
 

 

 

APPLICATION OF DEEP LEARNING FOR UNDERSTANDING DYNAMIC WELL 

CONNECTIVITY 

 

A Thesis 

by 

SHYAM KAREEPADATH SAJEEV  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

Chair of Committee,  Akhil Datta-Gupta 

Committee Members, Michael J. King 

 Debjyoti Banerjee 

Head of Department, Jeff Spath 

 

August 2020 

Major Subject: Petroleum Engineering 

Copyright 2020 Shyam Kareepadath Sajeev



 

ii 

 

 ABSTRACT 

 

  Artificial intelligence and machine learning have transformed many industries. 

However, the oil and gas industry is lagging in AI adaption. Currently, with the low oil 

prices and a considerable performance gap in the oil and gas industry, companies are 

looking for new ways to improve their operational efficiency. We have a promising 

proposition to apply state-of-the-art deep learning algorithms to reservoir management to 

understand the dynamic well-connectivity of reservoirs. 

           The deep learning algorithms, Long Short-Term Memory (LSTM) and Gated 

Recurrent Network (GRU) have a successful history in applying to many complex 

sequential and time series problems. In this thesis, we formulate the problem as a 

supervised deep-learning problem and use the LSTM and GRU algorithms to train a 

model that could identify well-connectivity. We model a single layer LSTM and GRU 

model with cell states (memory cells) to match the historical production rate by 

providing the input as the injection rate. For training purposes, we split the available data 

into training, validation, and testing datasets. We have also applied the Early Stopping 

criteria to prevent the underfitting and overfitting of the model. In the Early Stopping 

criteria, we monitor the error of the model in the validation dataset and select the model 

with minimum error in the validation set. The hyperparameters, cell size and window 

size, are optimized by the Grid Search method.  

           Although deep learning models work well, they are black-box models and do not 

provide any interpretability between the input features and the outputs. So, we have 
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applied the Permutation Feature Importance method for the model interpretability. This 

method calculates the reservoir connectivity by permuting or shuffling the inputs (water 

injection rates) one by one to the trained model and calculating the increase in the root 

mean square error (RMSE). 

           The deep learning workflow is applied to two cases: First, to a synthetic high 

permeability streak reservoir for proof of concept; second, to a field-scale model of the 

Brugge reservoir. The normalized streamline flux allocation factor validates the reservoir 

connectivity from the deep learning model. 
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CHAPTER I  

INTRODUCTION  

 

With the advancement in learning algorithms, accelerated growth in data 

acquisition and storage capacity, and cheap and readily available on-demand (Cloud 

Computing) hardware (CPUs and GPUs) has fueled the growth of the Artificial 

Intelligence (AI) era. AI is transforming several industries, including financial, 

marketing, automotive, health care, and insurance. AI has become so crucial that many 

of us use it on a daily basis. These specialized algorithms have the power to analyze 

complex uninterpretable data and extract patterns into actionable intelligence. Some of 

the notable applications of AI include email spam filters, product recommendation 

systems, facial recognition, self-driving cars, language translation, voice search, and 

voice-activated assistants. (Barbounis et al. 2006; Hsieh et al. 2011; LeCun et al. 2015; 

Goodfellow et al. 2016; Chui et al. 2018) 

AI is the ability of computers to perform tasks that usually require human 

intelligence. One of the main reasons for the popularity of AI is the progress of Machine 

Learning, Deep Learning, and Reinforcement Learning algorithms. Deep learning is 

based on the specialized network called the neural network, which is inspired by the 

human brain and tries to mimic the human brain (McCulloch & Pitts 1943) 

1.1 Motivation 

According to the Mackenzie report, the oil and gas industry has a performance 

gap of $200 billion in annual revenue. With historic low oil prices, the oil and gas 
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companies are looking to improve their operational efficiency and enhance the return on 

asset investments. Artificial intelligence and machine learning provide ways to unlock 

production potential for complex reservoirs and improve facilities' operational 

efficiency. If properly applied to a field or facility, AI can yield as high as 30-50 times 

the investments in the first few months of implementation (Brun et al. 2017). 

 The oil and gas industries have a 69% potential incremental value from AI over 

other analytic techniques. Still, the current AI adaption to the oil and gas industry is 

lagging (Chui et al. 2018). There is a need for applications of machine learning and deep 

learning projects to the oil and gas industry to improve efficiency and reduce operational 

costs. The AI business value proposition and easiness of implementation vary from 

project to project. One of the challenging and high business value propositions of AI is 

in the application of reservoir management (Haroon, S. 2018). This thesis focuses on the 

application of state-of-the-art deep learning techniques to reservoirs under 

waterflooding. 

This research provides a workflow that could quickly identify unground 

connectivity between the producer and the injector. The connectivity is crucial for the 

reservoir management of fields.  

1.2 Literature review: Machine learning in Oil and Gas Industry 

In this section, we give a literature review of some of the applications of machine 

learning in the oil and gas industry. Machine learning has been applied in several areas 

of the oil and gas industry, both as classification and regression problems. 
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In geoscience, the deep neural network model has been successfully applied to 

seismic datasets and well logs. The machine learning is formulated as a supervised 

classification problem for well log correlation and seismic fault interpretations (Maniar 

et al. 2018; Carpenter 2019) 

In drilling, the use of machine learning models has helped automate and increase 

the efficiency of the drilling. Machine learning has been applied as both supervised and 

unsupervised learning in the drilling process. Data is collected in real-time from 

underground sensors, to model the pore pressure and to identify the lithology. They are 

enabling near real-time optimization of drilling parameters (mud weight, weight on bit, 

and rate of penetration) to enhance the performance. Machine learning has also been 

applied to the geo-steering process, which is analogous to a self-driving car. (Parshall 

2018; Pollock et al. 2018)  

In production, machine learning methods have been successfully applied to 

maintenance prediction, equipment failure, identifying well-events, slug monitoring, and 

has been able to save time and increase the efficiency of production operations (Sneed 

2017; Parshall 2018; Jansen Van Rensburg et al. 2019). A recurrent neural network 

(RNN) and artificial neural network (ANN) were applied to production time-series data 

for slug monitoring, and they observed RNN performed better than ANN (Omrani et al. 

2019). In well-event identification, long short term memory (LSTM) and convolutional 

neural network (CNN) were used as anomaly detection models in time-series data to 

identify the well-events (Elichev et al. 2019).      
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Ben et al. (2020), used deep learning methods to predict real-time hydraulic 

fracturing pressure. They use expanding windows as training methods for time series 

data. First, several minutes of data were used to train the machine learning model to 

predict a few minutes of wellhead pressure. When the observed wellhead pressure is 

available for the initial prediction part, they retrain the machine learning model to whole 

data (initial several minutes + actual data of initial prediction) to predict the next few 

minutes. This process is continued throughout the hydraulic fracturing process. A 

combination of CNN-RNN and stacked RNN is used as the deep learning model.   

In reservoir engineering, machine learning is used to accelerate reservoir 

simulation and the history matching process. History matching of a reservoir model is 

the process of tuning the uncertain model parameters to match the observed field data. It 

is an ill-posed problem i.e., the number of uncertain model parameters required to be 

updated is more than the number of production data points available. Hence the solution 

is non-unique, and multiple equally good solutions are possible for different sets of 

model parameters. History matching is an iterative process and requires several forward 

simulations to match the data points. As the complexity of the reservoir model and the 

number of data points increases, the computational time increases drastically. Depending 

upon the model, a full physics reservoir simulation can take several hours to days, and 

the history matching process may take weeks to months to be completed. 

Extensive research is performed in accelerating reservoir simulation: Streamline 

Simulation (Datta-Gupta & King, 2007), Upscaling and Multiscale method (Efendiev & 

Hou, 2009; King et al. 2005), and reduced-order modeling (Cardoso & Durlofsky, 2010). 
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Then there is another class of method known as Data-Driven Methods, which does not 

require prior knowledge of the geological model and is built from the observed 

production data. Capacitance Resistance Model (CRM) (Sayarpour et al. 2009) is a data-

driven method proven successful in waterflood applications. In CRM, the productivity 

index and allocation factor are assumed to be a constant, while in reality it can change 

(Guo et al. 2019). 

Machine learning is used as a surrogate or proxy model for the physics-based 

simulation to speed up the computational process. In the compositional simulation, 

machine learning is used for solving the phase equilibrium problem (Gaganis & 

Varotsis, 2012). Cao et al. (2016) have used ANN for the forecasting of unconventional 

wells. Sagheer & Kotb (2019) have used a stacked LSTM to forecast the production 

from a conventional reservoir. The time-series data is transformed into stationary data to 

remove the increasing or decreasing trend in the preprocessing step. The LSTM model's 

input is the oil production rate from previous time steps, and it is used to predict one-

time step at a time (t+1). The genetic algorithm is used to tune the hyperparameters of 

the LSTM model. 

Artun (2016), has used ANN to map the injection rates to a production rate for 

given producers. The producer-injector interaction is derived from the weight from the 

ANN network (Olden & Jackson, 2002). The ANN was able to history match the 

production data and gives connectivity between the injector and producer. 
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1.3 Research Objective and Thesis Outline 

In this research, we aim to develop a deep learning-based workflow for reservoir 

under waterflooding that can capture the complex reservoir physics to identify the 

dynamic well connectivity accurately. The permutation feature importance, ML model 

interpretability method, is used to understand the dynamic well connectivity of the 

injector-producer pair. Finally, the results from the deep learning workflow is validated 

with the streamline simulation method. 

In Chapter II, we provide the background and training methodology behind state-

of-the-art deep learning algorithms used for time series data. We also cover model 

interpretation methods to interpret the black-box deep learning algorithm. 

In Chapter III, the deep learning algorithms are applied to a synthetic reservoir 

case and demonstrate the capabilities of the algorithm for accurate future prediction and 

dynamic well-connectivity. The streamline simulation results validate the connectivity 

derived from deep learning workflow. 

In Chapter IV, the deep learning algorithms are applied to the Brugge Reservoir 

and demonstrate the capabilities to understand dynamic well-connectivity. The 

connectivity derived from deep learning workflow is validated with streamline 

simulation results. 

Finally, in Chapter V, the research is concluded with a summary of the key 

findings. Recommendations and proposals for further research are also presented.  
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CHAPTER II  

METHODOLOGY AND FORMULATION 

 

Machine learning is a subset of artificial intelligence (Chollet 2018). It can be 

generally classified as supervised learning, unsupervised learning, and reinforcement 

learning. Supervised learning problems involve training in a labeled dataset (input and 

output are already defined). They can be further classified as regression problems 

(continuous output function) and classification problems (discrete output function) based 

on the output. Unsupervised learning problem involves training without a pre-existing 

labeled dataset, and it finds unknown patterns in the dataset. Unsupervised learning 

problems can be classified into clustering and dimensionality reduction problems 

(Chollet 2018). Reinforcement learning involves AI agents finding the optimal way to 

accomplish a goal to maximize reward (Salian 2019). In Reinforcement learning, there is 

no label input-output dataset; instead, the AI agent learns from the trial and error 

process, and the agent is rewarded or penalized based on the outcome of the actions. The 

overall goal of the AI agent is to maximize the reward (Kaelbling et al. 1996).  

2.1 Background of Artificial Neural Network 

Deep learning is a subset of machine learning based on the artificial neural 

network, which emphasizes the learning of feature or representation through successive 

layers. The neural network is a powerful feature extractor and learns hierarchically. For 

example, in an image recognition problem, the first layer of neural networks would 

detect edges from the input pixel data. The second layer learns to detect parts of the 
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faces from the detected edges. The detected parts of the face are passed on to the next 

layer as input. In the final layer, using the different parts of the faces as input, it can try 

to recognize the faces. In this example, the neural network's hidden layer tries to extract 

a more prominent feature than the input and pass it on to the next layer. The learning 

hierarchy is from simple features to sophisticated features (Ng 2017). 

2.1.1 Architecture of Neural Network  

Figure 1 shows a biological neuron, the artificial neural network is inspired by 

biological neurons and tries to mimic the human brain (McCulloch & Pitts, 1943). It 

consists of several connected weighted neurons that try to learn the output-input 

relationship with the help of activation functions. ANN is essentially a function 

approximator, which can learn any complex function. The non-linearity of the ANN is 

introduced by the activation function. The common activation function used in deep 

learning are sigmoid, tanh, and rectified linear unit (ReLU). 

    

 

Figure 1 Biological Neuron: Signal flow from Dendrite (Inputs) to Axon (Output) 

(Vu-Quoc, 2018) 
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Figure 2 Architecture of an Artificial Neural Network 

 

A simple example of a two-layer (one hidden layer and one output layer) 

artificial neural network is shown in Figure 2. The x is the input feature vector, and y is 

the output vector. The W[1]and b[1] are the weights matrix and bias vector of the hidden 

layer. The W[2] and b[2] are the weights and bias of the output layer. Weights and bias are 

the trainable parameters of the network. They are adjusted in the training process to 

minimize the misfit between ŷ and the actual output.   

𝑧[1] = 𝑊[1]𝑥 + 𝑏[1]
 (1) 

𝑎[1] = 𝑔(𝑧[1]) (2) 

𝑧[2] = 𝑊[2]𝑎[1] + 𝑏[2]
 (3) 

𝑎[2] = 𝑔(𝑧[2]) (4) 

ŷ = 𝑎[2]
 (5) 

The g(x) is the activation function, a[1] is the output of the hidden layer and a[2] is the 

output of the output layer. The equation 1-5 shows the forward pass of the neural 
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network. The dimension of trainable parameters of the model are W[1] ∈  ℝ4×3, b[1]  ∈

 ℝ4×1, W[2] ∈  ℝ2×4 and b[2]  ∈  ℝ2×1 

 The activation function is one of the hyperparameters used in the neural network. 

It is essential to use a proper activation function for efficient learning of the network. 

Table 1 shows some of the popular activation functions the sigmoidal function, tanh, and 

rectified linear unit (ReLU). The activation function used depends upon the problem 

itself. We use the sigmoidal function for a binary classification problem because its 

outputs are between 0 and 1. But it is not commonly used in linear regression because, if 

we look at Figure 3 the derivative plot of the sigmoid function, the derivative is very 

small and converges to zero at both ends. Hence, the problem of vanishing gradient 

appears, and it would be hard to train. (Chollet 2018; Géron 2019; Kızrak 2020). 

 

Activation Functions Equations Range 

Sigmoidal Function 
𝜎(𝑥) =

1

1 + 𝑒−𝑥
 

[0,1] 

Hyperbolic Tangent  
tanh(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 ∓ 𝑒−𝑥
 

[-1,1] 

Rectified linear unit 

(ReLU) 

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 
[0,∞) 

Table 1 Activation Functions 
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                                (a)                                                                 (b)                                                                                        

 

                                                                        (c) 

Figure 3 Activation functions and their derivates (a) Sigmoidal Function (b) 

Sigmoidal Function (c) ReLU Function (Kızrak, 2020) 

 

2.1.2 Training Methodology: Backpropagation  

The neural network is trained by the backward propagation of error, which is an 

efficient way of calculating the partial derivative of cost function w.r.t to the model 

parameter. The cost function is defined as the misfit between the observed and predicted 

values. Then, an optimization algorithm is used to update the weights and bias of the 

model. Figure 4 shows the flow chart for ANN training. 

 



 

12 

 

Figure 4 Flow Chart of ANN training 

 

 

 
Define training, validation and 

testing set 

Feature Scaling 

Weight Initialization 

Forward Propagation 

Calculate Cost function 

Backpropagation 

Update weights and bias 

Error goal 
achieved? 

Trained model 
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In a supervised learning process, the data set is divided into training, validation, 

and test datasets. The data is then normalized to a mean of zero and a standard deviation 

of one. The normalization of the data is done for the efficient optimization of neural 

network training. The weights are initialized by Xavier's initialization (Glorot & Bengio 

2010). The weights of a layer are initialized from Gaussian distribution of mean zero and 

variance of 1/N, where N is the number input for the previous layer.  The correct 

initialization of weight is essential for the convergence in a reasonable number of 

iterations. Once weights are initialized, we calculate the model's prediction using the 

input features and calculate the loss function. The loss function is selected based on the 

problem. For classification problems, the cross-entropy loss function is generally used. 

For regression problems, Mean Square Error (MSE), Root Mean Square Error (RMSE), 

and Mean Absolute Error (MAE) are commonly used. The cost function is defined as the 

average of the loss function over all the training examples. Equation 6 shows an example 

of a cost function. The main objective during the training process is to minimize the cost 

function. The backpropagation is an efficient algorithm to calculate the partial 

derivatives of the cost function with respect to the model parameters (weights and bias) 

(Rumelhart et al. 1986). After calculating the required partial derivatives, an 

optimization algorithm, such as Gradient Descent or Adaptive Moment Estimation 

(Adam), is used for minimizing the cost function.    

𝐶(𝑋, 𝜃) =
1

2𝑁
∑ (𝑦�̂� − 𝑦𝑖)

2𝑁
𝑖=1  (6) 
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2.1.3 Overfitting and Underfitting 

Overfitting occurs when the model learns the training data so well that it captures 

the noise in the data. It leads to high variance and low bias for the model. Overfitting 

occurs when the model is excessively complicated. Overfitting could be overcome by 

• Getting more training data 

• Removing redundant features from the model  

• Adding Regularization to the cost function 

• Dropout  

• Early stopping of the training  

Underfitting occurs when the model is too simple to learn the training data. It 

leads to low variance and high bias for the model. Underfitting can be overcome by  

• Adding more features to the model  

• Increasing the complexity of the model  

Both underfitting and overfitting are bad for the model and have poor 

performance on the new data set. 

2.1.3.1 Early Stopping 

One of the challenges in training a neural network is to determine how long the 

model needs to train or the number of epochs (iterations). If we under-train the model or 

use a small number of epochs, the model will be underfitting. Similarly, if we over-train 

the model or use a large number of epochs, the model will be overfitting. One of the 

ways to overcome this problem is by implementing a stopping criterion for the training.  

Early stopping is a criterion used to stop the model training when the model starts to 
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overfit. For early stopping, the input dataset is divided into three subsets: a training set, a 

validation set, and a testing set. We initialize the number of epochs to be a very large 

number. While the model is training in the training dataset, we monitor the misfit, or the 

error, in the validation set. We stop training when the error starts to increase in the 

validation set, i.e., the model training is stopped when the model performance on the 

validation set stops improving (Chollet 2018; Brownlee 2019). 

 

 

 

 

 

 

 

 

Figure 5 Training dataset, Validation dataset and Test dataset 
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Figure 5 shows how the input dataset is split into training, validation, and testing. 

In Figure 6, the blue line represents the error of training set vs epoch, and the orange line 

represents the error of validation set vs epoch. Initially, both the training and validation 

error decreases show that the model is learning. Around epoch 100, the validation error 

starts to increase, which shows the model is trying to overfit the training dataset. So, we 

stop the training process and use the model at which the validation loss error starts to 

increase.  

2.3.1.2 Dropout 

 Dropout is a regularization technique in which nodes/units of neural network 

layers are randomly removed during training. Dropout is used to prevent overfitting of a 

neural network by reducing the dependency of inputs for each neuron in the network.  

So, neurons cannot rely on a single input, and the weights are spread out like the L2 

Figure 6 Error of Training dataset (Blue) and Validation dataset 

(Orange)  
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regularization technique. (Srivastava et al. 2014). Figure 7 shows an illustration of 

Dropout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Illustration of dropout  

 

2.2 Networks for Time Series data 

The feedforward Neural Network shown in Figure 2 is acyclic. One of the main 

limitations of feedforward Neural Network is its inability to learn from time series or 

sequential datasets. This can be theoretically overcome by using the Recurrent Neural 

Network (RNN), which is a cyclic neural network. RNNs are the deepest Neural 

Networks of all and are powerful compared to feedforward neural networks 

(Schmidhuber, 2015). In practice, RNN can learn short-term data dependencies, while 

learning long-term data dependencies is challenging for RNN because of the vanishing 

gradient or exploding gradients problem during the backpropagation (Colah, 2015). This 

limitation of RNN is overcome by  

• Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)  

X 

Applying dropout 

X 

X 

X 
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• Gated Recurrent Unit (GRU) (Cho et al.,2014). 

2.2.1 Recurrent Neural Network 

RNN is a special kind of neural network with a memory of the past. RNN has an 

internal loop, which allows the network to flow information from the past. So, RNN has 

two inputs: the data at the current time step and important information passed from the 

previous timestep. It also has one more advantage over the neural network, i.e., it can 

have different input and output sizes by masking and padding. The main limitation of 

RNN is in learning long term data dependencies (Vanishing Gradient) (Colah, 2015).  

Figure 8 shows the rolled and unrolled version of RNN. 

ℎ𝑡 = 𝜎ℎ(𝑊𝑥.  𝑥𝑡 + 𝑊ℎ. 𝑦𝑡−1 + 𝑏ℎ) (7) 

𝑦𝑡 = 𝜎(𝑊𝑦ℎ𝑡 + 𝑏𝑦) (8) 

Where ht is the hidden state  

 

 

 

 

 

 

 

 

Figure 8 Recurrent Neural Network (Colah, 2015) 
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2.2.2 Long Short-Term Memory Networks 

LSTM is a special kind of RNN that can learn long-term data dependencies. 

Apart from the output from the previous time step, there is another connection between 

the units called the cell state. This connection acts as an easy path for information to 

flow between units. Only minor linear interactions happen to the cell state. So it is very 

easy for the information to flow along unchanged. The information is added to the cell 

state with the help of gates. Gates are a neural network layer with a sigmoidal activation 

function, and [0,1] is the range of output. So, the value of one means all the information 

is passed to the cell states for the current timestep, while a value of zero means nothing 

is passed to the cell state (Colah, 2015).     

Figure 9 shows the architecture of LSTM. LSTM has many real-world 

applications. It is well suited for classification, processing, and prediction problems. It is 

used in language translation, auto-completion of text, speech recognition, handwriting 

recognition, anomaly detection and recently has been used for time series data 

forecasting. 

 

 

Figure 9 LSTM Architecture (Colah, 2015) 
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LSTM architecture consists of three gates (Colah, 2015):  

• Forget Gate: Figure 10 shows the Forget Gate (ft), it determines how 

much of the redundant information to erase from the output of the 

previous time step (h t-1) based on the current time step input (xt). In the 

Forget Gate, information is processed by the sigmoidal activation 

function, shown in Equation 9 

 

 

 

 

 

 

Figure 10 Forget Gate (Colah, 2015) 

 

 

                         𝑓𝑡 = 𝜎(𝑊𝑓𝑥.  𝑥𝑡 + 𝑊𝑓ℎ. ℎ𝑡−1 + 𝑏𝑓) (9) 

• Input Gate: The Input Gate decides what new information needs to be 

stored in the cell state (memory) from the current input. This is a two-step 

process: first, the sigmoidal layer updates the input layer shown in Figure 

11 and second, the tanh layer updates the cell state shown in Figure 12. 

Equation 10 and 11 show the operation of the input gate 
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                         𝑖𝑡 = 𝜎(𝑊𝑖𝑥.  𝑥𝑡 + 𝑊𝑖ℎ. ℎ𝑡−1 + 𝑏𝑖) (10) 

                         Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥.  𝑥𝑡 + 𝑊𝑐ℎ. ℎ𝑡−1 + 𝑏𝑐) (11) 

Now we update the cell state with the information from the Forget Gate 

and Input Gate 

 

 

 

 

 

 

 

                         𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ĉ𝑡  (12) 

• Output Gate: The output gate decides what to output based on the updated 

cell state, current input and previous output. The output is based on the 

cell state but is filtered by the output gate. The filtered value is then 

Figure 11 Input Gate (Colah, 2015) 

Figure 12 Updating the cell state (Colah, 2015) 
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multiplied with tanh (Ct) to make sure the output is in between -1 and 

1.The Output Gate is shown in Figure 13. 

 

 

Figure 13 Output Gate (Colah, 2015) 

 

                         𝑜𝑡 =  𝜎(𝑊𝑜𝑥.  𝑥𝑡 + 𝑊𝑜ℎ. ℎ𝑡−1 + 𝑏𝑜) (13) 

                         ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (14) 

The LSTM output is the duplicate of the short-term state (ht): yt=ht 

The Equations 9-14 show the fundamental equations of the LSTM model. The trainable 

parameters of the LSTM model are 

• Input Weights: 𝑊𝑓𝑥 , 𝑊𝑖𝑥 , 𝑊𝑐𝑥, 𝑊𝑜𝑥 ∈  ℝ𝑁×𝑀 

• Recurrent Weights: 𝑊𝑓ℎ , 𝑊𝑖ℎ , 𝑊𝑐ℎ , 𝑊𝑜ℎ ∈  ℝ𝑁×𝑁 

• Bias: 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜 ∈  ℝ𝑁 

Where N is cell size and M is the number of inputs. 

Sequence networks such as RNN, LSTM, and GRU are trained by unrolling the 

network through time and using backpropagation; this is called backpropagation-
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through-time (Géron 2019). A modified version of backpropagation-through-time called 

truncated backpropagation in time is also used for training. 

2.2.3 Gated Recurrent Unit 

The Gated Recurrent Unit is a simplified variant of the LSTM (Cho et al.,2014). 

Figure 14 shows the architecture of GRU network. The GRU has a more parsimonious 

architecture than the LSTM network; the GRU has fewer parameters to train than the 

LSTM for a given problem. The LSTM has two connections between cells (previous 

output and cell state memory). In contrast, the GRU has only one connection between 

units (previous output). There are only two gates for the GRU: The Update Gate, and the 

Forget Gate (Colah 2015; Chollet 2018; Géron 2019). 

 

 

 

 

 

 

 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥.  𝑥𝑡 + 𝑊𝑧ℎ. ℎ𝑡−1 + 𝑏𝑧) (15) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥.  𝑥𝑡 + 𝑊𝑟ℎℎ𝑡−1 + 𝑏𝑟) (16) 

ĥ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥.  𝑥𝑡 + 𝑊ℎ𝑟 . 𝑟𝑡 ∗ ℎ𝑡−1 + 𝑏ℎ) (17) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ĥ𝑡 (18) 

Figure 14 GRU Architecture (Colah, 2015) 
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The Equations 15-18 show the fundamental equations of the GRU model. The trainable 

parameters of the GRU model are 

• Input Weights: 𝑊𝑧𝑥 , 𝑊𝑟𝑥 , 𝑊ℎ𝑥 ∈  ℝ𝑁×𝑀 

• Recurrent Weights: 𝑊𝑧ℎ , 𝑊𝑟ℎ , 𝑊ℎ𝑟 ∈  ℝ𝑁×𝑁 

• Bias: 𝑏𝑧 , 𝑏𝑟 , 𝑏ℎ ∈  ℝ𝑁 

Where N is cell size and M is the number of inputs. 

2.2.4 Training Strategy for Time Series Data 

The cross-validation strategies are different for problems with time-series data. 

The traditional K-fold cross-validation techniques do not work properly because of the 

temporal dependencies in the data. A sliding window and expanding window technique 

can be used for time-series data. Figure 15 shows the sliding window and expanding 

window. In the sliding window approach, the training dataset size (window) is fixed and 

is tested against a fixed window size. The training data set is continuously growing in an 

expanding window approach and tested against a fixed data set. Generally, we start with 

an expanding window for training and continue until the window size has grown 

sufficiently large and then switch to a sliding window (Bell 2019; Yang 2019) 

 

 

 

 

 

 

Available Data Available Data 

Sliding window Expanding window 

Training  Testing 

Figure 15 Sliding window and Expanding window 
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2.2.4 Hyperparameter Optimization 

A machine learning model consists of model parameters and hyperparameters. 

The model parameters, such as weights and bias, are tuned during the training process to 

match the output data. The model parameters are initialized randomly at the start of 

training and then optimized during the training process. There are some parameters that 

need to be defined before the training starts and cannot be tuned during the training 

process; these are called hyperparameters. Hyperparameters are the high-level 

parameters that decide on the optimization process and the architecture or complexity of 

the model. There are many examples of hyperparameters: 

• Learning rate  

• Number of Epochs 

• Hidden layer 

• Hidden Units 

• Activation Function 

The tuning process of hyperparameters is as follows (Chollet 2018) 

1. Select hyperparameters based on intuition or randomly 

2. Build the machine learning model based on the hyperparameters 

3. Train the model on the training dataset and record the performance on the 

validation dataset 

4. Repeat the process for different values of hyperparameters 
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The hyperparameters are selected from the best performing model on the validation set. 

There is a systematic approach for tuning the hyperparameters. Some of the techniques 

used for hyperparameter tuning are 

• Grid search 

• Random search 

• Bayesian Optimization 

• Evolutionary Algorithm 

2.3 Model Agnostic Interpretation Methods 

2.2.1 Why model Interpretability? 

Regardless of the problem we are trying to solve, the machine learning 

interpretability is always preferred. It is important for the model to give insights or 

intuition between the input and the output data so that it is easy for the general audience 

to understand and better accept the machine learning model. However, in reality, most of 

the machine learning models that we use nowadays are black-box models and are not 

easily interpretable. Hence, a model agnostic interpretation model is necessary to make 

sense of the black-box model. 

For many problems where we do not have much understanding, with the use of 

opaque machine learning models we were able to get good results. However, the 

algorithm's main contribution is when we can explain why things are happening along 

with the predictions. The model interpretation helps us to find the hidden scientific 

information within the data, which helps us to gain knowledge and bring trust to the 

prediction.   
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The model accuracy vs. model interpretability trade-off explains that a complex 

model used to solve a complex problem is hard to interpret (Kuhn & Johnson, 2013). 

The model's accuracy or performance is usually increased by adding more features or 

increasing the complexity of the model; as the model's complexity increases, the model's 

interpretability decreases. For example, a logistic regression or decision tree model is 

easy to interpret but does not provide an excellent performance or accuracy to a complex 

problem. On the other hand, complex models like ensemble models (Random forest, 

XGboost), a deep neural network works well with real problems but does not provide a 

straightforward interpretation from the model. Hence, an interpretation method is needed 

to be applied to a complex trained model (Molnar 2019).  

Molnar (2019) has explained model interpretation methods in detail. Some of the 

standard model interpretation methods used are 

• Permutation Feature Importance (Brieman 2001; Fisher et al. 2019) 

• Shapley Additive exPlanations (SHAP) (Lundberg & Lee 2017) 

• Local Interpretable Model-agnostic Explanation (LIME) (Ribeiro et al. 

2016) 

• Global surrogate 

• Partial Dependence Plot (PDP) 

• Individual Conditional Expectation (ICE) 

    2.2.1 Permutation Feature Importance 

Brieman (2001) introduced the concept of permutation feature importance 

method for the random forest. Later, based on the same idea Fisher et al. (2019) 
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introduced a model interpretation method of permutation feature importance. This 

method works on a simple idea. It measures the increase in model prediction error when 

permuting the feature (Molnar 2019). The original prediction error is compared to the 

permuted model prediction error for each feature. If the feature is important, the 

permutation of that feature will increase the model prediction error. Similarly, if the 

feature is not important, then the permutation of the feature will not change the model 

prediction error from the trained model.  Figure 16 shows an illustration of calculating 

reservoir connectivity by permutation feature importance.  

 

 

Figure 16 Reservoir Connectivity by Permutation Feature Importance 
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CHAPTER III  

APPLICATION TO A SYNTHETIC STREAK RESERVOIR 

3.1 Model Description 

The deep learning algorithms are applied to a synthetic reservoir case for proof of 

concept. The synthetic case used is taken from Sayarpour et al. (2007) and Albertoni et 

al. (2003), with modification in the relative permeability table. The streak reservoir is a 

two-dimensional reservoir model with four producers and five injectors. The 

permeability field is shown in Figure 17; there are two high permeability connections 

between injector and producer, I1-P1 1000 mD and I3-P4 500 mD. Everywhere else, the 

permeability is constant 5 mD.  The producers are at constant BHP constraint, and the 

injectors are at a rate constraint. Table 2 shows the model description for the reservoir. 

The reservoir model is simulated using a commercial reservoir simulator (Eclipse) to get 

the production response. It is incompressible and the voidage replacement ratio is 1.008. 

 

 
Figure 17 Streak reservoir permeability 
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Model Description  
 

Grid Block Number  31 x 31 x 1  

Grid Block Size 80 x 80 x 65 ft  

Reservoir Permeability  

P1-I1 1000 mD  

P4-I3 500 mD  

  5 mD  

Reservoir Porosity  0.18  

Producer BHP Constraint 250 psia  

Injector-Producer Distance 800 ft  

Table 2 Model description for streak reservoir 

 

 

Figure 18 Plot of water injection rate 

 

Figure 18 shows the water injection rates for the synthetic case. The water 

injection data is taken from Sayarpour et al. (2007). A varying water injection scenario is 
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used to capture the injection signal at producer; the injection profile is for approximately 

eight years.  

3.2 Exploratory Data Analysis 

Figure 19 shows the box and whisker plot of the injection rates for the five 

injectors. The injector I1 is most varying, and injector I3 is the least varying. There is a 

difference of more than 500 bbl/day between the average of the highest and the lowest 

injector.  

 

 

                  Figure 19 Box and whisker plot of injection rates 

 

Pearson correlation coefficient is used to understand how well the injection data 

and production response are correlated to each other. Equation 19 shows the Pearson 

correlation coefficient and it measures the linear correlation between two variables. A 

coefficient of 1 means a perfect positive correlation, -1 means perfect negative 

correlation, and 0 means no linear correlation.  
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𝑟𝑥𝑦 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�))𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1  √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

 (19) 

 

 

Figure 20 Correlation matrix of input and output data 

 

Rank 
Cross 

Correlation 
Value  

 

1 P1-I1 0.97 High Perm 

2 P2-I4 0.92  

3 P4-I3 0.70 High Perm 

4 P3-I2 0.61  
Table 3 Connectivity ranking from cross correlation 

 

Figure 20 shows the correlation matrix of injection rates and liquid production 

rates. The cross-correlation coefficient was able to detect the two high permeability 

streak P1-I1 and P4-I3 in top 4 connectivity, but not in the correct order. Table 3 shows 
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the connectivity list. The cross-correlation with time lagged injection rate is shown in 

Figure 21. This plot shows that even with time lag simple cross correlation was unable to 

identify the connectivities correctly. We will compare the connectivities from cross-

correlation to the connectivities from the physics-based streamline simulation. 

 

 

Figure 21 Cross-correlation with time lag 

 

3.3 Training 

Problem Statement Prediction of future liquid production rate for all producers 

given the future water injection rate, and the history of liquid production rate, and water 

injection rate. The model is then used to understand injector-producer interactions. 

An LSTM and GRU model are trained. The input variable is the injection rate, 

which is trained to match the liquid production rate. Internally, the LSTM and GRU 

model passes the liquid production rates (outputs) from the previous time step to the 

current time step through the connection. Figure 22 shows training process. 
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For the training process, the dataset is split into training, validation, and testing 

dataset. A single layer GRU and LSTM model is implemented in python using Keras 

and TensorFlow framework (Chollet 2018). Root Mean Square Error (RMSE) of the 

observed and predicted value is selected as the performance metrics/ objective function. 

Weights are updated through the backpropagation of error to calculate the gradients. The 

Adaptive Moment Estimation (ADAM) optimizer is used to minimize the objective 

function. The hyperparameters for the model are optimized by using the Grid Search 

method. Several models are trained for different hyperparameters: cell size and window 

size. The model with minimum RMSE is selected as the optimal model. 

 

 

Figure 22 Training Process 
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3.4 Results and Discussion 

3.4.1 Hyperparameter Optimization 

The hyperparameters for the LSTM and GRU network can be classified into two 

types. The first type are the hyperparameters that affect the architecture of the model. 

These are cell size (memory) and window size. The second type are the hyperparameters 

that affect the learning algorithm. These are learning rate, number of epochs, and 

activation function. We optimize the number of cell size and window size by the Grid 

Search method and the number of epochs by the Early Stopping method. We do not 

optimize the learning rate because the training process does not take much time (less 

than a minute), with the default learning rate of 0.001. The activation function is also set 

to be the tanh activation function (default). 

 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

Figure 23 Grid Search Hyperparameter Optimization (a) LSTM (b) GRU 

 

Figure 23 shows the grid search optimization of LSTM and GRU network. The 

optimal model for LSTM is at cell size 5 and window size 6 with RMSE of 242 bbl/day. 

The optimal model for GRU is at cell size 4 and window size 5 with RMSE of 136 

bbl/day. Since the GRU model outperforms the LSTM model for this case, we select the 

GRU model for further analysis. 
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Figure 24 Diagnostic plot of GRU model: Cost function vs Epoch, Training (Blue) 

and Validation (Red)  

 

 

Figure 25 GRU model description 

 

Figure 24 shows the diagnostic plot of the GRU model. We can see that both the 

training error (blue line) and validation error (red line) decreases with the number of 

iterations. This shows that the model is a well-trained GRU model. Figure 25 shows the 

model description of the GRU model. It has a total of 140 trainable parameters. 
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3.4.2 Liquid Production Rate Forecasting 
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(b) 
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(c) 

 

 

 

 

 

 

 

 

 

                                                         

(d) 

Figure 26 Liquid production rate prediction (a) Well P1 (b) Well P2 (c) Well P3 (d) 

Well P4 
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Figure 26 shows the liquid production rate forecasting. The GRU models have 

good fitting in the training data and were able to forecast the rates. For well P2 there is a 

small misfit at the end of the prediction.   

3.4.3 Reservoir Connectivity by Permutation Feature Importance 

The reservoir connectivity is inferred from the trained GRU model by using the 

permutation feature importance method. The contribution of injector I to producer P is 

measured by the increase in error (RMSE) with respect to original error (RMSE) when 

permuting the input data of the injector I to the model. Table 4 shows the increase in 

RMSE of GRU model when permuting injectors. Table 5 shows the top four 

connectivities from the permutation importance method. Both the high permeability 

connections P1-I1 and P4-I3 are captured by this method.  

 

 

Table 4 Increase in RMSE of GRU model when permuting injectors 

 

Rank 
Machine 
Learning 

Value  

 

1 P1-I1 931 High Perm 

2 P4-I3 270 High Perm 

3 P4-I5 220  

4 P1-I2 201  
Table 5 Connectivity ranking by permutation feature importance 
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3.4.4 Validation of Reservoir Connectivity by Streamline Simulation 

Streamline simulation helps to understand the underground flow visualization of 

flux. Destiny, an inhouse streamline simulation software of the MCERI group, is used in 

this case for streamline tracing, flux allocation factor, and calculation of the minimum 

time of flight (TOF) of the top 10% streamline. Figure 27 shows the time of flight from 

injector and producer at a timestep.  

 

 

 

 

 

 

 

  

(a) 

  

 

 

 

 

 

 

(b) 

Figure 27 (a) TOF from injector (b) TOF from producer 
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Figure 28 shows the injector partition and producer partition. From the producer 

partition, we can see that Producer P4 is connected to 4 injectors (I2, I3, I4, and I5). 
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                  Figure 28 (a) Injector Partition (b) Producer Partition 
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Table 6 Time average streamline flux allocation factor 

 

 

Table 7 Time average normalized streamline flux allocation factor 

 

 

Table 8 Minimum TOF for fastest 10 percentage streamlines 

 

 

Table 9 Comparison of reservoir connectivity by different methods 

 

 

P1 P2 P3 P4

I1 1647 0 0 0

I2 895 0 254 113

I3 0 0 0 970

I4 82 182 0 520

I5 0 0 137 855

P1 P2 P3 P4

I1 1.00 0.00 0.00 0.00 1647

I2 0.71 0.00 0.20 0.09 1262

I3 0.00 0.00 0.00 1.00 970

I4 0.10 0.23 0.00 0.66 784

I5 0.00 0.00 0.14 0.86 992



 

44 

 

Table 6 and Table 7 shows the flux allocation factor and normalized flux 

allocation factor averaged over all the timestep in streamline simulation. This is the true 

or physics-based dynamic well connectivity of the streak reservoir. The normalized flux 

allocation factor removes the effect of absolute injection rates in the connectivity. The 

high permeability streak P1-I1 and P4-I3 are captured by both flux allocation factors. 

Table 8 shows the minimum time of flight required by the fastest 10 % of streamline for 

the breakthrough. Table 9 shows a comparison of the connectivity derived from physics-

based (streamline breakthrough, streamline flux allocation and normalized streamline 

flux allocation factor) and the connectivity from data-driven methods (cross-correlation 

and machine learning). The cross-correlation coefficient was not able to identify the top 

four connections even accounting  for the time lag between the injector-producer 

interactions. The top 4 connectivity derived from the machine learning method matches 

the flux allocation factor, but not in the exact order. The order of P1-I2 (flux allocation 

factor 892) and P4-I5 (flux allocation factor 855) connectivity are interchanged in the 

machine learning method and flux allocation factor. The comparison of the normalized 

flux allocation factor with machine learning connectivity would be more meaningful 

since it removes the effect of magnitude of the injection rates. The connectivity derived 

from the machine learning model exactly matches the normalized streamline flux 

allocation factor. Hence, the connectivity of the GRU model is validated. Figure 29 

shows the reservoir connectivity map from streamline and GRU model. 
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(a) 

                                                                        

 

(b) 

Figure 29 Reservoir Connectivity Map (a) Flux allocation (normalized) (b) GRU 

connectivity (normalized) 
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3.4.5 Discussion 

Here we will be discussing some of the formulations of the machine learning 

problem that did not work for the streak reservoir case. Formulation 1, to build a 

machine learning model to predict the future oil production rate and future water 

production rate, given the future water injection rate, and the history of oil production 

rate, water production rate, and water injection rate. The machine learning model was 

able to match history, but the predictive power was not good. Formulation 2, to build a 

machine learning model to predict future liquid production rate given the future injection 

rate, and the history of liquid production rate, and water injection rate. This formulation 

also had similar performance; the model was able to match the history, but the predictive 

power was not good. 

There could be several reasons for the poor performance of the model for 

formulation 1 and 2. Figure 30 is correlation matrix of oil production rate, water 

production rate and water injection rate. It shows that oil production rates for this 

problem are correlated with each other and water production rates are also correlated to 

each other. Hence, when we input them to the model, it creates a problem of 

multicollinearity. Multicollinearity is a problem that arises when there are highly 

correlated features in the training data. Formulation 2 gave good results when we 

removed the liquid production rate from the inputs dataset, and provides only the water 

injection rate as input to model, and internally the outputs from the previous timestep. 

Another problem could be that we are trying to predict the production rates of all 

producers from a single model.   
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Figure 30 Correlation Matrix of oil production rate, water production rate and 

water injection rate 
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CHAPTER IV  

APPLICATION TO BRUGGE RESERVOIR 

4.1Model Description 

For the field application of the deep learning algorithm, we use the Brugge case, 

a SPE 3D benchmarking case. This reservoir model was developed by the TNO (Peters 

et al. 2010). The structure of the field consists of a significant boundary fault. The rock 

properties and thickness of this model are similar to the Brent fields in the North Sea. 

The reservoir model consists of 139 x 48 x 9 grid blocks and is under waterflooding with 

10 injectors and 20 producers. Figure 31 shows the permeability distribution of the field.  

 

 

 

 

 

 

 

 

 

Figure 31 Permeability distribution of Brugge case 
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Figure 32 shows the initial water saturation for the Brugge case. A varying water 

injection rate is used for this case to identify producer-injector interactions. Figure 33 

shows the injection profile, and Figure 34 shows the box and whisker plot of injection 

Figure 32 Initial water saturation for Brugge case 

Figure 33 Injection Profile for Brugge Case 
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rates. The box plot shows the maximum, first quartile, median, third quartile, and 

minimum of the injection rate for the injectors. From this, we can see that there is a 

significant variation in the injection rate. In Figure 33, a one-time step corresponds to 30 

days, and the injection profile is for 8 years.  The commercial reservoir simulator, 

Eclipse, is used for getting production response, and the results are shown in Appendix 

A. All the producers are at constant bottom hole pressure constrained (1700 psia), and 

the injectors are at rate constrained. The voidage replacement ratio is 0.75. 

 

Figure 34 Box and whisker plot of injection rates for Brugge Case 

 

4.2 Exploratory Data Analysis 

The liquid production rate for all the wells follows the same trend. Hence, we 

select the water production response as the prediction/output of the model. Figure 35 

shows the Pearson correlation coefficient for water injection rate and water production 

response of the well without lag time. The injectors I4, I5 and I6 are correlated to most 
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of the producers. The injector I4 has a strong positive correlation between P5, P11, P12, 

P13, P14, P15, P18, and P20. The injector I5 has a negative correlation between P1, P5, 

P8, P9, P11, P12, P13, P14, P15, P18, and P20. The injector I6 has a negative correlation 

between P5, P11, P12, P13, P14, P15, P17, P18, P19, and P20. The water injector and 

water production correlation do not provide any insight into connectivity. Since there are 

only 4 injectors, that has a strong correlation with producers and the correlation values 

for these injectors to different producers are almost similar. There is also a high positive 

correlation between producers to producers that are near the injectors (P2, P5, P10, P11, 

P12, P13, P14, P15, P17, P18, P19, and P20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Correlation matrix of input and output data for Brugge 

Case 
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4.3 Training 

Problem Statement: Prediction of future water production rate for all producers 

given the future water injection rate, and the history of water production rate, and water 

injection rate. The model is then used to understand injector-producer interactions. 

A search radius is applied to the deep learning model to integrate the spatial 

information of injectors and producers. To model the production response for a 

producer, we include only the injectors inside the search radius. All other injectors are 

excluded in the modeling of the production response for that producer. Similarly, the 

search radius is applied to all the producers. It includes only the injectors which fall 

under the search radius. Figure 36 shows an illustration of search radius. A sensitivity 

analysis is also performed to understand the effect of the search radius to reservoir 

connectivities. 

 

 

Figure 36 Illustration of search radius to a five-spot pattern 

 

The training methodology used here is the same as in the training methodology 

of the synthetic case (3.3 Training) except that the search radius is introduced to limit the 

input features for modeling of each producer's response, and the water production rate is 
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used as output instead of liquid production rate. An LSTM and GRU model are trained, 

the input variable is the water injection rate, which is trained to match the water 

production rate.  

4.4 Results and Discussion 

4.4.1 Hyperparameter Optimization 

 

 

Figure 37 Grid search hyperparameter optimization 

 

Figure 37 shows the optimization of hyperparameters of LSTM and GRU. We 

optimized the memory or cell size of the network by the Grid Search method, and the 

number of epochs for the network training is optimized using early stopping criteria. For 

this case, while building the LSTM model in Keras(REF) we put ‘None’ in place of 

window size. While training, the LSTM model assumes the window size as the length of 

the training dataset, while prediction it uses masking and padding to get the results. The 

best performing model for GRU is at a cell size of 48, and the error for training is 187 
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bbl/day. The best performing model for LSTM is at a cell size of 44, and the error for 

training is 103 bbl/day. Both the GRU and LSTM models were able to history match the 

water production data. However, the forecasting of the model was not good. We picked 

the LSTM model with cell size 44 for further analysis. 

 

 

Figure 38 Training and Prediction of LSTM model for search radius of 6,000 ft  
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Figure 38 shows the training and forecasting of the LSTM model for a search 

radius of 6,000 ft for some of the producers. The results of the remaining producers are 

shown in Appendix B. 

We try to improve the forecasting performance of the model by investigating the 

influence of aquifer in the model. A streamline simulation was run in Destiny (MCERI 

inhouse software) to visualize the underground flow. 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 39 Time of Flight from Injector (a) with stagnation points (b) without 

stagnation points 
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(a) 

   

 

 

 

 

 

(b) 

 

 

 

Figure 39 and Figure 40 shows the Time of Flight from injector and from 

producer, with stagnation point and without stagnation point. We can notice that only 

few streamlines are removed in the TOF map when we remove the stagnation points. 

This show that the aquifer support is week for this model.  

 

 

Figure 40 Time of Flight from Producer (a) with stagnation point (b) 

without stagnation point 
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4.4.2 Reservoir Connectivity by Feature Importance 

The permutation feature importance method is applied to the trained LSTM 

models to understand the well-connectivity of the reservoir. For each of the trained 

LSTM models, we permute or shuffle the injection data (input feature) and monitor the 

increase in RMSE error with respect to the original base case RMSE. When an injector 

is permuted, if it causes an increase in the model prediction error, it is an important 

injector to model. If the permuted injector does not increase the model prediction error it 

is not important. Figure 41-43 shows the connectivity for different search radii. 

 

 

Figure 41 LSTM reservoir connectivity map (Without Search Radius) 
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Figure 42 LSTM reservoir connectivity map (6000 ft search radius) 

 

 

 

Figure 43 Reservoir connectivity of LSTM model (search radius 10000 ft) 
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4.4.3 Sensitivity of connectivity to search radius 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 44 Normalized LSTM reservoir connectivity for: no search radius, 6000 ft, 

and 10000 ft  
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Figure 44 shows the sensitivity of reservoir connectivity for different search 

radii. For the case without a search radius, the producer is connected to all the injectors 

in the field and with almost identical connectivities. This shows us the importance of 

using location constraints in the model. We neglect the case without a search radius for 

further analysis. For the case with a search radius of 6,000 ft, 13 producers were 

modeled, while the remaining 7 producers were not modelled because there was no 

injector in the 6,000 ft search radius. The producer P1 is closed during the early stage of 

reservoir simulation for violating the BHP constraint. For the case with a search radius 

of 10,000 ft, 16 producers were modeled, while remaining 4 producers were not 

modelled because there were no injectors in the 10,000 ft search radius. The comparison 

of 8 producers is shown in Figure 39; the remaining 5 producers are shown in Appendix 

B. The search radius 6,000 ft is selected arbitrarily for further analysis.. 

4.4.4 Reservoir Connectivity by Streamline Simulation 

 

 

Figure 45 Streamline flow allocation factor for Brugge Case 
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 Figure 45 shows the time-averaged streamline flux allocation factor for the 

reservoir. 

4.4.5 Validation of reservoir connectivity 

 

   

 

 

 

 

 

 

 

 

 

 

Table 10 shows the connectivity comparison between the normalized streamline 

flux allocation factor and ML/DL model with a search radius of 6,000 ft and 10,000 ft 

for 13 producers. For most of the producers, the top connectivity from the streamline and 

ML/DL model is the same. However, for producers P-2 and P-11, the top connectivity 

from ML/ DL model is different from the streamline. For the producer P-2, the top 

connectivity from streamline is I-10, which is not included in the search radius of 6,000 

ft. For P-15, the top connectivity from the streamline matches with the ML/DL for a 

Producer 
Top Connectivity 

Streamline DL: 6,000 ft DL: 10,000 ft 

P-2 I-10 I-9 I-9 

P-5 I-1 I-1 I-1 

P-10 I-10 I-10 I-10 

P-11 I-10 I-9 I-9 

P-12 I-9 I-9 I-9 

P-13 I-7 I-7 I-8 

P-14 I-7 I-7 I-7 

P-15 I-6 I-6 I-5 

P-16 I-6 I-6 I-6 

P-17 I-5 I-6 I-5 

P-18 I-3 I-3 I-3 

P-19 I-3 I-3 I-3 

P-20 I-2 I-2 I-2 

Table 10 Reservoir connectivity comparison of Streamline and DL with search 

radius 
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search radius of 6,000 ft but does not match with the search radius of 10,000 ft. For P-

17, the top connectivity from streamline matches with the DL for a search radius of 

10,000 ft but does not match with a search radius of 6,000 ft. Further research is needed 

to get all the connectivities to match with the streamline connectivities. 

4.4.6 Discussion 

Since the voidage replacement ratio for this case is 0.75, we have also tried a 

formulation which considers for the additional energy provided by the reservoir. In this 

formulation we have an additional input (Total production – Total Injection). Even 

though in real life the future total production rate would not be available to calculate the 

instantaneous additional energy input feature for the forecasting, we tried this case for 

research purpose to understand the contribution of the input feature, total production – 

total injection.  

The forecasting results did not improve with the additional energy input feature. 

A case with no search radius was applied to LSTM model. Figure 46 show the 

forecasting results for some of the wells for LSTM model with additional energy input. 

The results of the remaining wells are shown in Appendix B. 
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Figure 46 LSTM model prediction with additional energy input feature 

for no search radius  
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CHAPTER V  

CONCLUSIONS AND RECOMMENDATION 

5.1 Summary 

In this research, we have applied state-of-the-art deep learning algorithms, such 

as GRU and LSTM, to formulate a workflow to understand the dynamic well-

connectivity of producers and injectors for a reservoir under waterflooding. The GRU 

and LSTM model are trained to match the production response of the well. A model 

agnostic interpretation method is then applied to the trained model to get the producer-

injector interactions. The results from the deep learning model are then validated with 

the physics-based model. 

We have presented a training methodology for time-series production data, 

techniques for preventing overfitting and underfitting, and optimizing the 

hyperparameters. The machine learning methodology was applied to two models: a 

synthetic streak reservoir and a field-scale Brugge case. The permutation feature 

importance technique was applied to the trained model to understand reservoir-

connectivity. The permutation feature importance method calculates the reservoir-

connectivity by permuting or shuffling the water injection rate to the trained model and 

calculating the increase in the RMSE error compared to the original case. The 

connectivity derived from the deep learning model was validated by the normalized 

streamline flux allocation factor. 

For synthetic reservoirs, we trained both the LSTM and GRU models. We 

optimized the hyperparameters, the window size and the cell size, using a Grid Search 
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method. The optimal GRU model outperformed the optimal LSTM model. Hence, we 

picked the GRU model for all the analyses. The GRU model was able to match the 

historical production data during training and forecast the liquid production rate 

accurately. The connectivity rankings derived from the deep learning model, cross-

correlation coefficient, flux allocation factor, and normalized flux allocation factor were 

compared to each other. All the methods except the correlation coefficient were able to 

identify both of the high permeability streaks (P1-I1 and P4-I3) as the top two 

connectivities. The cross-correlation liquid production rates and time lagged injection 

rates were not able to identify the high permeability streak as the top connectivities.  The 

top two connectivities in the lists from the deep learning model and the flux allocation 

factor matched with each other. However, the third and fourth connectivities in the lists 

from the deep learning model and the flux allocation factor were interchanged. This was 

due to the influence of the injection rate; hence we compare the connectivity from the 

normalized flux allocation factor and the deep learning model. The ranking of the 

connectivities from the deep learning model matched with the normalized flux allocation 

factor. 

For the Brugge reservoir, we selected the water production rates as the output 

instead of the liquid production rate, since the liquid production rates for all the 

producers follow a similar pattern to each other. The signal from the injector was not 

visible using liquid production rate as the output. The reason could be because of the low 

water cut. A Grid Search method was applied to optimize the cell size of the GRU and 

LSTM network. We selected the LSTM model based on its performance. We have also 
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applied a spatial constraint or search radius to the training model, limiting the number of 

injectors used to model the production response for a well. The injectors that fell under 

the search radius were only considered for the modeling of a producer. In this training 

method, we trained a deep learning model for each of the producers. For the training 

method without a search radius, only a single deep learning model was trained for all the 

producers. Both the trained deep learning model with and without the search radius 

matched the historical production data but could not accurately predict the future water 

production rate. The permutation feature importance method was applied to get the 

reservoir connectivity. The connectivity derived from the model without a search radius 

shows that the weights are almost equally distributed among the injectors.  This signifies 

the importance of spatial constraints for understanding the reservoir connectivities. The 

top reservoir connectivity derived from the deep learning model with a search radii of 

6,000 ft and 10,000 ft was compared to the normalized flux allocation factor. The deep 

learning model was able to identify the top reservoir connectivity ranking for most of the 

wells. However, it was not able to identify connectivity ranking correctly for some wells.  

5.2 Recommendation 

Further research is needed to forecast the production response of the Brugge case 

accurately. It would be beneficial to add physics-based constraints to the deep learning 

model’s loss function, so that we could get a better forecast of production rates. In this 

research, we have shown the importance of having a spatial constraint or search radius. 

However, further research is needed to find the optimal search radius to understanding 

the well-connectivity using the deep learning model. Another place of improvement 
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would be using a different model interpretation method and comparing its results with 

the permutation feature importance method. Once we calculate the well connectivity 

accurately, we could use it to optimize the injection rate for the field and get a better 

sweep efficiency. 
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APPENDIX A 

SIMULATION RESULTS OF BRUGGE CASE 

The commercial reservoir simulator Eclipse is used for getting the production 

response.  Figure 47-50 show the water production rate, oil production rate, liquid 

production rate and water cut for Brugge case. 

 

Figure 47 Water Production Rate of Brugge Case 

 

 

Figure 48 Oil Production Rate of Brugge Case 



 

74 

 

 

 

Figure 49 Liquid Production Rate of Brugge Case 

 

 

Figure 50 Plot of water cut for Brugge case 
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APPENDIX B 

BRUGGE CASE LSTM MODEL RESULTS   

Figure 51 shows the sensitivity of reservoir connectivities for different search 

radii. 

 

 

 

 

 

 

 

 

Figure 51 Normalized LSTM reservoir connectivity for: no search radius, 6000 ft, 

and 10000 ft (Well P16 – Well P20)  
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Figure 52 Training and Prediction of LSTM for Search radius of 6,000 ft 

(Well P2, Well P5, Well P10, Well P12, Well P16, Well P18 and Well P20) 
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Figure 53 LSTM model prediction with additional energy input 

feature for no search radius (Well P10 – Well P17) 
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Figure 54 LSTM model prediction with additional energy input 

feature for no search radius (Well P18 – Well P20) 
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APPENDIX C 

BACKPROPAGATION  

Backpropagation is an efficeint algorithm for calcaulting the partial derivatives 

of the cost function with respect to the model parameters. In this section we will be 

giving an illustration of the backpropagation of error to calculate the partial derivatives 

for neural network shown in Figure 55. 

 

 

Figure 55 Neural Network forward propagation and backward propagation 

 

Forward Propagation: 

a(1) = x (Input) (20) 

z(2) = w(1) a(1) + b(1)  (21) 

a(2) = g( z(2)) (22) 

z(3) = w(2) a(2) + b(2) (23) 

a(3) = g( z(3)) (Output) (24) 
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Backward propagation: 

𝜕𝐶𝑜

𝜕𝑤11
(2) =

𝜕𝐶𝑜

𝜕𝑎1
(3)

𝜕𝑎1
(3)

𝜕𝑧1
(3)

𝜕𝑧1
(3)

𝜕𝑤11
(2)  (25) 

Where 𝐶𝑜(𝑋, 𝑤) =
1

2𝑁
∑ (𝑦�̂� − 𝑦𝑖)2𝑁

𝑖=1  

𝜕𝐶𝑜

𝜕𝑎1
3 = (𝑎1

(3)
− 𝑦1)                                                                                                          (26) 

𝜕𝑎1
(3)

𝜕𝑧1
(3) = 𝜎′(𝑧1

(3)
)                                                                                                           (27) 

𝜕𝑧1
(3)

𝜕𝑤11
(2) = 𝑎1

(2)
                                                                                                            (28) 

𝜕𝐶𝑜

𝜕𝑤11
(2) = (𝑎1

(3)
− 𝑦1)𝜎′(𝑧1

(3)
)𝑎1

(2)
  (29) 

Similarly, we can calculate 
𝜕𝐶𝑜

𝜕𝑤12
(2) ,  

𝜕𝐶𝑜

𝜕𝑤22
(2) and  

𝜕𝐶𝑜

𝜕𝑤21
(2) 

𝜕𝐶𝑜

𝜕𝑤11
(1) =

𝜕𝐶𝑜

𝜕𝑎1
(3)

𝜕𝑎1
(3)

𝜕𝑧1
(3)

𝜕𝑧1
(3)

𝜕𝑎1
(2)

𝜕𝑎1
(2)

𝜕𝑧1
(2)

𝜕𝑧1
(2)

𝜕𝑤11
(1) +

𝜕𝐶𝑜

𝜕𝑎2
(3)

𝜕𝑎2
(3)

𝜕𝑧2
(3)

𝜕𝑧2
(3)

𝜕𝑎1
(2)

𝜕𝑎1
(2)

𝜕𝑧1
(2)

𝜕𝑧1
(2)

𝜕𝑤11
(1)  (30) 

Similarly, we can calculate 
𝜕𝐶𝑜

𝜕𝑤12
(1) ,  

𝜕𝐶𝑜

𝜕𝑤22
(1) and  

𝜕𝐶𝑜

𝜕𝑤21
(1) 
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APPENDIX D 

RANDOM FOREST IMPUTAION   

 It is common to have missing data points in the production data dues to many 

reasons. We need to fill the missing points before applying algorithms. One of the 

popular techniques to impute the data is by using Random Forest. 

In random forest, after a tree is built, all the data (training and out of bag data) 

are run down the tree and the proximities are computed for each case (Brieman 2001). It 

is represented in matrix of NxN (N is the number of samples). For a pair of observation, 

I and J, if they end up in the same terminal node, then we increase the proximity by one. 

Continue this process for all the trees. At the end Proximity Matrix is normalized by the 

number of trees 

The workflow for random forest imputation is to make an initial guess and gradually 

refine the guess in iterative way until it is good. (Brieman 2001)  

1. Initial guess of median or mean  

2. Build a RF 

3. Run all the data in all the trees 

4. Calculate the proximity matrix 

5. Use proximities to calculate weighted average  

6. Update the guess 

7. Repeat step2-6 until it converges 

The random forest imputation is illustrated using a simple example. 
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Table 11 Data for RF imputation 

 

Table 55 show the example data for RF imputation. The age of Bob is missing. 

 

 

Table 12 Initial guess of missing value 

 

Step 1 is to guess the initial missing value. It can be mean, median or mode.  

 

 

Figure 56 RF model 

 

Step 2 is to build a RF forest model. Here we have 10 trees.  
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Figure 57 Process of calculating Proximity Matrix 

 

Step 3 and Step 4 is to run all the data for all the tree in the RF model and calculate the 

proximity matrix. The proximity matrix is based on the number of appearances in the 

leaf node. For the Tree 1, 1 (Alice) and 2 (Bob) ends up in the same leaf node so are 

related and we record this by adding one to location of 1 and 2 in the proximity matrix. 

Similarly, for the Tree 2, 1,2 and 3 (Carol) are related and we add plus one to location 

corresponding to 1,2 and 3. This process is continued for all the Trees 

 

 

Table 13 Proximity Matrix 

 

The proximity matrix is normalized by the number of trees. 

Fifth step, is to guess the age of Bob with the proximity matrix 
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Age of bob = 14 ∗ (
0.8

0.8+0.1
) + 10 ∗ (

0.1

0.8+0.1
) = 13.55 ≈ 14 (31) 

Sixth step is to update the initial guess with 14 and continue step 2-6 until it converges  
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APPENDIX E 

RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE 

It is a trade-off plot of True Positive Rate (TPR) (Benefits) and False Positive 

Rate (FPR) (Costs) for all possible cut-off values. It can be used to determine the 

optimum cut-off value. The closer the graph to the left-hand border, the more accurate 

the model. Area Under Curve (AUC) represents the accuracy of the model. In Figure 58, 

Blue Curve is more accurate than the Red Curve. The Diagonal line serves as the 

reference line with AUC of 0.5.  

 

 

Figure 58 ROC curve 
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Figure 59 Confusion Matrix 

 

Figure 59 shows the Confusion Matrix. It is a table describing the performance of 

the classification model. The TPR or Sensitivity measures the actual positive that are 

correctly identified. Specificity Measure the actual negatives that are correctly identified. 

ROC is a plot of TPR vs. FPR 

 𝑇𝑃𝑅 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (32) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (33) 

𝐹𝑃𝑅 =  (1 −  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) (34) 

 

 

Figure 60 Heart disease dataset for classification 
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The ROC curve is illustrated with an example dataset of heart disease with weight. 

 

 

Figure 61 Logistic regression for classification of heart disease 

 

Step 1, to fit a logistic regression for the given heart disease dataset  

 

 
Figure 62 Applying various Cut-off and Calculating Confusion Matrix 
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Step 2 is applying various probability cutoff from 0 to 1 and calculating the confusion 

matrix. The TPR and FPR is calculated from the confusion matrix for each of the cutoff 

value. 

Step 3 is plotting the TPR and FPR values to get the ROC curve 

 

Figure 63 ROC Curve for Heart disease classification 

 

 

 

 

 

 

 

 

 

 

 


