create a WEBSERVICE definition for the inquire
catalog function of the example application.

– Enter CEDA DEF WEBSERVICE(EXINQCWS) G(EXAMPLE)

– Enter the following additional attributes:

PIPELINE(EXPIPE01)
WSBIND(/usr/lpp/cicsts/cicsts52/samples
/webservices/wsbind/inquireCatalog.wsbind)

� Repeat the preceding step for each of the functions of the example
application shown in Table 4-1.

Table 4-1 Example application functions

Note: If you use RDO to define the WEBSERVICE and URIMAP resources,
you must ensure that their Web service binding files are not in the PIPELINE’s
pickup directory.

Function WEBSERVICE
name

PIPELINE
attribute

WSBIND attribute

INQUIRE SINGLE ITEM EXINQSWS EXPIPE01 /usr/lpp/cicsts/cicsts52/samples
/webservices/wsbind
/provider/inquireSingle.wsbind

PLACE ORDER EXORDRWS EXPIPE01 /usr/lpp/cicsts/cicsts52/samples
/webservices/wsbind
/provider/placeOrder.wsbind

DISPATCH STOCK EXODRQWS EXPIPE02 /usr/lpp/cicsts/cicsts52/samples
/webservices/wsbind
/requester/dispatchOrder.wsbind

DISPATCH STOCK (endpoint
optional)

EXODEPWS EXPIPE01 /usr/lpp/cicsts/cicsts52/samples
/webservices/wsbind
/provider/dispatchOrderEndpoint.
wsbind
 Chapter 4. CICS catalog manager example application 97

4.5.6 Creating the URIMAP resources with RDO

As an alternative to using the PIPELINE scanning mechanism to install URIMAP
resources, you can create and install them using RDO.

� Use the CEDA transaction to create a URIMAP definition for the inquire
catalog function of the example application.

– Enter CEDA DEF URIMAP(INQCURI) G(EXAMPLE)

– Enter the following additional attributes:

USAGE(PIPELINE)
HOST(*)
PATH(/exampleApp/inquireCatalog)
TCPIPSERVICE(SOAPPORT)
PIPELINE(EXPIPE01)
WEBSERVICE(EXINQCWS)

� Repeat the preceding step for each of the remaining functions of the example
application. Use the names in Table 4-2 for your URIMAPs.

Table 4-2 URIMAP names

Note: If you use RDO to define the WEBSERVICE and URIMAP resources,
ensure that their Web service binding files are not in the PIPELINE’s pickup
directory.

Function URIMAP name

INQUIRE SINGLE ITEM INQSURI

PLACE ORDER ORDRURI

DISPATCH STOCK Not required

DISPATCH STOCK endpoint (optional) ODEPURI
98 Application Development for IBM CICS Web Services

– Specify the distinct attributes in Table 4-3 for each URIMAP.

Table 4-3 URIMAP attributes

– Enter the following additional attributes (same for all URIMAPs):

USAGE(PIPELINE)
HOST(*)
TCPIPSERVICE(SOAPPORT)
PIPELINE(EXPIPE01)

4.5.7 Completing the installation

To complete the installation, install the RDO group that contains your resource
definitions.

Enter the CEDA I G(EXAMPLE) command at a CICS terminal.

At this point all CICS aspects of the Catalog application should now be installed
and fully functional.

4.6 Installing the client application

To run the client application, it must be installed into an application server such
as WebSphere Application Server.

We install the supplied client application into a server running WebSphere
Application Server 8.5. This enables us to run the client and access it from our
Web browser. The client code will use Web services to communicate with CICS,
and we will be able to use the application with a friendly graphical user interface.

WebSphere Application Server can be installed as part of Rational Developer for
System z or Rational Application Developer for WebSphere software. If you have
not chosen to install it, or do not have those products, a trial version of

Function URIMAP
name

PATH WEBSERVICE

INQUIRE SINGLE
ITEM

INQSURI /exampleApp/inquireSingle EXINQSWS

PLACE ORDER ORDRURI /exampleApp/placeOrder EXORDRWS

DISPATCH STOCK
endpoint (optional)

ODEPURI /exampleApp/dispatchOrder EXODEPWS
 Chapter 4. CICS catalog manager example application 99

WebSphere Application Server can be downloaded from the IBM
developerWorks website:

http://www.ibm.com/developerworks/downloads/ws/was/index.html

4.6.1 FTP the client application

Before we can install the client application, we must download it from the CICS
install directory on UNIX Systems Services. The directory that contains the client
EAR file is <cics install directory>/samples/webservices/client. We
downloaded the EAR file using FTP ensuring that it was downloaded to our
workstation in binary.

The EAR file for the client application is ExampleAppClientV6.ear.

4.6.2 Install the client

The client is installed using the WebSphere Admin Console. This can be started
either by right-clicking the WebSphere Application Server and then selecting
Administration followed by Run Administrative Console.

Alternatively, the console can be accessed from a web browser (as it would be for
WebSphere Application Server) by entering the following URL:

http://localhost:9060/ibm/console
100 Application Development for IBM CICS Web Services

http://www.ibm.com/developerworks/downloads/ws/was/index.html

Replace localhost and the port number (if necessary) for your system. After you
have logged on to the Administrative Console, the window should look like
Figure 4-11.

Figure 4-11 WebSphere Application Server Admin Console
 Chapter 4. CICS catalog manager example application 101

We then install the client application in to the Application Server by expanding the
Applications in the menu on the left, then clicking New Application. The main
pane updates and will appear similar to Figure 4-12.

Figure 4-12 New Application pane in WebSphere Application Server admin console

Click New Enterprise Application. The window should look like Figure 4-13 on
page 103.
102 Application Development for IBM CICS Web Services

Figure 4-13 Preparing for application installation

Use the Browse button to locate the ExampleAppClientV6.ear file on your
system. Then, click Next.

WebSphere Application Server asks how we want to install the application. We
select Fast Path as shown in Figure 4-14 on page 104. We then click Next until
the application is ready to deploy, accepting all defaults.

Once deployment is complete, we save our changes to the master configuration.
 Chapter 4. CICS catalog manager example application 103

Figure 4-14 Preparing for the application installation
104 Application Development for IBM CICS Web Services

4.6.3 Start the client

After the client application is installed successfully, the application must be
started so it can be called. In the Administrative console, expand Applications
in the menu on the left. Expand Application Types and then click WebSphere
Enterprise Applications. You should now see a window similar to Figure 4-15.

Figure 4-15 Enterprise Applications listed in WebSphere Application Server

Start the application by clicking the check box next to the ExampleAppClientV6
application and click Start.

4.6.4 Testing the client

The application is now started so now we can test it from a web browser.

If you installed the client application on your local workstation in the WebSphere
test environment, for example, then you should be able to enter the following
URL into your Web browser:

http://localhost:9080/ExampleAppClientV6Web
 Chapter 4. CICS catalog manager example application 105

Alternatively, the IP address of your workstation can be obtained by issuing the
ipconfig command in a Windows command window. In this case, replace
localhost with the IP address of your workstation.

You should now see a window like Figure 4-16 in your browser.

Figure 4-16 Initial client application window
106 Application Development for IBM CICS Web Services

Configure the application
The client, at this point, has no idea where our CICS region is or what port to use,
so click CONFIGURE in the lower left corner of the web browser pane. This
opens a window to send this information to the client. Figure 4-17 shows an
example of the CICS configuration window.

Figure 4-17 Updating the configuration window for the CICS catalog example application

Update the three New lines with the correct local host URL and the correct port
for your CICS region. To determine this data, go to your CICS region and enter
the CEMT I TCPIPS command.

This will show you the installed TCP/IP services on your region. If you select the
correct TCP/IP service and expand the details, you can determine the correct IP
address and port number to be used.

After the New lines have been updated, click Submit. The application is now
ready to be tested.
 Chapter 4. CICS catalog manager example application 107

List Items
Click LIST ITEMS in the menu on the left of the pane. The main pane changes to
the “Enter Catalog Item Reference Number” window as shown in Figure 4-18.

Figure 4-18 Enter Catalog Item Reference Number

Click SUBMIT. The pane should update with a list of items as in Figure 4-19.

Figure 4-19 Select Item to Place Order

At this point, we have proven that our client is working and making the
appropriate Web service requests across our CICS region.

You might want to try some other testing variations now.
108 Application Development for IBM CICS Web Services

Chapter 5. Rational Developer for
System z

This chapter introduces you to using the development productivity tool Rational
Developer for System z V9.1 for CICS application development. In Chapter 6,
“Exposing the Catalog Sample CICS application as a Web service” on page 125,
we demonstrate how Rational Developer for System z (RDz) can be used to
generate and test CICS Web services.

5

© Copyright IBM Corp. 2015. All rights reserved. 109

5.1 What is Rational Developer for System z?

Rational Developer for System z (RDz) consists of a common workbench and an
integrated set of tools that support application development and maintenance,
runtime testing, and rapid deployment of simple and complex applications. It
offers an integrated development environment (IDE) with advanced, easy-to-use
tools and features to support application development for multiple runtimes like
CICS, WebSphere, IBM IMS™, and IBM DB2®. It helps developers rapidly
design, code, and deploy complex applications.

RDz provides support for Cobol; Assembler; PL/I; Java; Java Platform,
Enterprise Edition; C/C++; SQL; and DB2 stored procedures.

5.2 RDz and CICS application development

CICS application developers can use IBM Rational Developer for System z to
significantly increase productivity and efficiency when creating and maintaining
CICS applications. Some of the tasks being performed by developers on a
routine basis can be significantly simplified with the help of the features and tools
available with RDz.

The following list details some of the tasks that CICS developers can perform
efficiently with the help of RDz:

� View and edit source code with full syntax checking
� Edit, compile, debug and test application code
� Handle Web services and XML development
� Develop BMS maps using visual productivity tools
� Generate JCL
� Handle JavaScript Object Notation (JSON) development for mobile

applications in CICS, supporting both RESTful and Request-Response
models

5.3 Components of RDz

In this section, we introduce the different components of RDz.
110 Application Development for IBM CICS Web Services

5.3.1 Workspace

The workspace is a place where all the artifacts related to our work will be stored.
It is equivalent to a folder in the file system. We need to specify a workspace as a
follow-up step of launching RDz. See Figure 5-1.

The RDz workspace is a private work area created for the individual developer. It
holds the following information:

� RDz environment, configuration information, and temporary files

� Projects that developers have created, which include source code, project
definition, configuration files and generate files

Resources that are modified and saved are reflected on the local file system.
Users can have many workspaces on their local file system to contain different
projects that they are working on, or different versions.

Figure 5-1 Workspace Launcher

5.3.2 Workbench

The workbench is the user interface for RDz. The workbench features an
integrated development environment with customizable perspectives that support
role-based development. The workbench provides a common way for all
members of your project team to create, manage, and navigate resources easily.
It consists of interrelated views and editors. (See Figure 5-2 on page 112.) Views
provide different ways of looking at the resources you are working on. Editors
allow you to create and modify code.
 Chapter 5. Rational Developer for System z 111

The workbench is made up of several components, such as the Perspective,
View, and Editor. See Figure 5-2 for an example workbench window.

Figure 5-2 Rational Developer for System z Workbench

5.3.3 Perspective

RDz supports a role-based development model, which means that the
development environment provides different tools, depending on the role of the
user. It does this by providing several different perspectives that contain different
editors and views necessary to work on tasks associated with each role.

For each perspective, RDz defines an initial set and layout of views and editors
for performing a particular set of development activities. For example, a
developer working on System z projects will work with the z/OS Projects
perspective. Similarly, a Java programmer responsible for writing, debugging,
and testing Java code will work using the Java perspective, and so on.

The layout and the preferences in each perspective can be changed and saved
as a customized perspective and used again later.

There are two ways to open another perspective:

� Click the Open a perspective icon in the upper right corner of the workbench
working area and select the appropriate perspective from the list. See
Figure 5-3 on page 113.
112 Application Development for IBM CICS Web Services

� Select Window Open Perspective and select one from the drop-down list.
See Figure 5-3.

In both cases, there is also an Other option, which when selected displays the
“Open Perspective” dialog box that shows a list of perspectives (see Figure 5-3).
To show the complete list of perspectives, select the Show all check box. Here
you can select the required perspective and click OK.

Figure 5-3 List of all perspectives in Rational Developer for System z v9.1

5.3.4 View

Views provide different presentations of artifacts and resources or ways of
navigating through the information in your workspace. For example, the Remote
Systems view can help you to connect to z/OS remotely and provides a
hierarchical view of the local or remote systems and navigate through
folders/data sets hierarchy. From here, you can open files for editing or create,
 Chapter 5. Rational Developer for System z 113

copy, and delete data sets. Figure 5-4 shows an example of the Remote Systems
view. It is connected to a z/OS system and is currently viewing the contents of a
directory in zFS.

Figure 5-4 Remote Systems view of RDz V9.1
114 Application Development for IBM CICS Web Services

The Outline view displays an outline of a structured file (COBOL source code in
this case) that is currently open in the editor area, and lists structural elements.
(See Figure 5-5).

Figure 5-5 Outline view

RDz provides synchronization between views and editors, so that changing the
focus or a value in an editor or view can automatically update another. In
addition, some views display information obtained from other software products,
such as database systems or software configuration management (SCM)
systems.

5.3.5 Editor

When you open a file, RDz opens the specialized editor that is associated with
that file type. For example, the COBOL editor is opened for COBOL program and
copybook files (see Figure 5-6 on page 116), the JCL editor for JCL, the PL/I
editor for PL/I while the Java editor is opened for Java files. A general LPEX
editor can be used instead if wanted. The LPEX editor can be set to behave like
other tools you may be familiar with, such as vi, emacs, xedit, or ISPF.

Editors that have been associated with specific file types open in the editor area
of the workbench. By default, editors are stacked in a notebook arrangement
inside the editor area. If there is no associated editor for a resource, RDz will
open the file in the default editor, which is a text editor.
 Chapter 5. Rational Developer for System z 115

Figure 5-6 COBOL Editor in Rational Developer for System z V9.1 showing Area A and B
margins

5.4 Web services in Rational Developer for System z

Rational Developer for System z offers the following tools for use with Web
services:

� Create compiled or interpreted web service implementations for use in CICS.
These are covered in detail in Chapter 6, “Exposing the Catalog Sample
CICS application as a Web service” on page 125 and Chapter 7, “Create a
CICS Web service requester application using the catalog sample” on
page 163.

� Test Web services from a Web Services Description Language (WSDL) file
using the Web Services Explorer. This is discussed in 11.5.4, “Testing the
service and results” on page 305.
116 Application Development for IBM CICS Web Services

� Generate Web services using JavaScript Object Notation (JSON), which are
typically used in Mobile applications.

� A TCP/IP Monitor, which can be used to track network traffic between two
points for debugging.

5.5 Writing your first Java program with RDz

Perform the following steps to write a Java program with RDz:

1. Switch to Java perspective. Navigate to Window Open Perspective
Other.

2. Select Java from pop-up menu and click OK.

3. Navigate to File New Project, expand the Java folder in the pop-up
window, and select Java Project.

4. Click Next and enter project name as HelloRDz, everything else as default.

5. Click Finish.

6. Add a new package. Select File New Package and enter the package
name (all in lowercase, as per Java coding conventions) in the pop-up window
as com.itso.redbook.rdz. Click Finish. (See Figure 5-7.)

Figure 5-7 New Java package - insert package name
 Chapter 5. Rational Developer for System z 117

7. Navigate to File New Class. Browse for package name
com.itso.redbook.rdz and insert class name as HelloWorld. Select the
public static void main(String args[]) check box. Click Finish. (See
Figure 5-8.)

Figure 5-8 Adding a new Java Class

The HelloWorld.java source file is opened in Java editor.
118 Application Development for IBM CICS Web Services

8. Replace statement

// TODO Auto-generated method stub

with

System.out.println("Hello from RDz.");

The Editor code will now look as shown in Figure 5-9.

Figure 5-9 Sample Java code for HelloWorld program

9. Select File Save to save the program.

10.Select Run Run As Java Application to run the program. You should
see results in the Console view (see Figure 5-10).

Figure 5-10 Result of HelloWorld program

You have successfully written and executed the first Java program with Rational
Developer for System z.

package com.itso.redbook.rdz;

public class HelloWorld {

/**
 * @param args
 */
public static void main(String[] args) {

System.out.println("Hello from RDz.");
}

}

 Chapter 5. Rational Developer for System z 119

5.6 Overview of Debugging with RDz

RDz can also be of great help in debugging programs and applications. We can
debug with RDz by switching to the Debug perspective.

The following tasks can be performed for debugging purposes:

� Set and clear breakpoints at a specific line.

� Set and clear breakpoints for an error or warning-level error that is based on
IBM Language Environment® severities.

� Run to a breakpoint.

� Step into a procedure.

� Step over a procedure.

� View variable values and change them as you step through the code.

� View variable values in the context of a larger area of storage.

� View the call stack.

5.6.1 Supported languages and environments

RDz includes support for debugging many different languages and environments.
These are as follows:

� COBOL
� PL/I
� C/C++
� CICS / IMS
� Java
� JavaScript
� DB2 stored procedures
� XSL transformations (XSLT)
� SQLJ
� Jython Scripts for WebSphere Application Server administration
� Mixed language applications (for example XSLT called from Java)
� WebSphere Application Server (servlets, JSPs, EJBs, Web services)

Applications in all these languages and environments can be debugged within
RDz using a similar process of setting breakpoints, running the application in
debug mode and, within the Debug perspective, stepping through the code to
track variables and logic in order to find and fix problems. Furthermore, the
interface for debugging within the Debug perspective is intended to be consistent
across all these languages and environments.
120 Application Development for IBM CICS Web Services

5.6.2 Local and remote debug

Using RDz, you can debug a wide range of applications in several languages,
running either on local test environments or on remote servers, such as CICS or
IMS.

Local
RDz can use the workstation-based debugging engine to debug code in a local
project

Remote
This is one area where productivity could increase substantially. With the
interactive remote debugging feature, you can run a program on z/OS and view
and change data contents, establish breakpoints, jump backward and forward in
the execution, recover data exceptions, and more. The remote debugger
supports debugging of code that runs in the following z/OS environments:

� CICS
� Batch
� TSO
� IMS, both IMS Database Manager and IMS Transaction Manager, with or

without Batch
� Terminal Simulator (BTS)
� DB2 (including stored procedures)

The debugging sessions are cooperative. The remote distributed debugger
resides on the workstation and interfaces with the IBM Debug Tool Utilities and
Advanced Functions, which runs on the host with your application. The
workstation interface communicates with the host z/OS products through TCP/IP.

5.6.3 Basic debugging features and tools

In this section, we look at the basic debugging features and tools of RDz.

Views within the Debug perspective
When you run an application in debug mode and reach a breakpoint, you are
prompted to switch to the Debug perspective. Although you can debug in any
perspective, the Debug perspective includes views that are the most helpful for
debugging. Therefore, we recommend that you use the Debug perspective.
 Chapter 5. Rational Developer for System z 121

By default, when debugging, the views shown in the Debug perspective are as
follows:

� Source view

This view shows the file of the source code that is being debugged,
highlighting the current line being executed.

� Outline view

This view contains a list of variables and methods for the code listing shown in
the display view.

� Debug view

This view shows a list of all active threads, and a stack trace of the thread that
is currently being debugged.

� Servers view

This view is useful if the user wants to start or stop test servers while
debugging.

� Variables view

Given the selected source code file shown in the Debug view, this view shows
all the variables available to that program and their values. Also, step-by-step
debugging variables that change value are highlighted in a different color.

� Breakpoints view

This view shows all breakpoints in the current workspace and gives a facility
to activate/de-activate them, remove them, change their properties, and to
import/export a set of them to other developers.

� Display view

This view allows the user to execute any Java command or evaluate an
expression in the context of the current stack frame.

� Expressions view

During debugging, the user has the option to inspect or display the value of
expressions from the code or even evaluate new expressions. The
Expressions view contains a list of expressions and values that the user has
evaluated and then selected to track.

� Console view

This view shows the output to System.out.

� Tasks view

This view shows any outstanding source code errors, warnings, or
informational messages.
122 Application Development for IBM CICS Web Services

5.7 Summary

In this chapter, we introduced RDz, an IDE for System z application
development, and maintenance. We observed different features, components,
and tools available as part of RDz for editing, debugging, and testing of COBOL
as well as other programming languages.
 Chapter 5. Rational Developer for System z 123

124 Application Development for IBM CICS Web Services

Chapter 6. Exposing the Catalog
Sample CICS application as
a Web service

This chapter demonstrates how an existing CICS application can be exposed as
a Web service. The focus is on how to:

� Create Web service resources
� Set up the CICS runtime infrastructure
� Test the Web service provider

The CICS catalog manager application is used as an example. It is assumed that
you completed Chapter 4, “CICS catalog manager example application” on
page 79.

6

© Copyright IBM Corp. 2015. All rights reserved. 125

6.1 Introduction

In principle, there are two ways to expose a CICS program as a Web service:

� Use the Web Services Assistant or Rational Developer for System z (RDz) to
expose an existing application as a Web service with little or no application
changes.

� Write programs that interact directly with the CICS pipeline and that handle
the XML natively.

The second scenario is an advanced concept that usually involves more effort.
As such it is only discussed at the end of the chapter.

Figure 6-1 gives a basic overview of a Web service scenario. It assumes an
existing CICS program (scenario A in Figure 6-1), which is partitioned to ensure
a separation between the communication (or presentation) logic and business
logic. Access to the business logic is performed using commareas or
channel/container and EXEC CICS LINK. The application is ideally structured for
reuse of the business logic in a provider mode Web service.

Figure 6-1 CICS as Web service provider: basic overview

In most cases, you can deploy the business logic directly as a Web service as
shown in scenario B. You use DFHLS2WS or RDz to create the WSBIND file and
deploy it to CICS. This is the technique referred to as bottom-up Web service
enablement 3.2, “Bottom-up approach” on page 69.
126 Application Development for IBM CICS Web Services

Although option B generally works, it is sometimes necessary to write a wrapper
program, as in option C. This is the technique referred to as a meet-in-the-middle
Web service enablement 3.4, “Meet-in-the-middle approach” on page 72.

Figure 6-2 shows the components of the CICS Catalog sample application,
together with the additional components added for the provider mode Web
service.

Figure 6-2 CICS as Web service provider for the Catalog sample

This figure shows the parts of the CICS catalog manager application that you use
in this chapter. You will focus on the inquireSingle function, which returns a single
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 127

item from the catalog upon request. The request ID is 01INQS. The original
application uses a BMS map as graphical user interface.

In this chapter, we create the Web service enablement artifacts and set up CICS
Web Service Support with them. A first approach (6.3.1, “Using the CICS Web
Services Assistant” on page 130) uses the Web Services Assistant to create
inquireSingleSelf.wsbind and inquireSingleSelf.wsdl, which are equivalent
to inquireSingle.wsbind and inquireSingle.wsdl (provided with the example).

In 6.3.2, “Use Rational Developer for System z” on page 136, we show how to
create the enablement components using the Rational Developer for System z.
We create inquireSingleDriverSelf.wsbind, inquireSingleDriverSelf.wsdl,
and the converter and driver files CMNISD01, CMNISI01, and CMNISO01.

In 6.3.1, “Using the CICS Web Services Assistant” on page 130, we demonstrate
how to optimize the Web Services Description Language (WSDL) file and work
with a wrapper program. You will learn how the provided
inquireSingleWrapper.wsbind file and the wrapper copybooks DFH0XWC3 and
DFH0XWC4 have been created and how to write a wrapper program using those
copybooks.

In 6.4, “Testing the Web service” on page 146, we test those Web services using
a Web service client in the Rational Developer for System z test environment.
You will also learn how to create your own client from a WSDL file using Rational
Application Developer for WebSphere Software.

6.2 Install the provider mode resources

To set up the CICS Web service runtime, you need both a TCPIPSERVICE and a
PIPELINE resource. The creation and installation of these resources is covered
in Chapter 4, “CICS catalog manager example application” on page 79.

When you are ready to install WSBind files (as discussed in the subsequent
sections), do so by following these instructions:

1. Copy the WSBind file into the WSDIR directory for the PIPELINE.

2. Cause CICS to scan the WSDIR directory by issuing the command:

CEMT PERFORM PIPELINE(EXPIPE01) SCAN
128 Application Development for IBM CICS Web Services

3. To check whether your Web service was installed properly, use the following
command:

CEMT INQUIRE WEBSERVICE

The inquireSingleSelf Web service, which is described in this chapter will
be created, as shown in Figure 6-3.

Figure 6-3 CEMT Inquire shows the new WEBSERVICE resource

4. Note that a URIMAP resource was assigned to this WEBSERVICE. Inquire on
this URIMAP using the identifier. For this example:

CEMT INQUIRE URIMAP($501110)

This will yield a result similar to that shown in Figure 6-4.

Figure 6-4 CEMT Inquire shows the automatically created URIMAP resource

6.3 Create the provider mode deployment artifacts
This section shows two different approaches to create the WSBind file used to
enable an existing CICS COBOL program as a Web service. As an example, we
use the “inquire single” operation of the CICS catalog manager example
application, which returns a single item from a catalog.

We consider two approaches to Web service enablement. First we look at using
the Web Services Assistant, then we consider the use of RDz. We see that using
RDz simplifies the steps involved.

We consider both the bottom-up and meet-in-the-middle scenarios.

INQUIRE WEBSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
 Webs(inquireSingleSelf) Pip(EXPIPE01)
 Ins Uri($501110) Pro(DFH0XCMN) Cha Xopsup Xopdir

INQUIRE URIMAP($501110)
STATUS: RESULTS - OVERTYPE TO MODIFY
 Uri($501110) Pip Ena Http
 Host(*)
Path(/exampleApp/inquireSingleSelf)
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 129

6.3.1 Using the CICS Web Services Assistant
The Web Services Assistant was introduced in 2.2.1, “CICS Web Services
Assistant” on page 38 and discussed in Chapter 3, “Development approaches”
on page 67. It can be used to generate the WSBind file that, in turn, contains the
conversion instructions used by CICS to transform SOAP messages into
application data.

In provider mode, this will usually involve bottom-up enablement through
DFHLS2WS. However, advanced users might consider modifying the generated
WSDL resource as part of a meet-in-the-middle scenario. Both scenarios are
discussed in the following sections.

The bottom-up approach with DFHLS2WS
As shown in 3.2, “Bottom-up approach” on page 69, the bottom-up approach
implies creating a WSDL file from an existing application. This is done using
DFHLS2WS.

There is however a complication. The CICS catalog sample application makes
use of COBOL ‘REDEFINES’ statements, and these are not supported by
DFHLS2WS. Therefore, there is an additional step required that would not
normally be needed, and that is to simplify the language structure.

A simplified copybook is provided in DFH0XCP4.

Some example JCL for calling DFHLS2WS is shown in Example 6-1. This JCL is
suitable for use with CICS TS V5.2. For earlier versions of CICS you should
change the USSDIR and MAPPING-LEVEL accordingly. You also have to modify
the data set and UNIX System Services directory names to whatever is suitable
at your site.

Example 6-1 DFHLS2WS JCL

//JOBPROC JCLLIB ORDER=CTS520.CICS690.SDFHINST

//LS2WS EXEC DFHLS2WS
//INPUT.SYSUT1 DD *
PDSLIB=//CTS520.CICS690.SDFHSAMP
PGMNAME=DFH0XCMN
LANG=COBOL
PGMINT=COMMAREA
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
MAPPING-LEVEL=4.0LOGFILE=/redbook/provider/wsbind/inquireSingleSelf.log
WSBIND=/redbook/provider/wsbind/inquireSingleSelf.wsbind
130 Application Development for IBM CICS Web Services

WSDL=/redbook/provider/wsdl/inquireSingleSelf.wsdl
URI=exampleApp/inquireSingleSelf
*/

These are the input parameters:

PDSLIB The library containing DFH0XCP4.

PGMNAME The name of the program for the CICS catalog manager example
application DFH0XCMN.

LANG: Specifies the programming language DFH0XCP4 is written in.

PGMINT Describes the program input. DFH0XCMN uses a COMMAREA.

REQMEM and RESPMEM
Defines the copybooks for request and response. In this example
they are both set to DFH0XCP4.

LOGFILE, WSBIND, and WSDL
Specifies the fully qualified UNIX file names of the files to be
generated.

URI This is the URI at which you want the resultant Web service to be
available. In this example a relative URI has been specified, but it
is advisable to use a full URI if you have CICS TS V3.2 or above
(as this will avoid having to change the generated WSDL later).

MAPPING-LEVEL
Specifies the level of mapping that DFHLS2WS uses when
generating the Web service binding file and Web service
description. For CICS TS v3.1, you are suggested to use 1.2. For
CICS TS v3.2, you are suggested to use 2.2. For CICS TS v4.1,
you are suggested to use 3.0. For CICS TS v5.2, you are
suggested to use 4.0.

For differences between each mapping level, refer to 2.5.6,
“Mapping levels” on page 57.

Submit the job. DFHLS2WS creates the WSDL and the WSBind file. A log file is
also produced, but you will not need to use this unless you have to contact IBM
support.

Deploy the generated WSBind file to your CICS region by copying it into the
WSDIR directory of your provider mode PIPELINE and issuing a SCAN
command against that PIPELINE. This can be done using CEMT or the CICS
Explorer.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 131

Enhancing the generated service (Meet-in-the-middle)
The bottom-up approach is adequate for most purposes. However, the service
you expose to the outside world using the bottom-up approach will appear
machine-generated to your client-side developers.

You might consider modifying the generated WSDL for several reasons, such as:

� You want to minimize your network traffic. Examine the WSDL that was
generated from the copybook. The Web Services Assistant maps the whole
copybook, which is reflected in the WSDL, so for every request a client sends
that conforms to this WSDL, the complete data structure has to be provided.
This includes elements that are not needed for a request, such as the return
code and response message. At mapping level 1.0, 1.1, and 1.2, it includes
COBOL FILLER fields and PL/I * fields. You might choose to create an
optimized WSDL document that specifies requests consisting only of the
required elements and responses that contain only relevant information.

� The Web Services Assistant maps the names from the copybook. For
convenience, you might want to change them (for example, from
ca_return_code to rc).

� You might not like some of the mappings used by the Web Services Assistant.
You might decide that a particular field would be better expressed in the
WSDL with a different set of restrictions.

� You might want to add version control fields to the data structures to help with
future application evolution.

� You might want to combine multiple generated WSDL documents together as
one composite Web service with multiple operations.

In these cases, you have to approach the problem from the WSDL side to meet
the solution in the middle. This approach is called “meet-in-the-middle”.

The following steps are an example of changing the WSDL that has just been
generated using DFHLS2WS.

1. Modify the generated WSDL file. A simplified WSDL file for the CICS catalog
manager application example is available here:

/usr/lpp/cicsts/cicsts52/samples/webservices/wsdl/inquireSingleWrapp
er.wsdl

Examine the simplified WSDL file. See Example 6-2 on page 133 for details.
Note that only the “itemRequiredReference” is required for a request.

Important: If you change the WSDL file, you must also regenerate the
WSBind file and the language structures. This, in turn, will require application
changes.
132 Application Development for IBM CICS Web Services

Example 6-2 Excerpt from inquireSingleWrapperwsdl

<xsd:element name="inquireSingleRequest" nillable="false">
<xsd:complexType mixed="false">

<xsd:sequence>
<xsd:element name="itemRequiredReference" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">

<xsd:maxInclusive value="9999" />
<xsd:minInclusive value="0" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

2. This time, use the DFHWS2LS batch job from the Web Services Assistant to
create language structures and a new WSBind file. Some example JCL for
doing this with CICS TS V5.2 is shown in Example 6-3. The simplified WSDL
is used as input to DFHWS2LS.

Example 6-3 WS2LSISW.jcl - sample jobcard to execute DFHWS2LS

//JOBPROC JCLLIB ORDER=CTS520.CICS690.SDFHINST
//*
//WS2LS EXEC DFHWS2LS
//INPUT.SYSUT1 DD *
PDSLIB=//CTS.REDBOOK.COPYLIB
LANG=COBOL
PGMINT=CHANNEL
CONTID=DFHWS-DATA
PGMNAME=DFH0XISW
REQMEM=ISWCRQ
RESPMEM=ISWCRS
MAPPING-LEVEL=1.0
LOGFILE=/redbook/provider/wsbind/inquireSingleWrapperSelf.log
WSBIND=/redbook/provider/wsbind/inquireSingleWrapperSelf.wsbind
WSDL=/redbook/provider/wsdl/inquireSingleWrapperSelf.wsdl
URI=/exampleApp/inquireSingleWrapperSelf
BINDING=exampleAppInquireSingleHTTPSoapBinding /*

Take a closer look at the parameters:

PDSLIB The PDS library where the new language structures will be
created.

LANG The programming language to use. COBOL in this example.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 133

PGMINT Specifies how CICS passes data to the target application
program. This time we are going to use a CHANNEL.

CONTID Specifies the name of the container to use for the
application data. We specify the default, DFHWS-DATA.

REQMEM and RESPMEM
The names of the copybooks that will be produced. These
are restricted to six characters in length so that
DFHWS2LS can add a two-character suffix. For more
complicated WSDL documents, DFHWS2LS might need to
produce multiple output files, typically one per Operation.

LOGFILE and WSBIND
The fully qualified UNIX file names of the generated
WSBind file and log file.

WSDL The fully qualified name of the UNIX file containing the
simplified WSDL.

BINDING A required parameter if you WSDL contains multiple
bindings such as inquireSingleWrapper.wsdl. Specify the
name of your <binding> element from the WSDL.

PGMNAME The name of a program that will implement the new Web
service. The example specifies DFH0XISW for catalog
manager inquire single wrapper.

MAPPING-LEVEL
Specifies the level of mapping that DFHLS2WS uses when
generating the Web service binding file and Web service
description. Normally you should use the most recent
version that is available to you, however we have used
mapping level 1.0 as there is a CICS supplied example
PROGRAM that implements the language structures
generated at this mapping level.

3. Write a wrapper program with the name you specified in the JCL. It uses the
generated copybooks, maps between them, and the original application, and
is responsible for calling the original application.

For the CICS catalog manager example application, a suitable program has
been provided called DFH0XISW (See Example 6-6 on page 135). It
implements the new (mapping level 1.0) generated interface and links to the
existing DFH0XCMN program.

The previously generated language structures can be found in copybooks
DFH0XWC3 (See Example 6-4 on page 135) and DFH0XWC4 (See Example 6-5
on page 135).
134 Application Development for IBM CICS Web Services

Example 6-4 DFH0XWC3 copybook

05 inquireSingleRequest.
10 itemRequiredReference PIC 9(4) DISPLAY.

Example 6-5 DFH0XWC4 copybook

05 inquireSingleResponse.
10 returnCode PIC 9(2) DISPLAY.
10 responseMessage PIC X(79).
10 singleItem.

15 itemReferenceNumber PIC 9(4) DISPLAY.
15 itemDescription PIC X(40).
15 department PIC 9(3) DISPLAY.
15 unitCost PIC X(6).
15 inStock PIC 9(4) DISPLAY.
15 onOrder PIC 9(3) DISPLAY.

Example 6-6 DFH0XISW excerpts

WORKING-STORAGE SECTION.
...
01 REQUEST-CONTAINER-DATA.

COPY DFH0XWC3.
01 RESPONSE-CONTAINER-DATA.

COPY DFH0XWC4.
01 CATALOG-COMMAREA.

COPY DFH0XCP1.
PROCEDURE DIVISION.

...
EXEC CICS GET CONTAINER('DFHWS-DATA')

INTO(inquireSingleRequest)
RESP(WS-RESP)

END-EXEC

INITIALIZE CATALOG-COMMAREA
MOVE itemRequiredReference TO CA-ITEM-REF-REQ
MOVE '01INQS' TO CA-REQUEST-ID

EXEC CICS LINK PROGRAM(DFH0XCMN)
COMMAREA(CATALOG-COMMAREA)

END-EXEC
...

4. Deploy the generated WSBind file to your CICS region by copying it into the
WSDIR directory of your provider mode PIPELINE and issuing a SCAN
command against that PIPELINE.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 135

The Top-Down approach with DFHWS2LS
We just saw an example of using DFHWS2LS top-down as part of the
meet-in-the-middle scenario. The top-down scenario is not considered any
further as part of this chapter (though it will be seen again in the following
chapter).

6.3.2 Use Rational Developer for System z
Instead of using the Web Services Assistant, you can also create the Web
service enablement components using RDz. A wizard guides you through this
process.

Requirements
To begin, you need a local project in Rational Developer that contains the
program you want to expose as a Web service and all copybooks it uses:

1. Select File New Project.

2. Expand the Simple folder and select Project to create a simple project. Click
Next.

3. Name your project (for example, LocalSOA) and click Finish.

4. Import the Catalog Manager program (DFH0XCMN) and the copybooks it is
using (DFH0XCP1 and DFH0XCP2) into this project.

Generate enablement components
To generate enablement components:

1. Right-click your program, and select Enable Enterprise Web service. A
wizard guides you through the generation process. See Figure 6-5 on
page 137.

2. On the first page, select “Compiled XML Conversion” at dropdown list
Conversion type.
136 Application Development for IBM CICS Web Services

Figure 6-5 Enterprise Service Tools Wizard Launchpad

3. Specify your data structures.

4. The first tab (Figure 6-6 on page 138) asks you to specify your
requestlanguage structure. Expand DFHCOMMAREA and select
CA-REQUEST-ID. Expand CA-INQUIRE-SINGLE and select
CA-ITEM-REF-REQ. These two parameters are required for a single request.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 137

Figure 6-6 Specify Requestlanguage structure

5. Select the other panel to specify your responselanguage structure on the
second tab (Figure 6-7 on page 139). This panel offers the possibility to
optimize your response to only the elements you really need. Select
CA-RETURN-CODE, CA-RESPONSE-MESSAGE, and the complete
CA-SINGLE-ITEM element from the CA-INQUIRE-SINGLE element. Click
Next.
138 Application Development for IBM CICS Web Services

Figure 6-7 Specify Responselanguage structure

6. The second page (Figure 6-8 on page 140) prompts for properties of the
generated artifacts.

– Select Web Services for CICS as converter type.

– Type CMNIS for Catalog Manager Inquire Single.

– For the Business program name, specify the name of the CICS catalog
manager example application: DFH0XCMN. This is the program to be
exposed as a Web service.

– Make sure that all code page entries are set to the code page of your host
system. This can be seen in Figure 6-8 on page 140.

Important: The Program name prefix tells the WSBIND file the name of
the driver it has to invoke for XML conversion. Be sure this name
matches the prefix of the program names on the XML converters panel
(Figure 6-11 on page 144). The generated WSBIND file will expect a
driver program called CMNISD.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 139

Figure 6-8 XML Converters Options tab
140 Application Development for IBM CICS Web Services

7. On the next panel, specify WSDL and XSD options (see Figure 6-9 on
page 142):

– Insert the address of your Web service provider here in the following
format:

http://<hostname>:<soap_port>/<web_service_uri>

You can change this parameter later in your WDSL file. The local part of
your URI (excluding server and port) will be taken as default for the local
URI on the Advanced WSBIND Properties panel.

– If you want to customize the namespaces for the XML schemas in the
generated WSDL, specify Inbound and Outbound namespace here. In this
example, leave the defaults here.

Click Next.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 141

Figure 6-9 WSDL and XSD options

In the next two panels, you will set the WSBIND properties.
142 Application Development for IBM CICS Web Services

8. Specify general options on the WSBind Properties panel (Figure 6-10).

– The WSBind file folder is the local project where your WSBIND file will be
created. Leave the default /LocalSOA.

– Enter the WSBind file name: inquireSingleDriverSelf.

– Select the program interface of your CICS program, which is
COMMAREA.

Click Next.

Figure 6-10 WSBind properties
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 143

9. Enter the name of your converter files on the following panel (Figure 6-11).

Converter driver CMNISD
Inbound Converter CMNISI
Outbound Converter CMNISO

Click Next.

Figure 6-11 XML Converters

10.On the last panel (Figure 6-12 on page 145), specify the WSDL file name:

inquireSingleDriverSelf

Click Finish.

Important: Check that the names are equal to the name you specified for
the XML Converter Options panel (Figure 6-8 on page 140) except the last
letter, which should be D for driver, I for inbound, and O for outbound
converter.
144 Application Development for IBM CICS Web Services

Figure 6-12 WSDL and XSD

11.Copy your driver and converter programs to the host where they must be
compiled and statically linked with the converter driver program as the main
entry point.

12.Example 6-7 shows a sample JCL. Your z/OS system requires a version of
Enterprise COBOL that supports XML parsing (Version 3.1 or later). The
target PDSE should be in the DFHRPL concatenation of the target CICS
region so that CICS can find the load module. Submit the JCL.

Example 6-7 Example JCL to compile and link “driver” and “converters”

//**
//* COMPILE INBOUND CONVERTER
//**
//INBOUND EXEC IGYWC,PARM.COBOL='LIB'
//COBOL.SYSIN DD DSN=CICSRS9.COBOL(CMNISI),DISP=SHR
//COBOL.SYSLIB DD DSN=CTS520.CICS690.SDFHSAMP,DISP=SHR
// DD DISP=SHR,DSN=CTS520.CICS690.SDFHCOB
//COBOL.SYSLIN DD DSN=CTS.REDBOOK.OBJ(CMNISI),DISP=SHR
//**
//* COMPILE OUTBOUND CONVERTER
//**
//OUTBOUND EXEC IGYWC,PARM.COBOL='LIB'
//COBOL.SYSIN DD DSN=CTS.REDBOOK.COBOL(CMNISO),DISP=SHR
//COBOL.SYSLIB DD DSN=CTS520.CICS690.SDFHSAMP,DISP=SHR
// DD DISP=SHR,DSN=CTS520.CICS690.SDFHCOB
//COBOL.SYSLIN DD DSN=CTS.REDBOOK.OBJ(CMNISO),DISP=SHR
//**
//* COMPILE AND LINK CONVERTERS AND DRIVER STATICALLY
//**
//IGYWCL EXEC IGYWCL,PARM.LKED='MAP',
// LIBPRFX='CEE'
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 145

//COBOL.SYSIN DD DSN=CTS.REDBOOK.COBOL(CMNISD),DISP=SHR
//COBOL.SYSLIB DD DSN=CTS.REDBOOK.COBOL,DISP=SHR
// DD DSN=CEE.SCEESAMP,DISP=SHR
// DD DSN=CTS520.CICS690.SDFHSAMP,DISP=SHR
//COBOL.STEPLIB DD
// DD DSN=CTS520.CICS690.SDFHLOAD,DISP=SHR
//LKED.OBJECT DD DSN=CTS.REDBOOK.OBJ,DISP=SHR
//LKED.SYSLIB DD
// DD DSN=CTS520.CICS690.SDFHLOAD,DISP=SHR
//LKED.SYSLMOD DD DSN=CTS.REDBOOK.LOADLIB(CMNISD),DISP=SHR
//LKED.STUFF DD DSN=CTS.REDBOOK.LOADLIB,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE OBJECT(CMNISI)
 INCLUDE OBJECT(CMNISO)
/*

13.Load your program into CICS.

Deploy the generated WSBind file to your CICS region by copying it into the
WSDIR directory of your provider mode PIPELINE and issuing a SCAN
command against that PIPELINE.

In this example, we used the Compiled technology in RDz. Another option is to
use the Interpreted approach. If the Interpreted approach is used, we can go on
to use the Application Deployment Manager to install all of the necessary
resources into a Test CICS region from within the RDz tool.

RDz also has wizards to assist with meet-in-the-middle scenarios.

6.4 Testing the Web service
In this section, we look at how you can test the Web service using the Web
Services Explorer in RDz. The Web Services Explorer is part of the Eclipse
platform on which RDz is built. This means that if you do not have RDz you can
still use the free Eclipse tool to test your CICS Web Service using the techniques
described below.

Important: Be aware that in this case CICS is not parsing the request directly.
The parsing is delegated to the driver and the converter programs using the
information specified in the WSBind file.
146 Application Development for IBM CICS Web Services

6.4.1 The Web Services Explorer
RDz gives you an excellent opportunity to test your CICS Web service using the
WSDL file. This chapter shows how to test inquireSingle.wsdl and
inquireSingleWrapper.wsdl. However, no matter which file you want to test you
will have to import it to your workspace if it was not generated by RDz.

To define which Web service you want to invoke, specify the Web services
endpoint in the following format:

http://<host_address>:<soap_port>/<web_service_uri>

You can edit the endpoint in several ways:

� Change the <soap:address> element in your WSDL source code by pointing
its location attribute to the required endpoint; for example, for inquireSingle:

<soap:address
location="http://www.example.com:55556/exampleApp/inquireSingle" />

� Or if you use the inquireSingleWrapper:

<soap:address
location="http://ww.example.com:55556/exampleApp/inquireSingleWrappe
r" />

� Use the graphical WSDL editor in Rational Developer. Right-click your WSDL
file and select Open With WSDL Editor. Click port‘DFH0XCMNPort’.
Then click the Properties tab to specify the Address. See Figure 6-13 on
page 148.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 147

Figure 6-13 Using the WSDL Editor
148 Application Development for IBM CICS Web Services

You might also set the endpoint directly in the Web Services Explorer in the
Actions window:

1. To start the Web Services Explorer, right-click your WSDL file and select Web
Services Test with Web Services Explorer. This opens a new window
(Figure 6-14) that has three panes.

Figure 6-14 The Web Services Explorer after startup

– The Navigator shows all previously tested WSDL files. For each file, you
can navigate to its services, bindings, and operations.

– The Actions pane is used to change the endpoint at runtime or to execute
an operation.

– The Status pane yields any output messages.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 149

2. To issue a Web service request, click the DFH0XCMNOperation link. The
Web Services Explorer provides a form where you enter your request-specific
data.

Figure 6-15 shows this form for inquireSingle and inquireSingleWrapper.

Figure 6-15 Issue a Web service request for inquireSingle and inquireSingleWrapper

3. Complete the values shown in Table 6-1.

Table 6-1 Sample Web service request values

4. Click Go.

The responses of both requests look similar (see Figure 6-16 on page 151), but
where inquireSingle returns the complete data set, inquireSingleWrapper yields
only data you requested because its response was optimized.

Value inquireSingle inquireSingleWrapper

request id ca_request_id:01inqs n/a

item reference ca_item_ref_req:0010 itemRequiredReference: 0010

any other value 0a

a. Although your CICS program does not use these parameters, you must still
provide dummy values for them to conform to your WSDL. You might want to
optimize the WSDL file to submit request id and item reference only. Refer to
Chapter 4, “CICS catalog manager example application” on page 79 as further
changes are required.

n/a b

b. This WSDL is optimized, so you do not have to insert any dummy values.
150 Application Development for IBM CICS Web Services

Figure 6-16 Web service responses for inquireSingle and inquireSingleWrapper

You have now performed a simple test of the Web service in CICS.

6.4.2 Generate a client
To invoke a Web service, you might want to generate a more complete client
application that can be hosted in an environment such as WebSphere
Application Server. An example of such a client is the Example Application
Client, which is shipped with the CICS catalog manager example application and
can be found at:

/usr/lpp/cicsts/cicsts52/samples/webservices/client/ExampleAppClient.ear

This enterprise application provides a client to invoke the three functions of the
catalog manager:

� inquireSingle
� inquireCatalog
� placeOrder

For more information about the client and installation guidance, refer to
Chapter 3, “Development approaches” on page 67.

If you want to generate your own client, you can use Rational Developer for
WebSphere Software. It generates all the required Java classes to create a Web
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 151

service request and to receive a Web service response. It can also build a basic
graphical user interface to interact with those classes.

For this chapter, you will create a client to invoke the inquireSingle Web service.
The corresponding WSDL file is located at:

/usr/lpp/cicsts/cicsts52/samples/webservices/wsdl/inquireSingle.wsdl

A precondition for the client generation is that the Web service description file
(WSDL file) is in your workspace.

1. Right-click your WSDL file and select Web Services Generate Client. If
the Web services option is not displayed, ensure that you enabled the Web
service role in your Rational Application Developer for WebSphere Software
profile.

The first panel (Figure 6-17) of the client generation wizard opens.

Figure 6-17 Web Services wizard

2. Choose to generate a Java Proxy.

3. Select the Monitor the Web service check box to enable the TCP/IP Monitor
to monitor your traffic.

4. Move the slider to set the level of client generation. In this sample, we move it
to top.

5. Set the Server runtime to WebSphere Application Server v8.5. You might
need to install this separately.

6. Set the Web service runtime to IBM WebSphere JAX-RPC.
152 Application Development for IBM CICS Web Services

7. Set the project name and EAR project name. Do not choose the name of an
existing project as new projects are created for you.

8. Click Next.

9. On the next panel (Figure 6-18), configure security. For this example, leave
the defaults and click Next.

Figure 6-18 Web Service Proxy page
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 153

10.Code will be generated and then the last panel (Figure 6-19) appears. Specify
the test options. Choose JAX-RPC JSPs as the test facility, leave the default
for the Folder name (sampleDFH0XCMNPortProxy), and select all of the
methods. Click Finish.

Figure 6-19 Web Service Client Test
154 Application Development for IBM CICS Web Services

You can now invoke the Web service with the newly generated JSPs as shown in
Figure 6-20. Be sure that you installed the Web services runtime environment of
the CICS catalog manager example application as described in Chapter 4, “CICS
catalog manager example application” on page 79.

Figure 6-20 Sample JSPs of the generated client

Explore the generated files and classes to adapt the client to your requirements.

6.5 Publishing WSDL to WebSphere Service Registry
and Repository

Some organizations like to have a central repository for WSDL-based services.
The WebSphere Service Registry and Repository exists to help satisfy this
requirement. WebSphere Service Registry and Repository helps you to manage
and govern services and processes. A central repository can help you to find
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 155

Web services quickly and it can also help to enforce version control for your Web
services.

If you use RDz to generate CICS Web Services, then you can publish WSDL to
WebSphere Service Registry and Repository by simply clicking the WSDL and
following the instructions in the associated wizard.

In CICS TS V5.2, the Web Services Assistant also includes the ability to interact
with WebSphere Service Registry and Repository (WSRR). Both DFHLS2WS
and DFHWS2LS include parameters to interoperate with WebSphere Service
Registry and Repository, optionally using SSL encryption. DFHLS2WS also
includes an optional parameter so that you can add your own customized
metadata to the WSDL document in WebSphere Service Registry and
Repository.

Publishing and retrieving WSDL to and from WebSphere Service Registry and
Repository is optional. The following information is provided to assist you to use
WebSphere Service Registry and Repository with the Web Services Assistant in
CICS TS V5.2, if you want to do so.

6.5.1 Use DFHLS2WS for WebSphere Service Registry and
Repository in CICS TS V5.2

When you create a new Web service from a language structure, you can now
decide whether you want to publish it on a WSRR server. Example 6-8 is an
example of how to use DFHLS2WS to publish generated WSDL to WebSphere
Service Registry and Repository.

Example 6-8 Sample JCL to execute DFHLS2WS with WSRR

// JCLLIB ORDER=CTS520.CICS690.SDFHINST
//*
//LS2WS EXEC DFHLS2WS//INPUT.SYSUT1 DD *
PDSLIB=//CTS520.CICS690.SDFHSAMP
PGMNAME=DFH0XCMN
LANG=COBOL
PGMINT=COMMAREA
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4 MAPPING-LEVEL=4.0
LOGFILE=/redbook/provider/wsbind/inquireSingleSelf.log
WSBIND=/redbook/provider/wsbind/inquireSingleSelf.wsbind
WSDL=/redbook/provider/wsdl/inquireSingleSelf.wsdl
URI=exampleApp/inquireSingleSelfWSRR-SERVER=www.example.com:3001
WSRR-NAME=inquireSingleSelf.wsdl
156 Application Development for IBM CICS Web Services

WSRR-USERNAME=redbook
WSRR-PASSWORD=redbook
WSRR-VERSION=1
WSRR-ENCODING=UTF-8
*/

The following parameters are related to WSRR:

� WSRR-ENCODING=value

Use this optional parameter to specify the character set encoding of the
WSDL document. If the WSRR-ENCODING parameter is not specified,
WSRR uses the value specified in the WSDL document.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-PASSWORD=value

Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-NAME=value

Specifies the name of the WSDL document to retrieve from WSRR. Use this
parameter only when the WSRR-SERVER parameter is specified.

� WSRR-SERVER={domain name:port number}|{IP address:port number}

Use this parameter to specify the location of the WSRR server. If this
parameter is specified, WSRR parameter validation is used.

� WSRR-USERNAME=value

Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-VERSION=1|value

Use this parameter to set the version property of the WSDL document in
WSRR.

Use this parameter only when the WSRR-SERVER parameter is specified.

6.5.2 Use DFHWS2LS for WSRR in CICS TS V5.2

When you create a language structure from a WSDL document, you can now
decide whether you want to use a WSDL document that is published on a
WebSphere Service Registry and Repository server. Example 6-9 on page 158
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 157

shows how to get a WSDL from WebSphere Service Registry and Repository
and generate a language structure base on this WSDL.

Example 6-9 Sample JCL to execute DFHWS2LS with WSRR

//JOBPROC JCLLIB ORDER=CTS520.CICS690.SDFHINST
//*
//WS2LS EXEC DFHWS2LS
//INPUT.SYSUT1 DD * PDSLIB=//CTS.REDBOOK.COPYLIB
LANG=COBOL
PGMINT=CHANNEL
CONTID=DFHWS-DATA
REQMEM=ISWCRQ
RESPMEM=ISWCRS
MAPPING-LEVEL=1.0
LOGFILE=/redbook/provider/wsbind/inquireSingleWrapperSelf.log
WSBIND=/redbook/provider/wsbind/inquireSingleWrapperSelf.wsbind
WSDL=/redbook/provider/wsdl/inquireSingleWrapperSelf.wsdl
URI=/exampleApp/inquireSingleWrapperSelf
BINDING=exampleAppInquireSingleHTTPSoapBinding
PGMNAME=DFH0XISW
WSRR-SERVER=www.example.com:3001
WSRR-NAME=inquireSingleSelf.wsdl
WSRR-USERNAME=redbook
WSRR-PASSWORD=redbook
WSRR-VERSION=1
/*

The following parameters are related to WSRR:

� WSRR-NAME=value

Specifies the name of the WSDL document to retrieve from WSRR. Use this
parameter only when the WSRR-SERVER parameter is specified.

� WSRR-PASSWORD=value

Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-SERVER={domain name:port number}|{IP address:port number}

Use this parameter to specify the location of the WSRR server. If this
parameter is specified, WSRR parameter validation is used.

� WSRR-USERNAME=value

Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.
158 Application Development for IBM CICS Web Services

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-VERSION=value

Specifies the version of the WSDL document to retrieve from WSRR. You can
optionally use this parameter when the WSRR-SERVER parameter is
specified.

6.5.3 New parameters to support SSL encryption in CICS TS V4.1
and above

The following new parameters are added to DFHWS2LS and DFHLS2WS to
support SSL since CICS TS V4.1:

� SSL-KEYSTORE=value

This optional parameter specifies the fully qualified location of the keystore
file.

Use this parameter if you want the Web Services Assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

� SSL-KEYPWD=value

This optional parameter specifies the password for the keystore.

Use this parameter if you want the Web Services Assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

� SSL-TRUSTSTORE=value

This optional parameter specifies the fully qualified location of the truststore
file.

Use this parameter if you want the Web Services Assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

� SSL-TRUSTPWD=value

This optional parameter specifies the password for the truststore.

Use this parameter if you want the Web Services Assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

For the full list of all the parameters to support WSRR, refer to DFHWS2LS and
DFHLS2WS in the CICS Information Center.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 159

6.6 Writing applications that process the XML directly

You might want to write application programs that work directly with the XML
rather than use the transformation capabilities of CICS or RDz. There are several
ways that you can do this.

6.6.1 Creating a custom application handler

One option is to configure the PIPELINE resource to invoke a user-supplied
program to perform the message transformations, and the most straightforward is
to specify your program within the <apphandler> element in the pipeline
configuration file (Example 6-10).

Example 6-10 Sample pipeline configuration file

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline

provider.xsd ">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>LYC1PROG</apphandler>
</provider_pipeline>

In this example, <apphandler> has been set to LYC1PROG rather than the more
typical DFHPITP application handler. In this configuration CICS will handle the
SOAP envelope (and any SOAP headers included in the envelope), but
LYC1PROG will be driven as the application handler.

LYC1PROG will be attached with a channel, which will include all of the control
containers from the PIPELINE, including both DFHWS-XMLNS and DFHWS-BODY.

This particular program is a simple example that gathers up some information
about the system in which it is running and returns this in the SOAP body to the
caller. It also records environmental information to Transient Data. Source
programs and WSDL file are included in the supplemental materials.
160 Application Development for IBM CICS Web Services

6.6.2 Creating an XML-ONLY WEBSERVICE

A second mechanism for working directly with the XML exists for CICS TS V3.2
and above. This is to create an XML-ONLY WEBSERVICE resource. This is a
special type of WEBSERVICE for which CICS knows not to attempt any data
transformations, but that otherwise acts like a normal WEBSERVICE.

The advantage of using an XML-ONLY WEBSERVICE is that you have a single
deployment model for all of your Web services, and you have access to all of the
normal processing for a WEBSERVICE, including the PIPELINE SCAN, the
INVOKE command, normal CICS statistics and monitoring and diagnostics, the
resolution of the Operation name, and so on.

To generate an XML-ONLY WSBind file, you must start from a WSDL description
of the service. You process this WSDL using DFHWS2LS (or RDz) and set the
XML-ONLY parameter to TRUE. In this scenario, DFHWS2LS will not create any
language structures. A WSBind file will be produced as normal.

An application will have to be created as in the previous example. It can access
the XML from the DFHWS-BODY and DFHWS-XMLNS containers, and then do
whatever is required with that XML. On output, it will have to write XML back into
these same containers.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 161

162 Application Development for IBM CICS Web Services

Chapter 7. Create a CICS Web service
requester application using
the catalog sample

This chapter guides you through setting up a CICS Web service requester. It
focuses on how to:

� Create Web service enablement artifacts
� Set up the CICS runtime environment
� Test the Web service requester
� Configure a Web service requester to use a URIMAP

7

© Copyright IBM Corp. 2015. All rights reserved. 163

7.1 Introduction
In the previous chapter, you learned how to expose an existing CICS application
as a Web service. Another common requirement is to create or extend an
application in CICS to invoke a remote Web service.

Figure 7-1 shows a scenario where an existing application is to be extended to
invoke a Web service.

Figure 7-1 CICS as Web service requester: basic scenario

Option A shows a typical application that is partitioned to ensure a separation
between communication (or presentation) logic and business logic. The
application is ideally structured for code reuse. To invoke a remote Web service,
you require a copy of the Web Services Description Language (WSDL) that
describes that service. You use DFHWS2LS (or Rational Developer for System z
(RDz)) to generate application bindings (language structures) and a WSBind file
from the WSDL, and deploy the WSBind file as a WEBSERVICE in CICS.

Option B shows an application that uses the EXEC CICS INVOKE
(WEB)SERVICE command to interact with the remote Web service. This will
typically be a new application that implements this new business requirement,
but it could be an existing application that is modified to invoke the Web service.

Option C shows a scenario that requires slightly more work, but is often
preferable to option B. In this scenario, the application uses EXEC CICS LINK to

Business
Logic

Communication
Logic

Wrapper
Program

CICS Web
Service Support

 Web
Service Provider

 CICS

a. EXEC CICS LINK

b. EXEC CICS INVOKE SERVICE

c. EXEC CICS INVOKE SERVICE

c.
E

X
E

C
 C

IC
S

 L
IN

K

164 Application Development for IBM CICS Web Services

link to a wrapper program. The wrapper program in turn issues the EXEC CICS
INVOKE command.

The wrapper, in this case, has two purposes:

� It encapsulates the Web service interaction away from the rest of the
application.

� It provides an opportunity to distribute the workload across multiple CICS
regions. The business logic can exist in an application owning region (AOR)
while the wrapper program exists in another region that specializes in hosting
WEBSERVICE resources. This means that you avoid the need for PIPELINE
(and similar resources) in your AOR environment.

As an example, we explore some functionalities of the catalog manager, in this
case the dispatch order function that is illustrated in Figure 7-2 on page 166. The
entries marked with an asterisk are created in this chapter. In previous examples,
the order function of the catalog manager called a simple order dispatcher that
returned a basic confirmation message.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 165

Figure 7-2 Overview over the catalog manager dispatch order function

In 7.2, “Create a Web service requester using the CICS Web Services Assistant”
on page 167, we show how to use the Web Services Assistant to generate all
required artifacts to request an existing Web service endpoint in CICS.

In 7.3, “Creating and testing a Web service hosted in RDz” on page 175, we
show how you can create a dispatch order endpoint hosted in RDz that will be
invoked by the sample application.

This chapter assumes that you have set up the CICS catalog manager
application as described in Chapter 4, “CICS catalog manager example
application” on page 79.

Catalog Manager
(DFH0XCMN)

Simple Order
Dispatcher

(DFH0XSOD)

Wrapper
Order Dispatcher
(DFH0XWOD)

01DSPO

BMS
Presentation manager

(DFH0XGUI)

01DSPO

N Y

outbound web service?

Pipeline
(EXPIPE02)

VSAM

EXMPCONF

PDS (copybooks)

DFH0XCP7 (DOWCRQ01*)
DFH0XCP8 (DOWCRS01*)

WebSphere Application Server

Order
dispatch endpoint

ExampleAppDispatchOrder.ear
DispatchOrderRDz.ear*

http://<jp>:<port>/<context_root>/
services/dispatchOrderPort

CICS2

Order
dispatch endpoint

dispatchOrderEndpoint.wsbind
DFH0XODE

http://<host_address>:<soap_port>
/exampleApp/dispatchOrder

zFS

dispatchOrder.wsbind
(dispatchOrderSelf.wsbind*)
basicsoap11requester.xml

EGUI

CICS1
166 Application Development for IBM CICS Web Services

7.2 Create a Web service requester using the CICS
Web Services Assistant

To generate a Web service requesting application, the following steps are
necessary:

1. Create the deployment artifacts:

a. Use DFHWS2LS or Rational Developer for System z to generate a
WSBind file and the associated language structures.

b. Write a program to invoke the Web service using the generated language
structures.

2. Install the requester mode WEBSERVICE in CICS

3. Test your Web service requesting application using a provider mode Web
service hosted in CICS.

7.2.1 Generate the required artifacts
In this step, we use DFHWS2LS to process the WSDL using almost the same
techniques as we used in the previous chapter.

Example 7-1 shows sample JCL to generate the artifacts for the dispatch order
requester that uses as input:

/usr/lpp/cicsts/cicsts52/samples/webservices/wsdl/dispatchOrder.wsdl

This file has been renamed to dispatchOrderSelf.wsdl and copied to a user
UNIX file system directory. The example JCL is suitable for use with CICS TS
V5.2.

Example 7-1 WS2LS Sample JCL

//JOBPROC JCLLIB ORDER=CTS520.CICS690.SDFHINST
//*
//WS2LS EXEC DFHWS2LS,
// JAVADIR='java/J7.1',
// USSDIR='cics690',

Important: You are using DFHWS2LS to generate a WSBind file that will be
used for a Web service requester. Therefore, the PGMNAME parameter must be
omitted. If not, CICS thinks the WSBind file is for a provider mode Web
service. Furthermore, PGMINT is not specified as Web service requesters
always use a CHANNEL. And URI will not be specified either as this
information is taken from the WSDL.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 167

// PATHPREF=''
//INPUT.SYSUT1 DD *
PDSLIB=//CTS.REDBOOK.COPYLIB
LANG=COBOL
REQMEM=DOWCRQ
RESPMEM=DOWCRS
LOGFILE=/redbook/requester/wsbind/dispatchOrderSelf.log
WSBIND=/redbook/requester/wsbind/dispatchOrderSelf.wsbind
WSDL=/redbook/requester/wsdl/dispatchOrderSelf.wsdl
BINDING=dispatchOrderSoapBinding
OPERATIONS=dispatchOrder
MAPPING-LEVEL=1.0
/*

PDSLIB The PDS library where the language structures (copybooks) will
be generated.

LANG Specifies the programming language of the language structure to
be created.

REQMEM and RESPMEM
Defines the names of the request and the response language
structure respectively. These names are limited to 6 characters
so that DFHWS2LS can add a generated suffix.

WSBIND and LOGFILE parameters
The fully qualified UNIX file names of the WSBind file and log file
to be generated.

WSDL Specifies name and location of your input WSDL file.

BINDING Must specify if your WSDL contains multiple <binding> elements.

OPERATIONS

Specify the WSDL Operations that you want to invoke to avoid
the generation of unnecessary language structures and
metadata. This parameter is only available in CICS TS V3.2 and
later.

MAPPING-LEVEL

Set the mapping level to the most recent version available to you,
which for CICS TS 5.2 will be 4.0. However, in this example we
have used mapping level 1.0 to ensure that the generated
language structures will be the same for all versions of CICS.

Submit your job and look at the generated copybooks (Example 7-2 on page 169
and Example 7-3 on page 169).
168 Application Development for IBM CICS Web Services

Example 7-2 request copybook:- DOWCRQ01 (DFH0XCP7)

05 dispatchOrderRequest.
 10 itemReferenceNumber PIC S9(4) DISPLAY.
 10 quantityRequired PIC S9(3) DISPLAY.
 10 customerId PIC X(8).
 10 chargeDepartment PIC X(8).

Example 7-3 response copybook: DOWCRS01 (DFH0XCP8)

05 dispatchOrderResponse.
 10 confirmation PIC X(20).

Now you would have to write a program that uses those copybooks to invoke a
Web service. CICS provides an example of such a program called DFH0XWOD
(wrapper order dispatcher). It uses the copybooks DFH0XCP7 and DFH0XCP8,
which are equivalent to the copybooks you just created. Example 7-4 shows
some excerpts.

Example 7-4 Excerpts from the outbound WebService order dispatcher (DFH0XWOD)

 WORKING-STORAGE SECTION.
 * WebService Message Structures
 01 WS-DISPATCH-ORDER-MESSAGES.
 COPY DFH0XCP7.
 COPY DFH0XCP8.

 LINKAGE SECTION.
 01 DFHCOMMAREA.
 COPY DFH0XCP2.

 PROCEDURE DIVISION.
 MOVE 'DFHWS-DATA' TO WS-SERVICE-CONT-NAME
 MOVE 'SERVICE-CHANNEL' TO WS-CHANNELNAME
 MOVE 'dispatchOrder' TO WS-WEBSERVICE-NAME
 MOVE 'dispatchOrder' TO WS-OPERATION

 MOVE CA-ORD-ITEM-REF-NUMBER
 TO itemReferenceNumber IN dispatchOrderRequest
 MOVE CA-ORD-QUANTITY-REQ
 TO quantityRequired IN dispatchOrderRequest
 MOVE CA-ORD-USERID
 TO customerId IN dispatchOrderRequest
 MOVE CA-ORD-CHARGE-DEPT
 TO chargeDepartment IN dispatchOrderRequest
 Chapter 7. Create a CICS Web service requester application using the catalog sample 169

 EXEC CICS PUT CONTAINER(WS-SERVICE-CONT-NAME)
 CHANNEL(WS-CHANNELNAME)
 FROM(dispatchOrderRequest)
 END-EXEC

 EXEC CICS INVOKE SERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNELNAME)
 URI(WS-ENDPOINT-URI)
 OPERATION(WS-OPERATION)
 RESP(RESP) RESP2(RESP2)
 END-EXEC.

The program receives the data from the 3270 interface in a format according to
copybook DFH0XCP2. It extracts all necessary data to build a
dispatchOrderRequest according to DFH0XCP7 and puts it into a container,
which is placed into a channel. The channel is then passed as a parameter on
the INVOKE SERVICE command, which has this syntax:

>>-INVOKE-SERVICE(data-value)--CHANNEL(data-value)-------------->

>--OPERATION(data-value)--+--------------------+---------------->
 +-URI(data-value)----+
 '-URIMAP(data-value)-'

>--+---+-------------><
 '-SCOPE(data-value)--+----------------------+-'
 '-SCOPELEN(data-value)-'

CICS uses the OPERATION parameter as a Web service might have many
different operations, each of which has a different programmatic interface. The
URI parameter allows the application to override the default endpoint for the Web
service request from the WSDL.

7.2.2 Set up the CICS infrastructure
When CICS acts as a Web service requester you will need a WEBSERVICE and
a PIPELINE resource. For the dispatch order example, the PIPELINE was
supplied by installing the CICS catalog manager application.

The pipeline to use is EXPIPE02. Perform a CEMT INQUIRE on this pipeline to
yield a result similar to Figure 7-3 on page 171.
170 Application Development for IBM CICS Web Services

Figure 7-3 The requester pipeline

This uses the basic requester pipeline configuration file that is provided with
CICS. The WSDIR of this pipeline is the CICS sample directory for requester
mode WSBind files. The provided dispatchOrder.wsbind file should be stored in
this directory.

Upon Pipeline installation, the corresponding dispatch order Web service is
discovered and installed by CICS. Perform a CEMT INQUIRE on the Web
service. This should return a window similar to Figure 7-4 on page 172.

INQUIRE PIPELINE(EXPIPE02)
 RESULT - OVERTYPE TO MODIFY
 Pipeline(EXPIPE02)
 Enablestatus(Enabled)
 Mode(Requester)
 Mtomst(Nomtom)
 Sendmtomst(Nosendmtom)
 Mtomnoxopst(Nomtomnoxop)
 Xopsupportst(Noxopsupport)
 Xopdirectst(Noxopdirect)
 Soaplevel(1.1)
 Respwait()

Configfile(/usr/lpp/cicsts/cicsts52/samples/pipelines/basicsoap11request
er.xml)
 Shelf(/var/cicsts/)
Wsdir(/usr/lpp/cicsts/cicsts52/samples/webservices/wsbind/requester/)
 Ciddomain(cicsts)
 Chapter 7. Create a CICS Web service requester application using the catalog sample 171

Figure 7-4 The dispatchOrder Web service

Note that the endpoint specified for this WEBSERVICE is invalid. It will be
supplied by the wrapper program programmatically.

Before you start testing your requester, have a look at the Web service you are
going to invoke. In this example, we used a CICS Web service called
dispatchOrderEndpoint that is supplied as part of the catalog sample and
installed in provider mode PIPELINE EXPIPE01. To see a result similar to
Figure 7-5 on page 173, issue the following command:

CEMT INQUIRE WEBSERVICE(dispatchOrderEndpoint)

 INQUIRE WEBSERVICE(dispatchOrder)
 RESULT - OVERTYPE TO MODIFY
 Webservice(dispatchOrder)
 Pipeline(EXPIPE02)
 Validationst(Novalidation)
 State(Inservice)
 Ccsid(00000)
 Urimap()
 Program()
 Pgminterface(Notapplic)
 Xopsupportst(Noxopsupport)
 Xopdirectst(Noxopdirect)
 Mappinglevel(1.0)
 Minrunlevel(1.0)
 Datestamp(20140606)
 Timestamp(09:45:09)
 Container()
 Wsdlfile()

Wsbind(/usr/lpp/cicsts/cicsts52/samples/webservices/wsbind/requester/dis
patchOrder)
 Wsbind(wsbind)
 Endpoint(http://my-server:9080/exampleApp/dispatchOrder)
 Binding(dispatchOrderSoapBinding)
172 Application Development for IBM CICS Web Services

Figure 7-5 The dispatchOrderEndpoint Web service

This Web service provider returns a simple confirmation for a successfully placed
order. A more typical example might involve a Web service hosted in WebSphere
Application Server, or elsewhere in the network. This example uses a provider
mode Web service hosted in CICS to avoid external dependencies within the
sample.

7.2.3 Test the requester application
Before you can test the Web service requester, you must change the business
logic to invoke the new wrapper program. The CICS catalog manager example
application enables you to change the program name to be invoked without
changing the application. You can also specify the network endpoint at which the
provider mode target service is available.

INQUIRE WEBSERVICE(dispatchOrderEndpoint)
 RESULT - OVERTYPE TO MODIFY
 Webservice(dispatchOrderEndpoint)
 Pipeline(EXPIPE01)
 Validationst(Novalidation)
 State(Inservice)
 Ccsid(00000)
 Urimap($945090)
 Program(DFH0XODE)
 Pgminterface(Commarea)
 Xopsupportst(Noxopsupport)
 Xopdirectst(Noxopdirect)
 Mappinglevel(1.0)
 Minrunlevel(1.0)
 Datestamp(20140606)
 Timestamp(09:45:09)
 Container()
 Wsdlfile()

Wsbind(/usr/lpp/cicsts/cicsts52/samples/webservices/wsbind/provider/disp
atchOrderEnd)
 Wsbind(point.wsbind)
 Endpoint(http://my-server:9080/exampleApp/dispatchOrder)
 Binding(dispatchOrderSoapBinding)
 Chapter 7. Create a CICS Web service requester application using the catalog sample 173

1. Type ECFG in CICS to start the configuration program. Change these parameters:

– Set Outbound WebService? to YES.

This option forces the catalog manager to use the Order Dispatch
WebService (DFH0XWOD) instead of the Order Dispatch Stub
(DFH0XSOD).

– Set Outbound WebService URI to the address of the dispatch order
endpoint in your CICS region:

http://<hostname>:<port>/exampleApp/dispatchOrder

Press Enter to confirm your changes.

Figure 7-6 Adapt the catalog manager configuration

2. Start the catalog manager by typing EGUI. Select option 2 with, for example,
element 0010, which returns a panel similar to Figure 7-7 on page 175. Insert
some parameters and press Enter.

 CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB!VSAM
 Outbound WebService? ==> YES YES!NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
 Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> localhost:55556
 Outbound WebService URI ==> http://localhost:55556/exampleApp/dispatchOr
der

Important: URIs are case-sensitive. If the characters you type are
transformed to uppercase after saving, you should set your terminal to mixed
case by typing:

CEOT Tra

This capitalizes transaction IDs only.
174 Application Development for IBM CICS Web Services

Figure 7-7 Dispatch an order in CICS

CICS confirms that the order has been successful, as shown in Figure 7-8.

Figure 7-8 Successfully dispatched order in CICS

7.3 Creating and testing a Web service hosted in RDz

This chapter shows you how you can create a Web service from a WSDL file and
host it (for testing purposes) using Rational Developer for System z. You create a
basic dispatch order Web service from dispatchOrder.wsdl, which can be
requested by the Web service requester you created in the previous chapter.

If you do not want to create your own Web service you can use the enterprise
archive file ExampleAppDispatchOrderV6.ear that is supplied with CICS in the
samples directory:

/usr/lpp/cicsts/cicsts52/samples/webservices/client/ExampleAppDispatchO
rder.ear

CICS EXAMPLE CATALOG APPLICATION - Details of your order

Enter order details, then press ENTER

Item Description Cost Stock On
Order
--
0010 Ball Pens Black 24pk 2.90 0047 000

 Order Quantity: 2
 User Name: cicsuser
 Charge Dept: cicsdptm

 CICS EXAMPLE CATALOG APPLICATION - Main Menu

 Select an action, then press ENTER

 Action 1. List Items
 2. Order Item Number
 3. Exit

 ORDER SUCCESSFULLY PLACED
 Chapter 7. Create a CICS Web service requester application using the catalog sample 175

In this case, import this EAR file and proceed to 7.3.2, “Implement the
WebSphere Application Server Web service” on page 180.

7.3.1 Create a Web service skeleton with Rational Application
Developer for WebSphere Software

In this section, we use Rational Developer for WebSphere software to generate a
Web service implementation that can be deployed to a WebSphere Application
Server server. Rational Application Developer for WebSphere Software
accelerates the development and deployment of Java, Java EE, Web 2.0, mobile,
OSGi, portal and service-oriented architecture (SOA) applications.

Rational Application Developer for WebSphere and a trial version can be
downloaded here:

http://www-03.ibm.com/software/products/en/application

Importing WSDL
The WSDL file must be present in the workspace or available in the local file
system. If this is not already the case, you must transfer this file to your local
machine:

/usr/lpp/cicsts/cicsts52/samples/webservices/wsdl/dispatchOrder.wsdl

Create a general project and then import the WSDL file into it.

Creating a server connection
You must have an installation of WebSphere Application Server available on your
local system or access to a remote installation. This can be created by
performing the following:

� In the Servers view, right-click and select New and then Server. The New
Server wizard will start, as shown in Figure 7-9 on page 177.

� You must select the type of server, and can find WebSphere Application
Server by expanding IBM.

� If the server is local, specify the hostname as localhost. Otherwise, enter the
fully qualified hostname of the WebSphere Application Server instance.
176 Application Development for IBM CICS Web Services

http://www-03.ibm.com/software/products/en/application
http://www-03.ibm.com/software/products/en/application

Figure 7-9 New Server wizard in Rational Application Developer for WebSphere Software

Generating the Web service
To generate the Web service, select File New Other. Expand Web
Services and select Web Service. This starts the Web Services wizard as
shown in Figure 7-10 on page 178.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 177

Figure 7-10 Web Services wizard

1. Select the Web Service type of Top down Java bean Web Service.

2. Click Server runtime and select the correct version of WebSphere Application
Server. In this case, we choose v8.5.

3. Click Web service runtime and select IBM WebSphere JAX-RPC.

4. Click Service project and choose a project name. We chose DispatchOrder
and let the Service EAR project default to DispatchOrderEAR.

5. Use the slide bar to display the Test Service option.

6. Optionally, you can select the Monitor the Web service check box to enable
a TCP/IP monitor to listen to the service port. Click Next.
178 Application Development for IBM CICS Web Services

7. Figure 7-11 allows the selection of the WSDL file.

Figure 7-11 Selection of WSDL file.

8. Clicking Next will generate the Java code. After this is complete, the Test Web
Service pane will open as shown in Figure 7-12. Choose the Web Services
Explorer, which will start after the wizard has finished. Click Next.

Figure 7-12 Test Web Service using Web Services Explorer

Note: An alternative method is to right-click dispatchOrder.wsdl in the
Project Explorer panel and then generate the Web service by selecting
File New Other. Expand Web Services and select Web Service.
This preselects the Service Definition.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 179

9. The last panel (Figure 7-13) shows publishing details. Do not select anything
for this example. Click Finish. You have created a simple Web service.

Figure 7-13 RDz Web service wizard - Publishing

7.3.2 Implement the WebSphere Application Server Web service
Open the Java EE perspective to look at all generated projects. If you have
imported the sample endpoint, it should look similar to Figure 7-14.

Figure 7-14 Workspace after creating a Web service

In the Services view, expand JAX-RPC and then double-click
dispatchOrderService, as shown in Figure 7-15 on page 181.
180 Application Development for IBM CICS Web Services

Figure 7-15 dispatchOrderService in Services view

The service implementation opens in the main pane, as shown in Example 7-5.

Example 7-5 DispatchOrderSoapBindingImpl.java from sample

public DispatchOrderResponse dispatchOrder(DispatchOrderRequest
requestPart)

throws java.rmi.RemoteException
{

return null;
}

This implementation will return null. Modify the code as shown in Example 7-6.
The request data from CICS will be written out to stdout. The string may be
varied but if the response string you set is longer than 20 characters according to
the WSDL, a request from CICS will fail.

Example 7-6 DispatchOrderSoapBindingImpl after update

package com.dispatchOrder.exampleApp.www;
import com.Response.dispatchOrder.exampleApp.www.*;
import com.Request.dispatchOrder.exampleApp.www.*;

public class DispatchOrderSoapBindingImpl implements DispatchOrderPort{
 public DispatchOrderResponse dispatchOrder(DispatchOrderRequest
request)
 throws java.rmi.RemoteException

{
 System.out.println("Department : " +
request.getChargeDepartment());
 System.out.println("User : " + request.getCustomerId());
 System.out.println("Item Number: " +
request.getItemReferenceNumber());
 Chapter 7. Create a CICS Web service requester application using the catalog sample 181

 System.out.println("Quantity : " +
request.getQuantityRequired());
 DispatchOrderResponse response = new DispatchOrderResponse();
 response.setConfirmation("RDz dispatched order");
 return response;
 }
}

7.3.3 Test the Web service using Web Services Explorer
The Web Services Explorer starts automatically after the Web service wizard
finishes. If you closed the window or imported the Web service from the sample
directory, start it manually. Right-click the WSDL file in the Web Services folder of
the Java Platform, Enterprise Edition project explorer. Select Test with Web
Services Explorer. Select the dispatchOrder operation.

Create an endpoint with port 9080. The complete URI is constructed similar to:

http://localhost:9080/<context_root>/services/<name_of_your_portType>
http://localhost:9080/DispatchOrder/services/dispatchOrderPort

The name of your portType can be found in the dispatchOrder.wsdl file as
shown in Example 7-7. This maps to the operation dispatchOrder that you will
invoke.

Example 7-7 Excerpt from dispatchOrder.wsdl: portType

<portType name="dispatchOrderPort">
<operation name="dispatchOrder">

<input message="tns:dispatchOrderRequest"
name="DFH0XODSRequest"/>
<output message="tns:dispatchOrderResponse"
name="DFH0XODSResponse"/>

</operation>
</portType>

Go back to the Web Services Explorer to test your Web service. Select the
dispatchOrder operation. You should see a window similar to Figure 7-16 on
page 183. Enter parameters, being sure to conform to your WSDL. Your strings
in this case must be exactly eight characters long. Click Go. You should get the
answer string that you just specified in your Java program (RDz dispatched
order).
182 Application Development for IBM CICS Web Services

Figure 7-16 Web Service Explorer

In addition, the Console view in Rational Application Developer for WebSphere
Software will update with the input data, as can be seen in Example 7-8.

Example 7-8 SystemOut from WebSphere Application Server

[28/10/14 16:43:23:976 GMT] 0000006c SystemOut O Department :
REDBOOK2
[28/10/14 16:43:23:976 GMT] 0000006c SystemOut O User :
REDBOOK1
[28/10/14 16:43:23:977 GMT] 0000006c SystemOut O Item Number: 10
[28/10/14 16:43:23:977 GMT] 0000006c SystemOut O Quantity : 1
 Chapter 7. Create a CICS Web service requester application using the catalog sample 183

7.3.4 Test the Web service using the CICS sample application
The following steps show how to invoke this new Web service from CICS.

1. Open the configuration application of your CICS catalog manager example
application (Figure 7-17). Make sure Outbound WebService is set to YES and
insert the Outbound WebService URI of your endpoint. Use the TCP/IP
address of the workstation on which you are running Rational Application
Developer for WebSphere Software, or WebSphere Application Server if this
is different. Refer to 7.2.3, “Test the requester application” on page 173 for
further details. Press Enter to confirm your change.

Figure 7-17 Configure CICS Catalog application to invoke WebSphere web service

Important: URIs are case-sensitive. If the characters you type are
transformed to uppercase after saving, you should set your terminal to
mixed case by typing CEOT Tra.

This capitalizes transaction IDs only.

 CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> YES YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
 Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> example.com:55559
 Outbound WebService URI ==>
http://workstation.example.com:9080/DispatchOrder/services/dispatchOrderPort
184 Application Development for IBM CICS Web Services

2. Start the catalog manager by typing EGUI, select option 2 with, for example,
element 0010, which will give you a panel similar to Figure 7-18. Insert some
parameters and press Enter.

Figure 7-18 Dispatch an order in CICS

CICS tells you that your order has been placed successfully (Figure 7-19).

Figure 7-19 Successfully dispatched order in CICS

The Console in Rational Application Developer for WebSphere Software will also
update with the details of your request.

 CICS EXAMPLE CATALOG APPLICATION - Details of your order

 Enter order details, then press ENTER

 Item Description Cost Stock On Order

--
 0010 Ball Pens Black 24pk 2.90 0095 000

 Order Quantity: 2
 User Name: CICSUSER
 Charge Dept: CICSDEPT

 CICS EXAMPLE CATALOG APPLICATION - Main Menu

 Select an action, then press ENTER

 Action 1. List Items
 2. Order Item Number
 3. Exit

 ORDER SUCCESSFULLY PLACED
 Chapter 7. Create a CICS Web service requester application using the catalog sample 185

7.4 Client mode URIMAPs
The URIMAP resource in CICS can be used for:

� Provider mode web services (usage of PIPELINE)

� CICS as a web server providing HTTP responses (usage of SERVER)

� CICS as a web server providing ATOM responses (usage of ATOM)

� CICS as a host for a JVM server processing requests from a web client
(usage of JVMSERVER)

� CICS as a requester of web services or web resources using HTTP (usage of
CLIENT).

URIMAPs were introduced in CICS Transaction Server V3.1 and were enabled
for use with the INVOKE SERVICE command in CICS TS V4.1. Using client mode
URIMAPs with web service requests has the following advantages:

� Ease of maintenance and portability.
� Control over outbound SSL configuration.
� In CICS Transaction Server V5.2, outbound connection pooling.

7.4.1 Ease of maintenance and portability
When CICS issues an INVOKE SERVICE command, the network address of the
target web service is chosen from:

� The value of the URI associated with the URIMAP specified on the INVOKE
SERVICE command.

This option is the most flexible because it allows the target web service to be
changed without changing the application program or regenerating the web
service.

� The value of the URI option on the INVOKE SERVICE command.

This option requires altering and then recompiling the program for each
environment where the URI is different. Alternatively, the program will need to
use a configuration service, for example, the DFH$CONF file of the Catalog
example application.

� If neither of these values is set, the URI that was documented in the Web
Services Description Language (WSDL) is used.

This is the least flexible option, as it requires altering the WSDL file and
re-creating the .wsbind file for each environment, which in turn means that
multiple copies of the web service files in zFS are required.
186 Application Development for IBM CICS Web Services

7.4.2 Control over outbound SSL configuration
Beginning in CICS TS 3.2, an INVOKE SERVICE request that matches an installed,
enabled client-mode URIMAP will use SSL configuration information from that
resource instead of the CICS region defaults. The relevant resource attributes
are:

� SCHEME

This must be set to HTTPS to use SSL.

� CIPHERS

A list of two-digit codes, which represent cipher suites. By default, these will
be a default based on the ENCRYPTION SIT parameter.

In CICS Transaction Server V5.1 with PM97207 applied, and in CICS
Transaction Server V5.2, the CIPHERS attribute can be specified as a zFS
file name containing a list of supported ciphers.

� CERTIFICATE

The name of the certificate to be used if the remote server requests a
certificate to be used for client authentication. This certificate must be on the
CICS region’s key ring as specified on the KEYRING SIT parameter, and CICS
must have access to the client certificate’s private key.

If no certificate is specified, the default certificate on the key ring is used
instead. If this certificate does not have a private key, a warning will be issued
depending on the version of CICS. If you do not want to use a client
certificate, it is suggested that you do not have a default certificate on the key
ring.

Use of client mode URIMAPs with SSL is covered in Securing CICS Web
Services, SG24-7658.

7.4.3 Outbound connection pooling
In CICS TS 5.1 and earlier, whenever CICS makes an INVOKE SERVICE
request, it opens a connection to the remote server and then closes it once
the request is complete.

This is still the default behavior in CICS TS 5.2. However, web services
requests using a URIMAP can benefit from connection reuse. Connection
reuse can offer CPU savings because the socket is not created and destroyed
for each request, especially if SSL.

In this section, we show how to configure the Catalog example application to
use outbound connection pooling for the dispatchOrder web service.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 187

Creating a URIMAP
By default, the Catalog example application does not use a URIMAP to
determine the location of the dispatchOrder endpoint. Instead, it reads the
EXMPCONF VSAM file to determine the address, as can be seen in
Example 7-9.

Example 7-9 ECFG transaction showing Outbound web service URI

CONFIGURE CICS EXAMPLE CATALOG APPLICATION
Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> YES YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
 Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> localhost:55559
 Outbound WebService URI ==>
http://localhost:55559/exampleApp/dispatchOrder
 ==>
 ==>

PF 3 END 12 CNCL

To enable the web service to use outbound connection pooling, we create a client
mode URIMAP using the above information, specifying usage of CLIENT, host as
localhost, port as 55559, and using the path from the Outbound WebService URI
as seen in Example 7-9. The results are shown in Example 7-10.

Example 7-10 Client mode URIMAP for outbound connection pooling

OBJECT CHARACTERISTICS CICS RELEASE = 0690
 CEDA View Urimap(DISPATCH)
 Urimap : DISPATCH
 Group : CATALOG9
 DEScription :
 STatus : Enabled Enabled | Disabled
 USAge : Client Server | Client | Pipeline | Atom
 | Jvmserver
 UNIVERSAL RESOURCE IDENTIFIER
 SCheme : HTTP HTTP | HTTPS
 POrt : 55559 No | 1-65535
 HOST : localhost
 (Mixed Case) :
188 Application Development for IBM CICS Web Services

 PAth : /exampleApp/dispatchOrder
 (Mixed Case) :
 :
 :
 :
 OUTBOUND CONNECTION POOLING

 SYSID=OOK9 APPLID=REDBOOK9

In CICS TS 5.2, a new attribute, SOCKETCLOSE, was added to URIMAPs for
use only with client mode URIMAPs. SOCKETCLOSE specifies the amount of
time a client socket is left open for reuse by other tasks with the same
destination. The default setting is zero, which preserves the behavior of CICS in
previous releases.

We set this attribute to 000100, which represents 1 minute. The results can be
seen in Example 7-11.

Example 7-11 Setting SOCKETCLOSE to a nonzero value to enable connection pooling

OBJECT CHARACTERISTICS CICS RELEASE = 0690
 CEDA View Urimap(DISPATCH)
 + POrt : 55559 No | 1-65535
 HOST : localhost
 (Mixed Case) :
 PAth : /exampleApp/dispatchOrder
 (Mixed Case) :
 :
 :
 :
 OUTBOUND CONNECTION POOLING
 SOcketclose : 000100 0-240000 (HHMMSS)

We install the URIMAP.

Copying and altering DFH0XWOD
The IBM supplied sample program to issue the web service request
dispatchOrder does not use URIMAPs. The program first attempts to use the
URI from within the configuration file EXMPCONF, and if that fails to use the URI
from within the .wsbind file, which is suitable for Service Component Architecture
(SCA) configurations. Service Component Architecture is discussed in
Chapter 9, “Service Component Architecture and CICS Cloud in CICS TS V5.2”
on page 213.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 189

The current COBOL commands in DFH0XWOD are shown in Example 7-12.

Example 7-12 DFH0XWOD issues INVOKE SERVICE commands without URIMAP

* Make the Invoke call

 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNELNAME)
 URI(WS-ENDPOINT-URI)
 OPERATION(WS-OPERATION)
 RESP(RESP) RESP2(RESP2)
 END-EXEC.

* Determine URI at runtime @01A
 IF RESP = DFHRESP(INVREQ) AND RESP2 = 4 THEN
 EXEC CICS INVOKE SERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNELNAME)
 OPERATION(WS-OPERATION)
 RESP(RESP) RESP2(RESP2)
 END-EXEC
 END-IF.

The source for DFH0XWOD is in SDFHSAMP. We copy the source to a new PDS
and rename it as RED0XWOD. We alter the INVOKE SERVICE commands to
use a URIMAP. The results are shown in Example 7-13.

Example 7-13 INVOKE SERVICE with URIMAP

* Make the Invoke call

EXEC CICS INVOKE SERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNELNAME)
 URIMAP('DISPATCH')
 OPERATION(WS-OPERATION)
 RESP(RESP) RESP2(RESP2)
 END-EXEC.

The new program is then defined and then installed using CEDA, as shown in
Example 7-14 on page 191.
190 Application Development for IBM CICS Web Services

Example 7-14 Defining and installing program RED0XWOD

CEDA DEFINE PROGRAM(RED0XWOD) GROUP(CATALOG9)
CEDA INSTALL PROGRAM(RED0XWOD) GROUP(CATALOG9)

Altering the configuration file
To make the Catalog example application use the new program RED0XWOD instead
of the default DFH0XWOD, we need to use the ECFG transaction. The field Order
Dispatch WebService must be changed, as shown in Example 7-15.

Example 7-15 Amending Catalog application to use RED0XWOD

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> YES YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> RED0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> localhost:55559
 Outbound WebService URI ==>
http://localhost:55559/exampleApp/dispatchOr
 ==> der
 ==>

APPLICATION CONFIGURATION UPDATED

Testing outbound connection pooling
To prove that we set up outbound connection pooling correctly, we will issue
several dispatchOrder requests in sequence within a short period of time. To do
this, we use the EGUI sample transaction as shown in Figure 7-20.

Figure 7-20 Catalog application main menu
 Chapter 7. Create a CICS Web service requester application using the catalog sample 191

We select Action 2, Order Item Number, and select item 0010. On pressing Enter,
the window changes to Catalog application “details of your order” window.

We complete Order Quantity as 1, User Name as REDBOOK, and Charge Dept as
IBM and press Enter. The results are shown in Figure 7-21.

Figure 7-21 Details of your order in the Catalog application

Pressing Enter returns us to the main menu where the message “ORDER
SUCCESSFULLY PLACED” can be seen. We repeat this process several times
in succession.

Producing a statistics report
To produce a statistics report, we use the IBM supplied statistics samples that
are provided in CSD group DFH0STAT. CICS Monitoring will also need to be active,
and the SIT Parameter SPOOL must be set to YES.

Run the transaction STAT, which will then show the main menu, as can be seen
in Figure 7-22 on page 193.
192 Application Development for IBM CICS Web Services

Figure 7-22 STAT transaction main menu

Pressing Enter now produces a default statistics report. However, we need to
request URIMAP statistics, which are not produced by default. To change what
statistics are reported, press F4 Report Selection. The report selection window
appears, as shown in Figure 7-23.

Figure 7-23 Statistics report selection window

URIMAPs are on the second window, so you need to press F8 to view the next
window, and then type Y in the field corresponding to URIMAP. The results of this
can be seen in Figure 7-24 on page 194.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 193

Figure 7-24 URIMAP statistics selected for reporting

Press F3 to return to the main menu, and then press Enter to print a statistics
report.

Outbound Connection Pooling results
The relevant section of the statistics is shown in Example 7-16.

Example 7-16 URIMAP statistics fragment

URIMAP reference count : 6
Disabled : 0
Redirected : 0
URIMAP Socket close (timeout). : 60
URIMAP Socket pool size. . . . : 0
URIMAP Peak socket pool size . : 1
URIMAP Sockets reclaimed . . . : 0
URIMAP Sockets timed-out . . . : 3

In the above example, we can see that our client mode URIMAP was referenced
six times, and that the Socket close parameter was set to 60 seconds.

The current pool size is zero, and peak socket pool size was 1, which is
expected. We want to use a pool of sockets, and because the requests were
made in series, we never needed to use more than one socket at a time.

No sockets were reclaimed from the pool. Sockets are only reclaimed if they are
dormant and CICS has reached a MAXSOCKETS condition. This did not occur
in our single terminal test.
194 Application Development for IBM CICS Web Services

Three sockets timed out. This indicates that we created a connection, and then
did not use it for a period of 1 minute.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 195

196 Application Development for IBM CICS Web Services

Chapter 8. Componentization

In this chapter, we consider the concept of componentization and how software
components can be used to improve traditional CICS application development.
We look at how some of the new features extend the benefits of Web services for
ordinary applications. We also discuss how Web Services resources can be
managed by CICS bundles.

8

© Copyright IBM Corp. 2015. All rights reserved. 197

8.1 CICS applications as components
Part of the value of Web services is the ability to reuse existing applications as
building blocks within a wider context. The existing applications might be
complicated and involve many CICS PROGRAMs, but to the outside world they
are simple XML-based interfaces. Much complexity is hidden behind the Service
interface. The associated Web Services Description Language (WSDL)
document describes the interface to the application without any implementation
complexities.

Traditional CICS application development has some similarities. CICS
applications are normally made up of multiple executable modules. These
modules might interact through the EXEC CICS LINK command, through
COBOL call statements, and through similar mechanisms. Code can be built into
libraries and shared between applications, or made into callable routines.

Applications in turn can interact with each other, typically using further EXEC
CICS LINK commands. It is this application-to-application interaction that
introduces a subtle problem. It can be difficult do determine the logical
boundaries between applications. There is no way to know whether an EXEC
CICS LINK between CICS PROGRAMs marks a boundary within an application,
or between applications. This confusion is something that CICS administrators
have learned to live with, but it does have an impact. It is not unusual for CICS
administrators to experience significant difficulties in understanding what their
PROGRAMs do, how they interact, and what impact changes will introduce. See
Figure 8-1 on page 199 for a typical CICS system example, and all the
complexities of programs linking to each other.
198 Application Development for IBM CICS Web Services

Figure 8-1 A typical CICS system with many PROGRAMs linking to each other

One way to reduce this problem is to introduce a formal boundary for
application-to-application interactions. A target CICS application can be exposed
as a Service, and be invoked from another application. The LINK command is
used within applications, but the INVOKE command is used between
applications. Ordinary CICS applications can be treated as Services, with the
associated advantages and characteristics. See Figure 8-2 on page 200 for an
example of CICS applications being treated as Services.

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM
 Chapter 8. Componentization 199

Figure 8-2 The same CICS system with component boundaries identified

In this chapter, Component is used to describe a Service used within a CICS
region.

8.2 Locally optimized Web services

One technique that can be used to formalize application boundaries within a
CICS region is to deploy the target applications as Web services. This is done
using the same techniques as would normally be used when exposing an
existing PROGRAM as a Web service. The difference is that both the requester
and provider applications are running in the same CICS system. The client
program uses the EXEC CICS INVOKE SERVICE command to call the target
Web service.

There is an important optimization in CICS that facilitates componentization. As
part of the INVOKE processing CICS looks to see whether the named
WEBSERVICE resource is hosted in a requester mode PIPELINE or a provider
mode PIPELINE. For normal uses of EXEC CICS INVOKE SERVICE, the target
is in a requester mode PIPELINE and this results in a SOAP message being sent
to the remote Service. But, if the WEBSERVICE is hosted in a provider mode

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM
200 Application Development for IBM CICS Web Services

PIPELINE, CICS behaves differently. CICS instead issues an EXEC CICS LINK
to the PROGRAM that implements the local WEBSERVICE.

An application can issue EXEC CICS INVOKE SERVICE, but CICS can
automatically optimize that into EXEC CICS LINK.

This results in several benefits compared to coding EXEC CICS LINK in the
source application:

� CICS knows about the application boundary. The boundary can be seen in
CICS monitoring, statistics, and diagnostics. CICS has the opportunity to add
value to the invocation by modifying the processing based on configuration
settings.

� The client application is only loosely bound to the target service. For example,
the target PROGRAM can be changed by the administrator based upon the
WEBSERVICE resource definition. If there is ever a requirement to move the
target service to another platform, a simple administrative change in the CICS
region will result in the requester making an outbound SOAP call to the target
Web service without any application changes being required.

� A formal WSDL-based description of the interface exists. The target service
might optionally be exposed to the outside world through the SOAP interface,
but this is not a requirement. If at some point in the future there is a
requirement for it to become an external Web service, no effort is required to
implement it. The work has already been done.

In CICS TS 4.1, a new API command has been introduced called EXEC CICS
INVOKE SERVICE. This is a synonym for EXEC CICS INVOKE WEBSERVICE.
It emphasizes that a Service does not have to involve external interactions, a
Service can be local.

8.3 Using WSDL to describe COBOL components

If you use the INVOKE command to call a Web service, a WSDL description of
that service will exist. It might have been generated by DFHLS2WS (or Rational
Developer for System z (RDz)) from an existing set of copybooks. This is likely to
be the case when existing applications are turned in to components.

For top-down development there is an opportunity to use modern software
design tools as part of the development process for new CICS components.

For example, you consider using Rational Software Architect (RSA) and the
Unified Modeling Language (UML) to describe the abstract interfaces between
the wanted software components. After you have a UML-based description of the
 Chapter 8. Componentization 201

interfaces to the new component, you can generate a WSDL-based description
from it. After you have a WSDL-based description of the interface you can
generate COBOL bindings using DFHWS2LS (or RDz).

From there you can implement a CICS Service that exactly conforms to the
architectural intentions encoded by the application architect in the UML
document. The CICS components are just one more box in the architect’s
palette, with the implementation complexities abstracted away as with any other
Web service.

8.4 Further options with CICS TS 4.1 and later

Locally optimized Web service invocations offer the best possible performance
for an EXEC CICS INVOKE call, but they do involve some limitations compared
to remote Web service invocations:

� The requester and provider must share the same copybooks. This might not
be a significant limitation, but it does mean that both the requester and the
provider applications must be implemented in the same programming
language.

� The requester and provider applications will run in the same CICS unit of
work (UOW). If an abend occurs in the provider application, this will also back
out changes made in the requester application unless the application
manages its own transactions.

� CICS pipelines are not used. This means that none of the handler programs
associated with the PIPELINE resource are called. None of the diagnostics
normally associated with a pipeline will be available. The optimization from
INVOKE SERVICE to LINK completely optimizes the pipeline out of the
processing.

� Many of the control containers that are normally available to the provider
mode Web service on the default channel are unavailable. This includes
containers that normally hold XML data such as DFH-REQUEST,
DFH-RESPONSE, and DFHWS-BODY.

From CICS TS 4.1 onwards, there is a new option available that allows a
compromise between performance and flexibility for local components. The new
capability involves using a WEBSERVICE resource in a requester mode
PIPELINE together with a special URI format that gives the application control

Note: The DFHWS-URI, DFHWS-OPERATION, and
DFHWS-SOAPACTION containers will all be available.
202 Application Development for IBM CICS Web Services

over what processing will occur. This results in two new options that were not
available with earlier versions of CICS:

� Use INVOKE SERVICE calls to link to a local CICS component after the
requester mode pipeline processing has been performed.

� Use INVOKE SERVICE calls to link to a local CICS component after both a
requester mode pipeline and a provider mode pipeline have been called, but
without sending the request out to the network.

These two scenarios are discussed in the following sections. There is a third new
URI format to allow chaining of requester mode PIPELINEs, but that capability is
not discussed here.

8.4.1 Linking to a target PROGRAM from a requester mode PIPELINE

In this scenario, the requester application issues:

EXEC CICS INVOKE SERVICE(servicename) OPERATION(operationName) URI(uri)

specifying a URI in the form:

cics://PROGRAM/program

where program is the name of the target CICS PROGRAM to which to link. CICS
finds the SERVICE or WEBSERVICE identified by servicename and starts the
processing through the associated requester mode PIPELINE. At the end of the
pipeline processing CICS issues an EXEC CICS LINK to the program specified
in the URI.

This scenario is similar to the locally optimized scenario, except that the
requester mode pipeline is used and the associated pipeline handler programs
are called by CICS. However, the application data passed to the target
PROGRAM is the same data provided by the source application.

See Figure 8-3 for an example of linking to a program from a requester mode
pipeline.

Figure 8-3 LINKING to a PROGRAM from a requester mode PIPELINE

Requester
Mode

PIPELINE
Source Application Target Service

EXEC CICS INVOKE SERVICE EXEC CICS LINK
 Chapter 8. Componentization 203

This provides some additional flexibility that the locally optimized INVOKE does
not offer, but there are some restrictions remaining.

8.4.2 Invoking a local SERVICE from a requester mode PIPELINE

In this scenario, the requester application issues:

EXEC CICS INVOKE SERVICE(servicename) OPERATION(operationName) URI(uri)

specifying a URI in the form:

cics://SERVICE/service?targetServiceUri=targetServiceUri

where service is the name of a provider mode CICS SERVICE (typically a
WEBSERVICE) to invoke and targetServiceUri is the URI associated with the
provider mode SERVICE.

CICS finds the SERVICE or WEBSERVICE identified by the servicename and
starts the processing through the associated requester mode PIPELINE. At the
end of the pipeline processing CICS locates the provider mode SERVICE or
WEBSERVICE identified in the URI by service. CICS then starts the provider
mode PIPELINE associated with this service using the specified
targetServiceUri.

This scenario is similar to making an ordinary EXEC CICS INVOKE SERVICE
call with a URI that addresses a provider mode WEBSERVICE hosted in CICS,
except that the call through the networking layer of code is optimized out of the
execution path. See Figure 8-4 on page 205 for an example of invoking a local
service from a requester mode pipeline.
204 Application Development for IBM CICS Web Services

Figure 8-4 INVOKE SERVICE of a local service from a requester mode PIPELINE

This scenario offers much flexibility for scenarios where both the requester and
provider components are hosted in CICS, but it does involve generating XML
from application data and parsing that XML back into application data. This is in
addition to the cost of running both the requester mode pipeline and the provider
mode pipeline.

8.5 Packaging the Web Service resources in CICS
Bundles

CICS Bundles provide a way of grouping and managing related resources. The
resources defined by a bundle can be installed and managed together with the
bundle resource as the single point of control. In CICS TS V5.2, you can define
and manage your web service resources using CICS Bundles as an alternative
to the CICS System Definition (CSD) or CICSPlex SM Business Application
Services (BAS).

To define and manage the Web Service resources in a CICS bundle, you must
follow these steps:

� Create a CICS Bundle project using the IBM CICS Explorer or Rational
Developer for System z.

� Define the resource in the created CICS Bundle project.

� Deploy the bundle by application/platform or as a stand-alone bundle.

Requester
Mode

PIPELINE
Source Application

Target Service

EXEC CICS INVOKE SERVICE

EXEC CICS LINK

Provider
Mode

PIPELINE
 Chapter 8. Componentization 205

8.5.1 Create a CICS Bundle project

CICS Bundle projects can include resources that are dynamically created when
the bundle is deployed in CICS. You can create a CICS Bundle project using the
supplied wizard:

1. On the menu bar, click File New Project.... The New Project wizard
displays.

2. Expand CICS Resources, click CICS Bundle Project, then click Next. The
CICS Bundle Project wizard displays.

3. Enter the project name and click Finish to create the CICS Bundle project.

Figure 8-5 shows the Bundle Project wizard.

Figure 8-5 New CICS Bundle Project wizard
206 Application Development for IBM CICS Web Services

8.5.2 Defining Web Services resources in CICS Bundles

TCPIPSERVICE resources
TCPIPSERVICE resources can be packaged in CICS bundle from CICS TS 5.2,
before that they can be imported into CICS bundle as a dependency in CICS TS
5.1.

Use the following steps to define TCPIPSERVICE resources in CICS Bundles:

1. Right-click the CICS Bundle project in the Project Explorer view.

2. Click New TCP/IP Service Definition. The New TCP/IP Service Definition
wizard appears.

3. Fill the required fields and click Finish to create the TCPIPSERVICE resource
in the bundle. You can edit it in the resource editor if you want to change any
other attributes.

Figure 8-6 shows the New TCP/IP Service Definition wizard.

Figure 8-6 New TCP/IP Service Definition wizard
 Chapter 8. Componentization 207

PIPELINE resources
PIPELINE resources can be packaged in CICS Bundles from CICS TS 5.2. For
the PIPELINE resources defined in CICS Bundle, they are only to be used for
hosting WEBSERVICE resources that are defined using CICS Bundles.
PIPELINE resources that are defined in CICS Bundles can only be used with
WEBSERVICE resources that are defined in the same or another CICS Bundle
or created dynamically by a pipeline scan. WEBSERVICE resources defined
using the CICS CSD or BAS are not compatible with PIPELINE resources that
are defined in CICS Bundles.

Use the following steps to define PIPELINE resources in CICS Bundles:

1. Right-click the CICS Bundle project in the Project Explorer view.

2. Click New Pipeline Definition. The New Pipeline Definition wizard appears.

3. Complete the required fields and click Finish to create the PIPELINE
resource in the CICS Bundle.

Figure 8-7 shows an example of the New Pipeline Definition wizard.

Figure 8-7 New Pipeline Definition wizard
208 Application Development for IBM CICS Web Services

The Pipeline Configuration list offers a selection of standard pipeline
configuration files, one of which will be created as part of the pipeline definition.
This new configuration file can be edited and will be deployed with the bundle.

The SHELF attribute is not used for PIPELINE resources that are defined in
CICS Bundles.

The WSDIR attribute is suggested to be left as unspecified for the PIPELINE
resources defined in CICS Bundles. If specified, a pipeline scan will be executed
when the bundle is installed, and any automatically created WEBSERVICE and
URIMAPs must be managed at the bundle level.

The PIPELINE resources defined in CICS bundle are suggested to be deployed
as part of CICS Cloud Platform to be used by WEBSERVICE resources deployed
by a CICS Cloud Application. The use of Web Services resources inside a CICS
Cloud environment will be discussed in Chapter 9, “Service Component
Architecture and CICS Cloud in CICS TS V5.2” on page 213.

WEBSERVICE resources
WEBSERVICE resources can be packaged into CICS Bundles beginning in
CICS 5.2. Use the following steps to create WEBSERVICE resources in CICS
Bundles:

1. Right-click the CICS Bundle project in the Project Explorer view.

2. Click New Web Service Definition. The New Web Service Definition
wizard appears.

3. Complete the required fields and click Finish to create the WEBSERVICE
resource in CICS Bundle. If you want to change any other attribute, you can
update it in the Web Service Resource editor.

Figure 8-8 on page 210 shows the New Web Service Definition wizard.
 Chapter 8. Componentization 209

Figure 8-8 New Web Service Definition wizard

Both the Web Service Binding and the optional WSDL document will be
packaged with the WEBSERVICE and deployed with the CICS Bundle.

URIMAP resources
URIMAP resources can be packaged in CICS bundle from CICS TS 5.1 onwards.
Starting in CICS TS 5.2 URIMAP resources can be defined as entry points into
CICS Cloud Applications.

Use the following steps to define URIMAP resources in CICS Bundles:

1. Right-click the CICS Bundle project in the Project Explorer view.

2. Click New URI Map Definition. The New URI Map Definition wizard
appears.

3. Select Pipeline as the Usage of the URIMAP resource for Provider mode
Web services.
210 Application Development for IBM CICS Web Services

4. Complete the required fields for the URIMAP resource.

5. Tick Create an application entry point and enter the operation name if you
want to define the URIMAP resource as an application entry point.

6. Click Finish to create the URIMAP resource in the CICS Bundle.

Figure 8-9 shows the New URI Map Definition wizard.

Figure 8-9 New URI Map Definition wizard
 Chapter 8. Componentization 211

212 Application Development for IBM CICS Web Services

Chapter 9. Service Component
Architecture and CICS Cloud
in CICS TS V5.2

In this chapter, we describe Service Component Architecture (SCA) and how
CICS Transaction Server implements it. We also describe how to deploy Web
services with CICS Cloud.

9

© Copyright IBM Corp. 2015. All rights reserved. 213

9.1 Service Component Architecture

In this section, we discuss the fundamentals of the SCA, which is a
service-oriented architecture (SOA)-based programming model available as part
of CICS TS.

SCA has similar goals and ideals to Web services, and many of the concepts and
benefits overlap, but the implementation is quite different.

SCA is based on the idea that business function is provided as a series of
services (or components), which are assembled together to create solutions that
serve a particular business need. SCA is both platform and programming
language neutral, and is suitable for creating new business services by using
composition of both new and existing components. SCA provides a model for the
composition of services and for the deployment of service components, including
the reuse of existing applications.

In the following sections, we discuss the concepts and terminology of SCA.

9.1.1 Introduction to SCA

In this section, we introduce SCA, basic concepts, and components.

Basic concepts
SCA is designed around components, which encapsulate services that can be
invoked. SCA components expose interfaces that define the information that
must be supplied to invoke a service. Each interface can be defined using either
a Java Interface, or a Web Services Description Language (WSDL) Port Type.
The CICS implementation of SCA is based around WSDL, so that is the interface
format upon which we will concentrate.

SCA components can also invoke services that are exposed by other SCA
components. We say that one SCA component references the other. As with
Web services, service invocation is an entirely black-box affair. It does not matter
to one component how another is implemented. An interface can have one or
more operations (also sometimes called functions). When a component is
invoked, an operation name is specified. These operations can be one-way
(in-only in WSDL) or two-way (in-out in WSDL).

The major difference between SCA and Web services is that SCA focuses on the
assembly of composite services, whereas Web services focuses on wire-level
interoperability between services. SCA can be bound to Web services, but it
does not require an XML-based messaging system.
214 Application Development for IBM CICS Web Services

Figure 9-1 shows a simplified UML model of the SCA architecture.

Figure 9-1 Simplified SCA component UML model

The Open Service Oriented Architecture group documents the SCA model:

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec/v1.2/
csd01/sca-assembly-spec-v1.2-csd01.html

Collections of components are referred to as composites. SCA composites are
defined using Service Component Definition Language (SCDL) files. As with
WSDL, SCDL is usually machine-generated and not intended for direct use by
application developers. You would normally use tools such as Rational Developer
for System z (RDz) to produce the SCDL.

SCA components
A component is the basic unit of composition in SCA. Components are used to
define which services are available and can be invoked within the SCA runtime
environment.

Example 9-1 on page 216 shows a fragment of SCDL that defines a component
called SampleComponent that is instantiated by a Java class called
MyJavaClass. This class implements the methods that are specified in interface
MyInterface. A property has also been specified that will be available to the SCA
component at runtime. The service name is the name of business function
provided by the SampleComponent. This example uses a Java class, therefore it
is not appropriate for deployment to CICS, but could be used with other
SCA-compliant application environments.

Interface

Operation

Operation Type

OneWay Request/Reply

Component

Component Type

Implementation

Provides Has
Reference

Requires

<<use>>
Invokes
 Chapter 9. Service Component Architecture and CICS Cloud in CICS TS V5.2 215

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.html

Example 9-1 Component element

<component name="SampleComponent">
 <implementation.java class="ibm.com.MyJavaClass" />
 <property name="pname">pattributes</property>
 <service name="MyService">
 <interface.java interface="ibm.com.MyInterface" />
 </service>
</component>

SCA services
The service element allows you to define which specific business function or
services the component (or composite) provides. A reference can be used to
describe dependencies on services provided by another component. Both
service and reference elements can be further specified using the interface and
binding elements.

SCA operations
SCA supports two types of operations:

� One-way operations (also called fire-and-forget) have data that flows into the
SCA component from the caller, but the SCA component returns no data back
to the caller.

� Two-way operations (also called request/reply) have data flowing into the
component (request), and then back to the caller (reply).

Some architectural models call one-way operations asynchronous and two-way
operations synchronous (Unified Modeling Language [UML] uses these terms).
SCA does not impose this concept.

SCA composites
A composite is the deployable unit for SCA. It can contain components, services,
references, property declarations, and the wiring that describes the connection
between these elements.

A composite can be made up of a number of components that are wired together.
The composite exposes an external interface as Services, and can call external
services through References. See Figure 9-2 on page 217.
216 Application Development for IBM CICS Web Services

Figure 9-2 Composites and components

The SCDL fragment in Example 9-2 shows a typical composite definition. The
sample shows a composite named sampleCatalog. The composite exposes a
service called Catalog. The business methods are defined within a component
element called CatalogComponent. The component contains the implementation
of an interface called ibm.com.sampleCatalog, which specifies the available
operations. The example also shows that the externally visible service is actually
a Web service. The binding.ws element defines the Web services-based access
method used to invoke the service.

Example 9-2 Composite element

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://ibm.com/sampleCatalog"
 name="sampleCatalog" >
 <service name="Catalog" promote="CatalogComponent">
 <interface.java interface="ibm.com.sampleCatalog"/>
 <binding.ws port="http://ibm.com/Catalog
 wsdl.endpoint(Catalog/CatalogWS)"/>
 </service>
 <component name="CatalogComponent">
 <implementation.java class="ibm.com.sampleCatalog"/>
 </component>
 </composite>

Component

Component

Properties

ReferencesServices

Composite

SCA Concept
 Chapter 9. Service Component Architecture and CICS Cloud in CICS TS V5.2 217

9.2 CICS Transaction Server Implementation of SCA

In this section, we look at CICS implementation of SCA.

9.2.1 BUNDLE resources

CICS TS V4.1 introduced a new packaging format called a bundle for deploying
some types of CICS resources, including the artifacts needed for SCA. A
BUNDLE resource represents a group of artifacts that can be installed and
managed together. Conceptually it is similar to a Java ARchives (JAR) file that
might be familiar from Java environments.

The BUNDLE involves one or more files installed in the UNIX file system, the
most important of which is the Manifest file. This is an XML file that acts as an
index for identifying the rest of the contents of the bundle. A BUNDLE resource in
CICS encapsulates the artifacts in the bundle directory on the UNIX file system.

Unlike traditional CICS CSD groups, the relationship between the resources
installed from a bundle persists after installation. This means that you can
manage all the related resources as a single composite entity. For example, if
you disable a BUNDLE resource because you want to stop an application from
running, CICS disables all of the related application resources for you. You can
manage the contents of a bundle and its constituent parts using the CICS
Explorer.

Bundles for SCA composites are normally created using RDz.

9.2.2 Creating services from existing CICS applications

You can create two types of service from your CICS applications:

� Channel-based services that are local to a CICS environment
� XML-based services that are exposed externally as Web services.

In both cases, the application program that you expose as a service is defined in
the <Implementation> element of the SCDL for the SCA component.

Channel-based SCA services
Channel-based services are CICS applications that are deployed as SCA
components and assembled together using a tool such as RDz. These services
are available to other CICS applications that use the INVOKE SERVICE API
command and pass binary data in containers on a channel.
218 Application Development for IBM CICS Web Services

The interface to the application program is described in WSDL. For a
channel-based service, the binding is described in the binding.cics section of the
SCDL. There are no WSBind files required in this scenario.

XML-based SCA services
XML-based services are SCA services that wrapper CICS WEBSERVICE
resources and use a SOAP-based messaging protocol. XML-based services are
available to CICS applications that use the INVOKE SERVICE API command, but
they are also available to external requesters from the network. You can either
create Web services using the Web Services Assistant, or you can use RDz. If
you use RDz, you can also create an SCA component for your Web service.
There are some advantages to creating a component from a Web service:

� You can reuse the components to develop future composite applications
rapidly using RDz.

� You can use SCDL to describe the Web service, thereby moving the
configuration information out of the application and WSBind file and into the
SCDL. This can make it easier to implement changes without having to
change the WSBind file. For example, if you want to run a Web service under
different default transactions and user IDs, you can change the SCDL without
having to regenerate the WSBind file.

The interface to the application program is described in WSDL. For an
XML-based service, the binding is described in the binding.ws section of the
SCDL. The bundle also includes the WSBind files that allow CICS to transform
the application data to SOAP messages.

9.2.3 Deploying SCA services

In the following sections, we look at deploying SCA services.

The bundle resource
SCA bundles are created using RDz. A bundle contains the resources that are
required by the service, typically the SCDL and any WSBind files used. Any
system resources that the service requires can be defined as prerequisites in the
bundle manifest file, but they are not included in the bundle itself.

After your bundle has been created, you must deploy it to the UNIX file system as
a directory structure. Then, you must create and install a CICS BUNDLE
resource that points at this directory. CICS then installs each of the SCA
composites that are referenced from the bundle manifest file.
 Chapter 9. Service Component Architecture and CICS Cloud in CICS TS V5.2 219

Domains
SCA domains are the runtime environments for the assembled business
services. To use your application composites in CICS, you have to deploy it using
a bundle. Each bundle has a scope, which represents the deployment domain.
By default this value is empty, but you can specify a specific BASESCOPE to act
as a domain (or naming context) for the bundle if you want to do so.

9.2.4 RDz SCA tooling

The Enterprise Service Tools perspective in RDz 7.6 was been extended to
provide views and wizards that allow you to develop CICS SCA projects.

You can use the RDz SCA tooling to compose SCA objects visually by wiring
services and references together. A wire is a connector that passes control and
data from a component to a target.

9.2.5 Creating and deploying an SCA service from an existing CICS
application

The steps in Figure 9-3 on page 221 can be used to design, implement,
compose, and run a CICS SCA application using RDz SCA tooling.
220 Application Development for IBM CICS Web Services

Figure 9-3 Steps to design, implement, compose, and run a CICS SCA application

1. Create SCA Project

You can use the SCA project wizard to create a new CICS SCA project. The
implementation type for the SCA component can be set to CICS.

2. Create SCA composite

The composite wizard allows to configure the composite to be created.

3. Create SCA components and services

Create a component type from CICS application source code.

4. Connect the components by wiring

The composite editor can be used to visually connect the components.

5. Deploy the SCA application to CICS TS

The deploy bundle wizard can be used to deploy the assembled application to
the UNIX file system.

You can test the SCA service using the Web Services Explorer.
 Chapter 9. Service Component Architecture and CICS Cloud in CICS TS V5.2 221

9.3 Web services in CICS Cloud

Cloud enablement was introduced in CICS TS V5.1. Using CICS cloud
enablement, you can set up a platform, deploy an application to the platform,
manage, and monitor the application by using a policy and application context
data, and remove the application at the end of its lifecycle.

CICS Cloud is controlled from the CICS Explorer. You create CICS Bundle
Projects that define:

� The Platform, which contains CICS region types

� Applications, which refer to Bundles that all must be installed together

� Application Bindings, which define the link between bundles and region types

� Bundles that contain CICS resources

In CICS TS V5.2, you can now deploy Web Services resources with CICS cloud
enablement. Figure 9-4 shows the suggested topology of the Web Services
resources that are deployed in CICS Cloud.

Figure 9-4 Topology of the Web Services resources deployed in CICS Cloud

Application bundle App. Binding bundle Platform bundle

CICS bundle

WEBSERVICE

CICS bundle

URIMAP

CICS Application CICS Platform

CICS bundle

PIPELINE

CICS bundle

TCPIPSERVICE
222 Application Development for IBM CICS Web Services

Use the following steps to deploy Web services into CICS platforms and
applications:

1. Define the Web Services resources in CICS bundles. See 8.5, “Packaging the
Web Service resources in CICS Bundles” on page 205 for how to define Web
Services resources in CICS bundles. You can define different resources in
different CICS bundles.

For example, you can create one bundle for TCPIPSERVICE resources, one
for URIMAP resources, one for PIPELINE resources, and another one for
WEBSERVICE resources. This allows you to deploy each bundle into different
CICS regions, if required. If you want to deploy the same type of resources
into different CICS platforms or applications, you must ensure to define them
in different bundles because all resources in a bundle are deployed together.

2. Create a CICS Platform project. A CICS Platform project defines a platform
bundle. The platform bundle specifies the region types for the platform.

You can associate CICS Bundles with a platform. The TCPIPSERVICE and
PIPELINE resources are suggested to be deployed by CICS platforms, so the
bundles contain TCPIPSERVICE or PIPELINE resources that will be
deployed to the CICS platform. The reason for this is that TCPIPSERVICEs
and PIPELINEs are able to be shared by many web services in different
applications.

For details about how to define the CICS platform project and deploy bundles
to it, see Cloud Enabling CICS, SG24-8114-00.

3. Create a CICS Application project. A CICS Application project defines an
application bundle. The application bundle references the CICS bundles that
contain the application resources, application entry points, and any CICS
policies relating to the application.

The WEBSERVICE resources are suggested to be deployed by CICS
application, so the bundles contain WEBSERVICE resources that will be
deployed as part of the CICS application. For more information about how to
create and install the CICS application project and how to associate bundles
with it, see Cloud Enabling CICS, SG24-8114-00.

4. Create CICS Application Binding project. The CICS application binding is the
link between the CICS Application and the CICS Platform, and defines the
links between application bundles and the region types in the target platform.

It is also possible to associate bundles with the application binding. The
resources deployed to the CICS application binding are usually used to
customize the behavior of the application for the target platform, so the
URIMAP resource is suggested to be deployed as part of the CICS
application binding. For more information about how to define CICS
Application Binding project and deploy bundles to it, see Cloud Enabling
CICS, SG24-8114-00.
 Chapter 9. Service Component Architecture and CICS Cloud in CICS TS V5.2 223

http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open

5. Deploy and install the CICS Platform.

6. Deploy and install the CICS Application. Make the application enabled and
available. It is then ready for use.

For more information about definition, deployment, and installation of CICS
platform and applications, see Cloud Enabling CICS, SG24-8114-00.

From CICS TS V5.2, URIMAP resources can be defined as an application entry
point. An application entry point identifies a resource that is the access point to
an application. Application entry points are used to control users’ access to
different versions of an application that is deployed on a platform.

Tasks running inside an application have an “application context” that can be
seen in SMF 110 records, as well as with the EXEC CICS ASSIGN command.
Application context can be used to monitor the resource usage for applications
and to identify an application being run, including defined operations within
applications. For more information about how to define an application entry point
using the CICS Explorer, see Cloud Enabling CICS, SG24-8114-00.
224 Application Development for IBM CICS Web Services

http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248114.html?Open

Chapter 10. Hints and tips

This chapter focuses on hints and tips in the following areas:

� Custom handlers for pipelines

� SOAP fault application programming interface (API)

� Handling variable cardinality elements

� Using Web Services Description Language (WSDL) generated by Rational
Developer

� WSDL types not supported by WS2LS

� Problem determination

� XML parsing in CICS application

10
© Copyright IBM Corp. 2015. All rights reserved. 225

10.1 Custom handlers programs for pipelines

CICS supplies a set of special purpose SOAP header and message handler
programs for use within a pipeline configuration. These can enhance CICS to
implement external specifications such as WS-Security, WS-AT, or
WS-Addressing (from CICS TS V4.1 onwards).

You can also create your own handler programs to satisfy local requirements. For
example, you could have a logging service that records SOAP messages, or a
diagnostics service that e-mails diagnostics to an operator in the event of a
failure. The advantage of using a handler program to implement these sorts of
requirements is that the handler will be active for all Web services in the
PIPELINE.

10.1.1 A simple example handler program

In this section, we explore creating a simple handler program that uses the WEB
API to discover the value of an HTTP header. We then write that value into a
container on the current channel.

A problem: Operation resolution
A single Web service might implement many different operations. A common
requirement in provider mode applications is the need to know which of the
operations has been invoked. CICS makes the operation name available to the
application in the DFHWS-OPERATION container. However, this container is
populated by the CICS supplied application handler (DFHPITP), so if you do not
use the CICS supplied application handler program, or if you have handlers that
run in the pipeline before DFHPITP has executed, you might have difficulty
discovering which operation is being invoked.

The official way to resolve the operation is to consider the signature of the body
of the SOAP message. This involves calculating the operation based on the
pattern of XML tags within the SOAP body. This is a complicated operation to
perform. However, many WSDL authors offer a useful clue by ensuring that the
operation name is encoded in a special HTTP header called the SOAPAction
header. In many cases, you can read this HTTP header and use the value to infer
the operation that was called, without having to parse any XML.

CICS does this for you. You can find the value of the SOAPAction HTTP header
in the DFHWS-SOAPACTION container. However, for the purposes of this
example, we pretend that you need to discover the SOAPAction header
programmatically using the WEB API.
226 Application Development for IBM CICS Web Services

Example 10-1 shows an HTTP header including the SOAPAction field. In this
instance, a URI value is supplied. This information could be used by the service
provider to determine the intent of the request.

Example 10-1 HTTP header with SOAPAction URI

POST /exampleApp/inquireCatalog HTTP1.1
Content-Type: text/xml; charset="UTF-8"
SOAPAction: "http://itsocatalog.org/index#MyMessage"

The value that is specified in the SOAPAction header does not need to be a fully
qualified URI. A single word might be used instead of a URI (Example 10-2).

Example 10-2 HTTP header with non-URI SOAPAction value

POST /exampleApp/inquireCatalog HTTP1.1
Content-Type: text/xml; charset="UTF-8"
SOAPAction: "index"

PIPELINE states
A handler program can be written to obtain the value of the SOAPAction URI (if
present) and place it into the SOAPACTION container. The application program
can use this container to retrieve this value if required.

The handler program will be called twice during the normal execution of a Web
service request: once during the inbound phase, and once during the outbound
phase. However, the handler only has to perform steps during the inbound phase
of the request. At runtime, the current phase of execution is stored in container
DFHFUNCTION. Possible values within this container are:

� RECEIVE-REQUEST
� SEND-RESPONSE
� SEND-REQUEST
� RECEIVE-RESPONSE
� PROCESS-REQUEST
� NO-RESPONSE
� HANDLER-ERROR

More information about these states can be found in CICS Transaction Server for
z/OS Internet Guide Version 3 Release 1, SC34-6450.

We can check the value in this container and test whether it equals the literal
value RECEIVE-REQUEST. If the value in the container does not equal this
value, the message handler is not being invoked during the wanted phase of
execution and we can return execution back to the CICS pipeline handler. See
Example 10-3 on page 228.
 Chapter 10. Hints and tips 227

Example 10-3 Checking execution phase

 CHECK-INBOUND SECTION.
 *CHECK WE ARE EXECUTING DURING THE RECEIVE-REQUEST PHASE
 EXEC CICS GET CONTAINER('DFHFUNCTION ')
 INTO(FUNC-BUFFER)
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.
 IF FUNC-BUFFER NOT EQUAL TO 'RECEIVE-REQUEST'
 EXEC CICS RETURN END-EXEC.

CHECK-INBOUND-END. EXIT.

Using the WEB API to access HTTP headers
When the execution phase has been determined, the EXEC CICS WEB READ
command can be used to obtain the SOAPAction header. The retrieved value can
be placed in a new container on the current channel. The name of the container
used to store the SOAPAction URI value must be known to both the message
handler and the application program. See Example 10-4.

Example 10-4 Retrieving the SOAPAction header and storing it in a container

 RETREIVE-SOAP-ACTION SECTION.
 *RETREIVE THE SOAPACTION HEADER
 EXEC CICS WEB READ HTTPHEADER(HEADER-NAME)
 NAMELENGTH(10)
 VALUE(URI-BUFFER)
 VALUELENGTH(LENGTH OF URI-BUFFER)
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.

 RETREIVE-SOAP-ACTION-END. EXIT.

 ADD-HEADER-TO-CONTAINER SECTION.
 *ADD THE SOAPACTION HTTP HEADER TO A CONTAINER
 *DID THE LAST OPERATION SUCCEED
 IF RESP EQUAL TO DFHRESP(NORMAL)
 EXEC CICS PUT CONTAINER(CONT-NAME)
 FROM(URI-BUFFER)
 FLENGTH(LENGTH OF URI-BUFFER)
 RESP(RESP)
228 Application Development for IBM CICS Web Services

 RESP2(RESP2)
 END-EXEC
 END-IF.
 ADD-HEADER-TO-CONTAINER-END. EXIT.

Setting the PIPELINE state after execution
When this message handler is called, containers DFHREQUEST and
DFHRESPONSE exist on the channel. This gives the message handler the
ability to either allow processing to continue to the next handler in the pipeline or
to construct a response to the request and terminate any further request
processing. In this case, we want execution to continue, so DFHRESPONSE
must be deleted from the channel. Otherwise, when the handler returned
execution to CICS, both DFHREQUEST and DFHRESPONSE would still exist on
the channel. This situation causes ambiguity and causes CICS to re-call the
handler for exception processing. See Example 10-5.

Example 10-5 Deleting container DFHRESPONSE

 DELETE-DFHRESPONSE SECTION.
 *Deleting DFHRESPONSE will ensure that the message is
 *passed to the next stage of the pipeline
 EXEC CICS DELETE CONTAINER('DFHRESPONSE ')
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.
 DELETE-DFHRESPONSE-END. EXIT.

Changes to the PIPELINE configuration file
This application (SOAPACT) was integrated into the pipeline by using the
pipeline configuration file shown in Example 10-6 on page 230.
 Chapter 10. Hints and tips 229

Example 10-6 Pipeline configuration with a message handler

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline>
 <service>
 <service_handler_list>
 <handler>
 <program>SOAPACT</program>
 <handler_parameter_list/>
 </handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The SOAP specification 1.2 has removed the requirement for the HTTP
SOAPAction header field to be present in a SOAP request.

10.1.2 Handling state information

Sometimes it is desirable to implement a stateful service. For example, a
pagination service that maintains a cursor to an entry in a data stream and
always returns the next 10 records. Or a service that maintains the concept of a
session across multiple uses.

A method to allow stateful transactions to take place would require three steps:

1. A method to generate unique session tokens
2. An initial message to obtain a session token
3. A mechanism for subsequent messages to reference the session token

You could embed the token in the application data. This requires the client to
know to return that token on subsequent calls. You could embed the token in a
SOAP header, and require the infrastructure to propagate the token. You could
make use of WS-Addressing to manage session state.

Attention: Applicable message handlers are executed in the order that they
are listed within the pipeline configuration file. This is important if a handler
requires another handler to have executed.
230 Application Development for IBM CICS Web Services

In general, it is best to maintain session tokens in the applications themselves as
this allows the flexibility to propagate and use the tokens wherever they are
needed.

To help you implement this mechanism in your Web services, a suggested
mechanism for persisting state information over several transactions is
mentioned in CICS Transaction Server for z/OS Internet Guide Version 3
Release 1, SC34-6450.

This book outlines two sample modules, DFH$WBST and DFH$WBSR, which
provide a mechanism for managing state tokens. Functions are provided for the
creation and destruction of tokens as well as storing and retrieving state data
given a token value. A method is also provided for the cleanup of state
information and tokens that have not been used for a set period.

10.1.3 Propagating user identity tokens

Often there is a requirement for a specific user of a Web service to identify
themselves to CICS for authentication.

There are a number of mechanisms by which this can be done. In many
scenarios the user authenticates to an intermediate server, such as WebSphere
Application Server, which, in turn, communicates with CICS. In this case, you are
advised to use WS-Security to implement the identity propagation between
WebSphere Application Server and CICS.

You can also use transport layer encryption (SSL/TLS) to secure the
communication channels. Advanced deployments could make use of a
WebSphere IBM DataPower® appliance to sit between CICS and the external
network.

Simpler deployments might make use of HTTP basic authentication to send a
simple user ID and password to CICS.

Application developers rarely need to be concerned with these issues as the
security is normally implemented in the infrastructure. Typically, the systems
programmer will enable identity propagation in WebSphere Application Server
and in CICS, and the applications will run as before. The identity information is
flowed either as HTTP headers or as SOAP headers without requiring application
changes.

For more information, see the IBM Knowledge Center for CICS:

http://www-01.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
 Chapter 10. Hints and tips 231

http://www-01.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

10.2 The SOAP fault API

The SOAP specification provides a mechanism by which error diagnostics can
be returned from a provider to a requester. This mechanism is the SOAP fault
message. CICS automatically returns fault messages to requesters in the event
of an application abend or system failure, but SOAP-aware provider mode
applications can return application-specific fault messages programmatically.

CICS supplies three EXEC CICS commands that can be used to create a SOAP
FAULT message:

� SOAPFAULT CREATE

Creates a new SOAPFAULT object.

� SOAPFAULT ADD

Adds extra information to the current SOAPFAULT object.

� SOAPFAULT DELETE

Deletes the current SOAPFAULT object.

Find more information about these commands in the CICS Information Center.
These CICS APIs require one of the CICS supplied SOAP handlers to be in the
execution stack at the time the API is driven. This means that the API is not
available to some handler programs in the pipeline, but is available for Web
services. The API also requires that the application programs were linked to
using a Channel.

10.2.1 How to create a SOAP Fault in an application

Example 10-7 shows an application throwing a SOAP fault programmatically.

Example 10-7 Example of creating a SOAP fault

dcl msgDetail char(*)
constant('<ati:ExampleFaultxmlns="http://www.example.org/faults"
xmlns:ati="http://www.example.org/faults">Detailed error message goes
here.</ati:ExampleFault>');
dcl msgFaultString char(*) constant('Something went wrong');

EXEC CICS SOAPFAULT
 CREATE CLIENT
 DETAIL(msgDetail) DETAILLENGTH(length(msgDetail))
 FAULTSTRING(msgFaultString)
 FAULTSTRLEN(length(msgFaultString))
 RESP(RESP) RESP2(RESP2);
232 Application Development for IBM CICS Web Services

10.2.2 Parsing SOAP Fault messages in CICS TS V5.2

In this section, we consider parsing SOAP fault messages received by a Web
service requesting application in CICS. For most purposes it is sufficient to know
that a fault has been returned. This is indicated by an INVREQ response from the
INVOKE command with an RESP2 value of 6. If you want to access
application-specific diagnostics embedded within the SOAP fault message then
the following technique might be useful.

In CICS TS V3.1 and CICS TS V3.2, you have the option of reading the
DFHWS-BODY container returned by CICS to access the XML representation of
the SOAP fault message. You can then parse the XML data using a mechanism
of your choice.

In CICS TS V4.1 and later, there is a new XML parsing API command that you
can use to help in this process. Example 10-8 demonstrates the use of
DFHSC2LS and the CICS TRANSFORM command. The example is included
here both as an example of parsing SOAP fault messages, but also as an
example of using the TRANSFORM command. You could go on to use the
TRANSFORM command for other purposes.

DFHSC2LS
First, use DFHSC2LS to build COBOL bindings for SOAP faults. Start by
downloading a copy of the XML schema for SOAP Envelopes from the following
Web page:

http://schemas.xmlsoap.org/soap/envelope

For example, you could save it to a location in the UNIX file system called
/redbook/source/SOAP11.xsd.

Next, use DFHSC2LS to process the XML schema and create as output a set of
COBOL bindings for the schema, and an XSDBind file in a bundle directory. You
could use JCL similar to the following.

Example 10-8 JCL of DFHSC2LS

//EXAMPLE EXEC DFHSC2LS
//INPUT.SYSUT1 DD *
MAPPING-LEVEL=4.0
ELEMENTS=Body,Fault
SCHEMA=/redbook/source/SOAP11.xsd
LANG=COBOL
PDSLIB=//CTS.REDBOOK.COPYLIB
PDSMEM=SOAP11
XSDBIND=SOAP11.xsdbind
 Chapter 10. Hints and tips 233

http://schemas.xmlsoap.org/soap/envelope/

BUNDLE=/redbook/output/bundle/SOAP11
LOGFILE=/redbook/output/logfile.log
*/

DFHSC2LS creates several COBOL language structures as shown in
Example 10-9.

Example 10-9 Bindings for the 'Body' of the SOAP Envelope

03 Body2.
 06 Body-num PIC S9(9) COMP-5 SYNC.
 06 Body-cont PIC X(16).

01 SOAP1101-Body.
 03 Body-xml-cont PIC X(16).
 03 Body-xmlns-cont PIC X(16).

This language structure contains bindings to allow any number of XML tags to
appear within the SOAP Body. The number of tags found will be stored by CICS
in the Body-num field, and information about the data will be stored by CICS in the
container named by the Body-cont field. Each XML tag from the body will then
have two fields associated with it that provide the XML for the tag in a container
named in Body-xml-cont and the in-scope XML namespace declarations in a
container named in Body-xmlns-cont. See Example 10-10.

Example 10-10 Bindings for the 'Fault' within the Body of a SOAP Envelope

03 Fault.
 06 faultcode-length PIC S9999 COMP-5 SYNC.
 06 faultcode PIC X(255).
 06 faultstring-length PIC S9999 COMP-5 SYNC.
 06 faultstring PIC X(255).
 06 faultactor-num PIC S9(9) COMP-5 SYNC.
 06 faultactor.
 09 faultactor2-length PIC S9999 COMP-5 SYNC.
 09 faultactor2 PIC X(255).
 06 detail3-num PIC S9(9) COMP-5 SYNC.
 06 detail2.
 09 Xdetail-num PIC S9(9) COMP-5 SYNC.
 09 Xdetail-cont PIC X(16).
 09 Xdetail-num PIC S9(9) COMP-5 SYNC.
 09 Xdetail-cont PIC X(16).

01 SOAP1102-Xdetail.
 03 detail-xml-cont PIC X(16).
234 Application Development for IBM CICS Web Services

 03 detail-xmlns-cont PIC X(16).

This language structure contains bindings to allow a single SOAP Fault to be
parsed. It provides access to the faultcode, faultstring, and faultactor fields,
together with structures to map any number of XML tags found within the detail
section of the SOAP Fault.

Install the bundle
The next task is to install the bundle into CICS.

Create and install a BUNDLE definition such as the following:

 BUNDLE: SOAP11
 GROUP: EXAMPLE
 DESCRIPTION: Bundle for mapping SOAP 1.1 SOAP Faults
 BUNDLEDIR: /redbook/output/bundle/SOAP11

The BUNDLEDIR points to the location that was specified using the BUNDLE
parameter of DFHSC2LS. If you run DFHSC2LS on a different z/OS image from
the one used by CICS, you might need to copy the bundle directory to the target
machine. In this case, you can use a different directory path and set the value of
BUNDLEDIR accordingly. The name of the bundle is arbitrary. You can pick
something other than SOAP11 if you prefer.

After installing into CICS, you have a BUNDLE resource called SOAP11 and an
XMLTRANSFORM resource also called SOAP11. The XMLTRANSFORM name is
derived from the value of the XSDBIND parameter of DFHSC2LS.

An Example SOAP fault message
Example 10-11 is an example SOAP fault message that might be found within
the DFHWS-BODY container following an EXEC CICS INVOKE SERVICE
command.

Example 10-11 SOAP fault

<SOAP-ENV:Body>
 <SOAP-ENV:Fault xmlns="">
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Conversion to SOAP failed</faultstring>
 <detail>
 <CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
 DFHPI1010 *** XML generation failed. A conversion error
 INVALID_PACKED_DEC) occurred when converting field 'example' for
 WEBSERVICE 'testWebservice'.
 </CICSFault>
 </detail>
 Chapter 10. Hints and tips 235

 </SOAP-ENV:Fault>
</SOAP-ENV:Body>

This example is of a fault message created by CICS when a conversion error
occurs. When this is processed by the TRANSFORM command, CICS will set
Body-num to 1 to indicate that there is a single XML tag within the Body tag. It will
also set Body-cont to the name of a Container such as DFHPICC-00000001.

Inside container DFHPICC-00000001 CICS places the names of two further
containers, for example DFHPICC-00000002 and DFHPICC-00000003.

Container DFHPICC-00000002 contains the first tag from within the body. See
Example 10-12.

Example 10-12 SOAP fault in container DFHPICC-00000002

<SOAP-ENV:Fault xmlns="">
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Conversion to SOAP failed</faultstring>
 <detail>
 <CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
 DFHPI1010 *** XML generation failed. A conversion error
 INVALID_PACKED_DEC) occurred when converting field 'example' for
 WEBSERVICE 'testWebservice'.
 </CICSFault>
 </detail>
</SOAP-ENV:Fault>

Container DFHPICC-00000003 contains any in-scope namespace declarations. For
example:

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

If the DFHPICC-00000002 container is then parsed through a second EXEC CICS
TRANSFORM command, further output is created by CICS:

� The faultcode and faultcode-length fields will be set to SOAP-ENV:Server
and 15.

� The faultstring and faultstring-length fields will be set to Conversion to
SOAP failed and 25.

� The faultactor-num field will be set to 0.

� The detail3-num field will be set to 1 to indicate that the optional detail tag is
present in the fault.
236 Application Development for IBM CICS Web Services

� The detail2-num field will be set to 1 to indicate that there is one subtag
within the optional detail tag.

� The detail2-cont field will be set to the name of a container, for example
DFHPICC-00000004.

Container DFHPICC-00000004 will contain the names of two further containers, for
example DFHPICC-00000005 and DFHPICC-00000006.

Container DFHPICC-00000005 will contain the first XML tag found within the detail
section of the SOAP Fault. In this example, it contains the information shown in
Example 10-13.

Example 10-13 CICSFault in container DFHPICC-00000005

<CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
DFHPI1010 *** XML generation failed. A conversion error
(INVALID_PACKED_DEC) occurred when converting field 'example' for
WEBSERVICE 'testWebservice'.
</CICSFault>

Container DFHPICC-00000006 will contain the in-scope namespace declarations.
An example can be seen in Example 10-14.

Example 10-14 Namespace declarations for the SOAP Fault

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Application Code
To implement an application to parse the SOAP Fault, do the following steps:

1. Call the TRANSFORM command to query the contents of the DFHWS-BODY
container. For example:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLCONTAINER('DFHWS-BODY') NSCONTAINER('DFHWS-XMLNS')
ELEMNAME(element-name) ELEMNAMELEN(element-name-len) END-EXEC

2. If the element-name is set to Body, parse the container. If not, something went
wrong. To parse the body use the following commands:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLTRANSFORM('SOAP11') XMLCONTAINER('DFHWS-BODY')
NSCONTAINER('DFHWS-XMLNS') DATCONTAINER('PARSEDBODY') END-EXEC
EXEC CICS GET CONTAINER('PARSEDBODY') SET(body-ptr) END-EXEC
 Chapter 10. Hints and tips 237

3. Address the parsed data. For example:

SET ADDRESS OF Body TO body-ptr

Check Body-num to ensure that there is at least one entry in the Body.
Assuming that there is, read the container that lists the details. For example:

EXEC CICS GET CONTAINER(Body-cont) SET(body-cont-ptr) END-EXEC
SET ADDRESS OF SOAP1101-Body TO body-cont-ptr

4. Call TRANSFORM a second time to query the first tag from within the Body:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLCONTAINER(Body-xml-cont) NSCONTAINER(Body-xmlns-cont)
ELEMNAME(element-name) ELEMNAMELEN(element-name-len) END-EXEC

5. If the element-name is set to Fault, parse the container:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLTRANSFORM('SOAP11') XMLCONTAINER(Body-xml-cont)
NSCONTAINER(Body-xmlns-cont) DATCONTAINER('PARSEDFAULT') END-EXEC
EXEC CICS GET CONTAINER('PARSEDFAULT') SET(fault-ptr) END-EXEC

6. SET ADDRESS OF Fault TO fault-ptr

You can now query the data from the fault. For example, you might find the
faultstring to be useful. If you want to parse application-specific details from
the detail section of the fault, you can do so by building further
application-specific COBOL bindings using DFHSC2LS and issuing further
TRANSFORM commands in the application.

Optional: Editing the schema
Advanced users could consider editing the XML schema in such a way as to
simplify the application code that is required. The XML schema currently
describes a SOAP Body tag as in Example 10-15.

Example 10-15 Current schema of SOAP Body

<xs:complexType name="Body" >
<xs:sequence>
<xs:any namespace="##any" minOccurs="0" maxOccurs="unbounded"
processContents="lax" />
</xs:sequence>
...
</xs:complexType>

Note: It is valid to combine steps 1 and 2 into a single TRANSFORM
command. Similarly, steps 5 and 6 can be combined.
238 Application Development for IBM CICS Web Services

You could change this so that it explicitly claims to hold a single SOAP Fault as in
Example 10-16.

Example 10-16 Edited schema of SOAP Body

<xs:complexType name="Body" >
<xs:sequence>
<xs:element ref="tns:Fault"/>
</xs:sequence>
...
</xs:complexType>

If you process the edited XML schema with DFHSC2LS, you will get a simpler set
of language structures created with less container-based indirection. The
application code will therefore be simpler and could be written with a single call to
the TRANSFORM command.

10.3 Handling variably recurring XML elements

WSDL enables a Web service to define any xsd:element as being optional. It
also allows for elements to appear multiple times. Elements that might appear an
undefined number of times are known as variably recurring elements. Because
the number of occurrences of the data that will be present in a SOAP message is
not known until the request is received by CICS, writing an application program to
access all occurrences of the element can be difficult.

There are three major mechanisms for handling variably recurring data top-down.
The first is to use a technique that became available at mapping level 2.1 called
in-lineing. The second is to use a mechanism based around CICS containers.
The third, available from CICS Transaction Server V5.1 onwards, is to use new
options on GET CONTAINER and PUT CONTAINER to handle fragments of
data.

10.3.1 In-lined variably recurring data

In this scenario, DFHWS2LS maps the variably recurring data into a simple array
together with a num field to indicate the number of instances of the data that are
actually present.

The application program can the access the instance of the data as they would a
normal array, with the restriction that the num field must be used appropriately.
 Chapter 10. Hints and tips 239

To use in-lineing, you have to set a value for the INLINE-MAXOCCURS-LIMIT
parameter of DFHWS2LS. This parameter was introduced at mapping level 2.1
and it indicates which values of maxOccurs to in-line. It defaults to a value of 1,
indicating that optional fields should be in-lined, but nothing else. You can
increase the value to in-line a greater number of variably recurring elements.

Figure 10-1 shows a fragment of a WSDL document viewed in Rational
Developer for System z (RDz). It includes an xsd:element called recs that can be
used anywhere from one to 10 times. The data therefore can consist of at least
one instance and it can have 10 instances at most.

Figure 10-1 In-line mapping example - WSDL

If DFHWS2LS is used with an INLINE-MAXOCCURS-LIMIT value set to at least
10, the following COBOL language structure is generated, as shown in
Figure 10-2 on page 241.
240 Application Development for IBM CICS Web Services

Figure 10-2 In-line mapping example - generated Cobol structure

You can see that an array has been allocated sufficient to hold 10 instances of
the data. In this example, each instance of the data is only 80 bytes long. But in
real WSDL individual data instances might be much longer, in which case you
should think carefully about whether in-lineing the data is a good idea. If, for
example, each instance of the data is a 1 MB in size, in-lineing up to 10 instances
will result in much storage being allocated, even if only a single instance is
normally used.

Furthermore, if the WSDL specified maxOccurs=”unbounded”, in-lineing the data
is not an option. In this case, the container-based strategy is used.

10.3.2 Container-based variably recurring data: inbound

The fragment of WSDL in Example 10-17 defines an element of type s:string
called name that optionally might appear in the SOAP message.

Example 10-17 Defining an optional element

<s:element name=”name” type=”s:string” minOccurs=”0” maxOccurs=”1”>

When DFHWS2LS parses this element declaration without in-lineing being
active, it places two fields in the generated language structure. Example 10-18
shows the output for the C / C++ language.

Example 10-18 Output from DFHWS2LS for variable cardinality element

int name_num;
char name_cont[16];
 Chapter 10. Hints and tips 241

The first variable references how many occurrences of the element name were
found in the input message. The second variable gives the name of the container
where the occurrences of the element were stored.

Where we are just using an optional element, we can use the numeric variable to
test whether the optional element was included in the input message. If the
variable is set to 1, the optional element was sent and the data value was placed
in a container. The second variable holds the name of this container.

Example 10-19 declares an instance of the structure generated by DFHWS2LS,
then uses that to hold a local copy of the data in the container.

Example 10-19 Accessing an optional element

struct Name
{

char name[255];
}

struct Name myName;

if(name_num == 1)
{

EXEC CICS GET CONTAINER(name_cont)
NODATA
FLENGTH(length);

EXEC CICS GET CONTAINER(name_cont)
INTO(&name)
FLENGTH(length);

}

sprintf(message, “value of optional element name was
%.255s”,myName.name);

The maxOccurs and minOccurs attributes can also be used to define an array of
elements that can have a maximum number of elements. The WSDL extract in
Example 10-20 redefines the name element to be an unbounded array.

Example 10-20 Defining a variable cardinality element

<s:element name=”name” type=”s:string” minOccurs=”0”
maxOccurs=”unbounded”>

At run time, CICS will take all instances of the element name that were sent on
the request, concatenate them, and place the concatenation into a single
242 Application Development for IBM CICS Web Services

container. The Web service then has to navigate this structure. One method of
doing this is to use pointer arithmetic to access all data items in the container.

In Example 10-21, instead of declaring a single instance of the structure, we
declare a pointer of the type structure and set it to the address of the container
that is used to store the concatenation. This enables us to navigate through the
whole structure easily.

Example 10-21 Processing an optional element in C

struct Name
{

char name[255];
}

struct Name*names;
int counter = 0;
char current_name[255];

if(name_num > 0)
{

/*If a collection of names was sent process them*/
EXEC CICS GET CONTAINER(name_cont)
NODATA
FLENGTH(length);

EXEC CICS GET CONTAINER(name_cont)
SET(names)
FLENGTH(length);

/*For each name sent print it out*/
for(counter=0;counter<name_num;counter++)
{

memcpy(current_name,names(counter).name,255);
sprintf(message, “value of name %.255s”,names(counter).name);

}
}

Example 10-22 shows a similar technique in COBOL.

Example 10-22 Processing an optional element in COBOL

WORKING-STORAGE SECTION.
 01 W-S-VARIABLES.
 03 NAME-PTR USAGE IS POINTER.
 03 X-PTR USAGE IS POINTER.
 Chapter 10. Hints and tips 243

 03 IX PIC S9(8) COMP-4 VALUE 1.
 03 NAME-COUNT PIC S9(9) COMP-4 VALUE 0.
*
 LINKAGE SECTION.
 01 X PIC X(659999).
*
 01 NAME.
 05 productName PIC X(255).
*
 EXEC CICS GET CONTAINER(NAME-cont OF WS-STARTI)
 SET(NAME-PTR)
 FLENGTH(NAME-FLENGTH)
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.
*
* Get addressability to NAME-cont
 SET ADDRESS OF X TO NAME-PTR
 SET ADDRESS OF NAME TO ADDRESS OF X
*
* Work through NAME-cont processing the data fields within
* each NAME record
*
 PERFORM WITH TEST AFTER
 UNTIL NAME-COUNT = NAME-num OF WS-STARTI
**
* Display productName field

 DISPLAY 'productname is now: ' productName
*
* Move to the next NAME record
 ADD LENGTH OF NAME TO IX

SET NAME-PTR TO ADDRESS OF X(IX:1)
 SET ADDRESS OF NAME TO NAME-PTR
 ADD 1 TO NAME-COUNT
 END-PERFORM.

A new BYTEOFFSET option on the GET CONTAINER command can be used to
access portions of a counter instead of getting the entire container. This option is
available in CICS TS V5.1, which makes the program logic simpler.
Example 10-23 on page 245 shows the sample to process the optional element
by GET CONTAINER with BYTEOFFSET option.
244 Application Development for IBM CICS Web Services

Example 10-23 Processing optional element in COBOL by GET CONTAINER with
BYTEOFFSET option

int counter = 0;
int byte_offset=0;
char current_name[255];

if(name_num > 0)
{

length = sizeof(current_name);

/*For each name sent print it out*/
for(counter=0;counter<name_num;counter++)
{

EXEC CICS GET CONTAINER(name_cont)
 INTO(current_name)
 BYTEOFFSET(byte_offset)
 FLENGTH(length);

byte_offset += length;
sprintf(message, “value of name %.255s”, current_name);

}
}

Example 10-24 shows the sample in COBOL. You can refer to “Program to
implement GET CONTAINER FROMBYTE requester service” on page 500 for a
requester service sample.

Example 10-24 Processing optional element in COBOL by GET CONTAINER with
BYTEOFFSET option

WORKING-STORAGE SECTION.
01 NAME-COUNT PIC S9(9) COMP-4 VALUE 0.
*
01 NAME.
 05 productName PIC X(255).
*
01 NAME-FLENGTH PIC S9(8) BINARY.
01 WS-BYTE-OFFSET PIC S9(8) BINARY.
*
 MOVE LENGTH OF NAME INTO NAME-FLENGTH.
 MOVE ZERO TO WS-BYTE-OFFSET.
*
 PERFORM WITH TEST AFTER
 UNTIL NAME-COUNT = NAME-num OF WS-STARTI
 Chapter 10. Hints and tips 245

 EXEC CICS GET CONTAINER(NAME-cont OF WS-STARTI)
 INTO(NAME)
 FLENGTH(NAME-FLENGTH)
 BYTEOFFSET(WS-BYTE-OFFSET)
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.
 * Display productName field

 DISPLAY 'productname is now: ' productName
*
 ADD NAME-FLENGTH TO WS-BYTE-OFFSET.

 ADD 1 TO NAME-COUNT
 END-PERFORM.

10.3.3 Container-based variably recurring data: outbound

When creating a Web service that will use an outbound list of elements or
optional elements, all instances of the element must be concatenated and placed
into a new container on the current channel. The container used to hold the
concatenation must have a unique name on the channel. The name can be any
16-character string. However, it must not start with “DFH” as names beginning
with these characters are reserved for CICS. After the container has been
populated, the element_cont / element_num fields declared in the language
structure created by the Web Services Assistant must be populated to allow
CICS to parse the container data into a SOAP message. Example 10-25 shows a
method that generates five instances of the name element and places them in a
container.

Example 10-25 Global function to generate unique container names

char* generate_names()
{
 struct Name *names;
 int counter = 0;
 char name_container[16];

 /*Generate 5 name structures and place them in a container*/
 /*Allocate storage for 5 concatenated Name strucutres*/
 names = (struct Name*) calloc(5,sizeof(struct Name));
 /*Populate the names with data*/
 strcpy(names[0].name,"Test_User");
 strcpy(names[1].name,"Another_User");
 /*...etc...*/
246 Application Development for IBM CICS Web Services

 /*Using a global function to generate a unique container name*/
 memcpy(name_container,get_container_name(),16);

 /*Add the concatenation to a container*/
 EXEC CICS PUT CONTAINER(name_container)
 FROM(names)
 FLENGTH(sizeof(struct Name) * 5);

 /*populate the name_cont and name_num variables*/
 memcpy(name_cont,name_container,16);
 name_num = 5;
}

In CICS TS V5.1, a new APPEND option on PUT CONTAINER can be used to
process the optional elements. Example 10-26 shows the sample code to use
the APPEND option. And you can refer to “Program to implement PUT
CONTAINER APPEND service” on page 486 for a provider sample in COBOL.

Example 10-26 Processing optional elements by PUT CONTAINER with APPEND option

char* generate_names()
{
 char name[255];
 int counter = 0;
 char name_container[16];
 int fLength = sizeof(name);

/*Using a global function to generate a unique container
name*/
 memcpy(name_container,get_container_name(),16);

for(;counter<5; counter++)
{
 /* Get the value and put into name, for example by

reading a file.*/
EXEC CICS PUT CONTAINER(name_container)
FROM(name)
APPEND
FLENGTH(fLength);

}

 name_num = 5;
}
 Chapter 10. Hints and tips 247

10.4 Handling undefined XML (xsd:any)

Some WSDL documents allow sections of arbitrary well-formed XML to be
included within the application data. For example, you could embed an XHTML
document within the body of the SOAP message. Where this technique is used
the WSDL will use either an xsd:any tag, or an xsd:anyType data type.

Before mapping level 2.1, DFHWS2LS did not support these constructs. At
mapping level 2.1, they are supported using a pass-through technique that
allows the application to handle that subset of the SOAP directly as XML.

For example, consider the fragment of WSDL viewed in RDz shown in
Figure 10-3. It specifies that an optional undefined XML tag might appear on the
end of an xsd:sequence. This is a technique that can be used to support future
evolution of the WSDL. If version 2 can add something specific to the end of the
list, the resultant SOAP message will still validate with respect to the original
WSDL.

Figure 10-3 A fragment of WSDL with an optional xsd:any

The language structures generated by DFHWS2LS are as shown in Figure 10-4
on page 249.
248 Application Development for IBM CICS Web Services

Figure 10-4 Generated language structures for xsd:any

In this example, two significant fields have been generated:

� Customer-xml-cont PIC X(16)

This field indicates the name of the container in which the associated XML
can be found.

� Customer-xmlns-cont PIC X(16).

This field indicates the name of a container in which any in-scope XML
namespace prefix declarations can be found. If the XML in the first container
is not self-contained, you might need namespace prefixes from the second
container to understand the XML.

An application that wants to understand the contents of these containers might
do so with the EXEC CICS TRANSFORM command in CICS TS V4.1. It provides
a mechanism that is suited to parsing or generating the XML in these containers.
 Chapter 10. Hints and tips 249

10.5 Handling enumerated XML constructs

Certain constructs in the XML schema definition language are interpreted by
DFHWS2LS at mapping level 2.2 and above as having enumerated content
models. This means that there are a fixed number of possible options, only one
of which can be used. For example, the xsd:choice construct indicates a set of
options, but only one of the options can be used.

When DFHWS2LS parses xsd:choice constructs at mapping level 2.2 or above, it
places two fields in the generated language structure. Example 10-27 shows the
output for the C / C++ language.

Example 10-27 Output from DFHWS2LS for xsd:choice at mapping level 2.2

char name_enum;
char name_cont[16];

The first variable indicates which of the possible options is used. The second
variable gives the name of the container where the application data associated
with that option can be found.

Figure 10-5 shows how we use DFHWS2LS at mapping level 2.2 to generate a
COBOL language structure from an XML <xsd:choice> construct with two
options.

Figure 10-5 WSDL - <xsd:choice> element

The ridData-enum field indicates which option from a set of possible values is
being used. The associated value is stored in the container referenced in
ridData-cont. A value of X'00' indicates no content. A value of X'01' indicates an
250 Application Development for IBM CICS Web Services

instance of structure inlinI01-ridfld1. A value of X'02' indicates an instance of
structure inlinI01-ridfld2. See Figure 10-6.

Figure 10-6 Generated COBOL language structures for xsd:choice

Other constructs from XML that are handled in a similar way. This includes:

� Substitution groups

This is an advanced concept that allows an xsd:element to be substituted with
any other xsd:element from a specific set of options.

� Abstract data types

This is an object-oriented concept where the schema references an abstract
parent data type, but where one of a set of child data types will be used in the
SOAP messages.

In all of these scenarios, DFHWS2LS generates language structures to map the
individual options, and an enum field to indicate which option is used.

10.6 Modifying generated WSDL

If you are unsatisfied with the WSDL bindings for an application that has been
processed using DFHLS2WS, a useful technique is to edit the generated WSDL
until it matches your expectations. You can then reprocess that WSDL using
DFHWS2LS, and potentially write a wrapper program to map data between the
new generated language structures, and the original ones.
 Chapter 10. Hints and tips 251

In the following example, we use this technique to demonstrate how individual
fields within a language structure can be mapped as xsd:base64Binary data
rather than xsd:string data. This makes those fields eligible for optimization using
the MTOM/XOP protocol in CICS TS V3.2.

10.6.1 Background to MTOM/XOP

If MTOM is enabled, some SOAP messages that contain binary data might be
processed faster in the PIPELINE and on the network than would otherwise be
the case. In standard SOAP messages, any binary data that is sent (such as an
image file) is encoded using a representation called base64 encoding. This
representation increases the size of the binary data and can impact transmission
time.

Enabling MTOM/XOP in the pipeline reduces the size of SOAP messages that
contain base64 encoded data. The SOAP Message Transmission Optimization
Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) specifications
(often referred to as MTOM/XOP) define a method for optimizing the
transmission of large xsd:base64Binary data objects within SOAP messages.
The MTOM specification conceptually defines a method for optimizing SOAP
messages by separating out binary data that would otherwise be base64
encoded, and sending it in separate binary attachments using a MIME
Multipart/Related message. This type of MIME message is called an MTOM
message.

Sending the data in binary format reduces its size, optimizing the transmission of
the SOAP message. The XOP specification defines an implementation for
optimizing XML messages using binary attachments in a packaging format that
includes, but is not limited to, MIME messages. The size of the base64binary
data is reduced because the attachments are encoded in binary format. The
XML in the SOAP message is converted to XOP format by replacing the
base64binary data with a special <xop:Include> element that references the
relevant MIME attachment using a URI.

Measurements show that sending large binary fields as MTOM/XOP attachments
offers significant performance improvements in CICS compared to using ordinary
xsd:base64Binary data. The size of the XML part of the data is smaller, so there
is a lot less data for CICS to parse through searching for XML markup.

However, use of MTOM/XOP does require that the partner process must also
understand this protocol. There are some scenarios where enabling MTOM/XOP
is not advisable. Refer to the CICS Information Center for further details.
252 Application Development for IBM CICS Web Services

10.6.2 Support for xsd:base64Binary and MTOM/XOP

If your WSDL documents contain fields defined with type xsd:base64Binary, and
if you use DFHWS2LS at mapping level 1.2 or higher, you are eligible for the
MTOM/XOP optimizations.

If you are using DFHLS2WS and want to treat all of the text fields as binary data
(and thereby make them eligible for MTOM/XOP optimization), do so by
specifying CHAR-VARYING=BINARY as a parameter in DFHLS2WS. However, if
you are using DFHLS2WS and only want to treat a single field as having binary
content, you will have to use the following more complicated technique.

10.6.3 Mapping a single field as binary data with DFHLS2WS

If you have an application that you want to enable as a Web service and use a
binary mapping for a single field, perform the following steps:

1. Run DFHLS2WS to generate the WSDL as normal.

2. Modify the WSDL so that the field in question specifies data type
xsd:base64Binary.

3. Run DFHWS2LS on the generated WSDL to generate a WSBind file and
language structures.

4. Review the generated language structures to ensure that they are compatible
with the original language structures. In this scenario, it is likely that they will
be. In which case no further action is required.

5. If the new language structures are not compatible with the original language
structures, either modify the existing program, or implement a wrapper
program that maps between the new and old data formats.

The scenario in Example 10-28 demonstrates how to generate a WSBind file that
can be used to interpret base64Binary data. We use the COBOL data structure
as shown in the following example to generate a WSDL using DFHLS2WS. We
intend to move a maximum of 60000 bytes of binary data to the imgData field.

Example 10-28 COBOL structure

01 ws-data.
 03 cafld1 PIC X(15).
 03 cafld2 PIC X(15).
 03 cafld3 PIC X(6).
 03 imglength PIC X(8).
 03 imgData PIC X(60000).
 Chapter 10. Hints and tips 253

After running DFHLS2WS, the generated WSDL contains the imgData element,
which is defined as an element of type xsd:string. See Example 10-29.

Example 10-29 Binary field imgData after running DFHLS2WS

<xsd:element name="imgData" nillable="false">
<xsd:simpleType>

<xsd:annotation>
:::::
:::::

</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:maxLength value="60000"/>
<xsd:whiteSpace value="collapse"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

To generate a WSBind file that can interpret the element as base64Binary, we
modified the WSDL as shown in Example 10-30.

Example 10-30 Modified binary field imgData

<xsd:element name="imgData" nillable="false">
<xsd:simpleType>

<xsd:annotation>
:::::
:::::

</xsd:annotation>
<xsd:restriction base="xsd:base64Binary">

<xsd:maxLength value="60000"/>
<xsd:whiteSpace value="collapse"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

We then reprocess the WSDL using DFHWS2LS.

10.6.4 Handling variable length values and white space

A common requirement is to process variable length values as part of your SOAP
messages. For example, if you have a field whose content might vary in size from
zero bytes to 1 Mb, you will not want every message to be padded to the
maximum length with spaces.
254 Application Development for IBM CICS Web Services

Several characteristics of WSDL need to be considered when discussing this
problem.

maxLength, minLength, and length facets
An XML Schema facet identifies a specific type of restriction to apply to a data
type. The technical definition of these facets can be read in the XML Schema
specification at the following web page:

http://www.w3.org/TR/xmlschema-2/#rf-facets

The facets are used to restrict the range of values for a data type. If the length
facet is specified for a data type, that data type is of fixed length. If the
maxLength facet is supplied, there is a maximum length for the data type.
Similarly, if a minLength is specified, there is a minimum length for the data type.

If none of these facets are set, a String-based data type is considered to have an
unbounded maximum length and a minimum length of 0. See Example 10-31.

Example 10-31 A string with a maximum length specified

<xsd:element name="thing">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="3000"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

In Example 10-31, an xsd:element called thing has been defined with a data
type derived from xsd:string. A maximum length of 3000 characters has been
specified.

whiteSpace facet
The whiteSpace facet is used to define the wanted behavior regarding white
space around a data value. There are three possible values for this facet:
preserve, replace, and collapse. The definition for this facet is available at the
following web page:

http://www.w3.org/TR/xmlschema-2/#rf-whiteSpace

If a value of preserve is used, any spaces, tabs, new lines, and so on, within the
value are considered to be deliberate. If a value of replace is used, tabs and new
lines are replaced with an appropriate number of spaces. If a value of collapse is
used, leading and trailing white space is removed.
 Chapter 10. Hints and tips 255

http://www.w3.org/TR/xmlschema-2/#rf-facets
http://www.w3.org/TR/xmlschema-2/#rf-whiteSpace

A value of preserve is implied if the WSDL does not specify a value for this facet.
See Example 10-32.

Example 10-32 A string with ‘collapse’ processing for white space

<xsd:element name="thing2">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="3000"/>
<xsd:whiteSpace value="collapse"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

In Example 10-32, an xsd:element called thing2 has been defined that has the
same definition as the thing in Example 10-31 on page 255, but the WSDL
author has specified that white space within the XML tag at runtime should be
collapsed.

Null characters (x'00') are not valid in XML
XML documents are not allowed to contain null values. This is a general
requirement in all XML documents including SOAP messages. If at runtime CICS
is asked to include a text value within a generated SOAP message that includes
a null character, CICS will treat that character as the end of the string and the
value will be truncated.

This is true for all values of the whiteSpace, length, minLength, and maxLength
facets. Care must be taken if a variable length mapping strategy is used and the
text strings might contain null characters.

How DFHWS2LS handles variable length values
The behavior of DFHWS2LS with respect to variable length values can be
changed using input parameters at mapping level 1.2 or higher.

Three issues that must be considered are the default maximum string length
imposed by DFHWS2LS if such a length is not specified in the WSDL, the
mapping of variable length values into CICS containers, and the mapping of
variable length values into fixed-length character arrays:

� The default maximum string length

DFHWS2LS requires that all xsd:strings defined in the WSDL have a
maximum length. If the WSDL does not specify a maximum length,
DFHWS2LS imposes one. By default, this maximum length is set to 255
characters.
256 Application Development for IBM CICS Web Services

The default maximum length imposed by DFHWS2LS is configurable using
the DEFAULT-CHAR-MAXLENGTH input parameter. If you would prefer a
default maximum length of 20 characters, you could specify
DEFAULT-CHAR-MAXLENGTH=20. If you would like a default maximum
length of 2 K, you could set DEFAULT-CHAR-MAXLENGTH=2048.

In general it is best to specify in the WSDL the precise maximum character
length you would like DFHWS2LS to use as this avoids the problem of having
one global default being applied to all xsd:string based data types. It also
avoids the runtime problem of a partner process sending a data value to
CICS, which is longer than the maximum data length imposed by
DFHWS2LS.

You can specify maxLength="unbounded" in the WSDL to indicate that there
really is no theoretical maximum length to the String.

� Mapping variable length values into a CICS container

You can tell CICS to use a container for storing variable length xsd:string
values. CICS does this automatically for xsd:strings, which are known to have
a maximum length greater than 32 K characters (at mapping level 1.1 and
above). CICS containers are a convenient way to address long variable length
values.

You can specify the threshold at which this container-based mapping is used
by setting a value for the CHAR-VARYING-LIMIT parameter. For example, if
you want all variable length xsd:strings with maximum lengths of 255 or
greater to be mapped into CICS containers, you would do so by specifying
CHAR-VARYING-LIMIT=255. You can, for example, combine this parameter
with the DEFAULT-CHAR-MAXLENGTH parameter to specify that all
xsd:strings with an unspecified maximum length are mapped into CICS
containers.

If the container mapping is used, a language structure is created by
DFHWS2LS with a field for the container name to be stored.

The container used must always be read from and written to in BIT mode.

� Fixed-Length mappings for variable length Strings

There are three different mechanisms available that DFHWS2LS can use for
mapping variable length values to fixed-length character arrays. These
mechanisms are most appropriate where the maximum length of the
xsd:string is known to be relatively short, therefore causing low overhead in
terms of wasted space in storage.
 Chapter 10. Hints and tips 257

These mechanisms are: basic fixed-length character arrays; null terminated
character arrays and 'varying' character arrays. You can select which one is
used by setting a value for the CHAR-VARYING parameter:

– Basic fixed-length character arrays

These are often the default at lower mapping levels. DFHWS2LS allocates
a field within the language structure based on the maximum length of the
xsd:string (as defaulted using the DEFAULT-CHAR-MAXLENGTH
parameter). At runtime, CICS will pad the value that arrives on the wire
with spaces to fill this field. If the value that arrives on the wire is too large
for the field, a conversion error is reported.

For outbound communication, the application should place a value into the
character array and either null terminate the value or pad it with spaces. If
the value of the whiteSpace facet was 'collapse', CICS removes any
trailing white space. If the field was null terminated, CICS truncates the
value at the first null.

You can specifically request this variable length mapping strategy by
specifying the CHAR-VARYING=NO input parameter.

– Null terminated character arrays

In this scenario, DFHWS2LS behaves in a similar way as for fixed-length
character arrays, but CICS will add a null terminator to the end of the data
in any character array it populates. The application program can therefore
recognize the end of the significant data. For example, the application can
detect white space that is deliberately present due to the use of the
whiteSpace="preserve" facet.

For outbound communication the application must null terminate any
character arrays that it populates.

You can specifically request this variable length mapping strategy by
specifying the CHAR-VARYING=NULL input parameter.

– Varying character arrays

DFHWS2LS can produce character arrays that are prefixed with an explicit
length field that is used to identify the significant characters from the
fixed-length buffer. This format of representation is common in PL/I.

You can specifically request this variable length mapping strategy by
specifying the CHAR-VARYING=YES input parameter.

If this mapping strategy is used, CICS generates SOAP messages that
contain the requested number of characters for the field. This mapping
strategy usually results in the best performance as there is no need to
scan the text fields to identify the significant characters.
258 Application Development for IBM CICS Web Services

The choice of which variable length mapping strategies to use is mostly a matter
of application development strategy. In general, it is a good idea to specify both
the whiteSpace and maxLength facets in your WSDL documents for each
xsd:element as the defaults might not be appropriate, and to set a value for the
CHAR-VARYING-LIMIT input parameter.

How DFHLS2WS handles variable length values
DFHLS2WS has fewer options for processing variable length values. The most
common technique in COBOL for defining variable length values is to use the
OCCURS DEPENDING ON data type, but this is not supported by DFHLS2WS.
By default, CICS treats all character arrays as fixed length. As with the equivalent
DFHWS2LS scenario, if the application null terminates any character arrays
used, CICS truncates values at the null character rather than including any
padding characters in the outbound SOAP messages.

You can specify CHAR-VARYING=NULL under DFHLS2WS so that CICS will
always treat character arrays as being null terminated. If you use this option, the
maximum length of the field is effectively one character less than specified as the
null terminator takes up one character.

There is a further option available at mapping level 2.1. You can specify a value
of CHAR-VARYING=COLLAPSE. This tells CICS to remove automatically any
trailing spaces from the end of character arrays when generating XML. This is the
default value of the CHAR-VARYING option at mapping level 2.1 for all
programming languages other than C and C++.

10.7 WSDL types not supported by DFHWS2LS

Although the Web Services Assistant accepts most WSDL documents, some
elements of WSDL are not accepted or are ignored. This section introduces
several techniques that can be used if DFHWS2LS rejects your WSDL.

Start by validating the WSDL. Sometimes DFHWS2LS rejects a document
because there is something subtly wrong with it. RDz and Eclipse are both good
at doing WSDL validation.

Make sure that the most recent mapping level is being used. On CICS TS V3.1,
this means mapping level 1.2. On CICS TS V3.2, this means mapping level 2.2.
For CICS TS V4.1, this means mapping level 3.0. Many elements that are not
supported in CICS TS V3.1 are supported in CICS TS V3.2 or CICS TS V4.1, so
in some cases, an upgrade to a new version of CICS might be advisable.
 Chapter 10. Hints and tips 259

Look at modifying a local copy of the WSDL to work around problematic
constructs. In CICS TS V3.2 and above, a good technique is to replace
unsupported constructs with xsd:any or xsd:anyType fields. That passes the
problem of parsing and generating the problematic XML to the application, but at
least the application only has to parse the subset of the XML that CICS does not
support. Example 10-33 shows an element that is not supported.

Example 10-33 minOccurs and maxOccurs in <xsd:sequence> element

<xsd:element name="testElement1">
<xsd:complexType>
 <xsd:sequence minOccurs="2" maxOccurs="5">
 <xsd:element name="shipTo" type="xsd:string""/>
 <xsd:element name="billTo" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>

The use of minOccurs and maxOccurs attributes are not supported for the
<xsd:sequence> element. The exceptions to this rule are when minOccurs="0"
and maxOccurs="1" or minOccurs="1" and maxOccurs="1". In Example 10-34,
we can use <xsd:anytype> to replace the unsupported constructs.

Example 10-34 Valid WSDL

<xsd:element name="testElement1" type="xsd:anyType"">
</xsd:element>

Another approach is rewriting the WSDL using supported elements.
Example 10-35 shows a nested <xsd:choice> that is not supported by
DFHWS2LS.

Example 10-35 Nested choice

<xsd:choice>
 <xsd:element name ="name1" type="string"/>
 <xsd:choice>
 <xsd:element name ="name2a" type="string"/>
 <xsd:element name ="name2b" type="string"/>
 </xsd:choice>
</xsd:choice>

We can change the WSDL as shown in Example 10-36 on page 261. These two
WSDL fragments are equivalent.
260 Application Development for IBM CICS Web Services

Example 10-36 Valid WSDL

<xsd:choice>
 <xsd:element name ="name1" type="string"/>
<xsd:element name ="name2a" type="string"/>
<xsd:element name ="name2b" type="string"/>
</xsd:choice>

You can also use this approach to add restrictions that would not otherwise have
been present, such as setting the maxLength for xsd:strings to something
sensible.

If modifying the WSDL is not acceptable or is not possible, consider writing
applications that work directly with the XML. For example, you can create your
own XML-aware Web service applications.

For detailed information about how to do this, see the following web page:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_4.1.0/com.ibm.cics
.ts.webservices.doc/tasks/dfhws_creating_xmlapps.html

An important variant of this concept is to use Java in CICS to handle the XML.
This idea is discussed on the following web page:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_4.1.0/com.ibm.cics
.ts.webservices.doc/concepts/javacics.html

If these are not acceptable, it might be necessary to host a transformative
technology off-platform that can map between the original WSDL and something
CICS can support. This could involve having a simpler Web service hosted in
CICS, and a mapping technology in one of the broker products such as
WebSphere Enterprise Service Bus, WebSphere Message Broker, or
DataPower.

10.8 Problem determination

While preparing material for this publication, we discovered user faults that
caused errors. In this section, we outline problems that you might discover and
the relevant solutions.

Note: In scenarios where CICS is a requester and the response comes back
with large volumes of superfluous data that would otherwise be ignored in
CICS, this is a good technique for stripping the bloat from the XML before
passing the useful data on to CICS.
 Chapter 10. Hints and tips 261

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_4.1.0/com.ibm.cics.ts.webservices.doc/tasks/dfhws_creating_xmlapps.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_4.1.0/com.ibm.cics.ts.webservices.doc/concepts/javacics.html

10.8.1 Problems using DFHWS2LS and DFHLS2WS

When using the Web Services Assistants DFHWS2LS and DFHLS2WS, several
errors might occur. This section includes some of the most common errors and
solutions to fix the problem.

If OMVSEX fails with a return code of 127 and the following error is seen:

FSUM7351 not found

The IBM LookAt tool can be used to get further diagnostic information from this
error message. The LookAt tool can be found at the following Web page:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat

In this case, the definition in Example 10-37 is given in response to the error
code.

Example 10-37 Response from LookAt tool

Explanation: You attempted to execute a command that could not be
found.

User Response: Ensure that the command exists and that the PATH
environment variable is valid.

This error states that the PATH environment variable is invalid. Because the Web
Services Assistant is a Java program, more paths have to be correct for the
program to run.

In some situations, the line numbers along the right column of the JCL job card
can be passed to the Java program, which will attempt to use them as part of the
input parameters. This underlying fault can result in different error codes.
Sometimes JES will truncate the characters after column 72. In this situation, the
job will run and only result in a return code of 4 in the OMVSEX step. Another
result that stems from the same problem is if the Java program throws a
java.lang.IllegalArgumentException when attempting to parse a parameter that
has line numbers attached to the end of the parameter. This problem can be
resolved by setting NUMBERS OFF in your JCL profile.

The user ID under which the Web Services Assistant job runs must be defined to
OMVS and have read access to HFS and write access to the directory specified
on the LOGFILE parm. Because the assistants are Java programs, the user ID
must have a large enough storage allocation to run Java.
262 Application Development for IBM CICS Web Services

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat

Neither of the Web Services Assistant programs lock the temporary HFS files
that they create. Therefore, a batch of these jobs cannot be run in parallel and
must be run sequentially. Failure to do this can cause undocumented errors.

10.8.2 Using the execution diagnostic facility to debug Web services

CEDX can be used to debug a request as it is processed by CICS. To turn on the
execution diagnostic facility to debug Web services, use the CEDX CPIH,ON
command.

The CPIH transaction is the CICS inbound HTTP inbound routing transaction, so
it is run when CICS is servicing an inbound Web service over the HTTP
transport. After the command above has been issued, any inbound Web service
request can be debugged. CEDX will debug all EXEC CICS commands in any
custom message handlers that are executed and the terminal application
program. Although only EXEC CICS commands are shown during the debug
session, this is useful to see the flow of execution through message handlers.

When you have finished debugging your Web service, turn off CEDX using
CEDX CPIH,OFF.

10.8.3 Debugging CICS SFR applications

When using Service Flow Modeler-deployed flows in CICS Integrator Adapter
runtime, the following debugging points might help provide diagnostic
information.

The CICS SFR properties file contains information relating to each adapter
deployed within the CICS SFR environment. This file is updated each time a new
adapter is deployed through a JCL job run by JES that executes DFHMAMUP,
which adds a record to the properties file (DFHMAMPF). The contents of this file
can be used to ensure that the parameters used to run the deployed service are
correct. JCL job DFHMAMPD dumps the contents of the properties file. Each
record in the file corresponds to a particular service adapter that has been
deployed within the CICS SFR environment. Figure 10-7 shows the output from
job DFHMAMPD.

Figure 10-7 Sample CICS SFR property file dump

Property type: R (Request properties) Name: MAIVPREQ Version: 2
Request type: 1 (Sync) Nav/Init name: DFHMAIP1 Nav/Init transid: CMA5 Type: 0 (Navigator)
Persistence: 1 (Yes) XML parse name: Deployment: 2 (COMPLEX)

Property type: R (Request properties) Name: NCDPLAA Version: 2
Request type: 0 (Async) Nav/Init name: NCDPLAN Nav/Init transid: NDAN Type: 0 (Navigator)
Persistence: 1 (Yes) XML parse name: Deployment: 2 (COMPLEX)
 Chapter 10. Hints and tips 263

The CICS Integrator Adapter Error Listener load module (DFHMAERQ) is
triggered whenever an error message is written to intrapartition transient data
queue CMAQ and writes to the CICS SFR error file (DFHMAERF). This file
contains information about the cause of the error and the specific error code. An
error is written only if CICS SFR has encountered an error running the deployed
adapter. An error will not be written if the deployed service ran correctly but the
data was unexpected. The contents of the error file can be dumped by using
sample JCL job DFHMAMED, which runs module DFHMAEUP. To ensure that all
data has been flushed to the error file before running the dump JCL, it is
recommended that you close and reopen the error file definition inside CICS.
Figure 10-8 shows a dump from the CICS SFR error file.

Figure 10-8 Sample CICS SFR error file dump

The error field is a key area of interest in this dump file. This field defines the
CICS SFR error code that has caused the deployed flow to fail. The full list of
CICS SFR error codes can be found in the CICS Integrator Adapter for z/OS Run
Time User’s Guide and Reference, SC34-5899-05. The program field shows
which program CICS SFR was executing when the failure happened.

Some of the most common error messages are:

� CIA01001E

This designates a VSAM file read error. The most common reason for this is
that DFHMADPL has attempted to read the properties file (DFHMAMPF) for a
misspelled request name. This can be verified by checking that the program
field in the error dump reads DFHMADPL and the file being read is
DFHMADPL. The error dump also shows the value used in the file read
operation.

� CIA03001E

This error message means that an EXEC CICS LINK to the resource being
modeled in the deployed flow has failed. A common reason is an incorrect
SYSID value in the property file. Check the TYPE=2 PARM02 value in the

Processed: Date: 07/07/05 Time: 11:14:54: PutApplid: PutTranid:
 Error: CIA08002E Normal processing

 Userid: CICSUSER Applid: IYK3ZWY1 Tranid: CKBP Eibtaskn: 0000271 AbsTime: 003329723694270
 Request: MAIVPREQ Mode: Sync Program: DFHMADPL Type: System
 Activity: Node Name:
 Event: Event type: None Step: MAIN
 Proctype: DFHMAINA Process: CICSUSER0000271003329723694270
Failed Processtype: Failed Process:
 ReplyToQ: ReplyToQMgr:
 MQ MsgId: MQ CorrelId:

Error detail: Application
264 Application Development for IBM CICS Web Services

property file to ensure that it is set to the system ID that is hosting the DPL
application.

Because CICS SFR uses Business Transaction Services to process requests,
the BTS audit level feature can be used to provide further diagnostic information.
Each CICS SFR request runs under a BTS process type. This is defined at
runtime in the CICS SFR DFHMAH header field DFHMAH-PROCESSTYPE. The
process type defined in the header also must have been defined to CICS. This
can be done using CEDA DEFINE PROCESSTYPE.

Within the CICS definition, an audit level variable is set. Possible values are:

� Activity
� Full
� Process
� None

If an audit level other than none is specified, audit log records are written to an
IBM MVS™ logstream by the CICS Log Manager. You can read the records
offline using the CICS audit trail utility program (DFHATUP). A sample job,
DFHMABAP, is provided to run this program.

You might want to consider defining a specific process type for debug use and
another for use within a production environment.

Another way to debug a deployed flow is to check the use counts of all generated
programs before and after flow execution. This will enable you to track the
execution of the flow and establish where in the flow the error is happening.
When the failing module is known, it can be useful to run that application using
the debug facility CEDF for further diagnostic information.

10.8.4 Runtime SOAP validation

Each Web service that is deployed onto CICS through the Web Services
Assistant performs simple validation of each SOAP request before it is parsed
and the data transformed into the language structure. This validation checks that
the SOAP request is a well-formed XML document. Any SOAP request that fails
this validation will be refused by CICS. It is possible for CICS to validate each
SOAP request against the WSDL schema. Because the WSDL schema defines
the syntax of a valid SOAP request, such validation ensures that the request
contains all of the necessary elements. Such validation does incur a significant
overhead to the processing of a Web service request and is not recommended to
be used in a production environment. However, when used in a testing
environment, runtime validation can be useful to ensure that SOAP requests
reaching your Web service are correct.
 Chapter 10. Hints and tips 265

To turn validation on, use the CEMT S WEBSERVICE(WEBSERVICENAME)
VALIDATION command.

(WEBSERVICENAME is the name of the Web service definition you want to
debug.)

Also, ensure that the WSDLFILE attribute of the Web service definition is set to
the path for the WSDL file that you want SOAP validation to be performed
against.

10.9 XML parsing in CICS application

XML allows you to tag data in a way that is similar to how you tag data when
creating an HTML file. XML incorporates many of the successful features of
HTML, but was also developed to address some of the limitations of HTML. XML
tags might be user-defined through a schema for later validation, which can
either be a Document Type Definition (DTD) or a document written in the XML
Schema language. In addition, namespaces can help ensure that you have
unique tags for your XML document. The syntax of XML has more restrictions
than HTML, but this results in faster and cheaper browsing. The ability to create
your own tagging structure gives you the power to categorize and structure data
for both ease of retrieval and ease of display. XML is already being used for
publishing, as well as for data storage and retrieval, data interchange between
heterogeneous platforms, data transformations, and data displays. As it evolves
and becomes more powerful, XML might allow for single-source data retrieval
and data display.

The benefits of using XML vary but overall, marked-up data and the ability to
read and interpret that data provide the following benefits:

� With XML, applications can more easily read information from various
platforms. The data is platform-independent, so now the sharing of data
between you and your customers can be simplified.

� Companies that work in the business-to-business (B2B) environment are
developing DTDs and schemas for their industry. The ability to parse
standardized XML documents gives business products an opportunity to be
exploited in the B2B environment.

Tip: If you need to turn validation on a Web service that has a mixed case
name, be sure to activate mixed-case mode on your terminal by issuing the
CEOT TRANIDONLY command.

Note: Having a TCP/IP port mismatch results in a similar scenario.
266 Application Development for IBM CICS Web Services

� XML data can be read even if you do not have a detailed picture of how that
data is structured. Your clients will no longer need to go through complex
processes to update how to interpret data that you send to them because the
DTD or schema gives the ability to understand the information.

� Changing the content and structure of data is easier with XML. The data is
tagged so you can add and remove elements without impacting existing
elements. You will be able to change the data without having to change the
application.

However, despite all the benefits of using XML, there are some things of which to
be aware. First of all, working with marked up data can be additional work when
writing applications because it physically requires more pieces to work together.
Given the benefits of using XML, this additional work can reduce the amount of
work needed to make a change in the future. Second, although it is a
recommendation developed by the World Wide Web Consortium (W3C), XML
(along with its related technologies and standards including Schema, XPath, and
DOM/SAX APIs) is still a developing technology.

There are many methods that we can use if we want to parse or generate XML in
a CICS application. In this section, we introduce three methods that can be used
to parse and generate XML.

� XML Toolkit for z/OS including Java edition and C edition
� COBOL high-speed XML parser
� CICS API - EXEC CICS TRANSFORM

10.9.1 XML Toolkit for z/OS

The XML Toolkit for z/OS provides the base infrastructure to integrate vertical
and industry-specific data formats, structures, schemas, and metadata to ensure
industry compliance of data representation and content. Some of its key uses
include categorizing and tagging data for exchange in disparate environments,
as well as transforming ad hoc unstructured data to XML records, enabling you to
search, cross-reference, and share records. The toolkit includes the XML Parser,
C++ Edition and the XSLT Processor, C++ Edition

XML Parser, C++ Edition allows an application to take advantage of the z/OS
XML System Services component. A set of z/OS-specific parser classes have
been implemented in the XML Parser, C++ Edition to provide this ability. These
classes were created to mimic the existing SAX2 and DOM interfaces. They
allow many applications to exploit the improved cost and performance
characteristics of the z/OS XML System Services component with minimal
changes to their code.
 Chapter 10. Hints and tips 267

The toolkit supports applications running on both z/OS UNIX System Services
and MVS environments.

For detailed information about the XML Toolkit for z/OS, you can refer to the
following website:

http://www.ibm.com/servers/eserver/zseries/software/xml

10.9.2 COBOL high-speed XML parser

In this section, we look the COBOL high-speed XML parser, looking into
processing XML input, and producing XML output.

Processing XML input
You can process XML input in a COBOL program by using the XML PARSE
statement.

The XML PARSE statement is the COBOL language interface to either of two
high-speed XML parsers. You use the XMLPARSE compiler option to select the
appropriate parser for your application:

� XMLPARSE(XMLSS) selects the z/OS XML System Services parser.

This option provides enhanced features such as namespace processing,
validation of XML documents regarding an XML Schema, and conversion of
text fragments to national character representation (Unicode UTF-16).

� XMLPARSE(COMPAT) selects the XML parser that is built into the COBOL
library.

This option provides compatibility with XML parsing in Enterprise COBOL
Version 3.
268 Application Development for IBM CICS Web Services

http://www.ibm.com/servers/eserver/zseries/software/xml/

Processing XML input involves passing control between the XML parser and a
processing procedure in which you handle parser events. See Figure 10-9.

Figure 10-9 Control between XML Parser and COBOL program

Producing XML output
You can produce XML output from a COBOL program by using the XML
GENERATE statement.

To transform COBOL data to XML, use the XML GENERATE statement as in
Example 10-38.

Example 10-38 XML GENERATE statement sample

XML GENERATE XML-OUTPUT FROM SOURCE-REC
COUNT IN XML-CHAR-COUNT
ON EXCEPTION
DISPLAY 'XML generation error ' XML-CODE
STOP RUN
NOT ON EXCEPTION
DISPLAY 'XML document was successfully generated.'
END-XML

In the XML GENERATE statement, identify the data item (XML-OUTPUT in
Example 10-38) that is to receive the XML output. Next, identify the source data
item that is to be transformed to XML format (SOURCE-REC in the example).
Optionally, you can code the COUNT IN phrase to obtain the number of XML
character encoding units that are filled during generation of the XML output.
 Chapter 10. Hints and tips 269

10.9.3 CICS API: EXEC CICS TRANSFORM

You can write application programs to transform application binary data into XML
and vice versa. CICS supports a number of high-level languages and provides an
XML assistant to map how the data is transformed during runtime processing.
CICS uses the same technology for mapping application data to XML in SOAP
messages, as part of the Web services support.

The advantage of using this approach to transform application data to and from
XML is that CICS goes beyond the capabilities offered by an XML parser. CICS
can interpret the XML and perform record-based conversions of the application
data. Therefore, it is easier and faster for you to create applications that work with
XML using this approach.

The steps to use CICS TRANSFORM API are as follows:

1. Create the mappings using the XML assistant.

The CICS XML assistant is a supplied utility that helps you to create the
required artifacts to transform application binary data to XML or transform
XML to application binary data. The XML assistant can create the artifacts in
a bundle directory or another specified location on z/OS UNIXÆ.

2. Create the resources in CICS to make the mappings available.

3. Create or update an application program to use the TRANSFORM API
command. The application must use a channel-based interface.

4. Run the application to test that the transformation works as you intended. You
can turn on validation to check that CICS converts the data correctly.

In 10.2.2, “Parsing SOAP Fault messages in CICS TS V5.2” on page 233, there
is an example that shows the steps necessary to use CICS API TRANSFORM to
parse XML. In that example, XML is used as a SOAP fault in a SOAP message.
270 Application Development for IBM CICS Web Services

Chapter 11. COBOL samples

In this chapter, we provide a series of COBOL samples to demonstrate calling
Web services from a CICS transaction. We show how COBOL programs can be
written to handle several different XML constructs that can be found in a Web
Services Description Language (WSDL) file. In particular, we demonstrate the
use of the following:

� The <any> tag
� The <choice> tag
� The minOccurs and maxOccurs tags
� OCCURS DEPENDING as a Web Service Provider

11
© Copyright IBM Corp. 2015. All rights reserved. 271

11.1 Introduction

The development strategy for all of the examples included in this chapter has
been broadly similar:

1. Create a WSDL file to describe the Web service we created.

2. Use this WSDL file in Rational Developer for System z (RDz) to create a Web
service skeleton.

3. Edit the Web service implementation code in the skeleton to do some
meaningful processing and pass pack some data to the client (which in our
case is a CICS transaction).

4. Run the WDSL file through the Web Services Assistant to produce the input
and output language structures and a CICS bind file that can be used in
defining the Web service to CICS.

5. Create a COBOL program that calls the Web service. We used RDz to create
a skeleton COBOL program that is updated to initialize the language
structures that are passed to the service and to process the reply received.

The goal is to provide working examples that can be implemented. We provide
the following information for each example:

� The WDSL file

� The input and output language structures

� The COBOL source for the client transaction

� An EAR file that can be deployed to an application server that contains the
Java source for the Web service

11.2 Example 1: The <xsd:any> tag

In the first example, we demonstrate the use of the XML <any> tag, which when
used in a WSDL file indicates that at this point in the data supplied to the Web
service there will be a section of XML that at this point is undefined. This then
allows the client application to insert any piece of well formed XML into the data
passed to the Web service. The client application is responsible for creating this
XML and the Web service receiving it is responsible for parsing it and processing
the data within it. In our example, we pass a small piece of XML that is defined in
a working storage location as follows:

Move '<Whatever>.....</Whatever>' to WS-CUST-XML

The Web service will echo this back to the client.
272 Application Development for IBM CICS Web Services

11.2.1 The WSDL

The WDSL used for this example contained the following section, which
represents a customer. The extract can be seen in Example 11-1.

Example 11-1 WSDL extract showing xsd:any

<xsd:complexType abstract="false" block="#all" final="#all"
mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title"
 type="xsd:string" />
 <xsd:element name="FirstName"
 type="xsd:string" />
 <xsd:element name="Surname"
 type="xsd:string" />
 <xsd:any minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

The section of WSDL shows that we have three fields: Title, FirstName, and
Surname, which are all string fields. This is followed by a field described using an
xsd:any tag that indicates the position a section of data that is undefined.

The complete WSDL can be seen in Appendix B, “Sample programs” on
page 433.

Now that we have the WDSL describing our Web service, we need to produce
language structures (in our case COBOL copybooks) that can be used in or client
program along with a bind file that will be used to create the CICS resources
need to call the Web service.
 Chapter 11. COBOL samples 273

The tooling with RDz includes the CICS Web Services Assistant, which will
produce these artifacts. In addition, RDz will also produce a skeleton COBOL
program, which is an excellent starting point for creating a client CICS
transaction from which we can call the Web service.

Web Services Assistant
The process for running the Web Services Assistant with RDz is simple. After
RDz is running, switch to the Enterprise Service Tools Perspective. From this
perspective, you then create a new Web Services for CICS Project, as shown in
Figure 11-1.

Figure 11-1 Create new Web Services for CICS Project
274 Application Development for IBM CICS Web Services

When you select this option, a window opens where you perform these steps:

� Give the project a name
� Select Create New Service Implementation (Top Down)
� Select Service Requester
� Select Interpretive XML Conversion (the only option)

The New Web Services for CICS Project window displays, as in Figure 11-2.

Figure 11-2 New Web Services for CICS Project window
 Chapter 11. COBOL samples 275

Click Next. You are presented with the window from which you will import the
WSDL to be used for this project. See Figure 11-3. This window gives a choice of
three locations from which you can import the WSDL file:

� The local file system
� Another workspace in RDz
� A file on a remote z/OS system

Locate the WSDL file by clicking the appropriate button. In our case, the WSDL
file was stored on a local hard disk drive, so the File System button was used.

Figure 11-3 Import WSDL file
276 Application Development for IBM CICS Web Services

Click Finish. RDz displays the “Web Services for CICS - Create New Service
Implementation” window. See Figure 11-4. We allowed all the fields and options
presented in this window to default. We did, however, ensure that the mapping
level was set to at least 2.1 by pressing the Change WSBIND Preferences
button and selecting mapping level 2.1 from the drop-down list.

Figure 11-4 Create New Service Implementation
 Chapter 11. COBOL samples 277

When the Finish button is clicked, RDz invokes the Web Services Assistant and
several artifacts are created in your project. These include:

� Skeleton COBOL program
� Input copybook
� Output copybook
� Web Services Assistant log file
� wsbind file

These can be seen in Figure 11-5.

Figure 11-5 Artifacts

At this point, we now have a COBOL program, two copybooks, and a wsbind file.
The COBOL program is a skeleton and is discussed in more detail in 11.2.3, “The
COBOL program” on page 279.

The wsbind file must be copied to UNIX Systems Services on the z/OS system
where the CICS transaction will be run. This file will be used when we install the
pipeline, which is discussed in 11.2.4, “CICS resource definitions” on page 291.

11.2.2 Web Services Assistant: z/OS

The Web Services Assistant can also be run on z/OS by executing a batch job. In
this example, we expect the copybooks produced to be identical to that of the
Web Services Assistant in RDz. An example of the JCL used to run DFHWS2LS
is included in Example 11-2 on page 279.
278 Application Development for IBM CICS Web Services

A key difference between what the Web Services Assistant will produce in RDz to
that on z/OS is that there is no skeleton COBOL program produced.

Example 11-2 DFHWS2LS

//WS2LS EXEC DFHWS2LS,REGION=0M,
// PATHPREF='',
// TMPDIR='/tmp',
// USSDIR='cicsts41',
//* JAVADIR='java142s/J1.4/'
// JAVADIR='java/J6.0'
//INPUT.SYSUT1 DD *
PDSLIB=//WAFITZ.U.COPY
LANG=COBOL
REQMEM=inlinI
RESPMEM=inlinO
LOGFILE=/u/wafitz/inline/inlinetst.log
WSBIND=/u/wafitz/inline/inlinetst.wsbind
WSDL=/u/wafitz/inline/inlinetst.wsdl
MAPPING-LEVEL=2.2
/*
//

11.2.3 The COBOL program

The RDz tooling was able to produce a skeleton COBOL program that we used
as a starting point for our client program, which will call our service.

The skeleton program in Example 11-3 on page 280 performs the following
tasks:

� Sets up the container, channel, and Web service names

� Leaves an open section for the programmer to set up the input language
structure

� Puts the DFHWS-DATA container into the SERVICE-CHANNEL

� Invoke the Web service

� Retrieves the DFHWS-DATA container from the SERVICE-CHANNEL

� Leaves an open section to process the results of the service call
 Chapter 11. COBOL samples 279

Example 11-3 Skeleton program

IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'INLINETS'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 17/09/09 13:47.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).
 * ***
 * Language Structures
 * ***
 1 LANG-INLINI01.
 COPY inlinI01.
 1 LANG-INLINO01.
 COPY inlinO01.
 *End Local-Storage Section
 LINKAGE SECTION.
280 Application Development for IBM CICS Web Services

 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'inlinetst'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME
 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-INLINI01
 *
 *
 *
 Chapter 11. COBOL samples 281

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---
 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-INLINI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Invoke The Web Service
 * ---
 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 * URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-INLINO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Process Response Language Structure
 * ---
 *
 *
 *
 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .
 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 *
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 *
282 Application Development for IBM CICS Web Services

 CONTINUE
 WHEN DFHRESP(INVREQ)
 *
 CONTINUE
 WHEN DFHRESP(LENGERR)
 *
 CONTINUE
 END-EVALUATE
 .
 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 *
 CONTINUE
 WHEN DFHRESP(NOTFND)
 *
 CONTINUE
 END-EVALUATE
 .
 *End Procedure Division
 END PROGRAM 'INLINETS'.

To change this skeleton into a working program, we need to add code into the
two empty sections of code: one before we make the service call and one after.

Populate request language structure
Before making the service call, we must populate the input language structure,
which is in copybook inlinI01. We need to populate the Title, FirstName, and
Surname fields and set up the XML data we will be passing to the service.

Note: The version of RDz we used generates an INVOKE WEBSERVICE
command. From CICS TS 4.1, this command is now INVOKE SERVICE.
However, INVOKE WEBSERVICE is retained as a synonym of the INVOKE
SERVICE command and is provided for compatibility with existing Web
service requester applications
 Chapter 11. COBOL samples 283

The first three fields require just simple moves of data into the appropriate
working storage areas. In addition, we need to set the length of each of these
fields as shown in Example 11-4.

Example 11-4 Set up the request language structure

Move 'MR' TO XTitle of wsXreqarea
Move 2 to XTitle-length of wsXreqarea

Move 'Tony' TO FirstName of wsXreqarea
Move 4 to FirstName-length of wsXreqarea

Move 'Fitzgerald' TO Surname of wsXreqarea
MOVE 10 to Surname-length of wsXreqarea

The XML data that will be sent, is the undefined data area, which is defined by
the <xsd:any> tag in the WSDL and is slightly more complicated.

The <xsd:any> tag results in the Web Services Assistant generating two working
storage fields of the form:

� elementName-xml-cont PIC X(16)
� elementName-xmlns-cont PIC X(16)

In our case, the generated language structures are:

12 Customer-num PIC S9(9) COMP-5 SYNC.
12 Customer.

15 Customer-xml-cont PIC X(16).
15 Customer-xmlns-cont PIC X(16).

The first field, Customer-xml-cont, must be set to the name of a container that
holds the XML and the second Customer-xmlns-cont contains the name of a
container that holds any namespace prefix declarations that are in scope.

In our example, we moved a short simple piece of XML into the container. This
will be echoed back by the service.

The section of code that does this can be seen in Example 11-5.

Example 11-5 Populate the XML container

Move 1 to Customer-num of wsXreqarea
MOVE 'cust-xml-cont' TO Customer-xml-cont of wsXreqarea

 * --- the XML ---
Move '<Whatever>.....</Whatever>' to WS-CUST-XML

EXEC CICS PUT CONTAINER(Customer-xml-cont of wsXreqarea)
284 Application Development for IBM CICS Web Services

CHANNEL(WS-CHANNEL-NAME)
FROM(WS-CUST-XML)
DATATYPE(DFHVALUE(CHAR))

END-EXEC

After the containers have been populated the service is called using an EXEC
CICS INVOKE SERVICE command. We uncommented the URI parameter so
that we can set the URI of the Web service being called. The URI parameter
specifies a data area containing the URI of the service to be invoked. If specified,
this option supersedes any URI specified in the WEBSERVICE resource
definition. If you omit this option, the WEBSERVICE binding file associated with
the resource definition must include either a provider URI or a provider
application name.

Additionally, we added some code to the CHECK-CONTAINER-COMMAND and
CHECK-WEBSERVICE-COMMAND sections of the program.

Processing the response language structure
Having called the Web service, we must process the results that have been sent
back to our program. In our example, we displayed the results of the data areas
in the response structure.

The complete final program can be seen in Example 11-6.

Example 11-6 The fInal program

 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'INLINETS'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 09/09/09 15:16.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 Chapter 11. COBOL samples 285

 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).

 1 WS-XML-PASSTHRU-DATA.
 2 WS-CUST-XML PIC X(255).
 2 WS-CUST-XMLns PIC X(255).

 1 WS-DFHWS-BODY PIC x(400).

 * ***
 * Language Structures
 * ***
 1 LANG-INLINI01.
 COPY inlinI01.
 1 LANG-INLINO01.
 COPY inlinO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
286 Application Development for IBM CICS Web Services

 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'inlinetst'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME

 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-INLINI01

 Move 'MR' TO XTitle of wsXreqarea
 Move 2 to XTitle-length of wsXreqarea

 Move 'Tony' TO FirstName of wsXreqarea
 Move 4 to FirstName-length of wsXreqarea

 Move 'Fitzgerald' TO Surname of wsXreqarea
 MOVE 10 to Surname-length of wsXreqarea

 INITIALIZE WS-XML-PASSTHRU-DATA

 * --
 * Put the "any" XML data into the channel
 * --
 Chapter 11. COBOL samples 287

 Move 1 to Customer-num of wsXreqarea
 MOVE 'cust-xml-cont' TO Customer-xml-cont of wsXreqarea

 * --- the XML ---
 Move '<Whatever>.....</Whatever>' to WS-CUST-XML

 EXEC CICS PUT CONTAINER(Customer-xml-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-CUST-XML)
 DATATYPE(DFHVALUE(CHAR))
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * --
 * Put the "any" XMLns data into the channel
 * --
 MOVE 'cust-xmlns-cont' to Customer-xmlns-cont
 of wsXreqarea
 * Move 'xmlns:ns1="http://myNS"' to WS-CUST-XMLns

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---

 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-INLINI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * Invoke The Web Service
 * ---
 Move 'http://9.173.198.188:9080/RedbookWS4/INLINE01Service'
 to WS-URI-OVERRIDE

 EXEC CICS INVOKE SERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
288 Application Development for IBM CICS Web Services

 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-INLINO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * "Process" the Response Language Structure
 * ---
 DISPLAY 'XTitle data returned = ' XTitle of wsXretarea
 DISPLAY 'FirstName data returned = ' FirstName of wsXretarea
 DISPLAY 'Surname data returned = ' Surname of wsXretarea

 INITIALIZE WS-XML-PASSTHRU-DATA.

 EXEC CICS GET CONTAINER(Customer-xmlns-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XMLns)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 EXEC CICS GET CONTAINER(Customer-xml-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XML)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY 'Customer-xml-cont data = ' WS-CUST-XML
 DISPLAY 'Customer-xmlns-cont data = ' WS-CUST-XMLns

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .

 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 Chapter 11. COBOL samples 289

 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
 EXEC CICS ABEND ABCODE('C003') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
 EXEC CICS ABEND ABCODE('C004') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('WS01') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('WS02') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 .

 *End Procedure Division
 END PROGRAM 'INLINETS'.
290 Application Development for IBM CICS Web Services

11.2.4 CICS resource definitions

A minimum of two CICS resource definitions are required to run the example
program:

� A transaction Definition
� A pipeline Definition

If program auto install is not used, a program definition will be required.

The transaction definition refers to the name of the requester program we have
created. The program must have been compiled and linked into a load library,
which is in the DFHRPL concatenation.

For the pipeline definition, we set the Configfile to point to the supplied
basicsoap11requester.xml file. The Wsdir value must be set to point to the
directory where the wsbind file, created by the Web Services Assistant, has been
stored, as seen in Figure 11-6.

Figure 11-6 Pipeline definition

 COnfigfile ==>
/usr/lpp/cicsts/cicsts41/samples/pipelines/basicsoap11requ
 (Mixed Case) ==> ester.xml
 ==>
 ==>
 ==>
 SHelf ==> /var/cicsts/
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 Wsdir : /wafitz/wsbind
 Chapter 11. COBOL samples 291

Results of calling the service
The Web service has been designed to echo back the contents of the fields sent
to it, including the XML text sent to it in the WS-CUST-XML field. The CICS job
log shows the resultant displayed data, which can be seen in Example 11-7.

Example 11-7 Results of <xsd:any> program

XTitle data returned = you said: MR

FirstName data returned = you said: Tony

Surname data returned = you said: Fitzgerald

Customer-xml-cont data = <Whatever
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">.....</Whate
ver>

Customer-xmlns-cont data =
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="http://www.INLINE01.REQY.Request.com"
xmlns:ns2="http://www.INLINE01.RESPY.Response.com"

11.3 Example 2: The <choice> tag

This example demonstrates how a COBOL program can handle the use of the
<xsd:choice> tag in a WSDL describing a Web service to be called by a CICS
application. The <xsd:choice> tag indicates that only one of the options listed can
be used.

11.3.1 The WSDL

The part of the WSDL used in our example that describes the choice data used
can be seen in Example 11-8 on page 293.
292 Application Development for IBM CICS Web Services

Example 11-8 WSDL extract showing <xsd:choice>

<xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="choiceData">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="firstchoice" type="xsd:string" />
 <xsd:element name="secondchoice" type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

In our example, we have an xsd:choice element called choiceData, which
contains two elements: one called firstchoice and the second called
secondchoice. The Web service when called must be supplied with only one of
the two elements.

The complete WSDL can be seen in “WSDL <xsd:choice>” on page 456.

11.3.2 Generation of COBOL and CICS artifacts

We generated the following artifacts from the Web Services Assistant in RDz.

� COBOL skeleton program
� Input and output copybooks
� wsbind file

11.3.3 The COBOL program

The COBOL skeleton program produced will be similar to the skeleton produced
for the <xsd:any> example and shown in Example 11-3 on page 280. In the
same way as we did for that example, we must add code to populate the request
language structure before calling the service and also to process the results
returned by the service.
 Chapter 11. COBOL samples 293

Setting up the request language structure
In our example, we are going to send data in the firstchoice field to the service.

Set firstchoice to true. When the language structure is generated from the WSDL
the <xsd:choice> tag results in a COBOL working storage area, which contains,
in addition to the data fields to be sent to the service, two further data fields. The
first is a flag field that indicates which of the choice variables is being sent to the
service. The second field is the name of the container that will contain the data
area being sent to the service. In our example, this part of the language structure
is as follows:

03 INLINE01Operation.
 06 wsXreqarea.
 09 choiceData.

 12 choiceData-enum PIC X DISPLAY.
 88 empty VALUE X'00'.
 88 firstchoice VALUE X'01'.
 88 secondchoice VALUE X'02'.
 12 choiceData-cont PIC X(16).

This is followed by two data areas, one representing each of the two possible
data areas that can be sent to the service. Only one of these will be set and then
placed into the container named in choiceData-cont.

01 choicI01-firstchoice.
 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 03 firstchoice PIC X(255).

01 choicI01-secondchoice.
 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 03 secondchoice PIC X(255).

The COBOL code to populate the request language structure can be seen in
Example 11-9.

Example 11-9 Populate request language structure

INITIALIZE LANG-CHOICI01

 DISPLAY 'data is being sent in the firstchoice field'
 *
 * The WSDL specfies that only one of the two fields can
 * be sent to the service
 * EITHER firstchoice or secondchoice
 *
 move 'first choice data' to firstchoice
 of choicI01-firstchoice
294 Application Development for IBM CICS Web Services

 move 18 to firstchoice-length
 of choicI01-firstchoice

 DISPLAY 'data to be sent is ==>' firstchoice
 of choicI01-firstchoice

 set firstchoice of wsXreqarea to true

 move 'CHOICE-CONT' to choiceData-cont of wsXreqarea

 EXEC CICS PUT CONTAINER(choiceData-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(choicI01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

Processing the response language structure
On return from the service call, the response language structure will contain the
result of the call to the service. Our example consists of a COBOL EVALUATE
statement that tests which of the data areas have been sent back to the
requester and then displays the data sent back. This can be seen in
Example 11-10.

Example 11-10 Processing the response language structure

EVALUATE TRUE
 when empty of wsXretarea
 display 'nothing returned'

 when firstchoice of wsXretarea
 display 'data was returned in the firstchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(choicO01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 firstchoice of choicO01-firstchoice

 when secondchoice of wsXretarea
 display 'data was returned in the secondchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 Chapter 11. COBOL samples 295

 INTO(choicO01-secondchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 secondchoice of choicO01-secondchoice

END-EVALUATE

The complete COBOL program can be see in “<?xml version="1.0"?>” on
page 440.

11.3.4 CICS Resource Definitions

As for the <xsd:any> example, we required two CICS resources to be defined to
run the service:

� Transaction Definition
� Pipeline Definition

See 11.2.4, “CICS resource definitions” on page 291 for full details.

Results of calling the service
The service is designed to receive one of the two choice fields and echo the data
back in the other of the two choice fields. The output written to the CICS joblog
will look something like Example 11-11.

Example 11-11 Results of choice test

data is being sent in the firstchoice field
data to be sent is ==>first choice data

data was returned in the secondchoice field
data returned is ==>first choice data
296 Application Development for IBM CICS Web Services

11.4 Example 3: minoccurs and maxoccurs

This example demonstrates how a COBOL program can handle the use of the
minoccurs and maxoccurs tag in a WSDL describing a Web service to be called
by a CICS application. See Example 11-12 for WSDL showing minoccurs and
max occurs.

Example 11-12 WDSL showing minoccurs and maxoccurs

<xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element maxOccurs="10" minOccurs="1" name="recs"
nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="recs" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.charlength=fixed

com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="80" />
 <xsd:whiteSpace value="collapse" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

In our example, we have a single text field defined that must occur at least once
(minOccurs=1), but no more than 10 times (maxOccurs=10). The complete
WSDL can be seen in “WSDL - minOccurs/maxOccurs” on page 470.
 Chapter 11. COBOL samples 297

11.4.1 Generation of COBOL and CICS artifacts

As in our previous examples, we have generated the following from RDz:

� COBOL skeleton program
� Input and output copybooks
� wsbind file

11.4.2 The COBOL program

The COBOL skeleton program requires us to set up the request language
structure before calling the service and then to add code to process the results.

Setting up the request language structure
For our example, we have a field called recs, which is 80 bytes long and can
occur 1 - 10 times. The Web Services Assistant has generated a copybook,
which contains a working storage variable for the 80 byte record and two further
variables to define the number of records being sent and also the name of the
container that will contain the records. The working storage variables concerned
are as follows:

03 INLINE01Operation.
 06 wsXreqarea.
 09 recs-num PIC S9(9) COMP-5 SYNC.
 09 recs-cont PIC X(16).

We need to write the data records to the container using a loop in which we put
the data records into an array, which is then written to the container. The code to
set up the request language structure can be seen in Example 11-13. In our
example, we have chosen to send four records to the Web service.

Example 11-13 minOccurs/maxOccurs request language structure setup

INITIALIZE LANG-REDBOI01

 *--- we are going to send 4 records
 move 4 to recs-num of wsXreqarea
 DISPLAY " "
 DISPLAY "=="
 DISPLAY "Sending " recs-num of wsXreqarea " records"

 *--- populate our array with our data
 Perform recs-num of wsXreqarea times
 add 1 to ws-count
 Move ws-record-data to recs2 of redboI01-recs
298 Application Development for IBM CICS Web Services

 move redboI01-recs to WS-RECORD(ws-count)
 END-Perform

 *--- calculate how long the data is
 compute records-length =
 length of redboI01-recs * recs-num of wsXreqarea

 *--- store the name of our data container in the
 *--- request language structure
 move "RECS-CONTAINER" to recs-cont of wsXreqarea

 *--- put the array into the container
 EXEC CICS PUT CONTAINER(recs-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-RECORDS-ARRAY)
 FLENGTH(records-length)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

Processing the response language structure
As in previous examples, the response language structure contains the data
returned from the service. Our processing will be to display the results using
COBOL DISPLAY. The number of data records returned will be found in the
recs-num field of the response language structure. This allows the program to
loop around the required number of times to extract the data.

The response processing can be seen in Example 11-14.

Example 11-14 minOccurs/maxOccurs response processing

*--- get the returned data which is in the container
 *--- named in the response language structure
 EXEC CICS GET CONTAINER(recs-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-RECORDS-ARRAY)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY '==='
 DISPLAY recs-num of wsXretarea ' records returned'

 *--- Display each of the returned records.
 *--- The number of records returned is in recs-num
 *--- which has been extracted from the response container
 Chapter 11. COBOL samples 299

 *--- into the response language structure
 move 1 to ws-count
 PERFORM recs-num of wsXretarea times
 move ws-count to ws-returned-rec-num
 MOVE ws-record(ws-count) to ws-returned-rec-data
 DISPLAY ws-record-returned
 add 1 to ws-count

 END-PERFORM

The complete COBOL program can be seen in “Program to call
minOccurs/maxOccurs example service” on page 464.

11.4.3 CICS resource definitions

As for the previous examples we defined two CICS resources to call the service:

� Transaction definition
� Pipeline Definition

See 11.2.4, “CICS resource definitions” on page 291.

11.4.4 Results of calling the service

Our program calls the Web service passing it four data records. The Web service
is designed to send back the number of records we sent plus two more.

The display output from a successful call to the service will look something such
as the following example output in Example 11-15.

Example 11-15 Results of the minOccurs/maxOccurs test

==
Sending 0000000004 records
===
0000000006 records returned
 returned record number 01===> string array number 0
 returned record number 02===> string array number 1
 returned record number 03===> string array number 2
 returned record number 04===> string array number 3
 returned record number 05===> string array number 4
 returned record number 06===> string array number 5
300 Application Development for IBM CICS Web Services

We also ran a test to show what happens if you try to send more data to the
service than is allowed by the WDSL definition. In this case the maximum
number of records allowed is 10. We ran the program changing the number to 14.
The call to the service then failed and message DFHPI1008 was written to
MSGUSR:

DFHPI1008 10/19/2009 19:09:09 IV3A66A2 00186 XML generation failed
because of incorrect input (INPUT_ARRAY_TOO_LARGE recs2) for
 WEBSERVICE redbookWS6.

The pipeline validated the number of records being sent against the WSDL
definition and indicated through the message that the input array is too large. The
EXEC CICS INVOKE SERVICE call will return an INVREQ condition with an
EIBRESP2 value of 13. The full error message is also available to the program in
the DFH-XML-ERRORMSG container. We extracted this and displayed it to the
console to demonstrate how to access the container when this condition is
encountered. See Example 11-16.

Example 11-16 Error handling example

 * ** An EIBRESP2 of 13 indicates an input error **
 * ** has been detected a message is returned **
 * ** in DFH-XML-ERRORMSG **
 IF EIBRESP2 = 13 THEN
 EXEC CICS
 GET CONTAINER('DFH-XML-ERRORMSG')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-XML-ERRORMSG)
 END-EXEC
 DISPLAY WS-XML-ERRORMSG

11.5 Example 4: OCCURS DEPENDING ON Web Service
Provider

This example demonstrates how a COBOL program using the OCCURS
DEPENDING ON clause can be exposed as a Web Service using CICS
Transaction Server V5.2.

11.5.1 COBOL Program CATOCCUR

We create a new COBOL program to return a specified number of items from the
Catalog Application data file. Currently, this data is available through the EGUI
 Chapter 11. COBOL samples 301

CICS 3270 Transaction, or by using the inquireCatalog Web Service. However,
these two interfaces will only return up to 10 items for each request. As a default,
the CICS Catalog Application has 21 items, so three requests will need to be
made to list all items.

The program CATOCCUR accepts a single number as input, which is the
maximum number of records that the caller wants to receive. The input data
structure can be seen in Example 11-17.

Example 11-17 Input data for CATOCCUR program in OCCURIN copybook

01 INPUT-DATA.
 03 INPUT-NUMBER-OF-ITEMS PIC S9(8) BINARY.

CATOCCUR issues STARTBR FILE to start browsing the Catalog File. The
program then issues READNEXT commands until it reaches the required
number, or reaches the end of the file (which is noted by the ENDFILE condition).
The structure of the Catalog Record can be seen in Example 11-18.

Example 11-18 Definition of a Catalog Record

01 WS-CAT-ITEM.
 05 WS-CAT-ITEM-REF PIC 9(4).
 05 WS-CAT-DESCRIPTION PIC X(40).
 05 WS-CAT-DEPARTMENT PIC 9(3).
 05 WS-CAT-COST PIC ZZZ.99.
 05 WS-CAT-IN-STOCK PIC 9(4).
 05 WS-CAT-ON-ORDER PIC 9(3).
 05 FILLER PIC X(20).

Finally, it issues an ENDBR command before returning its output data. The
output data structure can be seen in Example 11-19. The number of items is held
in a numeric field before the array of items. This is known as “Simple OCCURS
DEPENDING ON” and this is supported in CICS Transaction Server V5.2.

Example 11-19 Output data from CATOCCUR program in OCCUROUT copybook

01 OUTPUT-DATA.
 03 OUTPUT-NUMBER-OF-ITEMS PIC S9(8) BINARY.
 03 OUTPUT-ITEM OCCURS 1 TO 100
 DEPENDING ON OUTPUT-NUMBER-OF-ITEMS.
 05 OUTPUT-ITEM-REF PIC 9(4).
 05 OUTPUT-DESCRIPTION PIC X(40).
 05 OUTPUT-DEPARTMENT PIC 9(3).
 05 OUTPUT-COST PIC 999V99.
 05 OUTPUT-IN-STOCK PIC 9(4).
302 Application Development for IBM CICS Web Services

 05 OUTPUT-ON-ORDER PIC 9(3).
 05 FILLER PIC X(20).

Two fields are different between the structure of the VSAM file in Example 11-18
on page 302 and the outbound Web service data in Example 11-19 on page 302.
WS-CAT-COST is defined as a COBOL PIC ZZZ.99. This is a numeric edited field
containing a decimal point. The Z characters represent zero suppression fields,
where if the number at that position is a zero, COBOL will replace this with a
space.

The CICS IBM Knowledge Center states “The only PICTURE characters that are
supported for DISPLAY and COMPUTATIONAL-5 data description items are 9, S,
and Z.”. This can be found in the article at the following site:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics
.ts.applicationprogramming.doc/datamapping/dfhws_cobol2wsdl.html

We cannot use PIC ZZZ.99 in the output data, so we change this to use an
implied decimal point symbol, V.

At runtime, CICS reported a problem with the parsing of the outbound data.
Example 11-20 shows that an INVALID_ZONED_DEC error was encountered
when converting our cost field.

Example 11-20 Conversion of PIC ZZZV99 fails at runtime

DFHPI1010 10/22/2014 11:12:36 REDBOOK9 CPIH 00381 XML generation
failed. A conversion error (INVALID_ZONED_DEC) occurred when
 converting field output_cost for WEBSERVICE CATOCCUR.

The zoned decimal field is reported as containing invalid data, which were the
spaces. To correct this problem, we changed the cost variable to PIC 999V99. In
the outbound SOAP, leading zeros are suppressed automatically by CICS.

The complete COBOL source for CATOCCUR can be found in “Program to
implement OCCURS DEPENDING service” on page 477.

11.5.2 Generating the Web Service resources

In order to generate the Web Service resources for our new program, we use the
CICS Web Services Assistant, specifically DFHLS2WS. OCCURS DEPENDING
ON is only supported by Mapping Level 4.0 and we must also specify
DATA-TRUNCATION=ENABLED.

The full set of parameters used can be seen in Example 11-21 on page 304.
 Chapter 11. COBOL samples 303

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_cobol2wsdl.html

Example 11-21 DFHLS2WS Parameters to generate Web Service resources

PDSLIB=CTS.REDBOOK.COPYLIB
PGMINT=CHANNEL
LANG=COBOL
PGMNAME=CATOCCUR
REQMEM=OCCURIN
RESPMEM=OCCUROUT
LOGFILE=/redbook/CATOCCUR.log
MAPPING-LEVEL=4.0
DATA-TRUNCATION=ENABLED
WSBIND=/redbook/provider/wsbind/CATOCCUR.wsbind
WSDL=/redbook/provider/wsdl/CATOCCUR.wsdl
URI=/CATOCCUR/

The generated WSDL document is included in “WSDL for OCCURS
DEPENDING ON” on page 481.

11.5.3 Defining resources to CICS

In this section, we define the necessary resources to run our new Web services.
We use CICS Resource Definition Online (RDO) Transaction CEDA to do this.
The commands to define the program and library can be seen in Example 11-22.

Example 11-22 CEDA command to define program CATOCCUR and library

CEDA DEFINE PROGRAM(CATOCCUR) GROUP(CATALOG9)
CEDA DEFINE LIBRARY(REDBOOK) GROUP(CATALOG9)
DSNAME01(CTS.REDBOOK.LOADLIB)

We previously installed and configured a provider-mode pipeline from CICS
supplied group DFH$EXWS. This PIPELINE is called EXPIPE01. We do not
have write access to the pickup directory for this pipeline.

We choose to define a new pipeline, PROVIDER, based on the existing
EXPIPE01 resource. The commands we issue to do this can be seen in
Example 11-23 on page 305. The CEOT TRA command at the beginning is to
make sure that CICS does not force our input to uppercase, as is the default.
304 Application Development for IBM CICS Web Services

Example 11-23 CEDA commands to create new pipeline PROVIDER

CEOT TRA
CEDA COPY GROUP(CATALOG9) PIPELINE(EXPIPE01) AS(PROVIDER)
CEDA ALTER GROUP(CATALOG9) PIPELINE(PROVIDER)
WSDIR(/redbook/provider/wsbind/)

Finally, we use CEDA to install the program CATOCCUR and pipeline
PROVIDER.

11.5.4 Testing the service and results

To test our new web service we use Rational Developer for System z (RDz),
which provides a useful tool called the Web Services Explorer. Following are the
steps to do this:

1. Start Rational Developer for System z.

2. Switch to the Enterprise System Tools perspective.

3. Select the Remote Systems tab. This can be located towards the bottom of
the window, in the same area as Getting Started, Properties, Tasks, and
Problems.

4. Expand New Connection. The results are shown in Figure 11-7.

Figure 11-7 Remote Systems tab in Rational Developer for System z

5. Double-click z/OS. The New Connection wizard opens. This can be seen in
Figure 11-8 on page 306.
 Chapter 11. COBOL samples 305

Figure 11-8 New Connection wizard in Rational Developer for System z

6. Type the host name into the Host name field. We enter the name of our z/OS
system, example.com.

7. Click Finish to accept all defaults. The new connection can be seen in
Figure 11-9.

Figure 11-9 Connection successful to example.com
306 Application Development for IBM CICS Web Services

8. Select the Navigator view.

9. Right-click within the Navigator view. From the context-sensitive menu, select
New and then Project.

10.The New Project wizard opens. Expand General and then select Project.
This can be seen in Figure 11-10.

Figure 11-10 Select a wizard window

11.Click Next. You are prompted for a project name. We use the name CATOCCUR.

12.A new project has been created. Right-click the project name in the Navigator
view and select Import from the context-sensitive menu, as shown in
Figure 11-11 on page 308.
 Chapter 11. COBOL samples 307

Figure 11-11 Import option on project menu

13.The Import wizard opens. Expand Remote Systems and select Remote File
System. Click Next.

14.On the Remote file system page, click Browse. The Browse For Folder
page appears, as shown in Figure 11-12.

Figure 11-12 Browse For folder page in Import wizard

15.From the Connection list, select your z/OS connection. A list of file locations
in the z/OS UNIX file system is shown in Figure 11-13 on page 309.
308 Application Development for IBM CICS Web Services

Figure 11-13 Available z/OS UNIX file filters

16.Expand Root and navigate to the folder where your WSDL is stored, for
example /redbook/provider/wsdl.You are prompted for your user ID and
password if you are not already connected. Then, click OK. The results will
appear similar to Figure 11-14.

Figure 11-14 Available WSDL files in WSDL directory

17.Select CATOCCUR.wsdl and then click Finish.

18.In the Navigator view, expand the CATOCCUR project. The imported WSDL
can be seen as in Figure 11-15 on page 310.
 Chapter 11. COBOL samples 309

Figure 11-15 WSDL successfully imported into Rational Developer for System z

19.In the Navigator view, right-click the CATOCCUR.wsdl file. Select Web
Services and then Test With Web Services Explorer. A new editor opens,
similar to Figure 11-16. This shows the CATOCCUROperation Web Service.

Figure 11-16 Web Services Explorer showing CATOCCUROperation

20.Maximize the Web Services Explorer editor by double-clicking the tab.

21.We need to add the correct endpoint for our Web Service. Clicking Add will
add a new, duplicate entry to the Endpoints list.

22.Replace my-server:my-port with an appropriate value. We type
example.com:55559. Press Enter and the message:

IWAB0388I Endpoints were successfully updated.

will appear in the Status pane at the bottom of the editor window.
310 Application Development for IBM CICS Web Services

23.Click CATOCCUROperation. A new pane opens, Invoke a WSDL
Operation, similar to that shown in Figure 11-17.

Figure 11-17 CATOCCUROperation showing input data

24.Enter a number in the input_number_of_items field. We type 14.

25.Click Go to send the request to CICS. The Status pane updates with the
successful response as can be seen in Figure 11-18. You might need to
expand CATOCCUROperationResponse to see all the data.

Figure 11-18 One item out of 14 returned
 Chapter 11. COBOL samples 311

26.The complete returned SOAP from CATOCCUR after a request for 14 items
can be seen in Example 11-24.

Example 11-24 Web Service response from CATOCCUR for 14 items

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://www.CATOCCUR.OCCURIN.Request.com"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<CATOCCUROperationResponse xmlns="http://www.CATOCCUR.OCCUROUT.Response.com">
<output_data>
<output_item>
 <output_item_ref>10</output_item_ref>
 <output_description>Ball Pens Black 24pk</output_description>
 <output_department>10</output_department>
 <output_cost>2.90</output_cost>
 <output_in_stock>134</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>20</output_item_ref>
 <output_description>Ball Pens Blue 24pk</output_description>
 <output_department>10</output_department>
 <output_cost>2.90</output_cost>
 <output_in_stock>6</output_in_stock>
 <output_on_order>50</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>30</output_item_ref>
 <output_description>Ball Pens Red 24pk</output_description>
 <output_department>10</output_department>
 <output_cost>2.90</output_cost>
 <output_in_stock>106</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>40</output_item_ref>
 <output_description>Ball Pens Green 24pk</output_description>
 <output_department>10</output_department>
 <output_cost>2.90</output_cost>
 <output_in_stock>80</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>50</output_item_ref>
 <output_description>Pencil with eraser 12pk</output_description>
 <output_department>10</output_department>
312 Application Development for IBM CICS Web Services

 <output_cost>1.78</output_cost>
 <output_in_stock>83</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>60</output_item_ref>
 <output_description>Highlighters Assorted 5pk</output_description>
 <output_department>10</output_department>
 <output_cost>3.89</output_cost>
 <output_in_stock>13</output_in_stock>
 <output_on_order>40</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>70</output_item_ref>
 <output_description>Laser Paper 28-lb 108 Bright
500/ream</output_description>
 <output_department>10</output_department>
 <output_cost>7.44</output_cost>
 <output_in_stock>102</output_in_stock>
 <output_on_order>20</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>80</output_item_ref>
 <output_description>Laser Paper 28-lb 108 Bright
2500/case</output_description>
 <output_department>10</output_department>
 <output_cost>33.54</output_cost>
 <output_in_stock>25</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>90</output_item_ref>
 <output_description>Blue Laser Paper 20lb 500/ream</output_description>
 <output_department>10</output_department>
 <output_cost>5.35</output_cost>
 <output_in_stock>20</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>100</output_item_ref>
 <output_description>Green Laser Paper 20lb 500/ream</output_description>
 <output_department>10</output_department>
 <output_cost>5.35</output_cost>
 <output_in_stock>3</output_in_stock>
 <output_on_order>20</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>110</output_item_ref>
 <output_description>IBM Network Printer 24 Toner cart</output_description>
 Chapter 11. COBOL samples 313

 <output_department>10</output_department>
 <output_cost>169.56</output_cost>
 <output_in_stock>12</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>120</output_item_ref>
 <output_description>Standard Diary: Week to view 8 1/4x5
3/4</output_description>
 <output_department>10</output_department>
 <output_cost>25.99</output_cost>
 <output_in_stock>7</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>130</output_item_ref>
 <output_description>Wall Planner: Eraseable 36x24</output_description>
 <output_department>10</output_department>
 <output_cost>18.85</output_cost>
 <output_in_stock>3</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
<output_item>
 <output_item_ref>140</output_item_ref>
 <output_description>70 Sheet Hard Back wire bound
notepad</output_description>
 <output_department>10</output_department>
 <output_cost>5.89</output_cost>
 <output_in_stock>84</output_in_stock>
 <output_on_order>0</output_on_order>
 </output_item>
 </output_data>
 </CATOCCUROperationResponse>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

We have successfully invoked a web service in CICS that returns a variable
number of records using the COBOL OCCURS DEPENDING language
structure.
314 Application Development for IBM CICS Web Services

Part 2 Performance

In this part, we apply the techniques introduced in Part 1 to provide a Web
services interface to a CICS application. The performance characteristics of this
application are then analyzed to understand how key parameters affect the CPU
cost and response time of the Web service.

Part 2
© Copyright IBM Corp. 2015. All rights reserved. 315

316 Application Development for IBM CICS Web Services

Chapter 12. Performance introduction

Chapters in Part 1 describe how CICS implements Web services. They explain
the steps that are required to expose your application as a Web service provider.
Similarly, how to invoke a Web service from within your application.

In this chapter, we describe how to measure the performance of the runtime Web
service components used to satisfy these service requests. The intention is to
quantify the cost of converting your application to benefit from Web services.

12
© Copyright IBM Corp. 2015. All rights reserved. 317

12.1 Measuring Web service performance

Using a typical Web service configuration, the cost of exposing a user application
as a Web service provider is measured. Using the same configuration, the cost of
invoking the exposed Web service from a CICS user application program is
measured.

12.1.1 Key performance indicators

We determined the cost of a Web service request by analyzing two key
indicators:

1. The response time of the Web service requester task.

This figure will show the complete duration of the user application transaction
including the invocation of the Web service.

2. The CPU time used by the Web Service provider and requester tasks.

This is measured at both a transaction and system level.

To obtain accurate results we simulated running thousands of Web service
requests through our Web service configuration. For details of our test
configuration, see 13.1, “Architectural overview” on page 330.

Using bespoke application programs in this controlled environment, we ran a
typical workload through our configuration. A typical workload being: 100 users,
transaction rate of 50 transactions per second with a SOAP message size of 400
bytes. We considered this a reasonable workload for our baseline scenario.

During this test, CICS Monitoring Facility (CMF) and IBM Resource
Measurement Facility™ (IBM RMF™) are activated to capture monitor data.
From this data, average values of the above indicators were calculated. See
14.2, “Baseline” on page 361 for analysis of this scenario.

Initial tests using our baseline scenario returned consistent results for CPU
consumption per request. Ten baseline test runs produced results with a 3%
deviation in average CPU per request. These results were consistent, in both
provider and requester regions. However, results for average response times in
the requester region showed a deviation of over 10%, despite the tests being run
overnight on a dedicated machine with little external interference. We thought
318 Application Development for IBM CICS Web Services

this high deviation was due to external demand in the network. To eliminate
inconsistencies in the network, we decided to use HiperSockets.

Once HiperSockets were implemented, we got a consistent set of results for our
baseline scenario, both for CPU consumption and response time. This gave a
precise measurement of the cost of a Web service request under baseline
conditions. See 14.2, “Baseline” on page 361 for analysis of this scenario.

12.1.2 Scenarios

Having established a stable baseline, we then ran a series of tests using various
scenario workloads using the same Web service configuration. These workloads
vary the demand on the provider by altering the number of clients issuing
requests, the frequency of the requests, and size of the inbound data. The aim
was to measure the affect that these workload changes had on the performance
of the Web service request.

The baseline configuration was then changed to enable a secure connection
(SSL) between the CICS regions. The aim of this change was to quantify the cost
that these configuration changes had on the performance of the Web service
request. In this scenario, we vary the demand on the provider by altering the size
of the inbound data; the other variables remained constant.

Finally, we changed the above SSL scenario to utilize persistent connections.
The objective of this configuration change was to gauge the positive effect that
persistent connections would have on the performance characteristics with and
without using a secure connection. We tested a combination of scenarios using
this new configuration. In these scenarios, we vary the demand on the provider
by altering the size of the inbound data; the other variables remained constant.

All our scenarios will be described in detail in 14.1, “Scenarios overview” on
page 360 but are included here as a summary. Table 12-1 on page 320 shows
the scenarios with a brief description describing how they differ.

Note: To implement HiperSockets, we configured a URIMAP in the requester
region and TCPIPSERVICE on the provider region. The INVOKE
WEBSERVICE command in the requester application specified a URIMAP
attribute. The corresponding URIMAP definition contained a HOST attribute
with the HiperSockets IP address. A TCPIPSERVICE on the provider was then
installed. This definition also contained the same HiperSockets IP address.
Chapter 12. Performance introduction 319

Table 12-1 Summary of performance scenarios

Each scenario had five test runs. The tests vary the workload by changing only
one variable per test. For example, the “Clients” scenario varies the number of
users entering transactions: test1 has 100 clients, test2 has 200 clients, test3
has 300 clients, test4 has 400, and test5 has 500 clients.

12.1.3 Transactions involved in Web service requests

The CICS implementation of Web services used in our test consists of several
runtime components. A Requester invoking a Web service and a Provider that
processes the request then returns a response.

Figure 12-1 on page 321 shows the Web service runtime service provider (in
CICSA) for our test environment. This consists of three transaction instances
(tasks) run to support the Web service. These transactions are:

� The Sockets listener task (CSOL)

Long running task, which is executed once per CICS system

� Web attach task (CWXN) -

The web attach task, which is executed once per Web service request.

� Pipeline task (CPIH) including application logic BASICCA -

Scenarios Description

Baseline No Variation

Clients Vary number of terminals

Throughput Vary frequency of requests

COMMAREA payload Vary COMMAREA payload size

COMMAREA payload (Large) Vary a Large COMMAREA payload size

Channel payload Vary Channel payload size

XML complexity Vary complexity of XML

Secure connection (SSL) Vary a Large COMMAREA payload over SSL

Persistent connections Vary a Large COMMAREA payload using persistent connections

Persistent connections with SSL Vary a Large COMMAREA payload using secure persistent
connections
320 Application Development for IBM CICS Web Services

The pipeline processing task, which is executed once per Web service
request if no user ID switching is required. If a user ID context switch is
needed, a second task is created which executes using the new user ID.

Figure 12-1 also shows the Web service requester (in CICSB) for the test
environment. This consists of the application transaction invoking the Web
service:

� Application task (INVK)

The program INVOKEWS issuing the INVOKE SERVICE command, executed
once per terminal interaction.

Figure 12-1 High-level view of tasks involved

A description of the Web service requests transaction flows for the Baseline
scenario can be found in 14.2.1, “Baseline scenario description” on page 361.
The order in which these transactions are invoked is described below using
Figure 12-1:

� Transaction ID INVK (A) is attached when TPNS simulates a user issuing
“INVK” on an emulated terminal, on CICSA. Program INVOKEWS (1) calls an
Chapter 12. Performance introduction 321

assembler subprogram, which issues an EXEC CICS INVOKE WEB SERVICE. The
Web service requests then flows over TCP/IP into CICSB.

� On CICSB, the listener transaction CSOL (B) attaches Web attach
transaction CWXN (C). CWXN determines the URIMAP/Pipeline for the Web
service request.

� The Pipeline handler transaction CPIH (D) drives the pipeline exit handlers
and attaches the business logic program BASICCA (2).

For the scenarios, CMF and RMF were activated to collect System Monitoring
Facility records for all tasks run during each test. CMF performance records are
captured at task completion. SMF data was collected on both LPARs.

After each test, SMF 110 subtype 1 records were copied to a GDG for the
scenario. From this data, monitor performance records for each of the above
Web service transactions, namely; CSOL, CWXN, and CPIH were extracted.
Similarly, after the test, monitor performance records for the requester task,
INVK, were extracted.

CICS PA was used to calculate the average values of the key indicators of these
transactions.

See 12.2, “Collecting CICS Monitoring Facility data” on page 325 for a list of
CMF fields used in our calculations, and 12.3, “Interpreting CMF performance
data” on page 326 for a description of how CICS PA was used to calculate the
results.

12.1.4 Workloads

As shown in 13.1, “Architectural overview” on page 330 an emulator tool called
Teleprocessing Network Simulator (TPNS) runs on the “Driver” LPAR generating
a constant, reproducible workload that runs on CICSA. TPNS simulates a
number of clients submitting transactions on 3270 terminals attached to CICSA.
Transaction workload is driven through the above scenarios using TPNS by

Note: The transaction ID for the pipeline handler task can be changed by
specifying TRANSACTION as a DFHLS2WS parameter. We specified a
different Tran_ID for each scenario test to aid identifying the test in the CICS
Performance Analyzer (CICS PA) reports.

The transaction ID for the Web attach task can be changed by specifying a
TRANSACTION attribute on the TCPIPSERVICE definition. Our
TCPIPSERVICE definitions were allowed to default to
TRANSACTION(CWXN).
322 Application Development for IBM CICS Web Services

simulating clients typing in a transaction INVK on a 3270 terminal connected to
the CICSA (Requester) which invokes a Web service in the CICSB (provider).
This configuration is shown in Figure 13-1 on page 330.

The number of clients, transaction throughput (frequency of transactions), and
SOAP message (payload) size is configurable. Changing the factors will vary the
workload. The scenario workloads shown in Table 12-1 on page 320 will vary
these factors by the following limits:

� Transaction rates for the scenario tests vary between 50 transactions per
second (TPS) up to 250 TPS.

� The number of simulated clients varies 100 - 500.

� Web service payload size per request varies between 400 bytes up to 4 Mb.

The duration of the tests was fixed. All tests ran for the same length of time:
10 minutes. The test started when the CICS workload reached a steady state. To
achieve this, we allow a settling down period of 5 minutes after the workload was
started. Figure 12-2 on page 325 shows multiple tests being run for a scenario.
After each test, the SMF data is saved and the SMF data sets cleared.

12.1.5 Running the scenario tests

In this section, we share how a consistent process for running the tests for each
scenario was created. Automation was used to set up the environment and
schedule the individual tasks required for the tests. The tests were run during
off-peak periods when the machine was not running any other workloads. The
same process was used for all the scenarios listed in Table 12-1 on page 320.
The automation consists of two parts:

� System setup

Provide a stable platform for the CICS regions; this is performed once per
scenario test run.

� Run the transaction workloads

Run tasks to start/stop the workload and collect the SMF data; this is
repeated five times: once per test.

System setup
Establish the same system environment for each scenario test. The following
steps were performed at the beginning of the test to prepare the LPAR with a
consistent configuration:

1. Place three general-purpose CPs online on both LPARs

Command entered: CONFIG CPU(0,1,2),ONLINE
Chapter 12. Performance introduction 323

2. Switch Hiperdispatching ON

3. Enable CICS Monitoring on both Requester and Provider regions

Command entered: F CICSA CEMT SET MON ON PERF

Command entered: F CICSB CEMT SET MON ON PERF

4. Enable TPNS and simulated client IBM VTAM® APPLIDs

Command entered: V NET,ACT,ID=TPNSIB

5. Start TPNS started task TPNSIB on Driver LPAR only

Command entered: S TPNSIB,WORKLOAD=SG247126

6. Initialize TPNS workloads on Driver LPAR only

Command entered:

F TPNSIB,I test1

F TPNSIB,I test2

F TPNSIB,I test3

F TPNSIB,I test4

F TPNSIB,I test5

7. Initialize RMF on both LPARs

8. Initialize the SMF data sets on both LPARs: switch and clear
SYS1.xxxx.MANA on both LPARs

Once automation has run the above tasks to a successful completion, the system
is ready to receive the scenarios tests.

Run the transaction workloads
The following steps are repeated for every test that is run for the scenario being
recorded:

1. Start the test TPNS workload for this test variant - F TPNSIB,S test

2. Allow workload to run for 5 minutes settling down period to achieve a steady
state

3. Start RMF recording on both LPARs

4. Run the workload for 10 minutes test period

5. Stop the test TPNS workload - F TPNSIB,P test

6. Stop RMF on both LPARs

7. Stop SMF and copy SYS1.xxxx.MANA to data set on both LPARs
324 Application Development for IBM CICS Web Services

8. Initialize the SMF data sets on both LPARs: switch and clear
SYS1.xxxx.MANA on both LPARs

9. Continue at step 1

Figure 12-2 shows tests running for a scenario workload.

Figure 12-2 Multiple tests run for each scenario

12.2 Collecting CICS Monitoring Facility data

Before the scenario tests, CICS monitoring is activated. CMF performance class
records are written as SMF type 110, subtype 1 records, if the following two SIT
options are set:

� MN=ON
� MNPER=ON

Alternatively, CEMT or CEMN may be used to switch on monitoring and enable
collection of performance records. During our tests, CEMT was used to turn on
Monitoring via a modify command issued at a console.
Chapter 12. Performance introduction 325

Further details of CMF can be found in the CICS 5.2 IBM Knowledge Center at
this web address:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.
ts.doc/lpaths/workload_lp_cmf.html?lang=en

We extracted the following CMF performance records for each scenario:

1. Response time of each Web service task

2. Dispatch time of each Web service task

3. User CPU consumption at a task level

4. Time spent suspended

5. Number of TCB change mode switches

Table 12-2 shows the CMF fields for the preceding performance criteria.

Table 12-2 CMF fields used in CICS PA reports

12.3 Interpreting CMF performance data

Having run the scenarios, we retrieved the CMF performance records from SMF
into a Generation Data Group (GDG): one file for each scenario test. The data
was then formatted using CICS Performance Analyzer (CICS PA). For each

Measurement CICS PA
name

CMF field Comment

RESPONSE time RESPONSE a

a. Not a CMF field. RESPONSE is a computed figure STOP - START time

The CICS response time for the transaction.
It is calculated by the difference between the
start and stop times.

Dispatch time DISPATCH USRDISPT
DFHTASK S007

Total elapsed time during which the user task
was dispatched on each CICS TCB under
which the task executed.

CPU usage CPU USRCPUT
DFHTASK S008

Processor time for which the user task was
dispatched on each CICS TCB under which
the task executed.

Suspend wait
time

SUSPEND SUSPTIME
DFHTASK S014

Total elapsed wait time for which the user
task was suspended by the dispatcher.

Number of TCB
switches

DSCHMDLY DSCHMDLY
DFHTASK S247

Times task was delayed by a change-TCB
mode delay
326 Application Development for IBM CICS Web Services

scenario, we ran CICS PA reports to obtain figures for CPU consumption and
average response times.

Example 12-1 shows CICS PA commands that could be used to produce a report
of performance data.

Example 12-1 CICS PA commands input for the Provider region

CICSPA IN(SMFIN001),
APPLID(CICSB),
LINECNT(60),
FORMAT(':','/'),
PRECISION(6),

SUMMARY(OUTPUT(SUMM0001),
EXTERNAL(CPAXW001),
SELECT(PERFORMANCE(
INC(TRAN(CWXN,

CPIH)))),
TOTALS(8),
INTERVAL(00:01:00),
FIELDS(TRAN(ASCEND),

TASKCNT,
RESPONSE(TIME(AVE)),
DISPATCH(TIME(AVE)),
CPU(TIME(AVE)),
SUSPEND(TIME(AVE)),
DSCHMDLY(COUNT(AVE))))

Example 12-2 shows an extract from a CICS PA report run against provider
performance data.

Example 12-2 Extract from a CICS PA report run against Provider performance data

Avg Avg Avg Avg Avg
Tran #Tasks Response Dispatch User CPU Suspend DSCHMDLY
 Time Time Time Time Count
CPIH 30113 .000385 .000166 .000160 .000219 9
CWXN 30114 .000189 .000048 .000045 .000141 6
Total 60227 .000287 .000107 .000102 .000180 7

Using the data from the CICS PA report in Example 12-2, we can see that the
average CPU cost per web attach transaction (CWXN) was 0.000045 seconds,
or 0.045 ms. Similarly, we can see that the average CPU cost per pipeline
handler transaction (CPIH) was 0.000166 seconds, or 0.166 ms. We can
therefore conclude that, on average, each request for this scenario cost
Chapter 12. Performance introduction 327

approximately 0.211 ms of CPU. This is explained in more detail in the baseline
scenario. See 14.2, “Baseline” on page 361.

When producing performance figures for a CICS Web service provider region,
the response times calculated for each of the web attach and the pipeline handler
tasks do not correlate directly with the overall web service response time. To
determine the overall response time, we used the response time of the invoking
task in the Web service requester region. See Example 12-3.

Example 12-3 Sample CICS PA command input for the Requester region

CICSPA IN(SMFIN001),
 APPLID(CICSA),
 LINECNT(60),
 FORMAT(':','/'),
 PRECISION(6),
 SUMMARY(OUTPUT(SUMM0001),
 EXTERNAL(CPAXW001),
 SELECT(PERFORMANCE(
 INC(TRAN(INVK)))),
 TOTALS(8),
 INTERVAL(00:01:00),
 FIELDS(TRAN(ASCEND),
 TASKCNT,
 RESPONSE(TIME(AVE)),
 DISPATCH(TIME(AVE)),
 CPU(TIME(AVE)),
 SUSPEND(TIME(AVE)),
 DSCHMDLY(COUNT(AVE))))

Example 12-4 shows an extract from a CICS PA report run against requester
performance data.

Example 12-4 Extract from a CICS PA report run against Requester performance data

Avg Avg Avg Avg Avg
Tran #Tasks Response Dispatch User CPU Suspend DSCHMDLY

Time Time Time Time Count
INVK 151084 .001143 .000280 .000268 .000864 18
Total 151084 .001143 .000280 .000268 .000864 18

The average Response Time figure in Example 12-4 shows the total elapsed
time of the user application in the Requester region plus the time spent waiting
for a response from the Provider region. Further details are in section 14.2.6,
“Requester RMF data analysis” on page 367.
328 Application Development for IBM CICS Web Services

Chapter 13. Environment overview

In this chapter, we describe the infrastructure created to run the performance
tests discussed in the next chapter.

We also describe the configuration tasks required to generate the Web services
used in the test, including:

� Web service provider configuration
� Web service requester configuration

13
© Copyright IBM Corp. 2015. All rights reserved. 329

13.1 Architectural overview

Figure 13-1 shows the logical partition (LPAR) configuration and CICS regions
used for the Web service scenarios described in the next chapter.

Figure 13-1 LPAR and CICS configuration for the Web Service scenarios

There are two LPARs running two CICS systems connected by TCP/IP. The
LPARs are called Driver and Measure running CICSA and CICSB, respectively.
Teleprocessing Network Simulator (TPNS) is connected to CICSA via a VTAM
SNA connection.

CICS Transaction Server for z/OS V5.2 is used for all performance
measurements.

On the Driver system, TPNS drives a workload into CICSA by emulating a
Transaction ID being typed on a terminal keyboard. This input causes a program
to run and issue a Web service request to CICSB.

Measurements were taken on both CICS regions. CICSB is the Web service
provider region and CICSB is the Web service provider. The workload emulator
TPNS runs on a separate LPAR so it does not influence the performance of the
Web service provider or the capturing of monitoring data.

CICS SIT parameters
To avoid any contention due to system constraints, we assembled a SIT with the
following arms:

� MXT=500
330 Application Development for IBM CICS Web Services

This represents the maximum number of clients that we intended to connect
to CICS.

� EDSALIM size of 600 MB

Task USER and CICS storage usage for our largest payload was estimated to
be 8 MB. This scenario ran with a transaction rate of 50 TPS so we needed an
EDSALIM 400 MB.

When configuring CICS to support SSL security, we specified the following CICS
override SIT parameters:

� USSCONFIG=/u/harrisa/sg247126/ws/dfhconfig

HFS configuration directory. The SSL cipher suite specification file must be in
the ussconfig/security/ciphers directory. Where ussconfig is the value of
the SIT parameter USSCONFIG. We used the cipher the specification file
strongciphers.xml.

� KEYRING=SG247126.Requester

� MAXSSLTCBS=100

Double the transaction rate of 50 TPS, used in the SSL scenarios.

13.2 Hardware and operating system configuration

To measure performance, we use two LPARs as documented in section 13.1,
“Architectural overview” on page 330. These LPARs are dedicated to
performance testing and tests are executed when they have exclusive use of the
environment. Both LPARs are hosted on the same IBM zEnterprise® EC12
central processor complex. Each LPAR has 3 dedicated general-purpose CPs,
with 16 GB of real storage assigned, and dedicated paths to DASD. For
comparison with the IBM Large Systems Performance Reference data, use
model 2827-703 in both cases.

Sysplex communications are provided by a coupling facility with ICP links, where
the coupling facility has dedicated CPs.

Communication between the CICS regions is only by using the HTTP Web
service requests using the Internet Protocol network stack. After initial testing
produced some inconsistent results due to variance in the physically cabled
network performance characteristics, the connection between the CICS systems
was changed to use HiperSockets to remove fluctuations in network latency. The
very low latency achievable with HiperSockets also allows us to produce
response time figures where network delays were not a dominant factor.
Chapter 13. Environment overview 331

Both LPARs are configured to use the installed Crypto Express 4S cryptographic
hardware acceleration card.

13.3 Web service provider configuration

This section describes the configuration tasks that are required to create the
Web service provider environment.

The Web service provider runs in CICS region CICSB on LPAR “Measure” as
shown in Figure 13-1 on page 330. This CICS region supports a number of Web
services. These Web services have been generated to handle requests from the
service requester on CICSA. Table 13-1 shows the performance scenarios and
the provider Web services.

Table 13-1 Provider Web services used in each scenario

Scenario name Web service name

Baseline WSDL0_prov

Clients CLNT_prov

Throughput THRU_prov

Commarea payload Paysizecomm400_prov
Paysizecomm800_prov
Paysizecomm1600_prov
Paysizecomm3200_prov
Paysizecomm6400_prov

Commarea payload
(Large)

Paysizecomm002k_prov
Paysizecomm004k_prov
Paysizecomm008k_prov
Paysizecomm016k_prov
Paysizecomm032k_prov

Channel payload Paysizechan256k_prov
Paysizechan512k_prov
Paysizechan001m_prov
Paysizechan002m_prov
Paysizechan004m_prov

XML complexity Paycomplex6400_prov
Paycomplex3200_prov
Paycomplex1600_prov
Paycomplex800_prov
Paycomplex400_prov
332 Application Development for IBM CICS Web Services

Figure 2-1 on page 43 shows a Web services runtime service provider
environment. This figure includes resources and artifacts needed to support a
provider Web service, namely;

� Web Services Description Language (WSDL) and WSBind artifacts
� PIPELINE configuration file
� TCPIPSERVICE
� URIMAP
� PIPELINE
� WEBSERVICE
� Business Logic (Target application program)

The following sections describe the backend target application and steps taken to
create the runtime provider environments to be used in the performance
scenarios described in the next chapter. In summary, we need to:

1. Generate provider WSBind and WSDL artifacts for each Web service
2. Create a PIPELINE: both configuration file and resource definition
3. Create a TCPIPSERVICE resource definition
4. Install the Web service CICS resource definitions
5. Write the User application program
6. Define and install user application resource definitions

13.3.1 Generate the provider WSBind and WSDL artifacts

Before we generate the WSBind and WSDL artifacts, an HFS directory must be
defined where the artifacts will be stored. OMVS or ishell can be used to create a
directory for the WSDL. We use /u/harrisa/sg247126/ws/schema. Similarly, an
HFS can be created for the WSbind artifacts, we use
/u/harrisa/sg247126/ws/wsbindprov.

We can now create the Web Service provider mode artifacts using the Bottom-up
approach, described in 6.3.1, “Using the CICS Web Services Assistant” on
page 130. Our scenarios use a number of Web services. We need to create
WSBind and WSDL artifacts for each Web service. The names of the scenario
and associated Web service are shown in Table 13-1 on page 332.

The Bottom-up approach uses the Web service assistant DFHLS2WS to
produces WSDL files based on the Language Structure of the application
program. DFHLS2WS takes the Language Structure of the application program
as input. In our scenarios, we use one target application program BASICCA.
This program uses COBOL copybooks to define the inbound request and
outbound response for each Web service that the program supports. The
application program copybooks are shown in Table 13-2 on page 334.
Chapter 13. Environment overview 333

Table 13-2 Copybooks used by the provider Web services

For each of the Web services, we use the corresponding copybooks as input into
DFHLS2WS to generate the WSBIND and WSDL files.

Example 13-1 and Example 13-2 on page 335 show the copybooks CPLX0016
and DATA0100, for Web service Paycomplex400_prov.

Example 13-1 Copybook CPLX0016

*
* Data area to hold 6400 bytes of character data in
* sixteen elements

Scenario name Web service name Copybook
Request

Copybook
Response

Baseline WSDL0_prov DATA0400 DATA0100

Clients CLNT_prov DATA0400 DATA0100

Throughput THRU_prov DATA0400 DATA0100

Commarea payload Paysizecomm400_prov
Paysizecomm800_prov
Paysizecomm1600_prov
Paysizecomm3200_prov
Paysizecomm6400_prov

DATA0400
DATA0400
DATA0800
DATA1600
DATA3200
DATA6400

DATA0100

Commarea payload
(Large)

Paysizecomm002k_prov
Paysizecomm004k_prov
Paysizecomm008k_prov
Paysizecomm016k_prov
Paysizecomm032k_prov

DATA002k
DATA004k
DATA008k
DATA016k
DATA032k

DATA0100

Channel payload Paysizechan256k_prov
Paysizechan512k_prov
Paysizechan001m_prov
Paysizechan002m_prov
Paysizechan004m_prov

DATA256K
DATA512K
DATA001M
DATA002M
DATA004M

DATA0100

XML complexity Paycomplex6400_prov
Paycomplex3200_prov
Paycomplex1600_prov
Paycomplex800_prov
Paycomplex400_prov

CPLX0001
CPLX0002
CPLX0004
CPLX0008
CPLX0016

DATA0100
334 Application Development for IBM CICS Web Services

 05 USERDATA PIC X(400) OCCURS 16 TIMES.

Example 13-2 Copybook DATA0100

*
* Data area to hold 100 bytes of character data in a
* single element
 05 USERDATA PIC X(100).

Example 13-3 shows a sample job used to generate the Web services artifacts
for Paycomplex400. This job uses the above copybooks as input.

Example 13-3 DFHLS2WS JCL for Web service Paycomplex400_prov

//* Provider mode Paycomplex400
//WSDL0P EXEC DFHLS2WS,
// JAVADIR='java6_31/J6.0',
// USSDIR='cics690',
// PATHPREF='',
// TMPDIR='/tmp',
// TMPFILE='LS2WS'
//INPUT.SYSUT1 DD *
 PDSLIB=ANTZ.CICSPERF.IBURNET.SG247126.COPY
 REQMEM=CPLX0016
 RESPMEM=DATA0100
 LANG=COBOL
 URI=Paycomplex400
 TRANSACTION=PCX5
 PGMNAME=BASICCA
 PGMINT=COMMAREA
 LOGFILE=/u/harrisa/sg247126/ws/logs/Paycomplex400_prov.log
 WSBIND=/u/harrisa/sg247126/ws/wsbindprov/Paycomplex400_prov.wsbind
 WSDL=/u/harrisa/sg247126/ws/schema/Paycomplex400.wsdl
 MAPPING-LEVEL=4.0
 OPERATION-NAME=Paycomplex400
/*

These are the DFHLS2WS parameters:

PDSLIB The library containing the copybooks used by the target
application program.

PGMNAME The name of the target application program that is exposed as a
web service, in this case BASICCA.

LANG: Specifies the programming language of the target program is
written in, COBOL for BASICCA.
Chapter 13. Environment overview 335

URI This is the URI at which you want the resultant Web service to
be available. In this example, a relative URI has been specified
as Paycomplex400.

TRANSACTION The name of the alias transaction that can start the pipeline. For
this Web service is was PCX5.

PGMINT Describes the program input. In this case, BASICCA uses a
COMMAREA. In other cases, for example Payzisechan256K_prov
CHANNEL is specified.

REQMEM and RESPMEM
The names of the copybooks for inbound request and outbound
response. These PDS members are read from the library
specified on the PDSLIB parameter. In this example, they are set
to CPLX0016 and DATA0100 for request and response,
respectively.

LOGFILE, WSBIND, and WSDL
Specifies the fully qualified UNIX file names of the directories to
be used to store the WSBind and WSDL files. In this example,

LOGFILE=/u/harrisa/sg247126/ws/logs/Paycomplex400_prov.log
WSBIND=/u/harrisa/sg247126/ws/wsbindprov/Paycomplex400_prov.wsbind
WSDL=/u/harrisa/sg247126/ws/schema/Paycomplex400.wsdl

MAPPING-LEVEL
Specifies the level of mapping that DFHLS2WS uses when
generating the Web service binding file and Web service
description. For CICS TS v5.2, you are suggested to use 4.0. We
use 4.0.

OPERATION Specifies the operation name. In this example, Paycomplex400. In
our Web services, the relative URI and Operation name are the
same.

A DFHLS2WS job needs to be run for each of the Web services. The Web
service artifacts output from the DFHLS2WS job are placed the HFS. In our
example, the WSDL files are placed in the directory
WSDL=/u/harrisa/sg247126/ws/schema. The provider WSBIND files are placed in
directory /u/harrisa/sg247126/ws/wsbindprov/. Figure 13-2 on page 337
336 Application Development for IBM CICS Web Services

shows the content of the HFS directory for WSBind and WSDL files after all the
DFHLS2WS jobs have been run.

Figure 13-2 WSBind and WSDL files generated by DFHLS2WS

13.3.2 Create a provider PIPELINE

Perform the following instructions:

1. Create an HFS directory for the service provider configuration file. We used
we used /u/harrisa/sg247126/ws/pipeline/.

2. Create an XML configuration file containing the configuration of the pipeline.
Details of the Pipeline configuration file can be found in “Pipeline
configuration file” on page 51. In our example, we copied the
basicsoap11provider.xml from the supplied sample directory
/usr/lpp/cicsts/samples/pipelines into our HFS directory.

3. Create an HFS directory for CICS to store installed WSBind files. We used
/u/harrisa/sg247126/ws/shelf.

4. Use CEDA to create a PIPELINE resource definition providing attributes:

– CONFIGFILE
– SHELF

 /u/harrisa/sg247126/ws/schema:>ls
CLNT.wsdl Paycomplex6400.wsdl Paysizechan004m.wsdl
Paysizecomm004k.wsdl Paysizecomm1600.wsdl Paysizecomm800.wsdl
Paycomplex1600.wsdl Paycomplex800.wsdl Paysizechan256k.wsdl
Paysizecomm008k.wsdl Paysizecomm3200.wsdl THRU.wsdl
Paycomplex3200.wsdl Paysizechan001m.wsdl Paysizechan512k.wsdl
Paysizecomm016k.wsdl Paysizecomm400.wsdl TXSW.wsdl
Paycomplex400.wsdl Paysizechan002m.wsdl Paysizecomm002k.wsdl
Paysizecomm032k.wsdl Paysizecomm6400.wsdl WSDL0.wsdl

/u/harrisa/sg247126/ws/wsbindprov:>ls
CLNT_prov.wsbind Paysizechan001m_prov.wsbind
Paysizecomm008k_prov.wsbind Paysizecomm6400_prov.wsbind
Paycomplex1600_prov.wsbind Paysizechan002m_prov.wsbind
Paysizecomm016k_prov.wsbind Paysizecomm800_prov.wsbind
Paycomplex3200_prov.wsbind Paysizechan004m_prov.wsbind
Paysizecomm032k_prov.wsbind THRU_prov.wsbind
Paycomplex400_prov.wsbind Paysizechan256k_prov.wsbind
Paysizecomm1600_prov.wsbind TXSW_prov.wsbind
Paycomplex6400_prov.wsbind Paysizecomm002k_prov.wsbind
Paysizecomm3200_prov.wsbind WSDL0_prov.wsbind
Paycomplex800_prov.wsbind Paysizecomm004k_prov.wsbind
Paysizecomm400_prov.wsbind paysizechan512k_prov.wsbind
Chapter 13. Environment overview 337

– WSDIR

A description of the above attributes can be found in 2.5.2, “PIPELINE” on
page 49.

The PIPELINE in our provider region P7126P uses:

� CONFIGFILE(/u/harrisa/sg247126/ws/pipeline/basicsoap11provider.xml)
� SHELF(/u/harrisa/sg247126/ws/shelf)
� WSDIR(/u/harrisa/sg247126/ws/wsbindprov)

An example of PIPELINE P7126P is shown in Figure 13-3.

Figure 13-3 Resource definition of provider PIPELINE

13.3.3 Create a TCPIPSERVICE resource definition

The Requester region connects to the provider region over a TCP/IP connection
using HTTP transport, so we need to define a TCPIPSEVICE to receive the
inbound traffic. Use CEDA transaction to create a TCPIPSERVICE definition
providing:

� PROTOCOL
� HOST

OBJECT CHARACTERISTICS CICS RELEASE = 0690
 CEDA View PIpeline(P7216P)
 PIpeline : P7216P
 Group : G7126P
 DEScription :
 STatus : Enabled Enabled | Disabled
 Respwait : Deft Default | 0-9999
 COnfigfile : /u/harrisa/sg247126/ws/pipeline/basicsoap11provider.xml
 (Mixed Case) :
 :
 :
 :
 SHelf : /u/harrisa/sg247126/ws/shelf
 (Mixed Case) :
 :
 :
 :
 Wsdir : /u/harrisa/sg247126/ws/wsbindprov
+ (Mixed Case) :
 :
 :
 :
338 Application Development for IBM CICS Web Services

� PORTNUMBER
� URM
� TRANSACTION
� STATUS
� SOCKETCLOSE

The PIPELINE in our provider region T7126P0 uses:

� PROTOCOL(HTTP)
� HOST(ANY)
� PORTNUMBER(32200)
� URM(DFHWBAAX)
� TRANSACTION(CWXN)
� STATUS(OPEN)
� SOCKETCLOSE(NO)

An example of TCPIPSERVICE T7126P0 is shown in Figure 13-4 on page 340.
Chapter 13. Environment overview 339

Figure 13-4 Resource definition of provider PIPELINE

13.3.4 Install the Web service CICS resource definitions

Each provider Web service requires the following CICS resources:

� TCPIPSERVICE
� URIMAP
� PIPELINE
� WEBSERVICE

OBJECT CHARACTERISTICS CICS RELEASE = 0690
 CEDA View TCpipservice(T7126P0)
 TCpipservice : T7126P0
 GROup : G7126P
 DEScription :
 Urm : DFHWBAAX
 POrtnumber : 32200 1-65535
 STatus : Open Open | Closed
 PROtocol : Http Http | Eci | User | IPic
 TRansaction : CWXN
 Backlog : 00000 0-32767
 TSqprefix :
 Host : ANY
 (Mixed Case) :
 Ipaddress : ANY
 SPeciftcps :
 SOcketclose : No No | 0-240000 (HHMMSS)
 MAXPersist : No No | 0-65535
 MAXDatalen : 005120 3-524288
 SECURITY
 SSl : No Yes | No | Clientauth
 CErtificate :
 (Mixed Case)
 PRIvacy : Notsupported | Required | Supported
 CIphers :
 (Mixed Case)
 AUthenticate : No No | Basic | Certificate |
AUTORegister
 | AUTOMatic
 Realm :
 (Mixed Case)
 ATtachsec : Local | Verify
 DNS CONNECTION BALANCING
 DNsgroup :
 GRPcritical : No No | Yes
340 Application Development for IBM CICS Web Services

Use CEDA to install both the PIPELINE and TCPIPSERVICE resource
definitions. In our example, these resources P7126P and T7126P0 are added to
a group installed at start so are available when Control is being given to CICS.

Figure 13-5 shows the installed PIPELINE P7126P as an inquiry in CEMT.

Figure 13-5 Installed provider PIPELINE

An example of an installed TCPIPSERVICE T7126P0 is shown as an inquiry in
CEMT in Figure 13-6.

Figure 13-6 Installed provider TCPIPSERVICE

As discussed in 4.5.4, “Dynamically installing WEBSERVICE and URIMAP
resources” on page 94, when you install each PIPELINE resource, CICS scans
the directory specified in the PIPELINE’s WSDIR attribute. For each Web service
binding file in the directory (that is, for each file with the .wsbind suffix), CICS
installs a WEBSERVICE and a URIMAP if one does not exist.

In our example, when the PIPELINE defined in 13.3.2, “Create a provider
PIPELINE” on page 337 is installed, the WSDIR
u/harrisa/sg247126/ws/wsbindprov is scanned. CICS installs a WEBSERVICE
and URIMAP resource definition for each WSBind in Example 13-4 on page 347.

 INQ PIPE(P7126P)
STATUS: RESULTS - OVERTYPE TO MODIFY
 Pip(P7126P) Ena Pro
 Soa(1.1) Con(/u/harrisa/sg247126/ws/pip)

 INQ TCPIPS(T7126P0)
STATUS: RESULTS - OVERTYPE TO MODIFY
 Tcpips(T7126P0) Ope Por(32200) Http Nos Tra(CWXN)
 Con(00000) Bac(01024) Maxd(005120) Urm(DFHWBAAX)
Chapter 13. Environment overview 341

An example of the dynamically installed WEBSERVICES is shown in Figure 13-7

Figure 13-7 Dynamically installed WEBSERVICE definitions

Further details of the WEBSERVICE can be found in 2.5.3, “WEBSERVICE” on
page 52.

 INQ WEBS
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Webs(paysizechan512k_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£319370) Pro(BASICCA) Cha Xopsup Xopdir
 Webs(CLNT_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£311010) Pro(BASICCA) Com Xopsup Xopdir
 Webs(Paycomplex1600_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£313270) Pro(BASICCA) Com Xopsup Xopdir
 Webs(Paycomplex3200_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£314270) Pro(BASICCA) Com Xopsup Xopdir
 Webs(Paycomplex400_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£315030) Pro(BASICCA) Com Xopsup Xopdir
 Webs(Paycomplex6400_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£315400) Pro(BASICCA) Com Xopsup Xopdir
 Webs(Paycomplex800_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£316060) Pro(BASICCA) Com Xopsup Xopdir
 Webs(Paysizechan001m_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£317050) Pro(BASICCA) Cha Xopsup Xopdir
+ Webs(Paysizechan002m_prov) Pip(P7126P)
 Ins Ccs(00000) Uri(£317400) Pro(BASICCA) Cha Xopsup Xopdir
342 Application Development for IBM CICS Web Services

An example of the dynamically installed URIMAP is shown in Figure 13-8.

Figure 13-8 Dynamically installed URIMAP definitions

Further details of the URIMAP can be found in 2.5.1, “URIMAP” on page 48.

13.3.5 User provider application

All scenarios invoke a backend COBOL program called BASICCA. The
application itself is written in a threadsafe manner and intentionally has almost
zero business logic. By using a lightweight backend application, it is relatively
easy to measure the CPU cost required to provide a Web service front end to an
application.

The application is invoked by a CICS WEBSERVICE, which provides either a
COMMAREA or a container interface to the data. On entry to the program, the
code executes an EXEC CICS ASSIGN CHANNEL(...) command. If the
received field is not empty, the application determines it has been invoked using
the container interface. If the received field is empty, the application has been
invoked using the COMMAREA interface.

If the application has been invoked with the container interface, the request data
is available from the container of type BIT, which has the name specified on the
CONTID parameter of the DFHLS2WS or DFHWS2LS batch jobs. If no CONTID
parameter was specified, the container will be named DFHWS-DATA. The

 INQ URIMAP
STATUS: RESULTS - OVERTYPE TO MODIFY
 Uri(£305550) Pip Ena Http
 Host(*) Path(/Paysizecomm032k)
 Uri(£311010) Pip Ena Http
 Host(*) Path(/Client)
 Uri(£313270) Pip Ena Http
 Host(*) Path(/Paycomplex1600)
 Uri(£314270) Pip Ena Http
 Host(*) Path(/Paycomplex3200)
 Uri(£315000) Pip Ena Http
 Host(*) Path(/Paysizecomm002k)
 Uri(£315030) Pip Ena Http
 Host(*) Path(/Paycomplex400)
 Uri(£315120) Pip Ena Http
 Host(*) Path(/Paysizecomm004k)
 Uri(£315220) Pip Ena Http
 Host(*) Path(/Paysizecomm008k)
 Uri(£315310) Pip Ena Http
 Host(*) Path(/Paysizecomm016k)
Chapter 13. Environment overview 343

provider application should write the response data to the container that
contained the original request data.

If the application has been invoked with the COMMAREA interface, then the
request data is available in the DFHCOMMAREA structure. CICS will provide a
COMMAREA structure, which is the larger of the request and response data
areas. The provider application should write the response data to the
DFHCOMMAREA structure.

After the application has written the response data to the correct location, control
is returned to CICS using the EXEC CICS RETURN command.

13.3.6 User provider application CICS resource definitions

In our scenarios, the Pipeline Inbound HTTP router program will run under a
different transaction ID for each Web service. The transaction is specified as the
TRANSACTION parameter of the DFHLS2WS job. See Example 13-3 on
page 335. The default is CPIH but we explicitly specify a transaction ID to aid our
analysis. When generating CICS performance reports, the transaction will help
identify which test is being analyzed. Table 13-3 shows the Pipeline transactions
defined for each example Web service.

Table 13-3 Pipeline transactions defined for provider Web services

Scenario name Web service name Alias transaction

Baseline WSDL0_prov CPIH

Clients CLNT_prov CLNT

Throughput THRU_prov THRU

Commarea payload Paysizecomm400_prov
Paysizecomm800_prov
Paysizecomm1600_prov
Paysizecomm3200_prov
Paysizecomm6400_prov

PCO1
PCO2
PCO3
PCO4
PCO5

Commarea payload (Large) Paysizecomm002k_prov
Paysizecomm004k_prov
Paysizecomm008k_prov
Paysizecomm016k_prov
Paysizecomm032k_prov

PCO6
PCO7
PCO8
PCO9
PCOA
344 Application Development for IBM CICS Web Services

The Pipeline transactions are defined as a copy of the CICS supplied CPIH
transaction. The PROGRAM attribute for this transaction is DFHPIDSH: the
CICS pipeline HTTP inbound router program, not the target application program.

An example of the transactions and their attributes is shown in Figure 13-9.

Figure 13-9 Alias transactions in the provider region

Channel payload Paysizechan256k_prov
Paysizechan512k_prov
Paysizechan001m_prov
Paysizechan002m_prov
Paysizechan004m_prov

PCH6
PCH7
PCH8
PCH9
PCHA

XML complexity Paycomplex6400_prov
Paycomplex3200_prov
Paycomplex1600_prov
Paycomplex800_prov
Paycomplex400_prov

PCX6
PCX7
PCX8
PCX9
PCXA

INQ TRANS(PC*)
STATUS: RESULTS - OVERTYPE TO MODIFY
 Tra(PCH1) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCH2) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCH3) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCH4) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCH5) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCOA) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCO1) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCO2) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai
 Tra(PCO3) Pri(001) Pro(DFHPIDSH) Tcl(DFHTCL00) Ena Sta
 Prf(DFHCICST) Uda Bel Iso Bac Wai

Scenario name Web service name Alias transaction
Chapter 13. Environment overview 345

13.4 Web service requester configuration

The Web service requester runs in CICSA on LPAR “Driver”. The requester CICS
region will be used to host a program that invokes Web services in the provider
region. These Web services vary workload into the business logic providing the
foundation for the performance scenarios. The requester region has a
complementary set of Web services to handle the outbound requests. Table 13-4
shows the performance scenarios and the requester Web services.

Table 13-4 Provider Web services used in each scenario

Figure 2-2 on page 47 shows a Web services runtime service requester
environment. This figure includes resources and artifacts needed to support a
requester Web service, namely;

� WSDL and WSBind artifacts
� PIPELINE configuration file

Scenario name Web service name

Baseline WSDL0_req

Clients CLNT_req

Throughput THRU_req

Commarea payload Paysizecomm400_req
Paysizecomm800_req
Paysizecomm1600_req
Paysizecomm3200_req
Paysizecomm6400_req

Commarea payload
(Large)

Paysizecomm002k_req
Paysizecomm004k_req
Paysizecomm008k_req
Paysizecomm016k_req
Paysizecomm032k_req

Channel payload Paysizechan256k_req
Paysizechan512k_req
Paysizechan001m_req
Paysizechan002m_req
Paysizechan004m_req

XML complexity Paycomplex6400_req
Paycomplex3200_req
Paycomplex1600_req
Paycomplex800_req
Paycomplex400_req
346 Application Development for IBM CICS Web Services

� PIPELINE
� WEBSERVICE
� Business Logic (front-end application program)

The following sections describe the front-end application program and steps
taken to create the runtime requester environment. In summary, we need to:

1. Generate WSBind artifacts for each requester Web service
2. Create a PIPELINE: both configuration file and resource definition
3. Create URIMAP resource definitions
4. Install the Web service CICS resource definitions
5. Write the User application program
6. Define and install user application resource definitions

13.4.1 Generate the requester WSBind artifacts

Before we generate the WSBind artifacts, an HFS directory must be defined
where the artifacts will be stored. OMVS or ishell can be used to create an HFS
directory for the WSbind artifacts; we use /u/harrisa/sg247126/ws/wsbindreq.

We can now create the Web Service requester mode artifacts using the Top-
down approach, described in 3.3, “Top-down approach” on page 71. We need to
create a Language Structure for each of the Web services that will be used
during the performance scenarios.

The Top-down approach uses the Web service assistant DFHWS2LS to produce
WSBind based on the Web service WSDL files of the provider Web service.
DFHWS2LS takes the provider WSDL file as input.

For each provider WSDL files produced in 13.3.1, “Generate the provider
WSBind and WSDL artifacts” on page 333, a DFHWS2LS job is run to create a
WSBIND file for the requester Web service and Language Structures for the
requester application.

Example 13-4 shows a sample job used to generate the Web services artifacts
for Web service Paysizecomm002k_req.

Example 13-4 DFHWS2LS JCL for Web service Paysizecomm002k_req

//* Requester mode Paysizecomm002k
//WSDL0R EXEC DFHWS2LS,
// JAVADIR='java6_31/J6.0',
// USSDIR='cics690',
// PATHPREF='',
// TMPDIR='/tmp',
// TMPFILE='WS2LS'
//INPUT.SYSUT1 DD *
Chapter 13. Environment overview 347

 WSDL=/u/harrisa/sg247126/ws/schema/Paysizecomm002k.wsdl
 PDSLIB=ANTZ.CICSPERF.IBURNET.SG247126.COPYREQ
 REQMEM=RQO02k
 RESPMEM=RSO02k
 LANG=COBOL
 LOGFILE=/u/harrisa/sg247126/ws/logs/Paysizecomm002k_req.log
 WSBIND=/u/harrisa/sg247126/ws/wsbindreq/Paysizecomm002k_req.wsbind
 MAPPING-LEVEL=4.0
/*

These are the DFHWS2LS parameters:

PDSLIB The library where the copybooks will be written. We used
NTZ.CICSPERF.IBURNET.SG247126.COPYREQ

REQMEM and RESPMEM
The names of the copybooks for outbound request and outbound
response. These PDS members are written to the library
specified on the PDSLIB parameter. In this example, they are set
to RQ002k and RS002k for request and response, respectively.
DFHWS2LS generates a partitioned data set member for each
operation. It generates the member name by appending a 2-digit
number to the prefix.

LANG Specifies the programming language of the high-level language
structure. We are using COBOL.

WSDL Specifies the fully qualified UNIX file names of the directories to
be used to read the WSDL. In this example,

WSDL=/u/harrisa/sg247126/ws/schema/Paycomplex400.wsdl

LOGFILE and WSBIND
Specifies the fully qualified UNIX file names of the directories to
be used to store the WSBind. In this example,

LOGFILE=/u/harrisa/sg247126/ws/logs/Paycomplex400_req.log
WSBIND=/u/harrisa/sg247126/ws/wsbindprov/Paycomplex400_req.wsbind

MAPPING-LEVEL

Specifies the level of mapping that DFHWS2LS uses when
generating the Web service binding file. For CICS TS v5.2, you
are suggested to use 4.0. We use 4.0.

A DFHWS2LS job needs to be run for each of the Web services. The WSBind
files generated by DFHWS2LS are stored in the HFS files specified in parameter
WSBIND. We use u/harrisa/sg247126/ws/wsbindreq/.
348 Application Development for IBM CICS Web Services

Figure 13-10 shows the WSBind after all the DFHWS2LS jobs have been run.

Figure 13-10 WSBind files generated by DFHWS2LS

The Language Structure output from the DFHWS2LS jobs is placed in the PDS
specified by PDSLIB. In our example, the copybook is placed in the PDS
ANTZ.CICSPERF.IBURNET.SG247126.COPYREQ.

/u/harrisa/sg247126/ws/wsbindreq:>ls
CLNT_req.wsbind Paysizechan001m_req.wsbind
Paysizecomm004k_req.wsbind Paysizecomm400_req.wsbind
Paycomplex1600_req.wsbind Paysizechan002m_req.wsbind
Paysizecomm008k_req.wsbind Paysizecomm6400_req.wsbind
Paycomplex3200_req.wsbind Paysizechan004m_req.wsbind
Paysizecomm016k_req.wsbind Paysizecomm800_req.wsbind
Paycomplex400_req.wsbind Paysizechan256k_req.wsbind
Paysizecomm032k_req.wsbind THRU_req.wsbind
Paycomplex6400_req.wsbind Paysizechan512k_req.wsbind
Paysizecomm1600_req.wsbind TXSW_req.wsbind
Paycomplex800_req.wsbind Paysizecomm002k_req.wsbind
Paysizecomm3200_req.wsbind WSDL0_req.wsbind
Chapter 13. Environment overview 349

Figure 13-11 shows the content of the PDS library after all the DFHWS2LS jobs
have been run.

Figure 13-11 PDS copybooks generated by DFHWS2LS

13.4.2 Create a requester PIPELINE

Perform the following instructions.

1. Create an HFS directory for the service requester configuration file. We used
/u/harrisa/sg247126/ws/pipeline/.

2. Create an XML configuration file containing the configuration of the pipeline.
Details of the Pipeline configuration file can be found in “Pipeline
configuration file” on page 51. In our example, we copied the
basicsoap11requester.xml from the supplied sample HFS directory
/usr/lpp/cicsts/samples/pipelines into our HFS directory. Figure 13-12 shows
the provider and requester configuration files.

Figure 13-12 Configuration files

BROWSE ANTZ.CICSPERF.IBURNET.SG247126.COPYRE Row 0000001 of 0000048
Command ===> Scroll ===> CSR
 Name Prompt Size Created Changed ID
_________ RQB01
_________ RQH1M01
_________ RQH2M01
_________ RQH25601
_________ RQH4M01
_________ RQH51201
_________ RQL01
_________ RQO02K01
_________ RQO04K01
_________ RQO08K01
_________ RQO16K01
_________ RQO1601
_________ RQO32K01
_________ RQO3201
_________ RQO401
_________ RQO6401
_________ RQO801
_________ RQR01
_________ RQS01
 F1=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap
F10=Left F11=Right F12=Cancel

/u/harrisa/sg247126/ws/pipeline:>ls
basicsoap11provider.xml basicsoap11requester.xml
350 Application Development for IBM CICS Web Services

3. Create an HFS directory for CICS to store installed WSBind files. We used
/u/harrisa/sg247126/ws/shelf.

4. Use CEDA to create a PIPELINE resource definition providing attributes:

– CONFIGFILE
– SHELF
– WSDIR

A description of the preceding attributes can be found in 2.5.2, “PIPELINE” on
page 49.

The PIPELINE in the provider region P7126R uses:

� CONFIGFILE(/u/harrisa/sg247126/ws/pipeline/basicsoap11requester.xml)
� SHELF(/u/harrisa/sg247126/ws/shelf)
� WSDIR(/u/harrisa/sg247126/ws/wsbindreq)

The provider PIPELINE P7126R is shown in Figure 13-13.

Figure 13-13 Resource definition of provider PIPELINE

13.4.3 Create requester URIMAP resource definitions

For service requesters, CICS does not create any URIMAP resources
automatically when the PIPELINE resource is installed or as a result of a

 OBJECT CHARACTERISTICS CICS RELEASE = 0690
 CEDA View PIpeline(P7126R)
 PIpeline : P7126R
 Group : G7126R
 DEScription :
 STatus : Enabled Enabled | Disabled
 Respwait : Deft Default | 0-9999
 COnfigfile : /u/harrisa/sg247126/ws/pipeline/basicsoap11requester.xml
 (Mixed Case) :
 :
 :
 :
 SHelf : /u/harrisa/sg247126/ws/shelf
 (Mixed Case) :
 :
 :
 :
 Wsdir : /u/harrisa/sg247126/ws/wsbindreq
+ (Mixed Case) :
 :
 :
 :
Chapter 13. Environment overview 351

PERFORM PIPELINE SCAN command. URIMAP definitions for outbound web
service requests are optional and have a USAGE attribute of CLIENT.

To enable persistent connections in a CICS requester region, enable connection
pooling. Outbound connection pooling can be implemented by specifying a value
for the SOCKETCLOSE attribute in a URIMAP resource with USAGE(CLIENT).

Similarly, a requester URIMAP definition can be used to specify the cipher suites
or certificate label to use when establishing a socket connection that uses
Secure Sockets Layer (SSL) security.

For our scenarios, we define a URIMAP definition for each of the different service
requests issued by the front-end program. The service requests vary depending
on a number of factors:

1. Web Service URI being invoked
2. Whether persistent connections are required
3. Are the Web service requests issued over an SSL connection
4. A combination of the above

Define URIMAPs for each outbound request providing the attributes shown in
Table 13-5.

Table 13-5 Requester URIMAP attributes

Figure 13-14 on page 353 shows an example of URIMAPs used in the Requester
CICS region.

Base Persistent
connections

SSL security

USAGE(CLIENT)

SCHEME(HTTP) SCHEME(HTTPS)

HOST

PORT

PATH

TCPIPSERVICE

SOCKETCLOSE

CERTIFICATE

CIPHERS
352 Application Development for IBM CICS Web Services

Figure 13-14 Resource definition of requester URIMAPs

13.4.4 User requester application

All scenarios use the same user application to issue the EXEC CICS INVOKE
SERVICE command. There are two CICS PROGRAMs defined which perform
the processing required to invoke the remote Web service.

INVOKEWS
This is a COBOL program that takes input from a terminal and stores the
configuration information in multiple containers within a channel. The program
then issues an EXEC CICS LINK command to the program INVOKE. After the
LINK command has returned, the response data from the INVOKE program is
examined and a success or failure message is written to the owning terminal.

The program issues two non-threadsafe commands during execution: EXEC
CICS RECEIVE to read data from the terminal, and EXEC CICS SEND TEXT to
write the completion message to the terminal. There is a minimal amount of
application logic involved with this program, so in this case defining the CICS
PROGRAM with the CONCURRENCY(QUASIRENT) attribute is the best option.
Specifying CONCURRENCY(REQUIRED) would have allowed a small amount of

INQ URIMAP
STATUS: RESULTS - OVERTYPE TO MODIFY
 Uri(MV2APCO7) Cli Ena Http Por(32200)
 Host(10.0.0.3:32200) Path(/Paysizecomm004k)
 Uri(MV2APCO8) Cli Ena Http Por(32200)
 Host(10.0.0.3:32200) Path(/Paysizecomm008k)
 Uri(MV2APCO9) Cli Ena Http Por(32200)
 Host(10.0.0.3:32200) Path(/Paysizecomm016k)
 Uri(MV2APCPA) Cli Ena Https Por(32202)
 Host(10.0.0.3:32202) Path(/Paysizecomm032k)
 Uri(MV2APCP6) Cli Ena Https Por(32202)
 Host(10.0.0.3:32202) Path(/Paysizecomm002k)
 Uri(MV2APCP7) Cli Ena Https Por(32202)
 Host(10.0.0.3:32202) Path(/Paysizecomm004k)
 Uri(MV2APCP8) Cli Ena Https Por(32202)
 Host(10.0.0.3:32202) Path(/Paysizecomm008k)
 Uri(MV2APCP9) Cli Ena Https Por(32202)
 Host(10.0.0.3:32202) Path(/Paysizecomm016k)
 Uri(MV2APCSA) Cli Ena Https Por(32201)
 Host(10.0.0.3:32201) Path(/Paysizecomm032k)
Chapter 13. Environment overview 353

application logic to execute on an L8 TCB, potentially allowing for better
scalability, but at the expense of TCB switches.

INVOKE
This is an assembler program, which executes AMODE(64). We use an
AMODE(64) application so that we can utilize the EXEC CICS GETMAIN64
command, which allocates from the CICS GUDSA area, in 64-bit virtual storage.
It is desirable to utilize 64-bit virtual storage because some scenarios require
very large payload sizes, with potentially hundreds of requests executing in the
requester region concurrently. Allocating application data from the GUDSA
reduces pressure on the UDSA and EUDSA areas.

The program reads the configuration information provided by the INVOKEWS
program into working storage and allocates a data area, which is sufficiently
large for the Web service request data. After allocating 64-bit storage, the data
area is initialized and then stored in a container using the EXEC CICS PUT64
CONTAINER command. The program then issues the EXEC CICS INVOKE
SERVICE command to invoke the remote Web service. After the command has
completed, the result of the request is stored in the channel and returned to the
INVOKEWS program.

For a full listing of the program see“AMODE(64) assembler program to invoke a
Web service” on page 506.

The program only executes threadsafe CICS commands and is written in a
threadsafe manner. To maximize the potential throughput of the application, we
configured the program to maximize the execution time spent on an Open TCB.
To achieve this, we defined the CICS PROGRAM resource with attribute of
CONCURRENCY(REQUIRED).

13.5 TPNS definitions

As described in 13.1, “Architectural overview” on page 330, we use TPNS to
send workload into the CICS requester region, which in turn sends Web service
requests into the provider region.

TPNS is configured by using networks (which define the simulated terminals) and
message decks (which define the transmitted data and logic flow). This section
discusses the configuration of TPNS in our environment.

Full documentation for TPNS can be found in the TPNS library:

http://www.ibm.com/software/network/tpns/library
354 Application Development for IBM CICS Web Services

http://www.ibm.com/software/network/tpns/library

13.5.1 Network

A TPNS network defines the number and the characteristics of the simulated
clients. In our test scenarios, all TPNS clients are emulated 3270 terminals.

Example 13-5 shows a fragment of our baseline scenario network, where only
two simulated terminals are shown. The full network definition includes an entry
for each simulated client.

Example 13-5 Extract of a sample TPNS network

BASIC100 NTWRK HEAD='Baseline network',
 OPTIONS=(CONRATE),
 REPORT=RATE,
 THKTIME=UNLOCK,
 UTI=50,
 STIME=0,
 MLOG=YES,
 ITIME=1,
 BUFSIZE=3758,
 DISPLAY=(24,80,32,80),
 INIT=SEC,
 MSGTRACE=YES,
 MAXSESS=(0,1),
 SAVEAREA=(1,10),
 USERAREA=2000,
 NETUSER=100,
 FRSTTXT=CICSA
1 PATH BASELINE
*
IBTE1000 VTAMAPPL
IBLU1000 LU LUTYPE=LU2
*
IBTE1001 VTAMAPPL
IBLU1001 LU LUTYPE=LU2
*

Following are some of the key components of the definition:

BASIC100 Name of the TPNS network. This name must
match the PDS member name.

UTI=50 Think time between successive invocations of a
message deck, measured in hundredths of a
second.
Chapter 13. Environment overview 355

FRSTTXT=CICSA Name of a PDS member in the message deck
concatenation, which contains the first text to send
to the target CICS region. In this example, we use
the CICSA member, which will log on the client to
the region CICSA.

PATH BASELINE The message deck or decks to execute during
processing. For the baseline scenario, only one
message deck was used and this can be found as
member BASELINE in the message deck
concatenation.

IBTE1000 VTAMAPPL Defines a simulated TPNS VTAM client with the
APPLID IBTE1000.

IBLU1000 LU LUTYPE=LU2 Specifies that the IBTE1000 client should emulate
an LU2 logical unit.

For testing purposes, multiple networks are created to execute a different
message deck dependent on the scenario required.

13.5.2 Message deck

Example 13-6 shows a sample message deck, which starts the INVK transaction
with the parameters required for the baseline scenario.

Example 13-6 Sample TPNS message deck

BASELINE MSGTXT
CLEAR
TEXT (INVK MV2ACPIH WSDL0_req Baseline 400)

1 IF LOC=RU+0,TEXT=(PASS),THEN=CONT,SCAN=YES
WAIT
DELAY TIME=R(1,5)
ENDTXT

Following are some of the key components of the message deck definition:

BASELINE MSGTXT Defines this message deck named BASELINE,
which is referenced by a network.

CLEAR Clears the logical units’ screen ready for sending the
message.

TEXT (INVK MV2ACPIH WSDL0_req Baseline 400)

Writes the specified text to the current cursor
location.
356 Application Development for IBM CICS Web Services

IF LOC=RU+0,TEXT=(PASS),THEN=CONT,SCAN=YES

Configures a logical data test, which allows
execution of the message deck to continue once the
text “PASS” has been received.

DELAY TIME=R(1,5) Delays execution of the script for a random period of
time. This delay can be from one to five times the
think time of the network.

Multiple message decks are created to send different parameters to the INVK
transaction.
Chapter 13. Environment overview 357

358 Application Development for IBM CICS Web Services

Chapter 14. Scenarios

In this chapter, we provide details about the performance of the Web service
support in CICS. An outline of each test scenario is provided, together with
results and any conclusions reached. Scenarios covered in this chapter include:

� 14.3, “Scalability as a function of connected clients” on page 369

� 14.4, “Scalability as a function of inbound request rate” on page 372

� 14.5, “Varying payload size” on page 376

� 14.6, “Varying payload size using a channel” on page 382

� 14.7, “Varying payload complexity” on page 386

� 14.8, “HTTP persistent connections” on page 389

� 14.9, “Secure Web services using SSL” on page 396

� 14.10, “SSL with persistent connections” on page 404

14
© Copyright IBM Corp. 2015. All rights reserved. 359

14.1 Scenarios overview

We start in section 14.2, “Baseline” on page 361 by establishing a baseline
performance measurement. This represents a simple test to quantify the
overhead incurred by configuring CICS to provide a Web service interface to an
existing CICS program. We also use the scenario to investigate the overhead
involved in using CICS as a Web service requester.

After establishing a set of baseline performance values, there are several
aspects of the performance test configuration, which may be varied to examine
the behavior of CICS. Variants in configuration include:

� Increasing the number of clients performing Web service requests

100 emulated terminals connect into the CICS requester region as a baseline
configuration. Each terminal represents one Web service requester client.
Additional emulated terminals are introduced to introduce additional
concurrency into the provider region. The effects of varying the number of
clients are examined in 14.3, “Scalability as a function of connected clients”
on page 369.

� Increasing the rate at which a client sends requests into the CICS provider
region

On average, an individual client performs a Web service request once every
2 seconds for the baseline configuration. This delay between consecutive
requests is reduced to introduce additional load into the provider region. The
effect of varying the request rate is examined in 14.4, “Scalability as a function
of inbound request rate” on page 372.

� Increasing the amount of data sent in a Web service request

A request in the baseline configuration contains 400 bytes of user character
data, contained within a single XML element. The response contains 100
bytes of user character data, again contained within a single XML element.
Scenarios documented in 14.5, “Varying payload size” on page 376 discuss
how CPU consumption and response time vary as a function of payload size.
This is further enhanced in 14.6, “Varying payload size using a channel” on
page 382 where a channel is used to pass data into the receiving CICS
program.

� Increasing the complexity of data sent in a Web service request

The baseline configuration uses a single XML element to contain all the user
data. In 14.7, “Varying payload complexity” on page 386 the performance of
both the requester and the provider region is studied where the payload
consists of multiple XML elements.
360 Application Development for IBM CICS Web Services

� Configuring the use of HTTP persistent connections between requester and
provider regions

HTTP persistent connections are not enabled for the baseline configuration.
In 14.8, “HTTP persistent connections” on page 389, we examine the effects
on CPU consumption and response time when persistent connections are
enabled.

� Configuring the use of Secure Sockets Layer (SSL) between requester and
provider regions

SSL is not used in the baseline configuration. In 14.9, “Secure Web services
using SSL” on page 396, we examine the effects on CPU consumption and
response time as SSL is enabled.

� Enabling persistent connections when using SSL between requester and
provider regions

Combining the persistent connections and the SSL scenarios, 14.10, “SSL
with persistent connections” on page 404 examines the effects on CPU
consumption and response time when persistent connections are enabled for
SSL links.

14.2 Baseline

This configuration is used as a reference point for all performance test scenarios.
In this section, we discuss the overhead that is involved when adding a Web
service interface to an existing CICS program.

14.2.1 Baseline scenario description

In this scenario, the Web service requester program documented in 13.4.4, “User
requester application” on page 353 is started under the transaction ID INVK from
a terminal emulated by TPNS. The user application issues a Web service
request to the CICS provider region, with a request payload of 400 bytes
contained in single XML element. There are 100 terminals emulated by the

Note: Throughout this chapter, the term payload size is defined to mean the
amount of user data transmitted per Web service request, and the term
request size is defined to mean the total amount of data transmitted over the
network.

The baseline test transmits 400 bytes of user data as a payload, but when
serialized to XML this corresponds to 620 bytes of XML request data for
transmission.
Chapter 14. Scenarios 361

TPNS environment, representing 100 concurrent requests into the CICS provider
region.

Each outbound Web service request flows from the requester region through a
CICS URIMAP resource and into the Internet Protocol network, using a
connection that does not have persistent connections or SSL enabled.

On receipt of the request in the CICS provider region, the pipeline handler logic
extracts the user data from the XML Web service request and invokes the
application program outlined in 13.3.5, “User provider application” on page 343.
The BASICCA program is invoked using a COMMAREA interface. The
application program reads the data in the COMMAREA and returns a response
containing 100 characters of data.

The CICS pipeline handler logic reformats the response data as a single element
of XML data and returns the response to the waiting requester application.

After the requester application has received the response and terminated, the
simulated terminal waits for a random period before issuing a subsequent
request. The wait time ranges from 1 second to 3 seconds, with a mean wait time
of 2 seconds.

To produce a sufficiently large sample size of CICS transaction data, the
scenario is executed for 10 minutes. Given we have a number of clients, each
waiting for a period of time before issuing successive requests, we can compute
the request rate as follows:

request_rate = number_of_clients x (1 / wait_interval)

In this scenario, with 100 clients and an average wait time of 2 seconds, we
expect an approximate request rate of 100 x (1 / 2) = 50 requests per second.
Therefore, during the 10 minute (600 seconds) run interval, we should expect to
see approximately 30,000 Web service requests in the provider region.

14.2.2 Provider CICS Monitoring Facility data analysis

Using the approach in 12.2, “Collecting CICS Monitoring Facility data” on
page 325, we produced a CICS PA report for the CPU consumption for the
received Web service requests. The report shown in Example 14-1 on page 363
is the result of executing the query against the data collected from the CICS
provider region. For our report configuration, a row is produced for each
transaction ID, with a totals row at the end.
362 Application Development for IBM CICS Web Services

Example 14-1 CICS PA report for CICS Web service provider region with a baseline
configuration

 Avg Avg Avg Avg Avg
Tran #Tasks Response Dispatch User CPU Suspend DSCHMDLY

Time Time Time Time Count
CPIH 30113 .000385 .000166 .000160 .000219 9
CWXN 30113 .000189 .000048 .000045 .000141 6
Total 60226 .000287 .000107 .000102 .000180 7

Looking at each column of the report, we can obtain information about several
key aspects of the performance of our Web service.

#Tasks

The number of CICS tasks that have written out a CICS Monitoring Facility
(CMF) performance class record.

For the baseline scenario, we have one web attach task (transaction ID
CWXN) and one pipeline handler task (transaction ID CPIH) per request.

14.2.1, “Baseline scenario description” on page 361 calculated that around
30,000 requests would be issued in a 10-minute interval. In the CICS PA
report, we observe that 30,113 CPIH and CWXN transactions completed,
which is as expected.

Average Response Time

The average response time of an individual task. The response time of a task
is equal to the dispatch time plus the suspend time.

For a provider region, this does not correlate to the response time as
experienced by the requesting client. The web attach task receives data from
the network, starts the pipeline handler task, and then completes
asynchronously. The pipeline handler task executes the required user code,
then sends the response data to the network, and completes.

Depending on the current state of tasks within the CICS region, the start of
the pipeline handler task may overlap with, or occur some time after, the end
of the web attach task. This non-deterministic sequence of timings means
that it is not possible to sum the response times for the CWXN and CPIH
tasks to produce an overall Web service request response time. For a better
view of response times in this environment, see the description in 14.2.5,
“Requester CMF data analysis” on page 366.

Average Dispatch Time

Total elapsed time during which the user task was dispatched on each CICS
TCB under which the task ran.
Chapter 14. Scenarios 363

This field was not used as a performance indicator metric for the Web service
provider, but it was used to ensure that our environment was not suffering
resource contention. If there were resource contention issues, this may result
in an increased dispatch time to CPU time ratio.

Average User CPU Time

Processor time for which the user task was dispatched on each CICS TCB
under which the task ran.

Using this report, we can identify that the web attach task with transaction ID
CWXN on average consumes 0.045 ms of CPU. We can also identify the
pipeline handler task with transaction ID CPIH on average consumes
0.160 ms of CPU.

Average Suspend Time

Total elapsed wait time for which the user task was suspended by the
dispatcher.

As documented for the dispatch time field, the suspend time is used in our
environment to ensure that the test is not suffering resource contention.

Average DSCHMDLY Count

The number of times for which the user task waited for redispatch after a
CICS Dispatcher change-TCB mode request was issued by or on behalf of
the user task.

When a change-TCB mode request is issued, the CICS dispatcher must halt
execution of a task on one TCB and then redispatch the task on another TCB.
This process is necessary to ensure code executes in the correct TCB
environment, but the process has an associated CPU cost. This overhead is
known to be small, but where the application logic and configuration of a task
causes many TCB switches, it can be a measurable overhead. The use of
threadsafe programming techniques and interfaces can reduce this overhead
by removing the need to switch TCBs.

In the baseline configuration, the web attach task performed six TCB
switches. No user code executes under the web attach transaction, so six
TCB switches is normal operation.

All the application code executes under the pipeline handler transaction. In
this configuration, the invoked PROGRAM was defined with the attribute
CONCURRENCY(QUASIRENT). In this case, nine represents the lower
bound for number of TCB switches for a program defined QUASIRENT.

Note: The user application executes under the CPIH transaction ID (or its
alias). Any CPU consumed by your application task will be accounted
under this transaction ID.
364 Application Development for IBM CICS Web Services

14.2.3 Provider RMF data analysis

When processing inbound Web service requests, there are the web attach and
pipeline handler tasks, plus a socket listener task that runs using the transaction
ID CSOL. This is a long-running task and hence does not produce a CMF record
for each request.

In addition to the socket listener task, there are other consumers of CPU within
the CICS address space, which are not accounted for by the CMF data. The
CMF data does not include CPU time used by the CICS dispatcher to start the
transaction running, or all of the CPU used to get the transaction redispatched
after a wait. It also does not include SRB time, or CPU time used on any non
CICS TCBs.

To determine the total cost of a request within CICS, we collect RMF data for the
CICS address space. The RMF data provides CPU information about the whole
CICS address space, rather than individual tasks as obtained from the CMF
performance class data. The provider and requester regions are defined in their
own WLM report classes for ease of processing.

Example 14-2 shows a fragment of an RMF Workload Activity report. The data is
summarized using the z/OS Workload Manager (WLM) report class facility. The
report class is defined to report on just the CICS provider address space.

Example 14-2 Fragment of an RMF Workload Activity report for the provider region

---SERVICE--- SERVICE TIME- --APPL %--- --PROMOTED--
IOC 0 CPU 5.014 CP 1.78 BLK 0.000
CPU 358126 SRB 0.322 AAPCP 0.00 ENQ 0.000
MSO 0 RCT 0.000 IIPCP 0.00 CRM 0.000
SRB 23001 IIT 0.000 LCK 0.008
TOT 381127 HST 0.000 AAP N/A SUP 0.000
/SEC 1271 AAP N/A IIP 0.00

IIP 0.000
ABSRPTN 1271
TRX SERV 1271

It can be seen that during the measurement period, the CICS address space
consumed 5.014 + 0.322 = 5.336 seconds of CPU. This value represents the
total CPU consumed for 15,043 Web service requests received, where this figure
is obtained from the RMF data of the requester region. See 14.2.4, “Provider
summary” on page 366 for the source of this information.

We can now calculate the total CPU cost per request as 5.336 seconds / 15,043
requests = 0.355 ms per request.
Chapter 14. Scenarios 365

Subtracting the CPU cost of web attach and pipeline handler tasks from the CPU
cost established at the address space level, this produces a figure of 0.355 -
0.045 - 0.160 = 0.150 ms per request for the socket listener task plus other time
not captured in the CMF data.

Part of the uncaptured time is that spent processing SRBs for the CICS address
space. As in Example 14-2 on page 365 there were 0.322 seconds of CPU spent
processing SRBs, which is equal to 0.322 / 15043 = 0.021ms per request.

14.2.4 Provider summary

The performance metrics established in 14.2.2, “Provider CICS Monitoring
Facility data analysis” on page 362 and 14.2.3, “Provider RMF data analysis” on
page 365 are summarized in Table 14-1.

The “Web attach task” and “Pipeline handler task” columns are obtained from the
CMF records, while the “Address space” column is obtained from the RMF
records.

Table 14-1 Summary of baseline provider CPU measurements

The format presented here is used throughout this chapter when comparing CPU
consumption for variants within each scenario.

14.2.5 Requester CMF data analysis

Using the same approach as discussed in 14.2.2, “Provider CICS Monitoring
Facility data analysis” on page 362, a CICS PA report can be produced to extract
key performance metrics for the requester transactions. Example 14-3 is an
example of a report for the CICS Web service requester region.

Example 14-3 CICS PA report for CICS Web service requester region with a baseline
configuration

Avg Avg Avg Avg Avg
Tran #Tasks Response Dispatch User CPU Suspend DSCHMDLY

Time Time Time Time Count
INVK 30115 .001182 .000282 .000269 .000900 18
Total 30115 .001182 .000282 .000269 .000900 18

Web attach task Pipeline handler task Address space

0.045 ms 0.160 ms 0.355 ms
366 Application Development for IBM CICS Web Services

In this report, we can see a Web service requester task consumes on average
0.269 ms of CPU per request, where the task is running under the transaction ID
INVK.

The response time represents the total time from the task being started by the
TPNS script at the simulated console until the task ends by writing the result to
the terminal. This response time includes the time spent waiting for the remote
web service to complete.

Using this report, we can see that the average response time for the Web service
requester application was 1.182 ms.

14.2.6 Requester RMF data analysis

Using the same interval discussed in 14.2.2, “Provider CICS Monitoring Facility
data analysis” on page 362, Example 14-4 shows a fragment of an RMF
Workload Activity report for the requester address space.

Example 14-4 Fragment of an RMF Workload Activity transaction report for the requester
region

-TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT
AVG 0.00 ACTUAL 0
MPL 0.00 EXECUTION 0
ENDED 15043 QUEUED 0
END/S 50.16 R/S AFFIN 0
#SWAPS 0 INELIGIBLE 0
EXCTD 0 CONVERSION 0
AVG ENC 0.00 STD DEV 0
REM ENC 0.00
MS ENC 0.00

Using our configuration, each INVK transaction issues one Web service request.
From the RMF report, we can see that 15,043 CICS transactions were executed,
which corresponds to 15,043 Web service requests.

Example 14-5 on page 368 shows a fragment of an RMF Workload Activity
report showing the CPU usage of the requester region, using the same
measurement interval as Example 14-4.

Note: The value of 15,043 requests is around half the number of requests
reported by the CMF data. The RMF interval was a 5-minute subset of the
overall 10-minute test run. By normalizing all calculations to a per-request
value, we can use the CMF and RMF data interchangeably.
Chapter 14. Scenarios 367

Example 14-5 Fragment of an RMF Workload Activity CPU report for the requester
region

---SERVICE--- SERVICE TIME ---APPL %--- --PROMOTED--
IOC 0 CPU 4.891 CP 1.79 BLK 0.000
CPU 349349 SRB 0.476 AAPCP 0.00 ENQ 0.000
MSO 0 RCT 0.000 IIPCP 0.00 CRM 0.000
SRB 34004 IIT 0.000 LCK 0.000
TOT 383353 HST 0.000 AAP N/A SUP 0.000
/SEC 1278 AAP N/A IIP N/A

IIP N/A
ABSRPTN 1278
TRX SERV 1278

During the measurement period, the CICS requester address space consumed
4.891 + 0.476 = 5.367 seconds of CPU. This value represents the total CPU
consumed while performing 15,043 Web service requests. The number of
requests was determined from the information in Example 14-4 on page 367.

We can now calculate the total CPU cost as 5.367 seconds / 15,043 requests =
0.357 ms per request.

Subtracting the CPU cost reported by the CMF data from the CPU cost reported
by the RMF data produces a figure of 0.357 - 0.269 = 0.088 ms per request. This
difference is referred to as uncaptured time.

Referring again to Example 14-5, we can see that the CICS region spent 0.476
seconds processing SRBs, which equate to 0.476 / 15043 = 0.032 ms per
request. This figure represents a component of the uncaptured data within the
requester region.

14.2.7 Requester summary

The requester performance metrics discussed in 14.2.5, “Requester CMF data
analysis” on page 366, and 14.2.6, “Requester RMF data analysis” on page 367
are summarized in Table 14-2.

The “INVK CPU” and “INVK response” columns are obtained from the CMF
records. The “Address space” column is obtained from the RMF records.

Table 14-2 Summary of baseline requester performance data

INVK CPU Address space INVK response

0.269 ms 0.357 ms 1.182 ms
368 Application Development for IBM CICS Web Services

The format presented here is used throughout this chapter when comparing CPU
consumption for variants within each scenario.

14.3 Scalability as a function of connected clients

A Web service provider environment should be capable of scaling linearly as the
number of connected clients increases. This section discusses our performance
findings as we increase the number of concurrent requests arriving in the Web
service requester region.

14.3.1 Client scalability scenario description

This scenario expands on the measurement in 14.2, “Baseline” on page 361 by
increasing the number of terminals emulated by TPNS. As the number of
terminals increase, the number of concurrent tasks within the Web service
requester region increase, and hence the number of concurrent requests to the
Web service provider region increase.

Five tests are run, with 100, 200, 300, 400, and 500 connected clients.

14.3.2 Client scalability scenario provider results

Table 14-3 shows the CPU cost per request in the provider region as the number
of connected clients increases.

Table 14-3 Provider CPU cost as a function of connected clients

Figure 14-1 on page 370 summarizes the CPU cost per request as a function of
the number of connected clients. Data is plotted for the web attach task, the
pipeline handler task, and the total cost as measured at the address space level.

Number of clients Web attach task Pipeline handler
task

Address space

100 0.046 ms 0.164 ms 0.365 ms

200 0.045 ms 0.162 ms 0.363 ms

300 0.045 ms 0.162 ms 0.368 ms

400 0.045 ms 0.160 ms 0.360 ms

500 0.045 ms 0.161 ms 0.361 ms
Chapter 14. Scenarios 369

Figure 14-1 Provider CPU cost as a function of connecting clients

14.3.3 Client scalability scenario requester results

Table 14-4 shows the CPU cost per request in the requester region as the
number of concurrent requests increases.

Table 14-4 Requester performance data as a function of connecting clients

Figure 14-2 on page 371 summarizes the CPU data in Table 14-4. Figure 14-3
on page 371 summarizes the response time information.

Number of clients INVK CPU Address space INVK response

100 0.272 ms 0.363 ms 1.254 ms

200 0.271 ms 0.361 ms 1.226 ms

300 0.273 ms 0.369 ms 1.221 ms

400 0.268 ms 0.358 ms 1.188 ms

500 0.269 ms 0.359 ms 1.217 ms
370 Application Development for IBM CICS Web Services

Figure 14-2 Requester CPU cost as a function of connecting clients

Figure 14-3 Requester response time as a function of connecting clients
Chapter 14. Scenarios 371

14.3.4 Client scalability scenario conclusions

The charts in Figure 14-1 on page 370 and Figure 14-2 on page 371 show
straight, level lines for the CPU cost per request in both the CICS provider and
requester regions. The charts both slightly suggest that CPU consumption per
request decreased as the request rate increased. It is initially counter-intuitive that
the CPU cost per request may decrease as a CICS region receives more work
per second. The results can be explained, however, by understanding the way
CICS processes work.

While a CICS task is dispatched, the CICS address space is active. Once the
task has completed, if a CICS region has no further work to complete, CICS
returns control to z/OS. Control is given to z/OS until either CICS is notified of
further work to execute, or until the interval control timer has expired. This
duration of the interval control time is specified by the CICS ICV SIT parameter.
In the test CICS regions, this value was set to 1000 ms.

The lower the request rate, the more likely that a CICS region will have no work
to process and will therefore need to relinquish control to z/OS. This process of
relinquishing control and then subsequently being notified of new work arriving,
consumes a small but measurable amount of CPU. If 50 requests originate from
the requester region every second and are distributed evenly, this equates to one
request every 20 ms. Given that we measured each request to be approximately
1 ms total response time, it is highly likely that CICS will complete the INVK
transaction and then have no further work to process.

As we start increasing the number of connected clients to 500, this will
approximate to one request arriving every 4 ms. At this increased arrival rate,
there is a much greater probability that after a task has completed there will be
another one ready for processing. This removes the requirement for CICS to
relinquish control to the operating system, which reduces the amount of CPU
time consumed relinquishing and regaining control from the operating system.

A constant response time per request, as demonstrated in Figure 14-3 on
page 371, demonstrates that response times also remained constant within the
bounds of this test.

14.4 Scalability as a function of inbound request rate

A Web service provider environment should be capable of scaling vertically as
the inbound request rate increases. This section discusses our performance
findings as we increase the request rate from the Web service requester region.
372 Application Development for IBM CICS Web Services

14.4.1 Request rate scalability scenario description

This scenario expands on the baseline measurement in 14.2, “Baseline” on
page 361 by reducing the delay between successive Web service requests from
an individual client. Reducing the delay between Web service requests results in
an increase in the request rate.

Five measurement points are taken with an average delay time as follows, where
the corresponding request rate is shown in parentheses:

� 2.0 seconds (50 requests per second)
� 1.6 seconds (62.5 requests per second)
� 1.2 seconds (83.3 requests per second)
� 0.8 seconds (125 requests per second)
� 0.4 seconds (250 requests per second)

14.4.2 Request rate scalability scenario provider results

Table 14-5 shows the CPU cost per request as the request rate increases.

Table 14-5 Provider CPU cost as a function of inbound request rate

Figure 14-4 on page 374 summarizes the CPU cost per request from Table 14-5
as a function of the request rate. Data is plotted for the web attach task, the
pipeline handler task, and the total cost as measured at the address space level.

Requests per
second

Web attach task Pipeline handler
task

Address space

50.15 0.045 ms 0.158 ms 0.359 ms

62.64 0.045 ms 0.157 ms 0.356 ms

83.67 0.044 ms 0.156 ms 0.355 ms

125.02 0.044 ms 0.154 ms 0.352 ms

250.00 0.044 ms 0.158 ms 0.354 ms
Chapter 14. Scenarios 373

Figure 14-4 Provider CPU cost as a function of request rate

14.4.3 Request rate scalability scenario requester results

Table 14-6 summarizes the performance of the requester region as the request
rate increases.

Table 14-6 Requester performance data as a function of request rate

Figure 14-5 on page 375 plots the CPU time from Table 14-6 as a function of the
request rate. CPU time for the INVK transaction is plotted alongside the CPU per
request as measured at the address space level. The response time data is
plotted in Figure 14-6 on page 375.

Requests per
second

INVK CPU Address space INVK response

50.15 0.273 ms 0.363 ms 1.060 ms

62.64 0.272 ms 0.361 ms 1.040 ms

83.69 0.270 ms 0.357 ms 1.018 ms

125.02 0.267 ms 0.352 ms 0.981 ms

250.08 0.268 ms 0.355 ms 1.143 ms
374 Application Development for IBM CICS Web Services

Figure 14-5 Requester CPU cost as a function of request rate

Figure 14-6 Requester response time as a function of request rate
Chapter 14. Scenarios 375

14.4.4 Request rate scalability scenario conclusions

It can be seen in Figure 14-4 on page 374 and Figure 14-5 on page 375 that the
CPU cost per request in both the provider and requester regions remains
approximately constant as the request rate increases. As discussed in 14.3.4,
“Client scalability scenario conclusions” on page 372, there is a slight suggestion
of a downward trend. This apparent improvement under load is likely due to
efficiencies in CICS avoiding the need for the address space to relinquish control
to z/OS.

At the highest request rate data point, the chart in Figure 14-6 on page 375
suggests a slight increase in response time. Calculating a linear trendline using a
least squares analysis shows that the data point for 125 requests per second is
likely an outlier, being 7% away from the projected value. All other points are
within 4% of the projected value. This trendline is shown in Figure 14-7.

Figure 14-7 Trend line for response time as a function of request rate

14.5 Varying payload size

This scenario examines the change in CPU cost and response time as the
request payload increases.
376 Application Development for IBM CICS Web Services

14.5.1 Varying payload size scenario description

This scenario differs from the scenario described in 14.2, “Baseline” on page 361
by varying the size of the user data payload in the request. The use of a
COMMAREA and the response size remains unchanged.

Five Web services are created, where each request contains a single XML
element with 400, 800, 1600, 3200, and 6400 bytes of user data.

This scenario is then extended with five additional Web services, where each
request contains single XML element with 2048, 4096, 8192, 16384, and 32000
bytes of user data.

14.5.2 Varying payload size scenario provider results

Table 14-7 shows the CPU cost per request in the provider region as the payload
size increases.

Table 14-7 Provider CPU cost as a function of payload size

Figure 14-8 on page 378 summarizes the CPU cost per request as a function of
the payload size. Data is plotted for the web attach task, the pipeline handler
task, and the total cost as measured at the address space level.

Payload size
(bytes)

Web attach task Pipeline handler
task

Address space

400 0.045 ms 0.161 ms 0.355 ms

800 0.044 ms 0.158 ms 0.359 ms

1600 0.045 ms 0.162 ms 0.360 ms

3200 0.045 ms 0.164 ms 0.367 ms

6400 0.046 ms 0.169 ms 0.379 ms
Chapter 14. Scenarios 377

Figure 14-8 Provider CPU cost as a function of payload size

Table 14-8 shows the CPU cost per request in the provider region for the larger
payload sizes.

Table 14-8 Provider CPU cost as a function of payload size for larger payloads

Figure 14-9 on page 379 summarizes the information from Table 14-8 using the
same presentation as found in Figure 14-8.

Payload size
(bytes)

Web attach task Pipeline handler
task

Address space

2048 0.047 ms 0.167 ms 0.370 ms

4096 0.052 ms 0.175 ms 0.385 ms

8192 0.053 ms 0.183 ms 0.393 ms

16384 0.054 ms 0.194 ms 0.406 ms

32000 0.057 ms 0.216 ms 0.431 ms
378 Application Development for IBM CICS Web Services

Figure 14-9 Provider CPU cost as a function of payload size for larger payload sizes

14.5.3 Varying payload size scenario requester results

Using the same format as described in 14.2.5, “Requester CMF data analysis” on
page 366, Table 14-9 summarizes the CPU cost and response time per request
as a function of the payload size.

Table 14-9 Requester performance data as a function of payload size

Figure 14-10 on page 380 plots the CPU data in Table 14-9, plotting the
measured CPU for the INVK task alongside the total CPU per request as
measured at the address space level. Figure 14-11 on page 380 plots the
response time.

Payload size
(bytes)

INVK CPU Address space INVK response

400 0.276 ms 0.365 ms 1.045 ms

800 0.281 ms 0.373 ms 1.137 ms

1600 0.285 ms 0.375 ms 1.119 ms

3200 0.291 ms 0.383 ms 1.210 ms

6400 0.296 ms 0.389 ms 1.187 ms
Chapter 14. Scenarios 379

Figure 14-10 Requester CPU cost as a function of payload size

Figure 14-11 Requester response time as a function of payload size
380 Application Development for IBM CICS Web Services

The requester performance data for the larger payload sizes is summarized in
Table 14-10.

Table 14-10 Requester performance data as a function of payload size for larger
payloads

Figure 14-12 summarizes the CPU data in Table 14-10, plotting the measured
CPU for the INVK task, alongside the total CPU per request as measured at the
address space level. The response time information is plotted in Figure 14-13 on
page 382.

Figure 14-12 Requester CPU cost as a function of payload size for larger payloads

Request size
(bytes)

INVK CPU Address space INVK response

2048 0.286 ms 0.375 ms 1.121 ms

4096 0.295 ms 0.388 ms 1.229 ms

8192 0.303 ms 0.394 ms 1.284 ms

16384 0.316 ms 0.403 ms 1.276 ms

32000 0.332 ms 0.420 ms 1.278 ms
Chapter 14. Scenarios 381

Figure 14-13 Requester response time as a function of payload size for larger payloads

14.5.4 Varying payload size scenario conclusions

The results for both the provider and requester regions show a linear increase in
CPU cost as the payload size increases. This linear increase applies for all tested
payloads, which cover a wide range of sizes that may be used in a Web service
request.

The response time data for both sets of payload sizes also shows a
linearly-increasing trend, within the limits of our measurement accuracy.

14.6 Varying payload size using a channel

There is an upper limit of 32 kB on the size of a COMMAREA for applications in
CICS. By using channels and containers, the COMMAREA size limit can be
avoided. Setting the PGMINT parameter of the DFHLS2WS or DFHWS2LS
procedures to CHANNEL will cause the target program to be invoked with a
channel at run time.

This scenario investigates the performance of Web service requests with
payloads that are too large to fit into a COMMAREA.
382 Application Development for IBM CICS Web Services

14.6.1 Varying payload size with a channel scenario description

This scenario is similar to that described in 14.5, “Varying payload size” on
page 376 but with larger payloads and the channel interface is used to invoke the
application.

Five Web services are defined, each with a single character element consisting
of 256 kB, 512 kB, 1 MB, 2 MB, and 4 MB of user data.

14.6.2 Varying payload size with a channel scenario provider results

Table 14-11 shows the provider CPU cost per request as the payload size
increases.

Table 14-11 Provider CPU cost per request as a function of payload size

Figure 14-14 on page 384 plots the measured CPU time against the payload
size.

Payload size Web attach task Pipeline handler
task

Address space

256 kB 0.094 ms 0.575 ms 0.868 ms

512 kB 0.126 ms 1.113 ms 1.499 ms

1 MB 0.183 ms 2.111 ms 2.677 ms

2 MB 0.310 ms 4.156 ms 5.051 ms

4 MB 0.575 ms 8.498 ms 10.089 ms
Chapter 14. Scenarios 383

Figure 14-14 Provider CPU cost as a function of payload size using a channel

14.6.3 Varying payload size with a channel requester results

Table 14-12 shows the performance of the requester region as the payload size
varies.

Table 14-12 Requester CPU cost and response time per request as a function of payload
size

Figure 14-15 on page 385 plots the CPU data from Table 14-12, and
Figure 14-16 on page 385 plots the response time data.

Payload size INVK CPU Address space INVK response

256 kB 0.693 ms 0.918 ms 2.591 ms

512 kB 1.150 ms 1.571 ms 4.266 ms

1 MB 2.108 ms 2.886 ms 7.163 ms

2 MB 4.076 ms 5.572 ms 14.147 ms

4 MB 8.257 ms 11.241 ms 28.190 ms
384 Application Development for IBM CICS Web Services

Figure 14-15 Requester CPU cost as a function of payload size using a channel

Figure 14-16 Requester response time as a function of payload size using a channel
Chapter 14. Scenarios 385

14.6.4 Varying payload size with a channel scenario conclusion

It can be seen from the straight line shown in Figure 14-14 on page 384 that the
provider CPU cost per request scales linearly as the payload size increases.

Examining the requester region performance data, we can see from Figure 14-15
on page 385 and Figure 14-16 on page 385, the straight lines represent a linear
increase in CPU cost and overall response time as the payload size increases,
even at large payload sizes.

14.7 Varying payload complexity

In this scenario, we examine how varying the complexity of the request size
affects the performance characteristics of CICS as a Web service provider and
requester.

14.7.1 Varying payload complexity scenario description

Five Web services are created, where each Web service request contains 6400
bytes of user data. This scenario differs from other scenarios in how the user
data is transmitted in an XML request.

As discussed in 14.1, “Scenarios overview” on page 360, the request size is
different from the payload size. This difference is a function of the number of XML
tags, which are required to delimit the transmitted payload. Table 14-13 lists the
test cases created, showing their payload definition along with the request size.

Table 14-13 Payload complexity test cases

Number of
elements

Number of bytes
per element

Total payload size
(bytes)

Total request size
(bytes)

1 6400 6400 6632

2 3200 6400 6695

4 1600 6400 6779

8 800 6400 6945

16 400 6400 7281
386 Application Development for IBM CICS Web Services

14.7.2 Varying payload complexity scenario provider results

The CPU per request for the provider region is summarized in Table 14-14.

Table 14-14 Provider CPU cost as a function of payload complexity

The data from Table 14-14 is plotted in Figure 14-17.

Figure 14-17 Provider CPU cost as a function of payload complexity

Number of
elements

Web attach task Pipeline handler
task

Address space

1 0.050 ms 0.175 ms 0.377 ms

2 0.050 ms 0.174 ms 0.375 ms

4 0.050 ms 0.178 ms 0.380 ms

8 0.050 ms 0.181 ms 0.383 ms

16 0.050 ms 0.185 ms 0.387 ms
Chapter 14. Scenarios 387

14.7.3 Varying payload complexity scenario requester results

The performance data from the requester region is summarized in Table 14-15.

Table 14-15 Requester performance data as a function of payload complexity

The CPU information from Table 14-15 is plotted in Figure 14-18 and the
response time information is plotted in Figure 14-19 on page 389.

Figure 14-18 Requester CPU cost as a function of payload complexity

Number of
elements

INVK CPU Address space INVK response

1 0.283 ms 0.371 ms 1.181 ms

2 0.283 ms 0.368 ms 1.138 ms

4 0.283 ms 0.372 ms 1.187 ms

8 0.285 ms 0.374 ms 1.211 ms

16 0.286 ms 0.374 ms 1.171 ms
388 Application Development for IBM CICS Web Services

Figure 14-19 Requester response time as a function of payload complexity

14.7.4 Varying payload complexity scenario conclusions

As the payload complexity increases, there appears to be a slight increase in
CPU cost for both requester and provider regions. Response time did not show a
significant trend.

Two aspects could be responsible for the increase in CPU cost:

� An increase in the number of XML tags to parse

� An increase in the number of bytes to parse

It is not clear with this data as to the reason behind the slight increase. Future
testing might want to engineer test cases where the number of bytes in the
request is the same for both a single element and a multiple-element Web
service request. In addition, it is likely that significantly larger numbers of
elements are required to establish any statistically significant data.

14.8 HTTP persistent connections

The reuse of an existing TCP/IP connection for successive HTTP requests can
reduce the amount of processing required. This scenario investigates how
Chapter 14. Scenarios 389

enabling persistent connections between two CICS regions can lower CPU costs
and response times.

14.8.1 HTTP persistent connections scenario description

This scenario uses the Web services with the larger payload sizes as defined in
14.5, “Varying payload size” on page 376. This scenario modifies the URIMAP
resource in the requester region to enable connection pooling. By pooling HTTP
connections in the requester region, this enables the use of persistent
connections between the requester and provider regions.

No configuration change is required in the provider region because CICS will by
default provide a persistent connection to a client if it requests one.

14.8.2 HTTP persistent connections scenario provider results

Table 14-16 shows the CPU cost per request in the provider region as the
payload size increases while persistent connections are enabled.

Table 14-16 Provider CPU cost as a function of payload size with persistent connections
enabled

Figure 14-20 on page 391 summarizes the CPU cost per request as a function of
payload size when persistent connections are enabled. Data is plotted for the
web attach task, the pipeline handler task, and the total cost as measured at the
address space level.

Payload size
(bytes)

Web attach task Pipeline handler
task

Address space

2048 0.030 ms 0.160 ms 0.267 ms

4096 0.035 ms 0.166 ms 0.278 ms

8192 0.036 ms 0.174 ms 0.285 ms

16384 0.037 ms 0.184 ms 0.297 ms

32000 0.040 ms 0.208 ms 0.328 ms
390 Application Development for IBM CICS Web Services

Figure 14-20 Provider CPU cost as a function of payload size with persistent connections
enabled

14.8.3 HTTP persistent connection scenario requester results

Table 14-17 summarizes the requester performance as payload size increases
when persistent connections are enabled.

Table 14-17 Requester performance summary as a function of payload size with
persistent connections enabled

The CPU data in Table 14-17 is plotted in Figure 14-21 on page 392, and the
response time data is plotted in Figure 14-22 on page 393.

Payload size
(bytes)

INVK CPU Address space INVK response

2048 0.244 ms 0.328 ms 1.043 ms

4096 0.250 ms 0.334 ms 1.124 ms

8192 0.258 ms 0.339 ms 1.142 ms

16384 0.267 ms 0.347 ms 1.182 ms

32000 0.288 ms 0.367 ms 1.292 ms
Chapter 14. Scenarios 391

Figure 14-21 Requester CPU cost as a function of payload size with persistent
connections enabled
392 Application Development for IBM CICS Web Services

Figure 14-22 Requester response time as a function of payload size with persistent
connections enabled

14.8.4 HTTP persistent connections TCP/IP results

When persistent connections are enabled, it is not only the CICS address space
that observes a reduction in CPU per request. The TCP/IP address space also
achieves a lower CPU cost.

Using the same methodology for RMF data analysis described in 14.2.3,
“Provider RMF data analysis” on page 365, we can examine the CPU
consumption per request for the TCP/IP address space. Table 14-18 shows the
data obtained from RMF as a function of the payload size.

Table 14-18 CPU data for the TCP/IP address space as a function of payload size

Payload size
(bytes)

Provider
LPAR without
pooled
connections

Provider
LPAR with
pooled
connections

Requester
LPAR without
pooled
connections

Requester
LPAR with
pooled
connections

2048 0.037 ms 0.014 ms 0.036 ms 0.016 ms

4096 0.039 ms 0.014 ms 0.037 ms 0.015 ms

8192 0.045 ms 0.022 ms 0.039 ms 0.018 ms
Chapter 14. Scenarios 393

14.8.5 HTTP persistent connections scenario conclusions

The data presented in Table 14-16 on page 390 obtained with persistent
connections enabled is directly comparable to the data presented in Table 14-8
on page 378 for the scenario with persistent connections disabled. The CPU per
request for the CICS provider region is plotted in Figure 14-23 to show the
difference when persistent connections are used.

Figure 14-23 Comparison of provider CPU cost with persistent connections enabled and
disabled

The CPU per request for the requester region is plotted in Figure 14-24 on
page 395.

16384 0.050 ms 0.026 ms 0.044 ms 0.018 ms

32000 0.061 ms 0.034 ms 0.055 ms 0.020 ms

Payload size
(bytes)

Provider
LPAR without
pooled
connections

Provider
LPAR with
pooled
connections

Requester
LPAR without
pooled
connections

Requester
LPAR with
pooled
connections
394 Application Development for IBM CICS Web Services

Figure 14-24 Comparison of requester CPU cost with persistent connections enabled
and disabled

This performance data can also be viewed as a total CPU cost, which includes
the CICS and TCP/IP address spaces from both the requester and provider
regions. Figure 14-25 on page 396 plots the CICS and TCP/IP address space
data for the 32,000 byte request. The comparison shows the overall reduction in
CPU that can be gained by enabling HTTP persistent connections.
Chapter 14. Scenarios 395

Figure 14-25 Comparison of total CPU cost for payload of 32,000 bytes with persistent
connections enabled and disabled

From the charts in Figure 14-23 on page 394, Figure 14-24 on page 395, and
Figure 14-25 it can be seen that enabling persistent connections provides a
reduction in CPU cost for CICS as a requester region, for CICS as a provider
region, and for the TCP/IP address space.

In our test, the reduction was approximately 0.1 ms of CPU per request. The
reduction in CPU consumed is a fixed cost per request. The amount of CPU
reduction achieved is only by the removal of a TCP handshake process, and is
not dependent on either the amount of data sent over the connection, or on the
total cost of the back-end application.

14.9 Secure Web services using SSL

It is a common requirement to provide a secure connection between the Web
service requester and provider regions. In this section, we document the extra
configuration steps that are required and the performance implications of
enabling SSL connections for CICS as both a requester and provider of Web
services.
396 Application Development for IBM CICS Web Services

For a comprehensive guide to configuring security with CICS Web services, see
Securing CICS Web Services, SG24-7658.

14.9.1 SSL scenario description

This scenario uses the Web services with the larger payload sizes as defined in
14.5, “Varying payload size” on page 376. This scenario modifies the URIMAP
resource in the requester region and the TCPIPS resource in the provider region
to enable SSL encryption of the TCP/IP link.

Both the requester and the provider are configured to use the sample SSL cipher
suite specification file strongciphers.xml. Example 14-6 shows a fragment of
this sample file, which lists ciphers 0005, 0004, 0035, and 0036 as the first four
supported ciphers.

Example 14-6 Fragment of strongciphers.xml file supplied with CICS TS V5.2

<cipher_list xmlns="http://www.ibm.com/software/htp/cics/ciphers">
<!-- List of ciphers supported by ENCRYPTION=STRONG -->
 <cipher number="0005">
 <!-- TLS_RSA_WITH_RC4_128_SHA -->
 </cipher>
 <cipher number="0004">
 <!-- TLS_RSA_WITH_RC4_128_MD5 -->
 </cipher>
 <cipher number="0035">
 <!-- TLS_RSA_WITH_AES_256_CBC_SHA -->
 </cipher>
 <cipher number="0036">
 <!-- TLS_DH_DSS_WITH_AES_256_CBC_SHA -->
 </cipher>
...

14.9.2 SSL scenario provider results

Table 14-19 on page 398 shows the CPU cost per request in the provider region
as the payload size increases while SSL is enabled.

Note: The ciphers in the XML configuration file are specified as four-digit
numbers. The cipher names listed in the previous example are only XML
comments and do not affect the configuration of the SSL endpoint.
Chapter 14. Scenarios 397

Table 14-19 Provider CPU cost as a function of payload size with SSL enabled

Figure 14-26 summarizes the CPU cost per request as a function of the payload
size. Data is plotted for the web attach task, the pipeline handler task, and the
total cost as measured at the address space level.

Figure 14-26 Provider CPU cost as a function of payload size with SSL enabled

14.9.3 SSL scenario requester results

Table 14-20 on page 399 shows the CPU cost and response time information per
request as a function of payload size.

Payload size
(bytes)

Web attach task Pipeline handler
task

Address space

2048 0.191 ms 0.167 ms 0.569 ms

4096 0.201 ms 0.170 ms 0.584 ms

8192 0.220 ms 0.177 ms 0.615 ms

16384 0.274 ms 0.189 ms 0.685 ms

32000 0.337 ms 0.209 ms 0.769 ms
398 Application Development for IBM CICS Web Services

Table 14-20 Requester performance data as a function of payload size with SSL enabled

Figure 14-27 plots the CPU data in Table 14-20, plotting the measured CPU for
the INVK task alongside the total CPU per request as measured at the address
space level. Figure 14-28 on page 400 plots the response time data listed in
Table 14-20.

Figure 14-27 Requester CPU cost as a function of payload size with SSL enabled

Payload size
(bytes)

INVK CPU Address space INVK response

2048 0.457 ms 0.587 ms 1.888 ms

4096 0.466 ms 0.595 ms 1.802 ms

8192 0.499 ms 0.631 ms 1.936 ms

16384 0.555 ms 0.685 ms 2.011 ms

32000 0.646 ms 0.771 ms 2.124 ms
Chapter 14. Scenarios 399

Figure 14-28 Requester response time as a function of payload size with SSL enabled

14.9.4 SSL scenario conclusions

It can be seen from the straight lines shown in the CPU cost charts for both the
provider in Figure 14-26 on page 398 and the requester in Figure 14-27 on
page 399 that enabling a secure connection for a Web service has not affected
scalability in our scenarios. The response time chart in Figure 14-28 shows a
generally linear increase in response time as payload size increases.

The results from this scenario are directly comparable with the larger payload
results obtained in 14.5, “Varying payload size” on page 376. We can therefore
plot the results from both scenarios in Figure 14-29 on page 401 where we look
at the total cost of the provider region as measured at the address space level.
400 Application Development for IBM CICS Web Services

Figure 14-29 Comparison of provider CPU cost as a function of payload size with SSL
disabled and enabled

The CPU per request for the requester region is plotted in Figure 14-30 on
page 402.
Chapter 14. Scenarios 401

Figure 14-30 Comparison of requester CPU cost as a function of payload size with SSL
disabled and enabled

It is clear and logical that enabling SSL causes an increase in CPU per request
for both requester and provider regions. The amount by which the CPU increases
will depend on the SSL cipher suite in use, and if any hardware co-processing is
available.

To distinguish between the application and SSL components of providing the
Web service, we need to look at how SSL processing is handled within the CICS
environment. SSL processing takes place on a special pool of TCBs called S8
TCBs. These TCBs are reserved for the processing of SSL operations. The
amount of CPU time spent by a task on an S8 TCB (and hence any SSL
processing) is recorded in the performance class record as the S8CPUT field.

CICS TS V5.1 introduced the SOCIPHER field within the CMF data, which
records the cipher used for each inbound SSL connection. When CICS is acting
as a Web service provider, the SOCIPHER field for the pipeline handler task
contains the cipher used in conversation with the requesting Web service
partner.

Example 14-7 on page 403 presents a sample CICS PA report, which
summarizes a web attach and pipeline handler task for a single Web service
request, showing CPU time and SSL cipher information as described above.
402 Application Development for IBM CICS Web Services

Example 14-7 Sample CICS PA report examining SSL processing

Tran TaskNo Dispatch User CPU Suspend S8 CPU S8 CPU SOCipher
 Time Time Time Time Count
CWXN 48 .000417 .000415 .000121 .000169 13 0000
PCO6 49 .000406 .000385 .000068 .000012 2 0005

The report shown in Example 14-7 is created using the CICS PA control
statements shown in Example 14-8.

Example 14-8 Sample CICS PA control statements for SSL report

CICSPA IN(SMFIN001),
 NOAPPLID,
 LINECNT(60),
 FORMAT(':','/'),
 PRECISION(6),
 LIST(OUTPUT(LIST0003),
 FIELDS(TRAN,
 TASKNO,
 DISPATCH(TIME),
 CPU(TIME),
 SUSPEND(TIME),
 S8CPU(TIME),
 S8CPU(COUNT),
 SOCIPHER),
 TITLE1(‘SSL CPU time and cipher report’))

From the report in Example 14-8, we can see the web attach task CWXN was
attached to an S8 TCB a total of 13 times. This task handles the SSL handshake
processing and the decryption of inbound data.

The same report shows that the pipeline handler task PCO6 attached to an S8
TCB just twice: This S8 processing was accumulated for the encryption of the
Web service response data.

The pipeline handler task also reports it used cipher suite 0005. This matches
with our expectations: Both requester and provider have
TLS_RSA_WITH_RC4_128_MD5 listed as the first of their supported cipher suites. For
a full list of ciphers supported by z/OS System SSL, see the “Cipher suite
definitions” topic in the “z/OS Cryptographic Services System SSL Programming”
manual:

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r
1.gska100/csdcwh.htm
Chapter 14. Scenarios 403

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.gska100/csdcwh.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.gska100/csdcwh.htm

Using this information regarding which CICS task is used to process the SSL
handshake and encryption, we can understand the results shown in the chart in
Figure 14-26 on page 398. In all other test cases (for example see Table 14-19
on page 398), we see that the pipeline handler task is more expensive than the
web attach task. In the SSL case, however, the web attach task handles the SSL
handshake processing, which adds a fixed overhead to the cost of this
transaction.

For all SSL scenarios, the hardware assistant card is used to reduce the CPU
cost incurred by the general-purpose CPs. Example 14-9 shows a fragment of an
RMF Crypto Hardware Activity report, which demonstrates the installed
hardware assistance is being utilized.

Example 14-9 Extract of an RMF Crypto Hardware Activity report

-------- CRYPTOGRAPHIC CCA COPROCESSOR ----
 -------- TOTAL -------- KEY-GEN
TYPE ID RATE EXEC TIME UTIL% RATE
CEX4C 0 0.00 0.000 0.0 0.00
 1 0.00 0.000 0.0 0.00
 2 0.00 0.000 0.0 0.00
 4 0.00 0.000 0.0 0.00
 5 0.00 0.000 0.0 0.00
 6 0.19 4.047 0.1 0.00
 7 0.21 4.012 0.1 0.00
 8 0.00 0.000 0.0 0.00
 9 0.00 0.000 0.0 0.00

14.10 SSL with persistent connections

This scenario combines the concepts of persistent connections with the
requirements of securing a Web services communications channel using SSL.

14.10.1 SSL with persistent connections description

Using the same Web service request and SSL configuration as detailed in 14.9,
“Secure Web services using SSL” on page 396, this section extends the scenario
by enabling connection pooling in the requester region, as described in 14.8,
“HTTP persistent connections” on page 389.
404 Application Development for IBM CICS Web Services

14.10.2 SSL with persistent connections provider results

Table 14-21 shows the CPU cost per request in the provider region as the
payload size increases with SSL and persistent connections enabled.

Table 14-21 Provider CPU cost as a function of payload size with SSL and persistent
connections enabled

Figure 14-31 summarizes the CPU cost per request as a function of payload size
when SSL and persistent connections are enabled.

Figure 14-31 Provider CPU cost as a function of payload size with SSL and persistent
connections enabled

Payload size
(bytes)

Web attach task Pipeline handler
task

Address space

2048 0.049 ms 0.169 ms 0.299 ms

4096 0.064 ms 0.171 ms 0.319 ms

8192 0.081 ms 0.180 ms 0.348 ms

16384 0.125 ms 0.190 ms 0.410 ms

32000 0.186 ms 0.212 ms 0.493 ms
Chapter 14. Scenarios 405

14.10.3 SSL with persistent connections requester results

Table 14-22 summarizes the requester performance as payload size increases
when SSL and persistent connections are both enabled.

Table 14-22 Requester performance summary as a function of payload size with SSL and
persistent connections enabled

The CPU data in Table 14-22 is plotted in Figure 14-32, and the response time
data is plotted in Figure 14-33 on page 407.

Figure 14-32 Requester CPU cost as a function of payload size with SSL and persistent
connections enabled

Payload size
(bytes)

INVK CPU Address space INVK response

2048 0.280 ms 0.370 ms 1.242 ms

4096 0.289 ms 0.379 ms 1.228 ms

8192 0.316 ms 0.407 ms 1.314 ms

16384 0.367 ms 0.457 ms 1.454 ms

32000 0.446 ms 0.535 ms 1.568 ms
406 Application Development for IBM CICS Web Services

Figure 14-33 Requester response time as a function of payload size with SSL and
persistent connections enabled

14.10.4 SSL with persistent connections conclusions

As explored in 14.8.5, “HTTP persistent connections scenario conclusions” on
page 394, persistent connections can provide CPU savings for Web service
requests. We can compare the results from this scenario with the results
obtained in 14.9, “Secure Web services using SSL” on page 396 to examine the
potential performance gains.

The CPU per request data is plotted in Figure 14-34 on page 408 for the case
where persistent connections are enabled and disabled. For this data, SSL is
enabled in both cases.
Chapter 14. Scenarios 407

Figure 14-34 Comparison of provider CPU as a function of payload size with SSL
enabled

We similarly plot a comparison for the CPU cost per request in the requester
region in Figure 14-35 on page 409.
408 Application Development for IBM CICS Web Services

Figure 14-35 Comparison of requester CPU cost as a function of payload size with SSL
enabled

As discussed in 14.9.4, “SSL scenario conclusions” on page 400, the CPU cost
for the SSL handshake operation is accumulated by the web attach task. When
enabling persistent connections, we remove the need for an SSL handshake to
take place for each request. By removing the requirements for both a new TCP
connection and an SSL handshake, we can save a large amount of CPU cost for
each request.

Figure 14-36 on page 410 charts the total CPU cost for both requester and
provider LPARs when SSL is enabled for a 32,000 byte payload. We compare the
tests where persistent connections are disabled and enabled.
Chapter 14. Scenarios 409

Figure 14-36 Comparison of total CPU cost for payload of 32,000 bytes with persistent
connections enabled and disabled with SSL configured

The chart in Figure 14-36 demonstrates a clear reduction in CPU cost when
enabling persistent connections for SSL, even when hardware acceleration is
implemented.

The performance gains that are achieved in this scenario represent
approximately 0.6 ms of CPU between the requester and provider LPARs. Exact
performance benefits depend on whether hardware assistance is used, the type
of any hardware assistance, and the cipher suite used.

14.11 Overall conclusions

Through experience gained during previous performance testing exercises for
the CICS TS product, we have found that the measures discussed in 13.2,
“Hardware and operating system configuration” on page 331 are necessary to
produce repeatable performance results. We followed these leading practice
methodologies while producing all of the data found in this performance
summary.

While investigating the CPU cost per transaction of the Web services workloads,
we find that we have achieved an accuracy of +/- 3%. This accuracy statement
410 Application Development for IBM CICS Web Services

applies to both requester and provider regions, for data obtained from both the
CMF and the RMF records. This is in line with our expectations.

Measurement of the overall response time for the Web service workloads, we
find that we have achieved an accuracy of +/- 7%.

Throughout these tests, we have found that CICS both as a Web service provider
and as a Web service requester scales well in all of the following scenarios:

� As the number of concurrent requests increases
� As the rate of outbound and inbound requests increases
� As the size of a Web service payload increases

Using SSL adds an overhead to the cost of a Web service request, which
depends on the cipher suite chosen and any hardware assistance that is
enabled.

The use of persistent connections can provide a performance improvement,
especially when SSL connections are configured.
Chapter 14. Scenarios 411

412 Application Development for IBM CICS Web Services

Part 3 Appendixes

In these appendixes, we provide a step-by-step guide to creating a sample Web
service using IBM Rational Developer for System z (RDz). We also include
sample programs and Web service definitions which are used throughout this
publication. In addition, there are links to related publications and references for
further reading.

Part 3
© Copyright IBM Corp. 2015. All rights reserved. 413

414 Application Development for IBM CICS Web Services

Appendix A. Sample Web services

In Example A-1 on page 420 through Example A-3 on page 428, we list the
sample Web services that we use to demonstrate the COBOL requester
programs in Chapter 11, “COBOL samples” on page 271.

A

© Copyright IBM Corp. 2015. All rights reserved. 415

Preparation of your RDz environment

Make sure that your copy of the IBM Rational Developer for System z (RDz) is
open and shows up in the Java EE perspective. If not, you can easily switch your
perspective by clicking Window Open Perspective Other from the menu
bar, then select Java EE. Your integrated development environment (IDE) should
look like Figure A-1.

Figure A-1 RDz Java EE perspective

You are ready to load the .ear files, which contain the Web service examples.
416 Application Development for IBM CICS Web Services

Loading an .ear file into a new or existing project

Perform the following steps to load an .ear file in a new or existing project:

1. With your IDE in Java EE perspective, choose File Import from the menu
bar, and select EAR file from the Java EE folder, as shown in Figure A-2.

Figure A-2 RDz import selection box
 Appendix A. Sample Web services 417

2. Click Next.

3. Specify the location of the .ear file in the following window, as shown in
Figure A-3. Specify the Project's new name and the target runtime. We
recommend WebSphere Application Server v7.0.

Figure A-3 RDz Enterprise Application Import Box

4. Click Next. Another “Enterprise Application Import” window displays. You
have the opportunity to include your existing projects to use them with the
example. Each of them get a subdirectory in the new project. You can choose
the modules from the .ear file to import into the new project. In our case, there
is just one module.
418 Application Development for IBM CICS Web Services

5. Click Finish in the box shown in Figure A-4. IBM Rational Developer imports
the .ear file.

Figure A-4 RDz Module and Utility box

Description of examples A1–A3

The following pages contain a short description about what these programming
examples do, plus their coding and a testing manual for each one.

The XML any pass-through Web service example

This example shows how a Web service can transmit XML code within a SOAP
message without interpreting the foreign code, so that the requester gets XML
code out of the envelope. You can install the file by following the steps in

Note: To use the examples for testing, you also have to deploy the program on
the WebSphere server.
 Appendix A. Sample Web services 419

“Preparation of your RDz environment” on page 416 and “Loading an .ear file into
a new or existing project” on page 417.

Coding
The code given in Example A-1 is, for the most part, automatically derived from
the *.wsdl file. You only have to add the problems’ solution to the Java skeleton.

Example A-1 Code of the XML any pass-through Web service example

package com.reqy.inline01;

@javax.jws.WebService(endpointInterface="com.reqy.inline01.INLINE01Port
", targetNamespace="http://www.INLINE01.REQY.com",
serviceName="INLINE01Service", portName="INLINE01Port")

public class INLINE01HTTPSoapBindingImpl{

 public com.response.respy.inline01.ProgramInterface
inline01Operation(com.request.reqy.inline01.ProgramInterface
requestPart){
 // Here starts the actual problem solution
 // Allocating references for the exchange
com.response.respy.inline01.ProgramInterface respref = new
com.response.respy.inline01.ProgramInterface();
com.response.respy.inline01.ProgramInterface.WsRetarea wsarearef = new
com.response.respy.inline01.ProgramInterface.WsRetarea();
com.response.respy.inline01.ProgramInterface.WsRetarea.Customer custref
= new
com.response.respy.inline01.ProgramInterface.WsRetarea.Customer();

com.request.reqy.inline01.ProgramInterface reqref =new
com.request.reqy.inline01.ProgramInterface();
com.request.reqy.inline01.ProgramInterface.WsReqarea reqrefws = new
com.request.reqy.inline01.ProgramInterface.WsReqarea();
com.request.reqy.inline01.ProgramInterface.WsReqarea.Customer reqrefcus
= new com.request.reqy.inline01.ProgramInterface.WsReqarea.Customer();
// Processing the input
reqrefws = requestPart.getWsReqarea();
reqrefcus = reqrefws.getCustomer();
// Composition of the answer
custref.setTitle("you said: " + reqrefcus.getTitle());
custref.setFirstName("you said: " + reqrefcus.getFirstName());
custref.setSurname("you said: " + reqrefcus.getSurname());
custref.setAny(reqrefcus.getAny());
wsarearef.setCustomer(custref);
420 Application Development for IBM CICS Web Services

respref.setWsRetarea(wsarearef);
 return respref;
 }
}

Testing
With IBM Rational Developer for System z, you can easily test the function of
every .wsdl file using the Web services explorer. For this example, follow these
steps:

1. Open the Services subdirectory in your project’s folder, then right-click
INLINE01Service, and choose Test with Web Services Explorer, as shown
in Figure A-5.

Figure A-5 Location of the Web Services Explorer in RDz
 Appendix A. Sample Web services 421

2. Maximize the new window, the Web Services Explorer, by double-clicking its
tab. Confirm the standard endpoint and click Go.

3. Invoke a new Web Services Description Language (WSDL) Operation. Type
in strings for Title, FirstName, Surname, and an arbitrary regular XML
statement in the ::inputRequestPart::0::0::1::0::0::1::0::0::4 box, as shown in
Figure A-6.

Figure A-6 XML any pass-through Web service data input
422 Application Development for IBM CICS Web Services

4. Click Go and check for the results in the window below. The XML statement is
delivered without disturbing its own SOAP envelope, as shown in Figure A-7.

Figure A-7 XML any pass-through web service test result

The XML choice Web service example

This example of a Web service shows how you can deal with the XML choice
statement when using SOAP messages for data transfer. The program simply
interchanges the users’ choice, returning the other possibility. You can install the
file by following the steps in “Preparation of your RDz environment” on page 416
and “Loading an .ear file into a new or existing project” on page 417.
 Appendix A. Sample Web services 423

Coding
The code given in Example A-2 is, for the most part, automatically derived from
the *.wsdl file. You only have to add the problems’ solution to the Java skeleton.

Example A-2 Code of the XML choice Web service example

package com.reqy.inline01;

@javax.jws.WebService
(endpointInterface="com.reqy.inline01.INLINE01Port",
targetNamespace="http://www.INLINE01.REQY.com",
serviceName="INLINE01Service", portName="INLINE01Port")
public class INLINE01HTTPSoapBindingImpl{

public com.response.respy.inline01.ProgramInterface
inline01Operation(com.request.reqy.inline01.ProgramInterface
requestPart) {
// Here starts the actual problem solution
// Allocating references for the exchange
com.response.respy.inline01.ProgramInterface respreference = new
com.response.respy.inline01.ProgramInterface();
com.response.respy.inline01.ProgramInterface.WsRetarea respwsarea = new
com.response.respy.inline01.ProgramInterface.WsRetarea();
com.response.respy.inline01.ProgramInterface.WsRetarea.ChoiceData
respchoice = new
com.response.respy.inline01.ProgramInterface.WsRetarea.ChoiceData();
com.request.reqy.inline01.ProgramInterface reqreference =new
com.request.reqy.inline01.ProgramInterface();
com.request.reqy.inline01.ProgramInterface.WsReqarea reqwsarea = new
com.request.reqy.inline01.ProgramInterface.WsReqarea();
com.request.reqy.inline01.ProgramInterface.WsReqarea.ChoiceData
reqchoice = new
com.request.reqy.inline01.ProgramInterface.WsReqarea.ChoiceData();
// Processing the input
reqwsarea = requestPart.getWsReqarea();
reqchoice = reqwsarea.getChoiceData();
// Changing the users' choice
respchoice.setFirstchoice(reqchoice.getSecondchoice());
respchoice.setSecondchoice(reqchoice.getFirstchoice());
// Composition of the answer
respwsarea.setChoiceData(respchoice);
respreference.setWsRetarea(respwsarea);return respreference;
 }
}

424 Application Development for IBM CICS Web Services

Testing
With the IBM Rational Developer for System z, you can test the function of every
.wsdl file using the Web Services Explorer. For this example, follow these steps:

1. Open the Services subdirectory in your project’s folder, then right-click
INLINE01Service, and choose Test with Web Services Explorer, as shown
in Figure A-8.

Figure A-8 Location of the Web Services Explorer in RDz

2. Maximize the new window, Web Services Explorer, by double-clicking its
tab.

3. Confirm the standard endpoint and click Go.
 Appendix A. Sample Web services 425

4. Invoke a new WSDL Operation. Mark either the firstchoice or secondchoice
check box before the values field, as shown in Figure A-9.

Figure A-9 XML choice Web service data input 1/3

5. Click Add in the corresponding definition of your choice as shown in
Figure A-10.

Figure A-10 XML choice Web service data input 2/3

6. Type in the value of your choice in the new line and select its check box.
Assure that the second value is not empty, so add a line there, too. The
windows should now look like Figure A-11.

Figure A-11 XML choice Web service data input 3/3
426 Application Development for IBM CICS Web Services

7. Click Go and check for the results in the window below. The choices are
interchanged, as shown in Figure A-12.

Figure A-12 XML choice Web service test result

The XML occurs Web service example

This Web service demonstrates how you can deal with both XML minoccurs-
and maxoccurs-statements if you are using SOAP messages to transfer variable
arrays between a modern and an old (non-dynamic, COBOL) program. It returns
the data structure references by the XML statement and adds two additional
instances to the array. These are added beneath the maxoccurs border.
 Appendix A. Sample Web services 427

Coding
The code given in Example A-3 is, for the most part, automatically derived from
the *.wsdl file. You only have to add the problems’ solution to the Java skeleton.

Example A-3 Code of the XML occurs Web service example

package com.reqy.inline01;

import java.util.ArrayList;
import java.util.List;
import com.request.reqy.inline01.ProgramInterface;

@javax.jws.WebService
(endpointInterface="com.reqy.inline01.INLINE01Port",
targetNamespace="http://www.INLINE01.REQY.com",
serviceName="INLINE01Service", portName="INLINE01Port")
public classINLINE01HTTPSoapBindingImpl{

public com.response.respy.inline01.ProgramInterface
inline01Operation(com.request.reqy.inline01.ProgramInterface
requestPart) {
// Here starts the actual problem solution
// Allocating space for reference
com.response.respy.inline01.ProgramInterface resp = new
com.response.respy.inline01.ProgramInterface();
com.response.respy.inline01.ProgramInterface.WsRetarea respwsretarea =
new com.response.respy.inline01.ProgramInterface.WsRetarea();
com.response.respy.inline01.ProgramInterface.WsRetarea.Recs resprecs =
new com.response.respy.inline01.ProgramInterface.WsRetarea.Recs();
com.request.reqy.inline01.ProgramInterface.WsReqarea reqwsarea = new
com.request.reqy.inline01.ProgramInterface.WsReqarea();
// Setting occur-borders
int location; int maxlocation;
System.out.println("Occurs Test....");
// Processing input data
reqwsarea = requestPart.getWsReqarea();
// Assure that field size per construct is correct
maxlocation = reqwsarea.getRecs().size(); maxlocation = maxlocation +2;
// Build new constructs
for (location = 0; location < maxlocation;)
{
resprecs = new
com.response.respy.inline01.ProgramInterface.WsRetarea.Recs();
resprecs.setRecs("string array number " +location);
respwsretarea.getRecs().add(location, resprecs);
428 Application Development for IBM CICS Web Services

location++;
}
esp.setWsRetarea(respwsretarea);
return resp;
}

Testing
With the IBM Rational Developer for System z, you can test the function of every
.wsdl file using the Web Services Explorer. For this example, follow these steps:

1. Open the Services subdirectory in your project’s folder, then right-click
INLINE01Service, and choose Test with Web Services Explorer. See
Figure A-13.

Figure A-13 Location of the Web Services Explorer in RDz

2. Maximize the new window, the Web Services Explorer, by double-clicking its
tab.

3. Confirm the standard endpoint and click Go.

4. Invoke a new WSDL operation. Add as many content boxes that you want by
clicking Add and check them all by selecting the Content cell check box.

5. Type in random values for your boxes. Your window should look like
Figure A-14 on page 430.
 Appendix A. Sample Web services 429

Figure A-14 XML occurs Web service data input
430 Application Development for IBM CICS Web Services

6. Click Go and look for the results in the following window. You receive the
same data constructs (that is, the boxes), but additionally, two dynamically
added extra constructs, as shown in Figure A-15.

Figure A-15 XML occurs Web service test result
 Appendix A. Sample Web services 431

432 Application Development for IBM CICS Web Services

Appendix B. Sample programs

In this appendix, we list the COBOL programs used to call the sample Web
services listed in Appendix A, “Sample Web services” on page 415.

We also list the Web Services Description Language (WSDL) that was provided
by the service provider, which we used to generate the COBOL copybooks and
the skeleton COBOL programs.

We also list the assembler program used to invoke a Web service from an
AMODE 64 environment.

B

© Copyright IBM Corp. 2015. All rights reserved. 433

Program to call <xsd:any> example service

PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * ***
 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'INLINETS'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 09/09/09 15:16.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
434 Application Development for IBM CICS Web Services

 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).

 1 WS-XML-PASSTHRU-DATA.
 2 WS-CUST-XML PIC X(255).
 2 WS-CUST-XMLns PIC X(255).

 1 WS-DFHWS-BODY PIC x(400).

 * ***
 * Language Structures
 * ***
 1 LANG-INLINI01.
 COPY inlinI01.
 1 LANG-INLINO01.
 COPY inlinO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 Appendix B. Sample programs 435

 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'inlinetst'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME

 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-INLINI01

 Move 'MR' TO XTitle of wsXreqarea
 Move 2 to XTitle-length of wsXreqarea

 Move 'Tony' TO FirstName of wsXreqarea
 Move 4 to FirstName-length of wsXreqarea

 Move 'Fitzgerald' TO Surname of wsXreqarea
 MOVE 10 to Surname-length of wsXreqarea

 INITIALIZE WS-XML-PASSTHRU-DATA

 * --
 * Put the "any" XML data into the channel
 * --

 Move 1 to Customer-num of wsXreqarea
 MOVE 'cust-xml-cont' TO Customer-xml-cont of wsXreqarea

 * --- the XML ---
 Move '<Whatever>.....</Whatever>' to WS-CUST-XML

 EXEC CICS PUT CONTAINER(Customer-xml-cont of wsXreqarea)
436 Application Development for IBM CICS Web Services

 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-CUST-XML)
 DATATYPE(DFHVALUE(CHAR))
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * --
 * Put the "any" XMLns data into the channel
 * --
 MOVE 'cust-xmlns-cont' to Customer-xmlns-cont
 of wsXreqarea
 * Move 'xmlns:ns1="http://myNS"' to WS-CUST-XMLns

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---

 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-INLINI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * Invoke The Web Service
 * ---
 Move 'http://9.173.198.188:9080/RedbookWS4/INLINE01Service'
 to WS-URI-OVERRIDE

 EXEC CICS INVOKE SERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND

 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-INLINO01)
 END-EXEC
 Appendix B. Sample programs 437

 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * "Process" the Response Language Structure
 * ---
 DISPLAY 'XTitle data returned = ' XTitle of wsXretarea
 DISPLAY 'FirstName data returned = ' FirstName of wsXretarea
 DISPLAY 'Surname data returned = ' Surname of wsXretarea

 INITIALIZE WS-XML-PASSTHRU-DATA.

 EXEC CICS GET CONTAINER(Customer-xmlns-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XMLns)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 EXEC CICS GET CONTAINER(Customer-xml-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XML)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY 'Customer-xml-cont data = ' WS-CUST-XML
 DISPLAY 'Customer-xmlns-cont data = ' WS-CUST-XMLns

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .

 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
 EXEC CICS ABEND ABCODE('C003') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
438 Application Development for IBM CICS Web Services

 EXEC CICS ABEND ABCODE('C004') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('WS01') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('WS02') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 .

 *End Procedure Division
 END PROGRAM 'INLINETS'.
 Appendix B. Sample programs 439

WSDL - <xsd:any>

<?xml version="1.0"?>
<!--This document was generated using 'DFHLS2WS' at mapping level '2.2'. -->
<definitions targetNamespace="http://www.INLINE01.REQY.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.INLINE01.REQY.Request.com"
xmlns:resns="http://www.INLINE01.RESPY.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.INLINE01.REQY.com">
 <types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.REQY.Request.com"
 xmlns:tns="http://www.INLINE01.REQY.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title"
 type="xsd:string" />
 <xsd:element name="FirstName"
 type="xsd:string" />
 <xsd:element name="Surname"
 type="xsd:string" />
 <xsd:any minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
440 Application Development for IBM CICS Web Services

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01Operation" nillable="false"
 type="tns:ProgramInterface" />
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.RESPY.Response.com"
 xmlns:tns="http://www.INLINE01.RESPY.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title"
 type="xsd:string" />
 <xsd:element name="FirstName"
 type="xsd:string" />
 <xsd:element name="Surname"
 type="xsd:string" />
 <xsd:any minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 Appendix B. Sample programs 441

 </xsd:complexType>
 <xsd:element name="INLINE01OperationResponse"
 nillable="false" type="tns:ProgramInterface" />
 </xsd:schema>
 </types>
 <message name="INLINE01OperationResponse">
 <part element="resns:INLINE01OperationResponse"
 name="ResponsePart" />
 </message>
 <message name="INLINE01OperationRequest">
 <part element="reqns:INLINE01Operation" name="RequestPart" />
 </message>
 <portType name="INLINE01Port">
 <operation name="INLINE01Operation">
 <input message="tns:INLINE01OperationRequest"
 name="INLINE01OperationRequest" />
 <output message="tns:INLINE01OperationResponse"
 name="INLINE01OperationResponse" />
 </operation>
 </portType>
 <binding name="INLINE01HTTPSoapBinding" type="tns:INLINE01Port">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="INLINE01Operation">
 <soap:operation soapAction="" style="document" />
 <input name="INLINE01OperationRequest">
 <soap:body parts="RequestPart" use="literal" />
 </input>
 <output name="INLINE01OperationResponse">
 <soap:body parts="ResponsePart" use="literal" />
 </output>
 </operation>
 </binding>
 <service name="INLINE01Service">
 <port binding="tns:INLINE01HTTPSoapBinding"
 name="INLINE01Port">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/inline/test" />
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
442 Application Development for IBM CICS Web Services

 <!-- <soap:address location="https://my-server:my-port/inline/test"/> -->
 <!-- This soap:address indicates the location of the Web service over WebSphere
MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/inline/test&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>
 Appendix B. Sample programs 443

Request Language Structure - inlinI01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.1'.
 *
 *
 * 03 INLINE01Operation.
 * 06 wsXreqarea.
 * 09 Customer1.
 *
 * Comments for field 'XTitle':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/Customer/Title'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 XTitle-length PIC S9999 COMP-5
 * SYNC.
 * 12 XTitle PIC X(255).
 *
 * Comments for field 'FirstName':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/Customer/FirstName'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 FirstName-length PIC S9999 COMP-5
 * SYNC.
 * 12 FirstName PIC X(255).
 *
 * Comments for field 'Surname':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/Customer/Surname'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
444 Application Development for IBM CICS Web Services

 * 12 Surname-length PIC S9999 COMP-5
 * SYNC.
 * 12 Surname PIC X(255).
 *
 *
 * Array 'Customer' contains a variable number of instances of
 * XML element
 * '/INLINE01Operation/ws_reqarea/Customer/Customer'. The number
 * of instances present is indicated in field 'Customer-num'.
 * There should be at least '0' instance(s).
 * There should be at most '1' instance(s).
 * 12 Customer-num PIC S9(9) COMP-5
 * SYNC.
 *
 *
 * 12 Customer.
 *
 * Comments for field 'Customer-xml-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds the XML data for an xsd:any or xsd:anyType. The
 * CONTAINER must be read from and written to in CHAR mode.
 * 15 Customer-xml-cont PIC X(16).
 *
 * Comments for field 'Customer-xmlns-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds namespace prefix definitions that may be used in the
 * XML. The CONTAINER must be read from in CHAR mode.
 * 15 Customer-xmlns-cont PIC X(16).
 *
 *
 * ++

 03 INLINE01Operation.
 06 wsXreqarea.
 09 Customer1.
 12 XTitle-length PIC S9999 COMP-5
 SYNC.
 12 XTitle PIC X(255).
 12 FirstName-length PIC S9999 COMP-5
 SYNC.
 12 FirstName PIC X(255).
 12 Surname-length PIC S9999 COMP-5
 SYNC.
 Appendix B. Sample programs 445

 12 Surname PIC X(255).

 12 Customer-num PIC S9(9) COMP-5
 SYNC.

 12 Customer.
 15 Customer-xml-cont PIC X(16).
 15 Customer-xmlns-cont PIC X(16).
446 Application Development for IBM CICS Web Services

Response Language Structure - inlinO01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.1'.
 *
 *
 * 03 INLINE01OperationResponse.
 * 06 wsXretarea.
 * 09 Customer1.
 *
 * Comments for field 'XTitle':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/Title'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 XTitle-length PIC S9999 COMP-5
 * SYNC.
 * 12 XTitle PIC X(255).
 *
 * Comments for field 'FirstName':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/FirstName'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 FirstName-length PIC S9999 COMP-5
 * SYNC.
 * 12 FirstName PIC X(255).
 *
 * Comments for field 'Surname':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/Surname'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 Appendix B. Sample programs 447

 * 12 Surname-length PIC S9999 COMP-5
 * SYNC.
 * 12 Surname PIC X(255).
 *
 *
 * Array 'Customer' contains a variable number of instances of
 * XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/Customer'.
 * The number of instances present is indicated in field
 * 'Customer-num'.
 * There should be at least '0' instance(s).
 * There should be at most '1' instance(s).
 * 12 Customer-num PIC S9(9) COMP-5
 * SYNC.
 *
 *
 * 12 Customer.
 *
 * Comments for field 'Customer-xml-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds the XML data for an xsd:any or xsd:anyType. The
 * CONTAINER must be read from and written to in CHAR mode.
 * 15 Customer-xml-cont PIC X(16).
 *
 * Comments for field 'Customer-xmlns-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds namespace prefix definitions that may be used in the
 * XML. The CONTAINER must be read from in CHAR mode.
 * 15 Customer-xmlns-cont PIC X(16).
 *
 *
 * ++

 03 INLINE01OperationResponse.
 06 wsXretarea.
 09 Customer1.
 12 XTitle-length PIC S9999 COMP-5
 SYNC.
 12 XTitle PIC X(255).
 12 FirstName-length PIC S9999 COMP-5
 SYNC.
 12 FirstName PIC X(255).
 12 Surname-length PIC S9999 COMP-5
448 Application Development for IBM CICS Web Services

 SYNC.
 12 Surname PIC X(255).

 12 Customer-num PIC S9(9) COMP-5
 SYNC.

 12 Customer.
 15 Customer-xml-cont PIC X(16).
 15 Customer-xmlns-cont PIC X(16).
 Appendix B. Sample programs 449

Program to call <xsd:choice> example service

PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * ***
 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'CHOICETE'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 21/09/09 11:45.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).
450 Application Development for IBM CICS Web Services

 1 WS-DFHWS-BODY PIC x(400).
 * ***
 * Language Structures
 * ***
 1 LANG-CHOICI01.
 COPY choicI01.
 1 LANG-CHOICO01.
 COPY choicO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'choicetest'
 TO WS-WEBSERVICE-NAME
 * ---
 Appendix B. Sample programs 451

 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME
 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-CHOICI01

 DISPLAY 'data is being sent in the firstchoice field'
 *
 * The WSDL specfies that only one of the two fields can
 * be sent to the service
 * EITHER firstchoice or secondchoice
 *
 move 'first choice data' to firstchoice
 of choicI01-firstchoice
 move 18 to firstchoice-length
 of choicI01-firstchoice

 DISPLAY 'data to be sent is ==>' firstchoice
 of choicI01-firstchoice

 set firstchoice of wsXreqarea to true

 move 'CHOICE-CONT' to choiceData-cont of wsXreqarea

 EXEC CICS PUT CONTAINER(choiceData-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(choicI01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---
 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-CHOICI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Invoke The Web Service
 * ---
 Move 'http://9.146.153.15:9080/RedbookWS5/INLINE01Service'
452 Application Development for IBM CICS Web Services

 to WS-URI-OVERRIDE

 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-CHOICO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Process Response Language Structure
 * ---
 *
 * Check which of the "choice" fields have been returned
 * and process the result
 *
 EVALUATE TRUE
 when empty of wsXretarea
 display 'nothing returned'

 when firstchoice of wsXretarea
 display 'data was returned in the firstchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(choicO01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 firstchoice of choicO01-firstchoice

 when secondchoice of wsXretarea
 display 'data was returned in the secondchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 Appendix B. Sample programs 453

 INTO(choicO01-secondchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 secondchoice of choicO01-secondchoice

 END-EVALUATE

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .
 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 END-EVALUATE
 .
 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('W001') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('W002') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
454 Application Development for IBM CICS Web Services

 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 .

 *End Procedure Division
 END PROGRAM 'CHOICETE'.
 Appendix B. Sample programs 455

WSDL <xsd:choice>

<?xml version="1.0"?>
<!--This document was generated using 'DFHLS2WS' at mapping level '2.2'. -->
<definitions targetNamespace="http://www.INLINE01.REQY.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.INLINE01.REQY.Request.com"
xmlns:resns="http://www.INLINE01.RESPY.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.INLINE01.REQY.com">
 <types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.REQY.Request.com"
 xmlns:tns="http://www.INLINE01.REQY.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="choiceData">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="firstchoice"
 type="xsd:string" />
 <xsd:element name="secondchoice"
 type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
456 Application Development for IBM CICS Web Services

 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01Operation" nillable="false"
 type="tns:ProgramInterface" />
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.RESPY.Response.com"
 xmlns:tns="http://www.INLINE01.RESPY.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="choiceData">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="firstchoice"
 type="xsd:string" />
 <xsd:element name="secondchoice"
 type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01OperationResponse"
 nillable="false" type="tns:ProgramInterface" />
 </xsd:schema>
 </types>
 <message name="INLINE01OperationResponse">
 Appendix B. Sample programs 457

 <part element="resns:INLINE01OperationResponse"
 name="ResponsePart" />
 </message>
 <message name="INLINE01OperationRequest">
 <part element="reqns:INLINE01Operation" name="RequestPart" />
 </message>
 <portType name="INLINE01Port">
 <operation name="INLINE01Operation">
 <input message="tns:INLINE01OperationRequest"
 name="INLINE01OperationRequest" />
 <output message="tns:INLINE01OperationResponse"
 name="INLINE01OperationResponse" />
 </operation>
 </portType>
 <binding name="INLINE01HTTPSoapBinding" type="tns:INLINE01Port">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="INLINE01Operation">
 <soap:operation soapAction="" style="document" />
 <input name="INLINE01OperationRequest">
 <soap:body parts="RequestPart" use="literal" />
 </input>
 <output name="INLINE01OperationResponse">
 <soap:body parts="ResponsePart" use="literal" />
 </output>
 </operation>
 </binding>
 <service name="INLINE01Service">
 <port binding="tns:INLINE01HTTPSoapBinding"
 name="INLINE01Port">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/inline/test" />
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
 <!-- <soap:address location="https://my-server:my-port/inline/test"/> -->
 <!-- This soap:address indicates the location of the Web service over WebSphere
MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
458 Application Development for IBM CICS Web Services

 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/inline/test&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>
 Appendix B. Sample programs 459

Request Language Structure - choicI01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01Operation.
 * 06 wsXreqarea.
 * 09 choiceData.
 *
 *
 * The 'choiceData-enum' field indicates which option from a set
 * of possible values is being used. The associated value is
 * stored in the container referenced in 'choiceData-cont'.
 * A value of X'00' indicates no content.
 * A value of X'01' indicates an instance of structure
 * 'choicI01-firstchoice'.
 * A value of X'02' indicates an instance of structure
 * 'choicI01-secondchoice'.
 * 12 choiceData-enum PIC X DISPLAY.
 * 88 empty VALUE X'00'.
 * 88 firstchoice VALUE X'01'.
 * 88 secondchoice VALUE X'02'.
 * 12 choiceData-cont PIC X(16).
 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'01'.
 * 01 choicI01-firstchoice.
 *
 * Comments for field 'firstchoice':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/choiceData/firstchoice'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 * 03 firstchoice PIC X(255).
460 Application Development for IBM CICS Web Services

 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'02'.
 * 01 choicI01-secondchoice.
 *
 * Comments for field 'secondchoice':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/choiceData/secondchoice'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 * 03 secondchoice PIC X(255).
 *
 *
 * ++

 03 INLINE01Operation.
 06 wsXreqarea.
 09 choiceData.

 12 choiceData-enum PIC X DISPLAY.
 88 empty VALUE X'00'.
 88 firstchoice VALUE X'01'.
 88 secondchoice VALUE X'02'.
 12 choiceData-cont PIC X(16).

 01 choicI01-firstchoice.
 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 03 firstchoice PIC X(255).

 01 choicI01-secondchoice.
 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 03 secondchoice PIC X(255).

 Appendix B. Sample programs 461

Response Language Structure - choicO01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01OperationResponse.
 * 06 wsXretarea.
 * 09 choiceData.
 *
 *
 * The 'choiceData-enum' field indicates which option from a set
 * of possible values is being used. The associated value is
 * stored in the container referenced in 'choiceData-cont'.
 * A value of X'00' indicates no content.
 * A value of X'01' indicates an instance of structure
 * 'choicO01-firstchoice'.
 * A value of X'02' indicates an instance of structure
 * 'choicO01-secondchoice'.
 * 12 choiceData-enum PIC X DISPLAY.
 * 88 empty VALUE X'00'.
 * 88 firstchoice VALUE X'01'.
 * 88 secondchoice VALUE X'02'.
 * 12 choiceData-cont PIC X(16).
 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'01'.
 * 01 choicO01-firstchoice.
 *
 * Comments for field 'firstchoice':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/choiceData/firstchoice'
 * .
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 firstchoice-length PIC S9999 COMP-5 SYNC.
462 Application Development for IBM CICS Web Services

 * 03 firstchoice PIC X(255).
 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'02'.
 * 01 choicO01-secondchoice.
 *
 * Comments for field 'secondchoice':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/choiceData/secondchoice
 * '.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 * 03 secondchoice PIC X(255).
 *
 *
 * ++

 03 INLINE01OperationResponse.
 06 wsXretarea.
 09 choiceData.

 12 choiceData-enum PIC X DISPLAY.
 88 empty VALUE X'00'.
 88 firstchoice VALUE X'01'.
 88 secondchoice VALUE X'02'.
 12 choiceData-cont PIC X(16).

 01 choicO01-firstchoice.
 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 03 firstchoice PIC X(255).

 01 choicO01-secondchoice.
 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 03 secondchoice PIC X(255).

 Appendix B. Sample programs 463

Program to call minOccurs/maxOccurs example service

PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * ***
 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'REDBOOKW'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 21/09/09 18:38.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).
464 Application Development for IBM CICS Web Services

 1 WS-DFHWS-BODY PIC x(400) value spaces.
 1 WS-XML-ERRORMSG PIC x(400) value spaces.

 1 WS-RECORDS-ARRAY.
 2 WS-RECORD PIC X(80) occurs 20 times.

 * used to display the records returned by the service
 1 ws-record-returned.
 2 Filler PIC X(26)
 value ' returned record number '.
 2 ws-returned-rec-num pic 99.
 2 Filler PIC X(05)
 value '===> '.
 2 ws-returned-rec-data pic X(80).

 1 records-length PIC s9(8) comp.
 1 ws-record-data.
 2 FILLER pic x(07) value 'Record '.
 2 ws-count pic 99 value zero.
 * ***
 * Language Structures
 * ***
 1 LANG-REDBOI01.
 COPY redboI01.
 1 LANG-REDBOO01.
 COPY redboO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 Appendix B. Sample programs 465

 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'redbookWS6'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME
 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-REDBOI01

 *--- we are going to send 4 records
 move 4 to recs-num of wsXreqarea
 DISPLAY " "
 DISPLAY "=="
 DISPLAY "Sending " recs-num of wsXreqarea " records"

 *--- populate our array with our data
 Perform recs-num of wsXreqarea times
 add 1 to ws-count
 Move ws-record-data to recs2 of redboI01-recs
 move redboI01-recs to WS-RECORD(ws-count)
 END-Perform

 *--- calculate how long the data is
 compute records-length =
 length of redboI01-recs * recs-num of wsXreqarea

 *--- store the name of our data container in the
466 Application Development for IBM CICS Web Services

 *--- request language structure
 move "RECS-CONTAINER" to recs-cont of wsXreqarea

 *--- put the array into the container
 EXEC CICS PUT CONTAINER(recs-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-RECORDS-ARRAY)
 FLENGTH(records-length)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 *
 *
 *
 * ---
 * Put Request Language Structure Into SOAP Container
 * ---
 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-REDBOI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Invoke The Web Service
 * ---

 *--- override the URI - remove if the WSDL has the correct URI
 Move 'http://9.173.199.45:9080/RedbookWS6/INLINE01Service'
 to WS-URI-OVERRIDE

 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-REDBOO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 Appendix B. Sample programs 467

 * ---
 * Process Response Language Structure
 * ---

 *--- get the returned data which is in the container
 *--- named in the response language structure
 EXEC CICS GET CONTAINER(recs-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-RECORDS-ARRAY)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY '==='
 DISPLAY recs-num of wsXretarea ' records returned'

 *--- Display each of the returned records.
 *--- The number of records returned is in recs-num
 *--- which has been extracted from the response container
 *--- into the response language structure
 move 1 to ws-count
 PERFORM recs-num of wsXretarea times
 move ws-count to ws-returned-rec-num
 MOVE ws-record(ws-count) to ws-returned-rec-data
 DISPLAY ws-record-returned
 add 1 to ws-count

 END-PERFORM

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .
 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
468 Application Development for IBM CICS Web Services

 EXEC CICS ABEND ABCODE('C003') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
 EXEC CICS ABEND ABCODE('C004') END-EXEC
 CONTINUE
 END-EVALUATE
 .
 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('W001') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('W002') END-EXEC
 CONTINUE
 END-EVALUATE
 .
 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 * ** An EIBRESP2 of 13 indicates an input error **
 * ** has been detected a message is returned **
 * ** in DFH-XML-ERRORMSG **
 IF EIBRESP2 = 13 THEN
 EXEC CICS
 GET CONTAINER('DFH-XML-ERRORMSG')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-XML-ERRORMSG)
 END-EXEC
 DISPLAY WS-XML-ERRORMSG
 END-IF
 .

 *End Procedure Division
 Appendix B. Sample programs 469

WSDL - minOccurs/maxOccurs

<?xml version="1.0"?>
<!--This document was generated using 'DFHLS2WS' at mapping level '2.2'. -->
<definitions targetNamespace="http://www.INLINE01.REQY.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.INLINE01.REQY.Request.com"
xmlns:resns="http://www.INLINE01.RESPY.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.INLINE01.REQY.com">
 <types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.REQY.Request.com"
 xmlns:tns="http://www.INLINE01.REQY.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element maxOccurs="10" minOccurs="1"
 name="recs" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="recs" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.charlength=fixed

com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
470 Application Development for IBM CICS Web Services

 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="80" />
 <xsd:whiteSpace value="collapse" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01Operation" nillable="false"
 type="tns:ProgramInterface" />
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.RESPY.Response.com"
 xmlns:tns="http://www.INLINE01.RESPY.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element maxOccurs="10" minOccurs="1" name="recs"
nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="recs" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 Appendix B. Sample programs 471

 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.charlength=fixed

com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="80" />
 <xsd:whiteSpace value="collapse" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01OperationResponse"
 nillable="false" type="tns:ProgramInterface" />
 </xsd:schema>
 </types>
 <message name="INLINE01OperationResponse">
 <part element="resns:INLINE01OperationResponse"
 name="ResponsePart" />
 </message>
 <message name="INLINE01OperationRequest">
 <part element="reqns:INLINE01Operation" name="RequestPart" />
 </message>
 <portType name="INLINE01Port">
 <operation name="INLINE01Operation">
 <input message="tns:INLINE01OperationRequest"
 name="INLINE01OperationRequest" />
 <output message="tns:INLINE01OperationResponse"
 name="INLINE01OperationResponse" />
 </operation>
 </portType>
 <binding name="INLINE01HTTPSoapBinding" type="tns:INLINE01Port">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="INLINE01Operation">
 <soap:operation soapAction="" style="document" />
472 Application Development for IBM CICS Web Services

 <input name="INLINE01OperationRequest">
 <soap:body parts="RequestPart" use="literal" />
 </input>
 <output name="INLINE01OperationResponse">
 <soap:body parts="ResponsePart" use="literal" />
 </output>
 </operation>
 </binding>
 <service name="INLINE01Service">
 <port binding="tns:INLINE01HTTPSoapBinding"
 name="INLINE01Port">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://localhost:9080/RedbookWS6/INLINE01Service" />
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
 <!-- <soap:address location="https://my-server:my-port/inline/test"/> -->
 <!-- This soap:address indicates the location of the Web service over WebSphere
MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/inline/test&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>
 Appendix B. Sample programs 473

Request Language Structure - redboI01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01Operation.
 * 06 wsXreqarea.
 *
 *
 * CONTAINER 'recs-cont' contains 'recs-num' instances of
 * structure 'redboI01-recs', each of which represents an
 * instance of XML element '/INLINE01Operation/ws_reqarea/recs'.
 * The CONTAINER must be read from and written to in BIT mode.
 * There should be at least '1' instance(s).
 * There should be at most '10' instance(s).
 * 09 recs-num PIC S9(9) COMP-5 SYNC.
 * 09 recs-cont PIC X(16).
 *
 *
 *
 * This structure describes one instance of the data in CONTAINER
 * 'recs-cont'.
 * 01 redboI01-recs.
 * 03 recs.
 *
 * Comments for field 'recs2':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/recs/recs'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'maxLength' facet value: '80'.
 * 06 recs2 PIC X(80).
 *
 *
 * ++

 03 INLINE01Operation.
 06 wsXreqarea.
474 Application Development for IBM CICS Web Services

 09 recs-num PIC S9(9) COMP-5 SYNC.
 09 recs-cont PIC X(16).

 01 redboI01-recs.
 03 recs.
 06 recs2 PIC X(80).

 Appendix B. Sample programs 475

Response Language Structure - redboO01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01OperationResponse.
 * 06 wsXretarea.
 *
 *
 * CONTAINER 'recs-cont' contains 'recs-num' instances of
 * structure 'redboO01-recs', each of which represents an
 * instance of XML element
 * '/INLINE01OperationResponse/ws_retarea/recs'. The CONTAINER
 * must be read from and written to in BIT mode.
 * There should be at least '1' instance(s).
 * There should be at most '10' instance(s).
 * 09 recs-num PIC S9(9) COMP-5 SYNC.
 * 09 recs-cont PIC X(16).
 *
 *
 *
 * This structure describes one instance of the data in CONTAINER
 * 'recs-cont'.
 * 01 redboO01-recs.
 * 03 recs.
 *
 * Comments for field 'recs2':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/recs/recs'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'maxLength' facet value: '80'.
 * 06 recs2 PIC X(80).
 *
 *
 * ++

 03 INLINE01OperationResponse.
476 Application Development for IBM CICS Web Services

 06 wsXretarea.

 09 recs-num PIC S9(9) COMP-5 SYNC.
 09 recs-cont PIC X(16).

 01 redboO01-recs.
 03 recs.
 06 recs2 PIC X(80).

Program to implement OCCURS DEPENDING service

CBL CICS('COBOL3') APOST

 *
 * MODULE NAME = CATOCCUR
 *
 * DESCRIPTIVE NAME = CICS TS (Samples) Example Application -
 * Return a number of catalog items to illustrate
 * support for simple OCCURS DEPENDING
 *
 * This program takes as input the maximum number of items
 * that will be returned
 *
 * The program then browses through the Catalog File and updates
 * an OCCURS DEPENDING ON array with each item
 *
 *
 *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CATOCCUR.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Copy book for the Input Data Structure, IN-DATA
 COPY OCCURIN.

 * Copy book for the Output Data Structure, OUT-DATA
 COPY OCCUROUT.
 Appendix B. Sample programs 477

 * Record structure of the Catalog File
 * We read the file into this structure, and then move to
 * corresponding area in OUTPUT-DATA
 01 WS-CAT-ITEM.
 05 WS-CAT-ITEM-REF PIC 9(4).
 05 WS-CAT-DESCRIPTION PIC X(40).
 05 WS-CAT-DEPARTMENT PIC 9(3).
 05 WS-CAT-COST PIC ZZZ.99.
 05 WS-CAT-IN-STOCK PIC 9(4).
 05 WS-CAT-ON-ORDER PIC 9(3).
 05 FILLER PIC X(20).
 * Configuration File Data
 01 WS-CONF-FILE-KEY PIC X(9) VALUE 'VSAM-NAME'.
 01 WS-CONF-DATA.
 03 FILLER PIC X(10).
 03 WS-FILENAME-CONF PIC X(8).
 03 FILLER PIC X(62).
 * Variables to control browsing the file
 01 WS-CURRENT-ITEM-REF PIC 9(4).
 01 WS-LOOP-COUNTER PIC S9(8) BINARY.
 * CICS EIBRESP and EIBRESP2 fields
 01 RESP PIC S9(8) BINARY.
 01 RESP2 PIC S9(8) BINARY.
 01 CATALOG-EOF-SW PIC X.
 88 CATALOG-EOF VALUE 'Y'.
 * Constants
 01 WS-FILENAME PIC X(8) VALUE 'EXMPCAT '.

 --

 **
 * L I N K A G E S E C T I O N
 **
 LINKAGE SECTION.

 **
 * P R O C E D U R E S
 **
 PROCEDURE DIVISION.

 --
 MAINLINE SECTION.
 --
 * Read in VSAM file name from config file
 --
478 Application Development for IBM CICS Web Services

 EXEC CICS READ FILE('EXMPCONF')
 INTO(WS-CONF-DATA)
 RIDFLD(WS-CONF-FILE-KEY)
 END-EXEC

 MOVE WS-FILENAME-CONF TO WS-FILENAME

 * Get number of items
 EXEC CICS GET CONTAINER('DFHWS-DATA')
 INTO(INPUT-DATA)
 END-EXEC

 PERFORM CATALOG-BROWSE
 * Return to caller
 EXEC CICS RETURN END-EXEC.

 MAINLINE-EXIT.
 EXIT.
 --

 CATALOG-BROWSE.

 MOVE '0000' TO WS-CURRENT-ITEM-REF

 * Start browse of file
 EXEC CICS STARTBR FILE(WS-FILENAME)
 RIDFLD(WS-CURRENT-ITEM-REF)
 RESP(RESP)
 END-EXEC

 MOVE ZERO TO OUTPUT-NUMBER-OF-ITEMS
 * Loop through file read in records until EOF or
 * number of records read = input-number-of-items
 PERFORM
 WITH TEST AFTER
 VARYING WS-LOOP-COUNTER FROM 1 BY 1
 UNTIL CATALOG-EOF
 OR WS-LOOP-COUNTER EQUAL input-number-of-items

 EXEC CICS READNEXT FILE(WS-FILENAME)
 INTO(WS-CAT-ITEM)
 RIDFLD(WS-CURRENT-ITEM-REF)
 LENGTH(LENGTH OF WS-CAT-ITEM)
 Appendix B. Sample programs 479

 RESP(RESP)
 END-EXEC

 EVALUATE RESP
 WHEN DFHRESP(NORMAL)
 *** Successful read
 * Add 1 to the number of records
 * And then store the record in the output data

 ADD 1 TO OUTPUT-NUMBER-OF-ITEMS
 GIVING OUTPUT-NUMBER-OF-ITEMS
 MOVE WS-CAT-ITEM-REF
 TO OUTPUT-ITEM-REF(OUTPUT-NUMBER-OF-ITEMS)
 MOVE WS-CAT-DESCRIPTION
 TO OUTPUT-DESCRIPTION(OUTPUT-NUMBER-OF-ITEMS)
 MOVE WS-CAT-DEPARTMENT
 TO OUTPUT-DEPARTMENT(OUTPUT-NUMBER-OF-ITEMS)
 MOVE WS-CAT-COST
 TO OUTPUT-COST(OUTPUT-NUMBER-OF-ITEMS)
 MOVE WS-CAT-IN-STOCK
 TO OUTPUT-IN-STOCK(OUTPUT-NUMBER-OF-ITEMS)
 MOVE WS-CAT-ON-ORDER
 TO OUTPUT-ON-ORDER(OUTPUT-NUMBER-OF-ITEMS)
 WHEN DFHRESP(ENDFILE)
 MOVE 'Y' TO CATALOG-EOF-SW
 WHEN OTHER
 CONTINUE
 END-EVALUATE
 END-PERFORM

 * End browse of file
 EXEC CICS ENDBR FILE(WS-FILENAME)
 RESP(RESP)
 END-EXEC
 EXIT.
 * Put the completed OUTPUT-DATA Container
 EXEC CICS PUT CONTAINER('DFHWS-DATA')
 FROM(OUTPUT-DATA)
 FLENGTH(LENGTH OF OUTPUT-DATA)
 END-EXEC.
 CATALOG-BROWSE-END.
 EXIT.
480 Application Development for IBM CICS Web Services

Request Language Structure “OCCURIN”

01 INPUT-DATA.
 03 INPUT-NUMBER-OF-ITEMS PIC S9(8) BINARY.

Response Language Structure “OCCUROUT”

01 OUTPUT-DATA.
 03 OUTPUT-NUMBER-OF-ITEMS PIC S9(8) BINARY.
 03 OUTPUT-ITEM OCCURS 1 TO 100
 DEPENDING ON OUTPUT-NUMBER-OF-ITEMS.
 05 OUTPUT-ITEM-REF PIC 9(4).
 05 OUTPUT-DESCRIPTION PIC X(40).
 05 OUTPUT-DEPARTMENT PIC 9(3).
 05 OUTPUT-COST PIC 999V99.
 05 OUTPUT-IN-STOCK PIC 9(4).
 05 OUTPUT-ON-ORDER PIC 9(3).
 05 FILLER PIC X(20).

WSDL for OCCURS DEPENDING ON

<?xml version="1.0" ?>
<!--This document was generated using 'DFHLS2WS' at mapping level '4.0'. -->
<definitions targetNamespace="http://www.CATOCCUR.OCCURIN.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.CATOCCUR.OCCURIN.Request.com"
xmlns:resns="http://www.CATOCCUR.OCCUROUT.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.CATOCCUR.OCCURIN.com">
 <types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://www.CATOCCUR.OCCURIN.Request.com"
xmlns:tns="http://www.CATOCCUR.OCCURIN.Request.com">
 <xsd:annotation>
 <xsd:documentation
source="http://www.ibm.com/software/htp/cics/annotations">This schema was generated
by the CICS Web services assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.mappingLevel=4.0</xsd:appinfo>
 </xsd:annotation>
 Appendix B. Sample programs 481

 <xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="input_data" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="input_number_of_items" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="CATOCCUROperation" nillable="false"
type="tns:ProgramInterface"/>
 </xsd:schema>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://www.CATOCCUR.OCCUROUT.Response.com"
xmlns:tns="http://www.CATOCCUR.OCCUROUT.Response.com">
 <xsd:annotation>
 <xsd:documentation
source="http://www.ibm.com/software/htp/cics/annotations">This schema was generated
by the CICS Web services assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.mappingLevel=4.0</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="output_data" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:annotation>
482 Application Development for IBM CICS Web Services

 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.suppressedField1=DE,de1=7,de2=0,de3=0,a1=false,a9=output
_number_of_items</xsd:appinfo>
 </xsd:annotation>
 <xsd:element maxOccurs="100" minOccurs="1" name="output_item"
nillable="false">
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.odo=output_number_of_items</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="output_item_ref"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_description"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.charlength=fixed
com.ibm.cics.wsdl.properties.synchronized=false
com.ibm.cics.wsdl.properties.utf16be=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="40"/>
 <xsd:whiteSpace value="collapse"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 Appendix B. Sample programs 483

 <xsd:element name="output_department"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_cost" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false
com.ibm.cics.wsdl.properties.decimal=zoned</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="5"/>
 <xsd:fractionDigits value="2"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_in_stock"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_on_order"
nillable="false">
484 Application Development for IBM CICS Web Services

 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.suppressedField1=DE,de1=1,de2=20,de3=0,a1=false,a4=fixed
,a10=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="CATOCCUROperationResponse" nillable="false"
type="tns:ProgramInterface"/>
 </xsd:schema>
 </types>
 <message name="CATOCCUROperationResponse">
 <part element="resns:CATOCCUROperationResponse" name="ResponsePart"/>
 </message>
 <message name="CATOCCUROperationRequest">
 <part element="reqns:CATOCCUROperation" name="RequestPart"/>
 </message>
 <portType name="CATOCCURPort">
 <operation name="CATOCCUROperation">
 <input message="tns:CATOCCUROperationRequest"
name="CATOCCUROperationRequest"/>
 <output message="tns:CATOCCUROperationResponse"
name="CATOCCUROperationResponse"/>
 </operation>
 </portType>
 <binding name="CATOCCURHTTPSoapBinding" type="tns:CATOCCURPort">
 Appendix B. Sample programs 485

 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CATOCCUROperation">
 <soap:operation soapAction="" style="document"/>
 <input name="CATOCCUROperationRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="CATOCCUROperationResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="CATOCCURService">
 <port binding="tns:CATOCCURHTTPSoapBinding" name="CATOCCURPort">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/CATOCCUR/"/>
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
 <!-- <soap:address location="https://my-server:my-port/CATOCCUR/"/> -->
 <!-- This soap:address indicates the location of the Web service over
WebSphere MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/CATOCCUR/&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>

Program to implement PUT CONTAINER APPEND
service

CBL CICS('COBOL3') APOST

 *
 * MODULE NAME = CONTAINR
486 Application Development for IBM CICS Web Services

 *
 * DESCRIPTIVE NAME = CICS TS (Samples) Example Application -
 * Return a number of catalog items to illustrate
 * support for PUT CONTAINER APPEND
 *
 * This program takes as input the maximum number of items
 * that will be returned
 *
 * The program then browses through the Catalog File and updates
 * a container until all items are read
 *
 * This is intended for use with WSDL where "output-number-of-items"
 * is set to "unbounded". The .wsbind was generated with Mapping
 * Level 3.0 as that is the version used with CICS TS 5.1 where
 * the new CONTAINER commands were added
 *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CONTAINR.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Copy book for the Input Data Structure
 01 INPUT-GROUP.
 COPY VARIN01.

 * Copy book for the Output Data Structure
 * The output data is TWO containers. One containers the number
 * of output records and the name of another container.
 *
 * The second container is an unbounded array of "output items"
 * but the copybook only refers to one copy.
 *
 01 OUTPUT-GROUP.
 COPY VAROUT01.

 * Record structure of the Catalog File
 * We read the file into this structure, and then move to
 * corresponding area in OUTPUT-DATA
 01 WS-CAT-ITEM.
 05 WS-CAT-ITEM-REF PIC 9(4).
 05 WS-CAT-DESCRIPTION PIC X(40).
 05 WS-CAT-DEPARTMENT PIC 9(3).
 05 WS-CAT-COST PIC ZZZ.99.
 Appendix B. Sample programs 487

 05 WS-CAT-IN-STOCK PIC 9(4).
 05 WS-CAT-ON-ORDER PIC 9(3).
 05 FILLER PIC X(20).
 * Configuration File Data
 01 WS-CONF-FILE-KEY PIC X(9) VALUE 'VSAM-NAME'.

 01 WS-CONF-DATA.
 03 FILLER PIC X(10).
 03 WS-FILENAME-CONF PIC X(8).
 03 FILLER PIC X(62).

 * Variables to control browsing the file
 01 WS-CURRENT-ITEM-REF PIC 9(4).
 01 WS-LOOP-COUNTER PIC S9(8) BINARY.

 * CICS EIBRESP and EIBRESP2 fields
 01 RESP PIC S9(8) BINARY.
 01 RESP2 PIC S9(8) BINARY.
 01 CATALOG-EOF-SW PIC X.
 88 CATALOG-EOF VALUE 'Y'.

 * Constants
 01 WS-FILENAME PIC X(8) VALUE 'EXMPCAT '.
 01 OUTPUT-CONTAINER PIC X(16) VALUE 'CATALOG-ITEMS'.

 --

 **
 * L I N K A G E S E C T I O N
 **
 LINKAGE SECTION.

 **
 * P R O C E D U R E S
 **
 PROCEDURE DIVISION.

 --
 MAINLINE SECTION.
 --
 * Read in VSAM file name from config file
 --
 EXEC CICS READ FILE('EXMPCONF')
 INTO(WS-CONF-DATA)
 RIDFLD(WS-CONF-FILE-KEY)
488 Application Development for IBM CICS Web Services

 END-EXEC

 MOVE WS-FILENAME-CONF TO WS-FILENAME

 * Get number of items required from the SOAP request
 EXEC CICS GET CONTAINER('DFHWS-DATA')
 INTO(INPUT-GROUP)
 END-EXEC

 PERFORM CATALOG-BROWSE
 *
 * We must now populate the "control" container with data
 * We must move the name of the "array" container to it
 * As well as telling CICS how many items are in the array
 *
 MOVE OUTPUT-CONTAINER TO output-item-cont
 *
 * Put the "control" container
 *
 EXEC CICS PUT CONTAINER('DFHWS-DATA')
 FROM(CONTAINROperationResponse)
 END-EXEC
 *
 * Return to caller
 *
 EXEC CICS RETURN END-EXEC.

 MAINLINE-EXIT.
 EXIT.
 --

 CATALOG-BROWSE.
 MOVE '0000' TO WS-CURRENT-ITEM-REF

 * Start browse of file
 EXEC CICS STARTBR FILE(WS-FILENAME)
 RIDFLD(WS-CURRENT-ITEM-REF)
 RESP(RESP)
 END-EXEC

 MOVE ZERO TO OUTPUT-ITEM-NUM
 * Loop through file read in records until EOF or
 * number of records read = input-number-of-items
 Appendix B. Sample programs 489

 PERFORM
 WITH TEST AFTER
 VARYING WS-LOOP-COUNTER FROM 1 BY 1
 UNTIL CATALOG-EOF
 OR WS-LOOP-COUNTER EQUAL input-number-of-items

 EXEC CICS READNEXT FILE(WS-FILENAME)
 INTO(WS-CAT-ITEM)
 RIDFLD(WS-CURRENT-ITEM-REF)
 LENGTH(LENGTH OF WS-CAT-ITEM)
 RESP(RESP)
 END-EXEC

 EVALUATE RESP
 WHEN DFHRESP(NORMAL)
 *** Successful read
 * Add 1 to the number of records
 * And then move the record to the output data
 * And issue PUT CONTAINER

 ADD 1 TO OUTPUT-ITEM-NUM
 GIVING OUTPUT-ITEM-NUM
 *
 * Move item data to the output area which can also
 * reformat the data. We need to do this for output-cost
 *
 MOVE WS-CAT-ITEM-REF
 TO OUTPUT-Item-ref
 MOVE WS-CAT-DESCRIPTION
 TO Output-Description
 MOVE WS-CAT-DEPARTMENT
 TO Output-Department
 MOVE WS-CAT-COST
 TO Output-Cost
 MOVE WS-CAT-IN-STOCK
 TO Output-In-Stock
 MOVE WS-CAT-ON-ORDER
 TO Output-On-Order
 *
 * Issue PUT CONTAINER with the new APPEND option
 * This will add each item on to an existing container
 * or create the container if it does not exist
 *
 * We do not need to work with pointers or to pre-allocate
 * storage using this method
490 Application Development for IBM CICS Web Services

 *
 EXEC CICS PUT CONTAINER(OUTPUT-CONTAINER)
 APPEND
 FROM(VAROUT01-output-item)
 END-EXEC
 WHEN DFHRESP(ENDFILE)
 MOVE 'Y' TO CATALOG-EOF-SW
 WHEN OTHER
 CONTINUE
 END-EVALUATE
 END-PERFORM

 * End browse of file
 EXEC CICS ENDBR FILE(WS-FILENAME)
 RESP(RESP)
 END-EXEC
 EXIT.
 * Put the completed OUTPUT-DATA Container
 EXEC CICS PUT CONTAINER('DFHWS-DATA')
 FROM(OUTPUT-DATA)
 FLENGTH(LENGTH OF OUTPUT-DATA)
 END-EXEC.
 CATALOG-BROWSE-END.
 EXIT.

Request Language Structure VARIN01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'CONTAINROperation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '3.0'.
 *
 *
 * 03 CONTAINROperation.
 * 06 input-data.
 *
 * Comments for field 'input-number-of-items':
 * This field represents the value of XML element
 * '/CONTAINROperation/input_data/input_number_of_items'.
 Appendix B. Sample programs 491

 * XML data type: 'int'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '2147483647'.
 * XML 'minInclusive' facet value: '-2147483648'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 09 input-number-of-items PIC S9(9) COMP-5.
 *
 *
 * ++

 03 CONTAINROperation.
 06 input-data.
 09 input-number-of-items PIC S9(9) COMP-5.

Response Language Structure VAROUT01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'CONTAINROperation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '3.0'.
 *
 *
 * 03 CONTAINROperationResponse.
 * 06 output-data.
 *
 *
 * CONTAINER 'output-item-cont' contains 'output-item-num'
 * instances of structure 'VAROUT01-output-item', each of which
 * represents an instance of XML element
 * '/CONTAINROperationResponse/output_data/output_item'. The
 * CONTAINER must be read from and written to in BIT mode.
 * There should be at least '1' instance(s).
 * There is no maximum number of instances.
 * 09 output-item-num PIC S9(9) COMP-5 SYNC.
 * 09 output-item-cont PIC X(16).
 *
 *
 *
 * This structure describes one instance of the data in CONTAINER
492 Application Development for IBM CICS Web Services

 * 'output-item-cont'.
 * 01 VAROUT01-output-item.
 * 03 output-item.
 *
 * Comments for field 'output-item-ref':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_ite
 * m_ref'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '9999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-item-ref PIC 9(4) DISPLAY.
 *
 * Comments for field 'output-description':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_des
 * cription'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'maxLength' facet value: '40'.
 * 06 output-description PIC X(40).
 *
 * Comments for field 'output-department':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_dep
 * artment'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-department PIC 9(3) DISPLAY.
 *
 * Comments for field 'output-cost':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_cos
 * t'.
 * XML data type: 'decimal'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'totalDigits' facet value: '5'.
 * XML 'fractionDigits' facet value: '2'.
 Appendix B. Sample programs 493

 * XML 'minInclusive' facet value: '0'.
 * 06 output-cost PIC 9(3)V9(2) DISPLAY.
 *
 * Comments for field 'output-in-stock':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_in_
 * stock'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '9999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-in-stock PIC 9(4) DISPLAY.
 *
 * Comments for field 'output-on-order':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_on_
 * order'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-on-order PIC 9(3) DISPLAY.
 *
 * Comments for field 'filler':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/**filler**
 * '.
 * XML data type: 'string'.
 * 06 filler PIC X(20).
 *
 *
 * ++

 03 CONTAINROperationResponse.
 06 output-data.

 09 output-item-num PIC S9(9) COMP-5 SYNC.
 09 output-item-cont PIC X(16).

 01 VAROUT01-output-item.
494 Application Development for IBM CICS Web Services

 03 output-item.
 06 output-item-ref PIC 9(4) DISPLAY.
 06 output-description PIC X(40).
 06 output-department PIC 9(3) DISPLAY.
 06 output-cost PIC 9(3)V9(2) DISPLAY.
 06 output-in-stock PIC 9(4) DISPLAY.
 06 output-on-order PIC 9(3) DISPLAY.
 06 filler PIC X(20).

WSDL for PUT CONTAINER APPEND service

<?xml version="1.0" ?>
<!--This document was generated using 'DFHLS2WS' at mapping level '3.0'. -->
<definitions targetNamespace="http://www.CONTAINR.OCCURI2.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.CONTAINR.OCCURI2.Request.com"
xmlns:resns="http://www.CONTAINR.OCCURO2.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.CONTAINR.OCCURI2.com">
 <types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://www.CONTAINR.OCCURI2.Request.com"
xmlns:tns="http://www.CONTAINR.OCCURI2.Request.com">
 <xsd:annotation>
 <xsd:documentation
source="http://www.ibm.com/software/htp/cics/annotations">This schema was generated
by the CICS Web services assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.mappingLevel=3.0</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="input_data" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="input_number_of_items" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 Appendix B. Sample programs 495

 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="CONTAINROperation" nillable="false"
type="tns:ProgramInterface"/>
 </xsd:schema>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://www.CONTAINR.OCCURO2.Response.com"
xmlns:tns="http://www.CONTAINR.OCCURO2.Response.com">
 <xsd:annotation>
 <xsd:documentation
source="http://www.ibm.com/software/htp/cics/annotations">This schema was generated
by the CICS Web services assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.mappingLevel=3.0</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="output_data" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" name="output_item"
nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="output_item_ref"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
496 Application Development for IBM CICS Web Services

 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_description"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.charlength=fixed
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="40"/>
 <xsd:whiteSpace value="collapse"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_department"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_cost" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false
com.ibm.cics.wsdl.properties.decimal=zoned</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:decimal">
 Appendix B. Sample programs 497

 <xsd:totalDigits value="5"/>
 <xsd:fractionDigits value="2"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_in_stock"
nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="output_on_order"
nillable="false">
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.suppressedField1=DE,de1=1,de2=20,de3=0,a1=false,a4=fixed
</xsd:appinfo>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
498 Application Development for IBM CICS Web Services

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="CONTAINROperationResponse" nillable="false"
type="tns:ProgramInterface"/>
 </xsd:schema>
 </types>
 <message name="CONTAINROperationResponse">
 <part element="resns:CONTAINROperationResponse" name="ResponsePart"/>
 </message>
 <message name="CONTAINROperationRequest">
 <part element="reqns:CONTAINROperation" name="RequestPart"/>
 </message>
 <portType name="CONTAINRPort">
 <operation name="CONTAINROperation">
 <input message="tns:CONTAINROperationRequest"
name="CONTAINROperationRequest"/>
 <output message="tns:CONTAINROperationResponse"
name="CONTAINROperationResponse"/>
 </operation>
 </portType>
 <binding name="CONTAINRHTTPSoapBinding" type="tns:CONTAINRPort">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CONTAINROperation">
 <soap:operation soapAction="" style="document"/>
 <input name="CONTAINROperationRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="CONTAINROperationResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="CONTAINRService">
 <port binding="tns:CONTAINRHTTPSoapBinding" name="CONTAINRPort">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/CONTAINR/"/>
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
 Appendix B. Sample programs 499

 <!-- <soap:address location="https://my-server:my-port/CONTAINR/"/> -->
 <!-- This soap:address indicates the location of the Web service over
WebSphere MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/CONTAINR/&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>

Program to implement GET CONTAINER FROMBYTE
requester service

CBL CICS('COBOL3') APOST

 *
 * MODULE NAME = REQUESTR
 *
 * DESCRIPTIVE NAME = CICS TS (Samples) Example Application -
 * Request a number of catalog items to illustrate
 * support for GET CONTAINER FROMBYTE
 *
 * This program issues a web service request for a number of items
 *
 * The response is two containers, one an array
 *
 * This is intended for use with WSDL where "output-number-of-items"
 * is set to "unbounded". The .wsbind was generated with Mapping
 * Level 3.0 as that is the version used with CICS TS 5.1 where
 * the new CONTAINER commands were added
 *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. REQUESTR.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * Copy book for the REQUEST Data Structure
 01 REQUEST-GROUP.
 COPY REQIN01.
500 Application Development for IBM CICS Web Services

 * Copy book for the RESPONSE Data Structure
 * The response data is TWO containers. One container is the number
 * of records and the name of another container.
 *
 * The second container is an unbounded array of "output items"
 * but the copybook only refers to one copy.
 *
 01 RESPONSE-GROUP.
 COPY RSPOUT01.

 * Record structure of the Catalog File
 * We will write this out to a Temporary Storage Queue
 01 WS-CAT-ITEM.
 05 WS-CAT-ITEM-REF PIC 9(4).
 05 WS-CAT-DESCRIPTION PIC X(40).
 05 WS-CAT-DEPARTMENT PIC 9(3).
 05 WS-CAT-COST PIC ZZZ.99.
 05 WS-CAT-IN-STOCK PIC 9(4).
 05 WS-CAT-ON-ORDER PIC 9(3).
 05 FILLER PIC X(20).

 * Variables to control browsing the container
 01 WS-BYTE-OFFSET PIC S9(8) BINARY.
 01 WS-CONTAINER-FLENGTH PIC S9(8) BINARY.

 * CICS EIBRESP and EIBRESP2 fields
 01 RESP PIC S9(8) BINARY.
 01 RESP2 PIC S9(8) BINARY.

 * Constants
 01 WS-URIMAP PIC X(8) VALUE 'REQUESTR'.
 01 RESPONSE-CONTAINER PIC X(16).

 --

 **
 * L I N K A G E S E C T I O N
 **
 LINKAGE SECTION.

 **
 * P R O C E D U R E S
 **
 PROCEDURE DIVISION.
 Appendix B. Sample programs 501

 --
 MAINLINE SECTION.
 MOVE EIBTASKN TO INPUT-NUMBER-OF-ITEMS

 EXEC CICS PUT CONTAINER('DFHWS-DATA')
 FROM(REQUEST-GROUP)
 CHANNEL('Service-Request')
 END-EXEC

 EXEC CICS INVOKE SERVICE('REQUESTR')
 OPERATION('CONTAINROperation')
 CHANNEL('Service-Request')
 URIMAP(WS-URIMAP)
 END-EXEC

 EXEC CICS GET CONTAINER('DFHWS-DATA')
 INTO(CONTAINROperationResponse)
 CHANNEL('Service-Request')
 END-EXEC

 MOVE ZERO TO WS-BYTE-OFFSET
 Move length of RSPOUT01-output-item
 to ws-container-flength
 MOVE DFHRESP(NORMAL) TO RESP
 PERFORM UNTIL RESP not = DFHRESP(NORMAL)
 EXEC CICS GET CONTAINER(output-item-cont)
 CHANNEL('Service-Request')
 INTO(RSPOUT01-output-item)
 FLENGTH(WS-CONTAINER-FLENGTH)
 BYTEOFFSET(WS-BYTE-OFFSET)
 RESP(RESP)
 END-EXEC
 IF RESP = DFHRESP(NORMAL)
 EXEC CICS WRITEQ TS QUEUE('REQUESTR')
 FROM(RSPOUT01-Output-item)
 END-EXEC
 END-IF
 ADD WS-CONTAINER-FLENGTH to WS-Byte-Offset
 END-PERFORM
 EXEC CICS RETURN END-EXEC.

 MAINLINE-EXIT.
 EXIT.
 --
502 Application Development for IBM CICS Web Services

Request Language Structure REQIN01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'CONTAINROperation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '3.0'.
 *
 *
 * 03 CONTAINROperation.
 * 06 input-data.
 *
 * Comments for field 'input-number-of-items':
 * This field represents the value of XML element
 * '/CONTAINROperation/input_data/input_number_of_items'.
 * XML data type: 'int'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '2147483647'.
 * XML 'minInclusive' facet value: '-2147483648'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 09 input-number-of-items PIC S9(9) COMP-5.
 *
 *
 * ++

 03 CONTAINROperation.
 06 input-data.
 09 input-number-of-items PIC S9(9) COMP-5.

Response Language Structure RSPOUT01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'CONTAINROperation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '3.0'.
 *
 *
 Appendix B. Sample programs 503

 * 03 CONTAINROperationResponse.
 * 06 output-data.
 *
 *
 * CONTAINER 'output-item-cont' contains 'output-item-num'
 * instances of structure 'RSPOUT01-output-item', each of which
 * represents an instance of XML element
 * '/CONTAINROperationResponse/output_data/output_item'. The
 * CONTAINER must be read from and written to in BIT mode.
 * There should be at least '1' instance(s).
 * There is no maximum number of instances.
 * 09 output-item-num PIC S9(9) COMP-5 SYNC.
 * 09 output-item-cont PIC X(16).
 *
 *
 *
 * This structure describes one instance of the data in CONTAINER
 * 'output-item-cont'.
 * 01 RSPOUT01-output-item.
 * 03 output-item.
 *
 * Comments for field 'output-item-ref':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_ite
 * m_ref'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '9999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-item-ref PIC 9(4) DISPLAY.
 *
 * Comments for field 'output-description':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_des
 * cription'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'maxLength' facet value: '40'.
 * 06 output-description PIC X(40).
 *
 * Comments for field 'output-department':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_dep
504 Application Development for IBM CICS Web Services

 * artment'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-department PIC 9(3) DISPLAY.
 *
 * Comments for field 'output-cost':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_cos
 * t'.
 * XML data type: 'decimal'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'totalDigits' facet value: '5'.
 * XML 'fractionDigits' facet value: '2'.
 * XML 'minInclusive' facet value: '0'.
 * 06 output-cost PIC 9(3)V9(2) DISPLAY.
 *
 * Comments for field 'output-in-stock':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_in_
 * stock'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '9999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-in-stock PIC 9(4) DISPLAY.
 *
 * Comments for field 'output-on-order':
 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/output_on_
 * order'.
 * XML data type: 'unsignedShort'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'fractionDigits' facet value: '0'.
 * XML 'maxInclusive' facet value: '999'.
 * XML 'minInclusive' facet value: '0'.
 * XML 'pattern' facet value: '((\-+)?(0-9)+)'.
 * 06 output-on-order PIC 9(3) DISPLAY.
 *
 * Comments for field 'filler':
 Appendix B. Sample programs 505

 * This field represents the value of XML element
 * '/CONTAINROperationResponse/output_data/output_item/**filler**
 * '.
 * XML data type: 'string'.
 * 06 filler PIC X(20).
 *
 *
 * ++

 03 CONTAINROperationResponse.
 06 output-data.

 09 output-item-num PIC S9(9) COMP-5 SYNC.
 09 output-item-cont PIC X(16).

 01 RSPOUT01-output-item.
 03 output-item.
 06 output-item-ref PIC 9(4) DISPLAY.
 06 output-description PIC X(40).
 06 output-department PIC 9(3) DISPLAY.
 06 output-cost PIC 9(3)V9(2) DISPLAY.
 06 output-in-stock PIC 9(4) DISPLAY.
 06 output-on-order PIC 9(3) DISPLAY.
 06 filler PIC X(20).

WSDL for GET CONTAINER FROMBYTE requester service

This is identical to “WSDL for PUT CONTAINER APPEND service” on page 495.

AMODE(64) assembler program to invoke a Web service

*ASM XOPTS(NOPROLOG NOEPILOG)
 SYSSTATE AMODE64=YES,ARCHLVL=2
 TITLE 'INVOKE - CICS program to invoke a web service'

*
* Licensed Materials - Property of IBM
*
* (C) Copyright IBM Corp. 2014
*

506 Application Development for IBM CICS Web Services

* Registers used:
* R7 : Pointer to GETMAIN64 data area
* R9 : Static data
* R11 : CICS EIB
* R13 : Dynamic data
*
* CICS threadsafe functions used:
* ABEND
* ASSIGN
* FREEMAIN64
* GET CONTAINER
* GETMAIN64
* INVOKE SERVICE
* PUT CONTAINER
* PUT64 CONTAINER
* RETURN
*

 DFHEISTG , Start of working storage
*
* Fields to/from CICS
ContainerSize DS F Size of data in a container
CicsResp DS F CICS RESP value
CicsResp2 DS F CICS RESP2 value
Channel DS CL16 Name of supplied channel
LastCmd DS CL32 Name of command we last exec'd
*
* Configuration data extracted from channel
PayloadSize DS F Length of payload
ContainerName DS CL16 Name of target container
WebService DS CL32 Name of the WEBSERVICE to invoke
Urimap DS CL8 Name of the URIMAP resource
Operation DS CL255 Name of the WS operation
 DFHEIEND , End of working storage
*

INVOKE CSECT
INVOKE AMODE 64
INVOKE RMODE 31
 DFHREGS , Pull in register equates
*
* Generate the CICS entry code
 DFHEIENT DATAREG=13, R13 for dynamic data *
 EIBREG=11, R11 for the EIB *
 STATREG=9, R9 for static data *
 Appendix B. Sample programs 507

 STATIC=StaticData, Start of the static area *
 CODEREG=0 No code regs - relative addr
*

* Find the name of the current channel.
 EXEC CICS ASSIGN CHANNEL(Channel)
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE AbendAssignFail Abend if not normal
*
* Have we been supplied with a channel?
 CLC Channel,EmptyChannel ASSIGN returned blanks?
 JE AbendNoChannel Abend if not supplied
*

* Read the container name to use
 MVC LastCmd,CmdGetContainer Record current command
 LHI R4,L'ContainerName Supply length of ContainerName
 ST R4,ContainerSize field to CICS
 EXEC CICS GET *
 CONTAINER(ContContainer) *
 INTO(ContainerName) *
 FLENGTH(ContainerSize) *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* Read the WEBSERVICE name to use
 MVC LastCmd,CmdGetWebserv Record current command
 LHI R4,L'WebService Supply length of WebService
 ST R4,ContainerSize field to CICS
 EXEC CICS GET *
 CONTAINER(ContWebserv) *
 INTO(WebService) *
 FLENGTH(ContainerSize) *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* Read the operation name to use
 MVC LastCmd,CmdGetOperation Record current command
508 Application Development for IBM CICS Web Services

 LHI R4,L'Operation Supply length of Operation
 ST R4,ContainerSize field to CICS
 EXEC CICS GET *
 CONTAINER(ContOperation) *
 INTO(Operation) *
 FLENGTH(ContainerSize) *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* Read the URIMAP name to use
 MVC LastCmd,CmdGetUrimap Record current command
 LHI R4,L'Urimap Supply length of Urimap
 ST R4,ContainerSize field to CICS
 EXEC CICS GET *
 CONTAINER(ContUrimap) *
 INTO(Urimap) *
 FLENGTH(ContainerSize) *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* Read the size of data to allocate
 MVC LastCmd,CmdGetPayload Record current command
 LHI R4,L'PayloadSize Supply length of PayloadSize
 ST R4,ContainerSize field to CICS
 EXEC CICS GET *
 CONTAINER(ContPayload) *
 INTO(PayloadSize) *
 FLENGTH(ContainerSize) *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* Acquire sufficient storage
 MVC LastCmd,CmdGetmain64 Record current command
 EXEC CICS GETMAIN64 *
 SET(R7) *
 FLENGTH(PayloadSize) *
 Appendix B. Sample programs 509

 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* Initialise the storage using our filler text repeated multiple times
* R3 = Length of data to copy per chunk
* R4 = Length of data still to copy
* R5 = Destination address
* R6 = Source address (always same data area)
 LGR R5,R7 Pointer to destination
 LA R6,Filler Pointer to source
 LGHI R3,L'Filler Length of filler text
 XGR R4,R4 Clean 64-bit reg
 LT R4,PayloadSize Total length to copy
 JNP CopyDone End if length negative or zero
*
 SGR R4,R3 Subtract filler size from length
 JNP CopyLast If len <= 0 then copy last part
*
CopyLoop DS 0H Start of main copying loop
 MVC 0(L'Filler,R5),0(R6) Copy filler text to target
 AGR R5,R3 Target + amount of data copied
 SGR R4,R3 Len - amount of data copied
 JP CopyLoop If len > 0 then loop
*
CopyLast DS 0H Copy last part of the data
 LA R4,L'Filler-1(,R4) Amount remaining to copy
 EX R4,VariableMVC Execute MVC to copy last part
*
CopyDone DS 0H
*

* Store the initialised data into the channel
 MVC LastCmd,CmdPut64 Record current command
 EXEC CICS PUT64 *
 CONTAINER(ContainerName) *
 FROM(0(,R7)) *
 FLENGTH(PayloadSize) *
 BIT *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
510 Application Development for IBM CICS Web Services

*

* Finished with own copy of the 64-bit data
 MVC LastCmd,CmdFreemain64 Record current command
 EXEC CICS FREEMAIN64 *
 DATAPOINTER(R7) *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* Invoke the web service using the initialised data
 MVC LastCmd,CmdInvokeServ Record current command
 EXEC CICS INVOKE *
 SERVICE(WebService) *
 CHANNEL(Channel) *
 OPERATION(Operation) *
 URIMAP(Urimap) *
 NOHANDLE
*
 CLC EIBRESP,DFHRESP(NORMAL) Check response
 JNE Complete Exit if not normal
*

* End of main processing - save CICS command response values
Complete DS 0H
 LT R4,EIBRESP Get EIBRESP
 ST R4,CicsResp Save local copy
 JZ ExitNoError Exit cleanly if no error
*
 L R4,EIBRESP2 Get EIBRESP2
 ST R4,CicsResp2 Save local copy
*

* Return the CICS command name and response values in the channel
 LHI R4,L'LastCmd Supply length of LastCmd
 ST R4,ContainerSize field to CICS
 EXEC CICS PUT *
 CONTAINER(ContCommand) *
 FROM(LastCmd) *
 FLENGTH(ContainerSize) *
 CHAR
*
 LHI R4,L'CicsResp2 Supply length of CicsResp2
 Appendix B. Sample programs 511

 ST R4,ContainerSize field to CICS
 EXEC CICS PUT *
 CONTAINER(ContResp2) *
 FROM(CicsResp2) *
 FLENGTH(ContainerSize) *
 BIT
*
* Save the EIBRESP value here so that we always have one even if RC=0
ExitNoError DS 0H
 LHI R4,L'CicsResp Supply length of CicsResp
 ST R4,ContainerSize field to CICS
 EXEC CICS PUT *
 CONTAINER(ContResp) *
 FROM(CicsResp) *
 FLENGTH(ContainerSize) *
 BIT
*

* Program now complete - return to our caller
 EXEC CICS RETURN
*

* Abend as we can't communicate ASSIGN CHANNEL failure to caller
AbendAssignFail DS 0H
 EXEC CICS ABEND ABCODE('CHAF')
*

* Abend as we've not received a channel
AbendNoChannel DS 0H
 EXEC CICS ABEND ABCODE('NOCH')
*

 EJECT
* Start of our static data
StaticData DS 0D
*
* EXecuted instruction to copy final part of data where length is
* less than the size of the filler text.
VariableMVC MVC 0(0,R5),0(R6)
*
 LTORG ,
*
* Data used as filler in our test web service request. This data is
* repeated the correct number of times to fully populate the allocated
* data area. It should not contain spaces (which would be condensed by
512 Application Development for IBM CICS Web Services

* the XML processing). Data is copied using MVC, therefore the length
* of this text should be no more than 256 bytes.
Filler DC CL256'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZA*
 BCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDE*
 FGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHI*
 JKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLM*
 NOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUV'
*
* Command names to pass back to the caller if we encounter a failure
CmdGetContainer DC CL(L'LastCmd)'G/C CONTAINER-NAME'
CmdGetWebserv DC CL(L'LastCmd)'G/C WEBSERV-NAME'
CmdGetOperation DC CL(L'LastCmd)'G/C OPER-NAME'
CmdGetUrimap DC CL(L'LastCmd)'G/C URIMAP-NAME'
CmdGetPayload DC CL(L'LastCmd)'G/C PAYLOAD-SIZE'
CmdGetmain64 DC CL(L'LastCmd)'GETMAIN64'
CmdPut64 DC CL(L'LastCmd)'PUT64'
CmdFreemain64 DC CL(L'LastCmd)'FREEMAIN64'
CmdInvokeServ DC CL(L'LastCmd)'INVOKE SERVICE'
*
* Names of containers used as the interface to this program
ContContainer DC CL16'CONTAINER-NAME'
ContWebserv DC CL16'WEBSERV-NAME'
ContOperation DC CL16'OPER-NAME'
ContUrimap DC CL16'URIMAP-NAME'
ContPayload DC CL16'PAYLOAD-SIZE'
ContCommand DC CL16'COMMAND'
ContResp DC CL16'COMMAND-RESP'
ContResp2 DC CL16'COMMAND-RESP2'
*
* The name returned by CICS if we do not have a channel present
EmptyChannel DC CL(L'Channel)' '
*
 END INVOKE
 Appendix B. Sample programs 513

514 Application Development for IBM CICS Web Services

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247126

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247126.

How to use the Web material

Create a subdirectory (folder) on your workstation, and extract the contents of the
Web material .zip file into this folder.

C

© Copyright IBM Corp. 2015. All rights reserved. 515

ftp://www.redbooks.ibm.com/redbooks/SG247126
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

516 Application Development for IBM CICS Web Services

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 518. Note that some of the documents referenced here may be available in
softcopy only.

� Securing CICS Web Services, SG24-7658
� CICS Web Services Workload Management and Availability, SG24-7144
� Considerations for CICS Web Services Performance, SG24-7687
� Implementing CICS Web Services, SG24-7206
� Architecting Access to CICS within an SOA, SG24-5466

Other publications

These publications are also relevant as further information sources:

� CICS Transaction Server for z/OS Version 4 Release 1, SC34-7020-00

Online resources

These Web sites are also relevant as further information sources:

� The CICS Web Services Knowledge Collection

http://www-01.ibm.com/support/docview.wss?uid=swg27010507

� The IBM Knowledge Center for CICS TS V3.1

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

� The Knowledge Center for CICS TS V3.2

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp

� The Knowledge Center for CICS TS V4.1

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
© Copyright IBM Corp. 2015. All rights reserved. 517

http://www-01.ibm.com/support/docview.wss?uid=swg27010507
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks
publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
518 Application Development for IBM CICS Web Services

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

 tag 292
 tag 272

Numerics
3270 interface 170

A
assembler 110

B
base64 binary data 12
batch 121
BINDING 168
BMS map 128
bottom-up approach 69, 130
bundle directory 233

C
C 38
C/C++ 110
C++ 38
catalog manager 80, 84
CCSID

description 86
CEDA 93

DEF WEBSERVICE(EXINQCWS) G(EXAM-
PLE) 97
INSTALL PIPELINE(EXPIPE01) G(SOAS-
DEVWS) 95
INSTALL PIPELINE(EXPIPE02) G(SOAD-
EVWS) 95

CEDA transaction 48
CEMT

I TCPIPS 107
INQUIRE WEBSERVICE 95

CEMT INQUIRE 171
CEOT 83
channels and containers 64
CICS 121

applications 79
as a service provider 40
© Copyright IBM Corp. 2015. All rights reserved.
BMS map 128
catalog manager 125, 131
CEDA DEF TCPIPSERVICE(EXMPPPORT) 93
CEDA I G(SOADEV) 83
COBOL 129
commands

CEDA DEF URIMAP(INQCURI) G(EXAM-
PLE) 98
CEMT INQUIRE URIMAP($509340) 129
CEMT INQUIRE WEBSERVICE 129
CEMT PERFORM PIPELINE(EXPIPE03)
SCAN 128

Group
DFH$EXBS 83

infrastructure 170
transaction

CPIH 44
EGUI 174

transactions
ECFG 82, 84
EGUI 82

URIMAP 48
Web service provider 126
Web Services Assistant 38

CICS Explorer 49
CICS SFR

debugger 263
CICS transaction

CWXN 43
CICS Transaction Gateway 76
CICS TRANSFORM 233
CICS TS

Web service resource definitions 47
CICS Web service APIs 65
CICS Web Services Addressing 62
CICSPlex® SM Business Application Services 48
CMNISD01 128
CMNISI01 128
CMNISO01 128
COBOL 38–39, 79
COBOL REDEFINES 130
code page support 86
COMMAREA 41–42, 44, 94, 131, 336
components of RDz 110
 519

CONFIGFILE 42
container 42
CONTID 134
Copybook

DFH0XCP4 130
copybook 130
CORBA 6
CPIH 44

transaction 44
CREATE PIPELINE 65
CREATE URIMAP 65
CREATE WEBSERVICE 65
custom handlers 226
CWXN 43

transaction 43

D
Data Store Stub 85
Data Store VSAM 85
datastore type 84
DB2 stored procedures 120
Debugging with RDz 120
DFH$ECAT 82
DFH$ECNF 82
DFH$EXBS 83
DFH$EXWS 93
DFH$WBSR 231
DFH$WBST 231
DFH0XCMN 131, 335–336
DFH0XCP1 136
DFH0XCP2 136, 170
DFH0XCP4 130
DFH0XCP7 169–170
DFH0XCP8 169
DFH0XSOD 84, 174
DFH0XWC3 128, 134
DFH0XWC4 128, 134
DFH0XWOD 85, 169, 174
DFHCSDUP 48
DFHERROR 64
DFHFUNCTION 64, 227

values
HANDLER-ERROR 227
NO-RESPONSE 227
PROCESS-REQUEST 227
RECEIVE-REQUEST 227
RECEIVE-RESPONSE 227
SEND-REQUEST 227

SEND-RESPONSE 227
DFHHANDLERPLIST 64
DFHHEADER 64
DFHLS2WS 36, 38–39, 41, 130

JCL 130, 156, 335, 347
DFHLS2WS with WSRR 156
DFHNORESPONSE 64
DFHPITP 44, 226
DFHREQUEST 64, 229
DFHRESPONSE 64, 229

deletion 229
DFHRPL 145
DFHSC2LS 233
DFH-SERVICEPLIST 64
DFHWS2LS 36, 38, 45, 167
DFHWS2LS with WSRR 158
DFHWS-APPHANDLER 64
DFHWS-BODY 64, 160, 233
DFHWS-DATA 47, 64
DFHWS-OPERATION 64, 226
DFHWS-PIPELINE 64
DFHWS-SOAPACTION 64, 226
DFHWS-SOAPLEVEL 64
DFHWS-TRANID 64
DFHWS-URI 64
DFHWS-USERID 64
DFHWS-WEBSERVICE 64

container 44
DFHWS-XMLNS 64, 160
Domains 220

E
ECFG 82, 84, 174
editor 115
EGUI 81–82
electronic data interchange (EDI) 4
Enterprise Services Toolkit (EST) 39
error

handling 17
EXEC CICS API commands

INVOKE WEBSERVICE 37
SOAPFAULT ADD | CREATE | DELETE 37

EXEC CICS INVOKE WEBSERVICE 201
EXEC CICS LINK 198
EXEC CICS TRANSFORM XMLTODATA CHAN-
NEL(channel-name) 237
EXEC CICS WEB READ 228
EXINQSWS 97, 99
520 Application Development for IBM CICS Web Services

EXMPCONF 81
EXODEPWS 97, 99
EXODRQWS 97
EXORDRWS 97, 99
Extensible Markup Language (XML) 8, 12

F
FTP 9, 100

H
HFS

directory 41, 90–91, 167
HFS directory 41
HTTP

server support 76
traffic 93
transport 41, 93

HTTP client 7
HTTP header 226

I
INLINE-MAXOCCURS-LIMIT 240
INQSURI 98–99
INQUIRE WEBSERVICE 65
interactive development environments (IDEs) 39
interfaces 214
INVOKE WEBSERVICE 65
INVREQ 233

J
J2EE 182
Java 110
Java EE 416
Java program with RDz 117
JCL 36

CMNISW 134
DFHLS2WS 130, 156, 335, 347
SVLCOB 145
WS2LS 167

JEE 110
JMS 9

L
LANG 168
Link3270 Bridge 76
LOGFILE 131, 336, 348

M
MAPPING-LEVEL 168
maxOccurs 240
meet-in-the-middle approach 72
message exchange pattern (MEP) 9
MIME 12
minoccurs and maxoccurs 297
MTOM 12
mustUnderstand 16

N
Namespaces 14
namespaces 14

O
ODEPURI 98–99
OPERATIONS 168
ORDRURI 98–99
Outbound WebService 84, 174
Outbound WebService URI 85

P
PDSE 145
PDSLIB 168
PERFORM PIPELINE SCAN 65
perspective 112
PIPELINE 49, 170

definition 91
pipeline

configuration file 51
PL/I 38, 110
port definition 31
POST 10
PROTOCOL(HTTP) 41

R
Rational Developer for System z 110
Rational Developer for System Z (RDz) 36, 278

and CICS application development 110
RDz

components 110
RDz Debugging 120
RDz Java program 117
RDz SCA Tooling 220
RECEIVE-REQUEST 227
Redbooks Web site 518
Redbooks website
 Index 521

Contact us xx
remote procedure call (RPC) 18
REQMEM 134
REQMEM and RESPMEM 168
Resource Definition Online (RDO) 97
Resource Definition Online (RDO). 98
RESP2 233
RESPMEM 134
RPC 18

style 33

S
SCA

components 215
components, see service

component architecture
components

composites 216
operations 216
project 221
RDz tooling 220
runtime 215
services 216, 218

SCA, see service
component architecture

SCD, see service
component description language

service
component architecture 214, 216

components 214
component description language 215

service broker 5
Service Component Architecture (SCA) 214
service oriented architecture (SOA) 3–4, 215

service requestors 80
service provider 5, 44
SHELF 42
SMTP 9
SOAP 9

binding 32
body 17

inbound data conversion 44
outbound data conversion 44

communication styles 18
document 18
RPC 18

encodings 18
literal 19

SOAP encoding 19
envelope 13, 15
fault 17
fault API 225, 232
headers 15
intermediary 16
introduction 13
messaging mode 19
MustUnderstand 16
namespaces 14
request 230
validation 265

SOAP Body 226
SOAP header 226
SOAPFAULT 56, 232

commands
ADD 57
CREATE 57
DELETE 57

SOAPFAULT ADD 65, 232
SOAPFAULT CREATE 65, 232
SOAPFAULT DELETE 65, 232
SQL 110
SQLJ 120
SSL/TLS 231
state information 230
SVLCOB

JCL 145

T
TCP/IP

server name 42
TCPIPSERVICE 41, 43

creation 93
definition 93

top-down approach 71, 136
TSO 121

U
UDDI

Universal Description, Discovery, and Integra-
tion 11

UML model, see unified modelling language
unified modelling language 215
URIMAP 43

creation 98
resources 95
522 Application Development for IBM CICS Web Services

V
VSAM 81–82, 84

file 80
VSAM File 85

W
Web service

Interoperability 11
properties 7
skeleton 176

Web services 3, 317
Web services assistant 274
Web Services Coordination 12
Web Services Description Language (WSDL) 7, 20,
155, 168

binding 20, 29
bindings 31
definition 25
document 20

anatomy 21
generated by Rational Developer 225
message 20, 27
namespaces 25
operation 20, 28
port 20, 31
port type 20, 28
service definition 30
SOAP binding 32
type 20
types 26, 259
types not supported by WS2LS 225
Web Services Description Language 10

Web Services Explorer 147
Web Services Trust Language 12
WEBSERVICE 170
WebSphere DataPower 231
WebSphere Developer for zSeries (WebSphere De-
veloper) 39
WebSphere Service Registry and Repository (WS-
RR) 13
workbench 111
WS2LS

sample JCL 167
WS-Addressing 226
WS-Atomic Transaction 12
WSBIND

file 54, 126
WSBind 39

WSBIND and LOGFILE 168
WSDIR 42, 171
WS-Security 226
WS-Trust 12

X
XML 7
XML (xsd

any) 248
XML choice web service 423
XML constructs 250
XML elements 239
XML occurs web service 427
XML parsing 65
XML-binary Optimized Packaging (XOP) 12
XSDBind 233
XSL transformations (XSLT) 120

Z
z/OS 278

Communications Server IP CICS Socket Inter-
face 76
 Index 523

524 Application Development for IBM CICS Web Services

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Application Developm
ent for

IBM
 CICS W

eb Services

®

SG24-7126-02 ISBN 0738433853

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Application Development
for IBM CICS Web
Services

Overview of Web
services in CICS
updated for CICS TS
5.2

New Web service
performance
measurements for
CICS TS 5.2

New SOA patterns for
CICS TS 5.2

This IBM Redbooks publication focuses on developing Web
service applications in IBM CICS. It takes the broad view of
developing and modernizing CICS applications for XML, Web
services, SOAP, and SOA support, and lays out a reference
architecture for developing these kinds of applications.

We start by discussing Web services in general, then review
how CICS implements Web services. We offer an overview of
different development approaches: bottom-up, top-down,
and meet-in-the-middle.

We then look at how you would go about exposing a CICS
application as a Web service provider, again looking at the
different approaches. The book then steps through the
process of creating a CICS Web service requester.

We follow this by looking at CICS application aggregation
(including 3270 applications) with IBM Rational Application
Developer for IBM System z and how to implement CICS Web
Services using CICS Cloud technology. The first part is
concluded with hints and tips to help you when implementing
this technology.

Part two of this publication provides performance figures for
a basic Web service. We investigate some common variables
and examine their effects on the performance of CICS as
both a requester and provider of Web services.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	January 2015, Third Edition

	Part 1 Introduction
	Chapter 1. Overview of Web services
	1.1 Introduction
	1.2 Service-oriented architecture
	1.2.1 Characteristics
	1.2.2 Web services versus SOAs

	1.3 Web services
	1.3.1 Properties of a Web service
	1.3.2 Core standards
	1.3.3 Web Services Interoperability group
	1.3.4 Additional standards

	1.4 IBM WebSphere Service Registry and Repository
	1.5 SOAP
	1.5.1 The envelope
	1.5.2 Communication styles
	1.5.3 Encodings
	1.5.4 Messaging modes

	1.6 WSDL
	1.6.1 WSDL Document
	1.6.2 WSDL document anatomy
	1.6.3 WSDL definition
	1.6.4 WSDL bindings

	Chapter 2. CICS TS implementation of Web services
	2.1 Support for Web services in CICS TS
	2.1.1 Core aspects of Web services in CICS

	2.2 Tools for application deployment
	2.2.1 CICS Web Services Assistant
	2.2.2 IBM Rational Developer for System z v9.1
	2.2.3 Other Options

	2.3 CICS as a service provider
	2.3.1 Preparing to run a CICS application as a service provider
	2.3.2 Processing the inbound service request

	2.4 CICS as a service requester
	2.4.1 Preparing to run a CICS application as a service requester
	2.4.2 Processing the outbound service request

	2.5 The CICS resource definitions
	2.5.1 URIMAP
	2.5.2 PIPELINE
	2.5.3 WEBSERVICE
	2.5.4 The Web service binding file (WSBind)
	2.5.5 SOAPFAULT commands
	2.5.6 Mapping levels
	2.5.7 Enhancements with CICS TS V3.2
	2.5.8 Additional enhancements with CICS TS 4.1
	2.5.9 Use of WS-Addressing in CICS TS V4.1 applications
	2.5.10 AXIS2 Provider PIPELINEs in CICS TS V4.2
	2.5.11 CICS Transaction Server V5.1 makes CONTAINERs easier
	2.5.12 Further enhancements in CICS TS V5.2
	2.5.13 Comparing releases of CICS Transaction Server

	Chapter 3. Development approaches
	3.1 Introduction
	3.2 Bottom-up approach
	3.3 Top-down approach
	3.4 Meet-in-the-middle approach
	3.5 The advantages of using Rational Developer for System z
	3.6 Web services versus CICS TCP/IP connectivity
	3.7 Conclusions

	Chapter 4. CICS catalog manager example application
	4.1 Samples for use with CICS Web Services
	4.2 Introduction to the catalog manager application
	4.3 Installation and setup of the base application
	4.3.1 Creating the VSAM data sets
	4.3.2 Defining the base application to CICS
	4.3.3 Configuring the example application
	4.3.4 Configuring code page support

	4.4 Web service support for the example application
	4.4.1 The Web client front end
	4.4.2 The CICS Web service client front end
	4.4.3 Order dispatch Web services endpoints
	4.4.4 Alternative Web service provider configuration

	4.5 Web services setup
	4.5.1 Creating the zFS directories
	4.5.2 Creating the PIPELINE definition
	4.5.3 Creating a TCPIPSERVICE
	4.5.4 Dynamically installing WEBSERVICE and URIMAP resources
	4.5.5 Creating the WEBSERVICE resources with RDO
	4.5.6 Creating the URIMAP resources with RDO
	4.5.7 Completing the installation

	4.6 Installing the client application
	4.6.1 FTP the client application
	4.6.2 Install the client
	4.6.3 Start the client
	4.6.4 Testing the client

	Chapter 5. Rational Developer for System z
	5.1 What is Rational Developer for System z?
	5.2 RDz and CICS application development
	5.3 Components of RDz
	5.3.1 Workspace
	5.3.2 Workbench
	5.3.3 Perspective
	5.3.4 View
	5.3.5 Editor

	5.4 Web services in Rational Developer for System z
	5.5 Writing your first Java program with RDz
	5.6 Overview of Debugging with RDz
	5.6.1 Supported languages and environments
	5.6.2 Local and remote debug
	5.6.3 Basic debugging features and tools

	5.7 Summary

	Chapter 6. Exposing the Catalog Sample CICS application as a Web service
	6.1 Introduction
	6.2 Install the provider mode resources
	6.3 Create the provider mode deployment artifacts
	6.3.1 Using the CICS Web Services Assistant
	6.3.2 Use Rational Developer for System z

	6.4 Testing the Web service
	6.4.1 The Web Services Explorer
	6.4.2 Generate a client

	6.5 Publishing WSDL to WebSphere Service Registry and Repository
	6.5.1 Use DFHLS2WS for WebSphere Service Registry and Repository in CICS TS V5.2
	6.5.2 Use DFHWS2LS for WSRR in CICS TS V5.2
	6.5.3 New parameters to support SSL encryption in CICS TS V4.1 and above

	6.6 Writing applications that process the XML directly
	6.6.1 Creating a custom application handler
	6.6.2 Creating an XML-ONLY WEBSERVICE

	Chapter 7. Create a CICS Web service requester application using the catalog sample
	7.1 Introduction
	7.2 Create a Web service requester using the CICS Web Services Assistant
	7.2.1 Generate the required artifacts
	7.2.2 Set up the CICS infrastructure
	7.2.3 Test the requester application

	7.3 Creating and testing a Web service hosted in RDz
	7.3.1 Create a Web service skeleton with Rational Application Developer for WebSphere Software
	7.3.2 Implement the WebSphere Application Server Web service
	7.3.3 Test the Web service using Web Services Explorer
	7.3.4 Test the Web service using the CICS sample application

	7.4 Client mode URIMAPs
	7.4.1 Ease of maintenance and portability
	7.4.2 Control over outbound SSL configuration
	7.4.3 Outbound connection pooling

	Chapter 8. Componentization
	8.1 CICS applications as components
	8.2 Locally optimized Web services
	8.3 Using WSDL to describe COBOL components
	8.4 Further options with CICS TS 4.1 and later
	8.4.1 Linking to a target PROGRAM from a requester mode PIPELINE
	8.4.2 Invoking a local SERVICE from a requester mode PIPELINE

	8.5 Packaging the Web Service resources in CICS Bundles
	8.5.1 Create a CICS Bundle project
	8.5.2 Defining Web Services resources in CICS Bundles

	Chapter 9. Service Component Architecture and CICS Cloud in CICS TS V5.2
	9.1 Service Component Architecture
	9.1.1 Introduction to SCA

	9.2 CICS Transaction Server Implementation of SCA
	9.2.1 BUNDLE resources
	9.2.2 Creating services from existing CICS applications
	9.2.3 Deploying SCA services
	9.2.4 RDz SCA tooling
	9.2.5 Creating and deploying an SCA service from an existing CICS application

	9.3 Web services in CICS Cloud

	Chapter 10. Hints and tips
	10.1 Custom handlers programs for pipelines
	10.1.1 A simple example handler program
	10.1.2 Handling state information
	10.1.3 Propagating user identity tokens

	10.2 The SOAP fault API
	10.2.1 How to create a SOAP Fault in an application
	10.2.2 Parsing SOAP Fault messages in CICS TS V5.2

	10.3 Handling variably recurring XML elements
	10.3.1 In-lined variably recurring data
	10.3.2 Container-based variably recurring data: inbound
	10.3.3 Container-based variably recurring data: outbound

	10.4 Handling undefined XML (xsd:any)
	10.5 Handling enumerated XML constructs
	10.6 Modifying generated WSDL
	10.6.1 Background to MTOM/XOP
	10.6.2 Support for xsd:base64Binary and MTOM/XOP
	10.6.3 Mapping a single field as binary data with DFHLS2WS
	10.6.4 Handling variable length values and white space

	10.7 WSDL types not supported by DFHWS2LS
	10.8 Problem determination
	10.8.1 Problems using DFHWS2LS and DFHLS2WS
	10.8.2 Using the execution diagnostic facility to debug Web services
	10.8.3 Debugging CICS SFR applications
	10.8.4 Runtime SOAP validation

	10.9 XML parsing in CICS application
	10.9.1 XML Toolkit for z/OS
	10.9.2 COBOL high-speed XML parser
	10.9.3 CICS API: EXEC CICS TRANSFORM

	Chapter 11. COBOL samples
	11.1 Introduction
	11.2 Example 1: The <xsd:any> tag
	11.2.1 The WSDL
	11.2.2 Web Services Assistant: z/OS
	11.2.3 The COBOL program
	11.2.4 CICS resource definitions

	11.3 Example 2: The <choice> tag
	11.3.1 The WSDL
	11.3.2 Generation of COBOL and CICS artifacts
	11.3.3 The COBOL program
	11.3.4 CICS Resource Definitions

	11.4 Example 3: minoccurs and maxoccurs
	11.4.1 Generation of COBOL and CICS artifacts
	11.4.2 The COBOL program
	11.4.3 CICS resource definitions
	11.4.4 Results of calling the service

	11.5 Example 4: OCCURS DEPENDING ON Web Service Provider
	11.5.1 COBOL Program CATOCCUR
	11.5.2 Generating the Web Service resources
	11.5.3 Defining resources to CICS
	11.5.4 Testing the service and results

	Part 2 Performance
	Chapter 12. Performance introduction
	12.1 Measuring Web service performance
	12.1.1 Key performance indicators
	12.1.2 Scenarios
	12.1.3 Transactions involved in Web service requests
	12.1.4 Workloads
	12.1.5 Running the scenario tests

	12.2 Collecting CICS Monitoring Facility data
	12.3 Interpreting CMF performance data

	Chapter 13. Environment overview
	13.1 Architectural overview
	13.2 Hardware and operating system configuration
	13.3 Web service provider configuration
	13.3.1 Generate the provider WSBind and WSDL artifacts
	13.3.2 Create a provider PIPELINE
	13.3.3 Create a TCPIPSERVICE resource definition
	13.3.4 Install the Web service CICS resource definitions
	13.3.5 User provider application
	13.3.6 User provider application CICS resource definitions

	13.4 Web service requester configuration
	13.4.1 Generate the requester WSBind artifacts
	13.4.2 Create a requester PIPELINE
	13.4.3 Create requester URIMAP resource definitions
	13.4.4 User requester application

	13.5 TPNS definitions
	13.5.1 Network
	13.5.2 Message deck

	Chapter 14. Scenarios
	14.1 Scenarios overview
	14.2 Baseline
	14.2.1 Baseline scenario description
	14.2.2 Provider CICS Monitoring Facility data analysis
	14.2.3 Provider RMF data analysis
	14.2.4 Provider summary
	14.2.5 Requester CMF data analysis
	14.2.6 Requester RMF data analysis
	14.2.7 Requester summary

	14.3 Scalability as a function of connected clients
	14.3.1 Client scalability scenario description
	14.3.2 Client scalability scenario provider results
	14.3.3 Client scalability scenario requester results
	14.3.4 Client scalability scenario conclusions

	14.4 Scalability as a function of inbound request rate
	14.4.1 Request rate scalability scenario description
	14.4.2 Request rate scalability scenario provider results
	14.4.3 Request rate scalability scenario requester results
	14.4.4 Request rate scalability scenario conclusions

	14.5 Varying payload size
	14.5.1 Varying payload size scenario description
	14.5.2 Varying payload size scenario provider results
	14.5.3 Varying payload size scenario requester results
	14.5.4 Varying payload size scenario conclusions

	14.6 Varying payload size using a channel
	14.6.1 Varying payload size with a channel scenario description
	14.6.2 Varying payload size with a channel scenario provider results
	14.6.3 Varying payload size with a channel requester results
	14.6.4 Varying payload size with a channel scenario conclusion

	14.7 Varying payload complexity
	14.7.1 Varying payload complexity scenario description
	14.7.2 Varying payload complexity scenario provider results
	14.7.3 Varying payload complexity scenario requester results
	14.7.4 Varying payload complexity scenario conclusions

	14.8 HTTP persistent connections
	14.8.1 HTTP persistent connections scenario description
	14.8.2 HTTP persistent connections scenario provider results
	14.8.3 HTTP persistent connection scenario requester results
	14.8.4 HTTP persistent connections TCP/IP results
	14.8.5 HTTP persistent connections scenario conclusions

	14.9 Secure Web services using SSL
	14.9.1 SSL scenario description
	14.9.2 SSL scenario provider results
	14.9.3 SSL scenario requester results
	14.9.4 SSL scenario conclusions

	14.10 SSL with persistent connections
	14.10.1 SSL with persistent connections description
	14.10.2 SSL with persistent connections provider results
	14.10.3 SSL with persistent connections requester results
	14.10.4 SSL with persistent connections conclusions

	14.11 Overall conclusions

	Part 3 Appendixes
	Appendix A. Sample Web services
	Preparation of your RDz environment
	Loading an .ear file into a new or existing project
	Description of examples A1–A3
	The XML any pass-through Web service example
	The XML choice Web service example
	The XML occurs Web service example

	Appendix B. Sample programs
	Program to call <xsd:any> example service
	WSDL - <xsd:any>
	Request Language Structure - inlinI01
	Response Language Structure - inlinO01
	Program to call <xsd:choice> example service
	WSDL <xsd:choice>
	Request Language Structure - choicI01
	Response Language Structure - choicO01
	Program to call minOccurs/maxOccurs example service
	WSDL - minOccurs/maxOccurs
	Request Language Structure - redboI01
	Response Language Structure - redboO01
	Program to implement OCCURS DEPENDING service
	Request Language Structure “OCCURIN”
	Response Language Structure “OCCUROUT”
	WSDL for OCCURS DEPENDING ON

	Program to implement PUT CONTAINER APPEND service
	Request Language Structure VARIN01
	Response Language Structure VAROUT01
	WSDL for PUT CONTAINER APPEND service

	Program to implement GET CONTAINER FROMBYTE requester service
	Request Language Structure REQIN01
	Response Language Structure RSPOUT01
	WSDL for GET CONTAINER FROMBYTE requester service

	AMODE(64) assembler program to invoke a Web service

	Appendix C. Additional material
	Locating the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

