

1

Application of Digital Radiography to Weld Inspection for the Space Shuttle External Fuel Tank

Warren Ussery Lockheed Martin Space Systems Company warren.ussery@maf.nasa.gov 504-257-1834

Background: External Fuel Tank

External Fuel Tank Background

- ET holds cryogenic liquid hydrogen and oxygen fuel for shuttle main engines
- The fuel tanks are 2219 and 2195 Al alloy welded structures
- Material thicknesses range from 0.140" to 1.0"
- Total length of weld undergoing radiography is approx. 3000 feet
- NASA established a goal to replace a significant portion of film with digital radiography

- Topics
 - Objectives for film to digital conversion
 - Digital system characteristics
 - POD (Probability of Detection) study
 - Qualification
 - Implementation
 - Lessons Learned

Film Reader

Digital Workstation

- Eliminate film, chemicals, and associated environmental concerns
- Improve efficiency of radiography process
- Provide enhanced archival capability
- Enhance inspections with digital imaging tools
- Provide electronic distribution of radiography data to multiple NASA sites

Digital Radiography System Characteristics

- Two main concerns for digital radiography system:
 - Sufficient sensitivity to detect small cracks
 - Ability to be integrated into existing External Tank tooling

Inspection configuration

Sun Workstation

Digital Radiography System Characteristics

- Characteristics of the digital x-ray camera
 - High sensitivity (resolution and contrast)
 - Scintillating fiber faceplate enhances resolution
 - 2K by 2K scientific CCD enhances both resolution and contrast
 - Fiber optic taper transfers the 4" image from the scintillator to the CCD and also protects the CCD by absorbing incident X-rays
 - This design is suitable for low energy inspections (<100 kV)
 - Energies used on ET are in the 40kV to 70kV range

7

- Digital x-ray camera technique
 - Basically the same technique as film for ET welds
 - Yxlon MG165 system
 - Digital technique for 0.320" AI: SFD 40", 70kV, small focal spot, 30 second exposure
 - DR performance is generally improved with lower kV and higher mA than film

- Production inspection considerations
 - Camera is mounted to tooling allowing access to welds
 - Remaining components are cart mounted and mobile
 - Equipment proved to be sufficiently robust for production use
 - Several months of production floor testing combined with system sensitivity resulted in moving forward into next phase of implementation

Frame Weld Inspection

Detection of small cracks

POD Approach

- Material, weld process, and x-ray detection of weld defects were already well understood
- Goal was to ensure that digital x-ray sensitivity was comparable to film
- Parallel film and digital inspection of all samples
- Defects included the types found in ET welds
 - Cracks
 - Lack of Fusion
 - Oxide inclusions
 - Heavy Inclusions
 - Porosity with associated cracks
- 90/95 POD for film radiography of cracks in ET welds is 0.28T (28% material thickness)
- Success criteria was that digital demonstrate a comparable POD result to film

Distribution of defects used in POD

Weld repair containing porosity with9associated cracks and Lack of Fusion

- 2219 and 2195 Aluminum alloys included
- POD samples selected by Lockheed Martin and NASA NDE engineers
- Six x-ray interpreters with floor experience performed interpretation
- Worst case weld defects occur in repairs
- Repairs also allow defects to be easily created in a controlled manner
- Typical cracks in ET welds exhibit a 2:1 aspect ratio
- Linear defects (cracks and LF) were selected with a length of 0.56T or smaller

POD Results

- 255 sample inspections were performed
- Six defects were missed out of the 255
 inspections
- Subset of POD samples were dissected to verify flaw sizes
- POD result for digital from binomial analysis was 95/95 for defects 0.28T or smaller
- Comparison of digital and film results on selected POD samples concluded that the images were comparable

DR image (top) and photomicrograph (bottom) of cracks formed at a weld intersection

- Qualification is performed to demonstrate capability to detect critical defects in production hardware
- Equipment, personnel, tooling, and parts to be inspected resemble production environment as closely as possible
- Tooling designed to position digital radiography system on dome
- Allows adjustment of elevation and angle
- Designed for use on ET T-ring application

Tool and test configuration for qualification testing

Digital Radiography Qualification

- Two scrap production domes were acquired for the qualification test
- 2219 Al and 2195 Al domes
- Material thicknesses from 0.200" to 1.0" including 0.200" to 0.500" tapered welds
- 63 defects were induced with multiple weld repairs
- Six interpreters with varying experience were selected to read data

Qualification sample consisting of a transverse crack

Qualification Test Article

Distribution of Qualification Defects

- Each interpreter given either film or digital data
- DR results: 189 defect shots with 3 missed
- Film results: 189 defect shots with 3 missed
- Neither method had false positives

Interpreter	DR Miss	FR Miss	DR False	FR False
			Positive	Positive
PO#1		0		0
PO#2		3		0
PO#3		0		0
PA#1	1		0	
PA#2	0		0	
PA#3	2		0	
Total	3	3	0	0

Table 3. Summary of results for the blind comparison.

- Each interpreter given both film and digital data
- DR results: 378 defect samples with 6 missed
- Film results: 378 defect samples with 6 missed
- DR had 2 false positives, film had none

Interpreter	DR Only Miss	R Only FR Only DR False iss Miss Positive		FR False Positive
PA#1	1	2	0	0
PO#1	0	0	0	0
PO#2	2	3	2	0
PA#2	0	0	0	0
PA#3	2	1	0	0
PO#3	1	0	0	0
Total	6	6	2	0

Table 4. Summary of results for the cumulative comparison.

- Performance of interpreters appeared to be a function of experience
- PO#2 accounted for two DR and three film misses as well as two DR false
 positives
 - This interpreter was the least experienced of the six
 - Became a level II just prior to participating in this study

Interpreter	Method	Dome	Weld	Position	Defect Type	Defect Size
PA#1						
	DR	ET 105	HFF3	13' 5 1/8"	CR	0.100
	FR	ET 65	HAF1	14' 7 3/8"	CR	0.084
	FR	ET 65	HAF2	10' 7 1/2"	CR	0.185
PO#2						
	DR	ET 105	HFF3	13' 5 1/8"	CR	0.100
	DR	ET 105	HFF1	20' 5 3/8"	LF	0.210
	FR	ET 65	HAF4	16' 8 1/2"	CR	0.133
	FR	ET 65	HAF2	16' 10 1/4"	CR	0.107
	FR	ET 65	HAG4	0' 8 1/4''	LF	0.141
PA#3						1
	DR	ET 65	HAF2	16' 10 1/4"	CR	0.107
~	DR	ET 65	HAF1	4' 6 3/8"	CR	0.123
	FR	ET 65	HAF2	10' 7 1/2"	CR	0.185
PO#3						
	DR	ET 65	HAF1	14' 7 3/8"	CR	0.084

Table 5. Details of missed samples.

Digital Radiography Implementation

5017 T-ring Tooling

5354 Dome Tooling

- Density: 1000 to 3000 counts in region of interest
 - Film is logarithmic process versus linear process for digital
 - Digital output is 12 bits so possible values of 0 to 4095
 - 1000 to 3000 range eliminates extremes at either end of range
- Display system calibration to standard test pattern
 - NIST traceable light meter
 - Intensity and contrast are measured
- Secure database and data backup
- Cal standards run before and after inspection
- Temperature requirement for CCD operation: -12°C max

Engineering Requirements

- Digital radiography calibration block
 - Vertical and horizontal line pair gauges
 - 1% contrast resolution (97, 98, 99 % of thickness)
 - Inspected before and after each weld

- Computer literate personnel with film interpretation experience are a plus
- Automated tooling speeds acquisition and produces repeatable data
- Integration of IQIs into tooling design
- Customized interpretation software improves efficiency
 - All imaging tools available
 - Required tools applied automatically
 - Automatic +15% / -30% penetrameter calculation
 - Playback controls simulate film spool operations

Customized software operates on a series of images

Original software has all tools but only operates on 20 one image at a time

ASNT Digital Imaging Conference 2009

- Feasibility Study
 - HRDR 2K camera was field tested with ET test panels and hardware
 - 2-2T sensitivity, frequently 2-1T sensitivity
 - System proven practical for production inspection
- POD Study
 - Limited statistical study conducted on test panels
 - Certified interpreters participated in the study establishing their credentials for future flight hardware inspections
 - Result: 0.28T DR POD comparable to film POD
- Qualification Study
 - Flight hardware with worst case defects
 - Certified interpreters
 - Engineering requirements began to be incorporated into inspections
 - Results: DR and film inspections were comparable
- Implementation
 - Tooling design and fabrication
 - Finalized engineering requirements
 - Enhanced software

