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ABSTRACT 

This thesis presents the application of artificial neural networks (ANN) to the self- 

referent calibration of thickness-shear mode (TSM) acoustic wave chernical sensors. 

Spectrurn analysis of impedance measurements affords complete characterisation of 

the TSM sensor, which inchdes the use of the Buttenvorth-Van Dyke (BVD) 

equivalent circuit to quantify the electrical responses. The multi-parametric nature of 

this method and a novel weight-adjustment procedure, applied to ANN calculations, 

were utiIised to effect a method of calibration in the presence of interferents. A 

network is trained, using exemplary L I 0  data acquired for a potassium chloride (KC1) 

system, to predict unknown outputs Le. concentration, given four sets of measured 

inputs Le. series resonant frequency (Fs), parallel resonant frequency (Fp), motional 

capacitance (C,) and motional resistance (R,). The trained and tested networks 

achieved high predictive efficiency with errors in the range of 2%-7%. An interferent, 

ethanethiol, is added to test the robustness of the trained network and was found to 

adversely affect the predictive abiiity of the network. The magnitudes of the weights. 

which are associated with the set of inputs deemed to be most affected by the 

interferent (Fs), are adjusted to minimise this deterioration. The resultant network, 

calibrated for the interferent, achieved a similar predictive efficiency for adulterated 

samples as that achieved by the original network for unadulterated samples. This 

calibration procedure was extended to a dual-interferent system in which two input 

variables are affected. A significant decline in predictive ability was observed for the 

unadjusted network, render it practically unusable. A two-point weight adjustment 

process was performed on the affected weights with considerable success but the 

predictive ability did not come close to the original level. The manipulation of two 

out of four input parameters may have over-extended the resources of the network but 



may prove to be more amenable for a Iarger network. 

A paraIIel project was effected in which a chemically-selective platform was 

immobiIised on a TSM device following activation with bifunctional thiols. The 

optimal surface activation scheme was found to be the self assembIy of a mixture of 

bifunctional thiols of different chain lengths. An amino-terminated 25-mer DNA 

single strand was successfulIy coupled to the distal carboxylic group via carbodiimide 

c hemistry . The viability of the immobilised DNA receptor was demonstrated through 

a hybridisation experimenr with a complementary DNA fragment. In addition, the 

multi-parmetric nature of network analysis proved to be sensitive to the hybridisation 

kinetic and a subsequent, capacitive-based conformational change in the coupled 

strands. 



ACKNOWLEDGEMENTS 

First and foremost, 1 wish to express my gratitude to my esteemed supervisor, 

Professor Michael Thornpson. The completion of this thesis was made possible with 

his guidance, encouragement, fi-iendship and above all, his belief in my ability. The 

time spent under his tutelage was not only informative but also formative with respect 

to my maturation as a person. In addition to chemistry, 1 know now that my Tequila 

limit stands at a pitiful four shots. My fondest hope is that Our association will 

continue to flourish and that one day we will be able to complete that 7 km race. 

1 am aiso very grateful to my colleagues in the lab, without whom the last few 

years would have been a lot less enjoyabIe. First on this list must be Dr. David Stone, 

who was and still is always available for helpful advice, assistance and discussions. 1 

enjoyed very much Our collaborations and our shared enjoyment of what surely must 

be some of the worst puns ever invented. 1 would also like to thank Dr. Steve 

Vigmond, Dr, Mengsu Yang, Dr. Mark McGovern, Dr. Biljana Cavic, Dr. Paul Li, Dr. 

Zhiping Deng, Dr. Larisa Cheran, Michelle Furtado, Ani1 Deisingh, Shakour 

Ghafouri, Zeynep Morel, Nardos Tassew, Emma-Louise Lyle and Blanca Granozi for 

al1 their helps, friendships and above all, for putting up with my somewhat sadistic 

sense of humour. 

It is without a doubt chat the greatest joy 1 have experienced dunng the last few 

years has been denved from my wife and son. It is their love that helped me through 

al1 obstacles and made me what 1 am today. 1 am thankful for their love, 

encouragement and infinite patience. 

Finally, I want to thank my parents for their immeasurable love and support. 

Without their sacrifices for the Iast thirty years, none of my accomplishments would 

have been possible. This thesis is dedicated to them. 



TABLE OF CONTENTS 

AIBSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

... 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ACEWOWLEDGEMENTS 111 

........................................... TABLE OF CONTENTS iv 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  LIST OF FIGURES vi 
... 

LIST OF TPrBLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V I I ~  

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TSM THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TSM Operation in Liquid Phase . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Network analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ARTIFICLAL NEURAL NETWORK THEORY . . . . . . . . . . . . . . . . . . .  

OverviewofANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Characteristics of ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Operation of a NeuraInet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PROJECTOUTLINE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  EXPERIMENTAL 

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Apparatus 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Procedure 



RESULTS AND DISCUSSION ..................................... 93 

NEURAL COMPUTATION ..................*.................. 93 

Network Analyses of KCI system ......................... 93 

......................... Neural Analysis for the KCI system 103 

Neural Analysis for the Thiol-~dulierated KCI system ....... 111 

Neural Analysis for the Glycerol-Adulterated KCl systern ....... 120 

Neural Analysis for a Dual-Adulterant System . . . . . . . . . . . . .  127 

DEVELOPMENT OF SENSOR PLATFORM . . . . . . . . . . . . . . . . . . .  131 

Surface Modification ............................... 131 

DNA Immobilisation and Network analysis . . . . . . . . . . . . .  137 

Atomic Force Microscopy Analysis ................... 145 

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 

GLOSSARY .......................................... . 156 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158 



LIST OF FIGURES 

. . . . . . . . . . . . .  Thickness Shear Mode (TSM) device and wave propagation 3 

. . . . . . . . . . . . . . . . . . . . . .  Factors affecting the responses of the TSM device 10 

Four-layer mode1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

Impedance and phase traces denved from network analysis . . . . . . . . . . . . . .  22 

Equivalent circuit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

Admittance diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

Network analyser traces in air . ................................... 33 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Network analyser traces in liquid 34 

Effect of Co on the magnitude of the impedance . . . . . . . . . . . . . . . . . . . . .  36 

Effect of Co on the phase of the impedance . . . . . . . . . . . . . . . . . . . . . . . . .  37 

Effect of Rn, on the magnitude of the impedance . . . . . . . . . . . . . . . . . . . . .  39 

Effect of R, on the phase of the impedance . ........................ 40 

Effect of Lm on the magnitude of the impedance . . . . . . . . . . . . . . . . . . . . .  43 

Effect of Lm on the phase of the impedance . . . . . . . . . . . . . . . . . . . . . . . . .  44 

Effect of Cm on the magnitude of the impedance . . . . . . . . . . . . . . . . . . . . .  36 

Effect of Cm on the phase of the impedance . . . . . . . . . . . . . . . . . . . . . . . . .  47 

Structure and operation of a neural node . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

Architecture of a neural network extracted from NeuralWorks . . . . . . . . . .  53 

Flow ce11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

tntsrumental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

Responses of Fs and Fp ro KCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Responses of Co and R, to KCI 95 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Responses of Cm and Lm to KCI 96 



. . . . . . . . . . . . . . . . . . . . . . . . .  . . 23 Responses of max phase and Q-value to KC1 

........................ 24 . Changes in Fs and Fp vs . KCl concentration . 

25 . Chnnges in Co and R, vs . KCI concentration . . . . . . . . . . . . . . . . . . . . . . . . .  

........................ 26 . Changes in Cm and Lm vs . KCI concentration . 

............. 27 . Changes in max . phase and Q-value vs . KCI concentration . 

........................ 28 . Training fiMS vs . Number of Hidden Nodes . 

29- Error distribution of unadulterated unknown . ........................ 

30 . Effect of thiol on F, and Fp- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 1 . Effect of thiol on Co and R, . ................................... 

33 . Error distribution for ANNAT results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 . Error distribution for NeuralWare results 

34 . Responses of Fs and Fp to glycerol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

35 . Responses of Co and R, to glycerol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

36 . Responses of Lm and Cm to glycerol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

37 . Responses of Fs and Fp to dual interferents . ..................._.._. 

38 . Responses of Co and R, to dual interferents . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 . Thiol compositions 

40 . Schematic of carbodiimide immobilisation . . . . . . . . . . . . . . . . . . . . . . . . .  

4 1 . Responses of Fs and Fp to hybridisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

42 . Responses of Co and Lm to hybridisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  43 . Responses of R, and Q-value to hybridisation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 . Response of Fs to non-compiementary FO 

. . . . . . . . . . . . .  45 . Height and phase images of control and thiolated surfaces . 146 

. . . . . . . . . . . . . . . . . . . . .  46 . Cross-sectional analysis of the control TSM surface 148 

. . . . . . . . . . . . . . . . .  47 . Surface roughness anaIysis of the control TSM surface . 149 

. . . . . . . . . . . . . . . . . . . . . .  48 . Height and phase images of the immobilised DNA 151 

vii 



LIST OF TABLES 

TSM Operation in Liquid . ..................................... 8 

................... Cornrnon activation functions for neural networks . 51 

Determination of optimal input parameters . . . . . . . . . . . . . . . . . . . . . . . . . .  105 

. . . . . . . . . . . . . . . . . . . . . . . . .  Typical output for ANNAT training run . 107 

. . . . . . . . . . . . .  Comparison of results from ANNAT and NeuralWare . 110 

Multi-point weight adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

XPS data for surface activation . ............................... 135 

XPS data for DNA immobilisation . . . ............................. 138 



INTRODUCTION 

A major problem since the inception of chernical and biosensor technology has 

been the quality of the signai-concentration relationship with respect to the time 

course of measurements. Lack of reproducibility in concentration values can be 

traced to changes in the performance characteristics of the concerned device over time 

and to perturbations caused by matrix interference. The incorporation of an artificial 

neural network (ANTN's) into a sensor system may assist in solving this problem by 

providing a self-referent calibration mechanism for matrix effects. The main 

advantage of the neural network calculation over classical regression analyses is its 

ability to model, at an implicit level, any number of cornplex, non-linear data sets that 

would be impossible, o r  at least extremely difficult, to fit to an explicit mathematical 

model. This advantage has resulted in the application of neural network anaiyses to 

nurnerous fields, among them spectral interpretation ", process control prediction 

10-17 of protein structure and various sensor systems. More specifically ANN's have 

also been utilised in piezoelectric-based sensor systems but the focus has been 

primarily on arrays of single-output sensors, with the output usually being the series 

resonance frequency (FS).'~-" This single-output array architecture, in addition to 

generating extra complexity in theory and application, has served to limir the utiIity of 

neural networks to pattern recognition and classification. In the present work, 

spectrum analysis of the impedance measurernents of a single sensor, usina a network 

analyser, provides multidimensional information thus effectively overcoming these 

drawbacks. Such multi-dimensionality, in conjunction with a novel weight-adjustment 

procedure, may provide a calibration mechanism that can be used to eliminate a 

nurnber of matrix effects. 



TSM THEORY 

The sensor platform central to this project is the thickness-shear-mode (TSM) 

acoustic wave sensor which in turn is based on an AT-cut piezoelectric quartz crystai 

transducer. The phenomenon known as piezoelectricity was discovered by the Curie 

brothers in 1880." It is defined as "...an electric polarisation produced by 

mechanical strain in cvstals belonging to cet-tain classes, the polarization being 

proportional to the strain and changing sign with it.. . ".'" Conversely, a polarisation 

within the crystal lattice, upon application of a voltage across the crystal, is 

accommodated by the displacement of atoms, leading to mechanical deformation in 

the crystal. This inverse piezoelectric effect, predicted by ~ a n k e l ~  and confirmed by 

the Curie brothers in 188 1, is the bais  for operation of the TSM, 

A quartz crystal is essentiaIIy an electrornechanical transducer that converts 

electrical energy to rnechanicai energy and vice versa. The electromechanical 

coupling and stresses resulting from an applied electric field depend on the crystal 

symmetry, the angle of cut relative to the crystallographic axes and the configuration 

of the excitation electrodes used to apply the electnc field across the crystal. The 

various modes of electrornechanical coupling result in different types of acoustic 

waves, modes of propagation and particle displacements. A comprehensive review of 

this topic was presented by Thompson and ~ tone?  A TSM device is prepared from a 

wafer, cut from a single quartz crystai at an angle of 35" 15' relative to the z-aisz6 Le. 

an AT cut. with metal electrodes deposited on opposite sides of the crystal (figure 1). 

Application of an alternating potential to the electrodes induces a displacement of the 

crystal lattice and produces a shear-mode buk acoustic wave in the thickness 

direction, parailel to the electric field and perpendicular to the atomic displacements. 

This acoustic wave exists as a standing wave, with displacement maxima occurring at 



Figure 1: Thickness Shear Mode (TSM) device and wave propagation. 



the crysttal faces. The resonant frequency is d e t e e n e d  by the physical characteristics 

of the quartz substrate and the thickness of the crystal since these parameters directly 

affect th.e wave velocity through the crystal. Since a rigidly adhered, thin coating on 

the electrodes can be treated as an extension of the quartz material and thus an 

increase in  the thickness of the wafer, a shift in the resonance frequency can be 

correlated quantitatively with a change in mass on the surface of the crystal. This 

phenomœnon was originally descnbed by Sauerbrey, whose analysis was based on the 

increase in the resonant waveIength as a resulr: of an increase in the effective thickness 

of the d e ~ i c e . ' ~  An equation was derived for an AT-cut crystal, relating the 

proportiaonal change in the resonant frequency to the deposited mass: 

where A$ is the measured/expected frequency shift,f, is the fundarnental resonant 

frequency of the unloaded crystal, dm is the total change in m a s ,  A is the surface area 

of one face of the crystal in cm' with p, and p, being the shear modulus and the 

density af the quartz crystal, respectively. For AT-cut crystal, pq= 2-947 x 10' ' g cm- 1 

-3 and p, = 2.648 g cm which for typical operating frequencies and crystal sizes, 

predicts ;a detection limit on the order of IO-" g '8. Although this equation applies to 

experiments performed in vacuum or the gas phase, with infinitesimally thin films 

having the same acoustic impedance as that of the quartz crystal, it is not rigorously 

valid for thicker films. A more thorough approach by Miller and CO-workers treated 

the device  and the added mass to be a compound resonator 'g. It was demonstrated 

that for relatively small mass loading, a series expansion of the compound resonator 



yields Sauerbrey's equation with higher-order terms. Lu and Lewis reduced this 

expansion to a sirnpler form, which is valid for frequency changes of up to 15% 30. 

However, it was established that, for most materials, the Sauerbrey equation is valid 

for rigid overlayers up to a mass load limit of Am/m = 2%, where m is the mass per 

unit area of the unloaded crystal. 3 1  



TSM Operation in Liquid Phase 

Prior to 1980, it was believed that damping viscous forces would preclude 

the liquid-phase operation of the TSM device. However, it was demonstrated in 1980 

that the crystal could operate in contact with a liquid if one side of the device is kept 

exposed to a gas.3' The behaviour of the TSM device when operated in liquids does 

not adhere to the Sauerbrey equation because significant losses of acoustic energy 

occur through transmission to the surrounding fiuid. Energy from the crystd couples 

to the adjacent liquid, generaring acoustic waves with decay lengths on the order of : 

Pm. Bulk and interfacial properties, such as viscosity, density, conductivity, 

viscoelasticity, surface free energy, surface roughness, surface stress, molecular 

slippage, viscous energy losses and dielectric effects, have al1 been invoked to 

account for the change in the resonant frequency upon liquid loading and the various 

theories to date are briefly reviewed below and summarised in Table 1. 

The first argument, based upon an empirical formulation, was presented by 

Nomura and ~inemura." The change in the resonant frequency, is ascribed to the 

specific density and conductivity of the adjoining solution. Nomura and Okuhara 

later showed that di in an organic solvent containing no electrolyte, is influenced by 

the density and v i s c ~ s i t ~ . ' ~  Through dimensional analysis, Bruckenstein and Shay 3J 

derived a mode1 outlining the effects of visccsity and density on nf, which c m  be 

applied to a crystal with one or two faces in contact with the liquid. A diffusion- 

momentum analogy was used by the authors to calculate the effective thickness of the 

layer of fluid deemed to be coupled to the surface. This was then correlated to the 

frequency shift through Sauerbrey's equation. A similar model, proposed by 

Kanazawa and Gordon in the same year 35, treats the quartz as totally lossless elastic 

solid and the liquid as a purely viscous fluid. Despite the different ba i s  for the two 



Equations Comments Authors 

Empirical Nomura and ~ i n e m u r a ~ '  

formulation. 

Conductivity and 

specific density. 

Empirical 

formulation. 

Viscosity and density. 

Nomura and ~ k u h a r a ~ ~  

Viscosity and density Bruckenstein and shay3' 

of buIk. 

Viscosity and density Kanazawa and   or don)^ 

of bulk. 

Surface roughness. Schumacher et dJ3 

Surface stress. Haeusler et al. 38 

Hydrodynamic ~ a ~ e r ~ '  

coupling analysis and 

liquid dielectric 

constant. 

Hydro d yn ami c 

c o u p h g  analysis and 

liquid dielectric 

constant 

Yao and zhou4' 



f?f Piezoelectric effects. S hana and h os se.^' - = - ( f"r lrPr .  )"'ltanh(k,h)l 
f 0 T Q ~ Q  

Equivalent circuit. Muramatsu and et al." 

r 7 ~  0 L, 2wpq, ),, Equivalent circuit. Martin and et nL4' Rn, = - ( - )'+or-( 
Y& U s  Nr P, P, 

Table 1 : TSM Operation in Liquid. 



models, the relationship between the frequency shift and the properties of the quartz 

and bulk liquid is the sarne as that predicted by Bruckenstein and S hay. The change 

in the resonant frequency was deemed to have arisen from the coupling of the crystal 

oscillation with the Iiquid, resulting in a standing shear wave with a damped, 

propagating component into the liquid (figure 2) .  The decay length of this component 

varies as the square root of the viscosity of the bulk Iiquid and constitutes the 

effective thickness of the liquid treated as a rigid layer. Both models assume non-slip 

conditions, Le. the transverse displacement of the surface of the device is identical to 

that of the adjacent Iiquid layer, and they are most rigorous only when the contacting 

liquid is perfectly insulating and the electrode surface is ideally smooth. In particular, 

these rnodels predict that the change in series resonant frequency is proportional to the 

acoustic impedance of the liquid. Specifically, it was concluded that only a thin layer 

of liquid at the surface of the quartz will undergo displacement and thus the response 

of the device will be a function of the characteristics of this layer. These two models 

appear to form a bridge between the classicd Sauerbrey gas-phase mass response and 

the properties of a thin boundary film of liquid. However, by considering only the 

mechanicd resonant frequencies and ignoring the electrical properties of the TSM 

device, these models do not address the operation of the sensor on a fundamental 

basis and can predict onIy some aspects of its behaviour in liquid. 

A comprehensive two-layer mode1 was proposed by Reed et al., based on the 

sarne non-slip boundaiy con di ri on^.^^ The electrical admittance of a crystal, with one 

side exposed to a viscoelastic medium, was described in ternis of the physicaI 

properties of the system. The description was based on the detailed matnx equations 

for piezoelectric quartz and includes the piezoeIectric effect of the quartz transducer 

and the shear modulus and viscosity of the layer. The boundary conditions included 
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Figure 7: Factors affecting the responses of the TSM device. 



no slip, no stress at the free surfaces and the application of a driving voltage to both 

sides of the quant2 crystal. The viscous component in the Hook's Law equation was 

included to accmunt for the energy dissipation in the crystal. When the adjacent liquid 

Iayer is considered to be infinitely thick and purely viscous, this model mirrors that of 

Kanazawa and   or don.'^ Using this model, Martin and CO-workers derived an 

equivalent circuit model for the electrical behaviour of the TSM device in liquid?' In 

their work, the uiscous film is replaced by an equation for liquid loading derived from 

the Navier-Stokes equation. The deposited mass was considered to be an 

infinitesimally thin  film and the no-slip condition was invoked. This model allowed 

both mass and v-iscous Ioading to be measured simultaneously. Haeusler and co- 

workers considered the influence of surface stress on the resonant frequency and 

proposed a t h e o q  in which a parabolic dependence of the resonant frequency on the 

hydrostatic pressure at the surface of the crystal could be related to the energy stored 

in the quartz.38 Hager derived a mode1 in which viscous energy losses. fluid velocity 

at the surface o f  the crystal and the dielectric effect of the liquid were c ~ n s i d e r e d . ~ ~  

Josse and CO-worrkers derived an equation for the obsewed frequency shift of a TSM 

device, with o n e  side immersed in a dilute conductive solution, by applying the 

appropriate eleclitrical and mechanical boundary conditions at the interface and solving 

the characteristic equations for each medium ''O. Muramatsu and CO-workers have also 

demonstrated a Uinear relationship between of and (pLqù[R by considering the 

resistance of an oequivalent circuit for alcohol-water solutions ". This correlation 

deviates from linearity when the crystd is exposed to highly viscous liquids or when 

both sides of the: device are in contact with water. Furthemore, according to the work 

of Yao and Zhorn, the frequency response of a TSM device in liquid depends on the 

dielectric and CO: nductance effects of the liquid ". Their mode1 resernbles that which 



wzis derived by Nomura and Okuhara. 33 

These early theories al1 lack consideration for the boundary conditions that exist at 

the crystal - Iiquid interface Le. surface roughness, interfacial viscosity, surface free 

energy and interfacial slippage (figure 2) .  With respect to the first condition, when 

the surface of the resonator is rough, the liquid motion generated by the vibrating 

surface becomes more complicated. A variety of additional interaction mechanisms 

may arise from the generation of turbulent flow or compressional waves by protruding 

portions of the surface and from the trapping of liquid in pits and crevices. 

Schumacher and CO-workers proposed that anornaIousIy large shifts in of could be 

attnbuted to surface r ~ u ~ h n e s s . ' ~  The authors proposed a mode1 of a corrugated 

surface comprising of hemi-cylinders with diameters E. The entrapped liquid, which 

can be represented as a rigidly attached liquid layer having a thickness of d 2 ,  was 

deemed to be directly culpable for the additional change in the resonant frequency. A 

later study of surface roughness by Martin et al. led to the conclusion that this layer of 

trapped Iiquid is adequate explanation for any anornaly in the resonant frequency and 

there is no ba is  for either liquid ordering. or slippage, at the quartz-liquid interfaccU 

The authors argued that for roughness features of dimension much less than the Iiquid 

decay length, the surface may be considered to be hydrodynamically smooth and the 

frequency response should depend only on the density-viscosity product. The 

wettability of a smooth surface is also considered to be unimportant with respect to its 

ability to couple to the liquid. As the features on the surface become comparable to or 

larger than the decay length, liquid trapping and compressional wave generation rnay 

become important mechanisms in the response of the device. It was also concluded 

that the extent of liquid trapping by a rough surface diminishes with increasing 

hydrophobicity. This effect was deemed to be wholly responsible for phenornena 



previously attributed to slippage at the solid-liquid interface. 

A thorough investigation of rough vs. smooth surfaces by Yang and Thompson 

concluded that significant contributions to frequency shifts can also a i se  from surface 

45 stress as well as shear and non-shear coupling phenomena. Subsequent studies by 

46 4 9  Thompson et al. have demonstrated that the response of the TSM device is 

controlled by the molecular boundxy conditions that exist at the quartz - liquid 

interface. It was concluded that perturbation of acoustic energy propagation courd be 

caused by a partial slip boundary condition at the interface. This tenet is central to the 

concept of interfacial viscosity at a solid-liquid junction, with one component in 

motion, The culmination of these investigations is a four-layer model, proposed by 

Thompson and Duncan-Hewitt, which applies the rigorous linear theory for 

piezoelectricity to describe the interfacial viscosity in term of an activation barrier to 

interfacial flow.% Using this model and the molecular theory of interfacial viscosity 

proposed by Krausz et al. ", they were able to show that the response of the TSM 

device couId be associated experimentally with the surface free energy, as determined 

by contact angle measurements. This, in turn, can be correlated to interfacial slip 

characteristics. Duncan-Hewitt and CO-workers were able to demonstrate also the role 

of interfacial parameters in the determination of interfaciai viscosity. It has been 

proven that the properties of a liquid adjacent to a solid interface are different from 

those of the bulk and these properties may indeed affect the behaviour of the entire 

52-54 system. Figure 3 depicts the four-layer mode1 of the TSM sensor with the first 

layer consisting of the quartz-electrode system. The authors made the assumption that 

that the electrodes on the quartz surfaces are thin and elastic enough to approximate a 

layer of quartz. The second layer is an ordered surface-adjacent layer of liquid, 

possessing greater density and viscosity than the bulk liquid, the thickness of which is 

a function of the solid surface-liquid interaction. The viscosity and density of this 
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Figure 3: Four-layer model. 



region are deemed to be five times that of the bulk. Churaev and CO-workers have 

demonstrated that the apparent viscosity of water in a quartz capillary O, 1 pm wide is 

1.5 times that of bulk water." The thickness of the ordered surface-adjacent layer is 

correlated with experimental contact-angle data. The third layer is a thin transition 

region between the surface-adjacent layer and the bulk liquid. Its composition and 

behavior is influenced by the hydrophobicity of the system and can be predicted from 

contact-angle measurements. The thickness of this transition region is estimated, from 

theoretical and experimental considerations, to range anywhere from one to five 

molecuIar diarneters. The density of this hyer shouId approach that of the bulk Iiquid 

if the surface is completely wetted and that of the vapor phase for a hydrophobie 

surface. The final region directly affected by the device is the bulk liquid, with an 

approximately thickness of 3pm. Al1 the Iiquid layers were deemed to be purely 

viscous and the no-slip condition was invoked for al1 the liquid-liquid interfaces. The 

solutions of the differential equations require that each layer be homogenous as we11 

as the assumption of abrupt transitions between layers, but in reality the transitions 

across each layer are more graduai. This model correlates the viscosity and density of 

the interfacial layers with interfacial energetics, via the contact angle, and the 

predicted results are demonstrated to be quantitatively similar to chose observed 

experimentally. 

The authors also considered the validity of the no-slip boundary conditions, 

prevalent in earlier models. The possibility of slippage at a solid - liquid interface 

was previously proposed by Tolstoi j6 and Blake ", demonstrated through surface 

force microscopy on thin films by Israelachvili 58 and later applied to describe the 

behaviour of the TSM device by Krim et cil. 59 A similar conclusion was reached 

recently by Hayward in the derivation of a model relating equivalent circuit elements 



to the dissipation of acoustic energy.60 The first detailed study of molecular slip at the 

interface of an AT-cut TSM sensor was reported by Ferrante et al. 61 A model is 

derived through impedance analyses of hydrophobic and hydrophilic surfaces, in 

contact with water-glycerol solutions of various concentrations. A new quantity, the 

interfacial slip parameter a, is introduced as one of the boundary conditions for a two- 

layer model of the TSM sensor in liquid. The two-Iayer mode1 predicates that the 

structure of the liquid in contact with sensor surface is not affected by the surface. 

This slip parameter is a complex-valued quantity and it is defined as the displacement 

of a particle of liquid in contact with the surface divided by the displacernent of a 

particle on the surface of the sensor. The experimental impedance values of the TSM 

device, as measured by the network analysis method, were fitted to the theoretical 

expression by non-linear, iterative regression to find the slip parameter and several 

other crystd-related parameters. A mechanical model of molecular slippage is 

devised to explain the variation of the slip quantity with the viscosity of the Iiquid. It 

was concluded that if the forces between the Iiquid particles and solid particles were 

very strong, their displacements would be the same. In this case, or would be equal to 

1 and there would be no sIip at the interface. However, if the force between the liquid 

and solid was zero, then there would be no coupling between the two phases. in that 

scenario, movement by the solid particles on the surface would not induce the 

displacement of the liquid particles, thus a would be equal to O. In most systems, the 

magnitude of a will not be at the extremes but will lie between O and 1. It was 

observed that there was some slip in liquids with low viscosity near that of water but 

very little slip in liquids of high viscosity near that of glycerol. 

Recently, Hayward and Thompson extended the concept of interfacial slip 

parameter to a modified four-layer  mode^.^' A real coated sensor is modelled, with 



the four layers being the quartz crystal, the metal electrodes, a polymeric sensing layer 

and an infinitely thick fluid medium. Al1 four layers are assumed to have both elastic 

and viscoelastic properties. The bottom face of the crystal is considered to be a free 

surface, having an ideal eIectrode with neither mass nor thickness. Nine boundary 

conditions were invoked with the first three being the interfacial slip parameters 

between successive layers. These parameters were assumed to be complex-valued to 

allow phase shift between the displacements. This assumption yielded three 

equations. At the same three interfaces the shear stress must also be continuous, 

yielding a second set of three equations. The no-stress condition at the bottorn face of 

the crystal gave rise to another equation. The other two boundary equations are the 

electrical forcing functions that cause the crystal to oscillate. This nine-equation 

model was used to fit network analysis data, obtained from water-glycerol solutions 

of various concentrations, with good agreement. With appropriate assumptions, 

correlations were also obtained with mass loading models by Sauerbrey " and Lu et 

al.", with non-slip liquid loading model by Kanazawa and Gordon '' and with slip- 

invoked liquid Ioading model by Ferrante et al. 61. The authors also adapted features 

h m  three earlier rnodels to describe the behavior of the Iiquid at the surface of the 

quartz crystal. The fluid was considered to be viscoelastic, to be ordered at the 

interface and to slip at the interface according to Reed et ni. 36, Duncan-Hewitt er al. 

50 and Ferrante er al. 6 ' ,  respectively. The senes resonant frequency was shown to 

have a proportional relationship with the stiffness of the fluid medium and an inverse 

relationship with its viscosity. The two parameters were combined to form a complex 

shear viscosity that was interchangeable but not physically equivalent to the 

interfacial slip parameter. According to the authors, both viscoelasticity and 

interfacial slippage are important with the former being significant for more viscous 

liquids and the latter more dominant for thinner fluids. 



The responses of the TSM device to a conducting fluid have also been well- 

documented. In a conducting medium, the acmustic wave generated by the crystal will 

interact with the ions and dipoles of the solution via viscous coupling and 

acoustoelectric coupling. Acoustoelectric coupling arises when the evanescent wave, 

generated by the propagating acoustic wave, imteracts with the charge carriers and 

dipoles in the surrounding medium. The energy expended through this interaction 

would affect the response of the TSM device. The performance of the device is thus 

influenced by the electncal properties of the sdution. Nomura et oL3' and Yao er 

have proposed ernpirîcal models, describirng the relationship between the 

resonant frequency and the specific conductivitcy and the dielectric constant of the 

surround fluid, respectively (Table 1). Through the application of the appropriate 

electrical and mechanical boundary conditions at the interface and by solving the 

resulting equations, Josse and CO-workers *O derived an equation describing the 

frequency shift of a TSM device with one side immersed in a dilute conductive 

solution (Table 1). The change in Fs was descnibed in terms of the dielectric 

constants for both quartz and Iiquid as well as uhe conductivity of the solution. 

Other factors have been proposed which may affect the responses of the sensor: 

the formation of an eIectrical double layer at th- e interface and the fringing of the 

electrical field, created by a small spillover of the electrical field beyond the area 

bounded by the electrodes. According to Adamson 63, while it is present, the 

thickness of the double hyer is much less than the decay length of the electric field 

(0.0 1 pm vs. 0.2 pm) and thus can be regarded as an added capacitance to the TSM 

sensor. Rodahl and CO-workers suggested that acoustically induced surface charges 

could couple to charged species in a conducting liquid @ but the inference of the 

existence of surface charges, or other microsco~pic phenomena such as electricai 



double layers, was not necessary to account for the influence of the electncal 

properties on the resonant frequency. The contacting conductive liquid effectively 

enlarges the electrode area and changes the parallel resonant frequency. This has the 

implication that the fringing fields and the two eIectrode contacts rnay pIay an 

important role in both the resonant frequency and the energy dissipation response of a 

TSM device. 

The authors also considered the changes in the stray capacitive and the resistive 

pathways caused by the liquid via its dielectric and conducting properties, 

respectively. The oripin of a shunt capacitance, c:~', in air can be attributed to the 

capacitor formed by the two electrodes sandwiching the quartz crystal. It was 

observed that the fringing field would cause a stray capacitance that contributed to the 

shunt capacitance of the TSM. The size of this stray capacitance depended on the 

geometry and the dielectric constant of the media that the field Lines passed through; 

the higher the dieIectric constant, the I q e r  the capacitance. A significant increase in 

the capacitance would have a definite effect on the response of the TSM sensor. 



NETWORK ANALYSIS 

Prior to 1990, characterisation of the TSM device has been done exclusively 

through the oscillaror r n e t h ~ d . ' ~ . ~ ~  A common oscillator architecture wouid comprise 

of two transistor-transistor-logic (TTL) inverters connected in series to give a non- 

inverting amplifier Le. there is zero phase shift between the input and the output 

voltage. The quartz crystal is connected from the output to the input of the amplifier 

to produce a positive feedback. Two criteria must be fulfilled for oscillation to occur: 

(a) the loop gain of the circuit must be unity, ie.  the feedback voltage is equal to the 

input voltage and (b) the phase shift must be zero. The configuration of the electrodes 

on the crystal gives rise to an eIectrical capacitance and thus dual resonance. The two 

frequencies at which the phase shift is zero are the series resonant frequency, Fst and 

the parallel resonant frequency, Fp. However, for any particular oscillator setup, the 

unity loop gain criterion can be satisfied for only one resonant frequency. In most 

cases, the circuit is designed to oscillate at Fs although the inverse configuration is 

possible. 

The oscillator method suffers from three glaring limitations. Since it yields only 

one resonant frequency. the crystal is only partially characterised. Moreover, this 

frequency is not wholly characteristic of the device but can be modulated by simply 

changing the value of a capacitor in senes with the crystal. Also, the circuit will cease 

to oscillate if the crystal is immersed in liquid or if it is exposed to a solution of high 

viscosity. This fundamental deficiency exists because at high viscosity, the phase 

shift of the crystal is less than zero. Thus, the second criterion for oscilIation is not 

satisfied. Atternpts to overcome the first limitation included the measurement of the 

output voltage 39, the feedback voltage of the oscillator amplifier '' and the use of an 



impedance analyzer to measure the motional resistance (R,) 66, in addition to the 

resonant frequency. However, two qumtities do not describe satisfactorily the 

behaviour of the TSM device thus the characterisation is still incomplete. The 

concept of impedance analysis was extended by Thompson et al. through the use of a 

network analyzer.J6 This is a passive method in which sinusoidal voltages, on and 

reflected from the quartz crystal, and the current flowing through it are measured for 

40 1 frequency points about resonance. The magnitude and phase of the impedance 

are calculated at each frequency from the voltage and current, the pIots of which are 

illustrated in figure 4. From these plots, up to eight parameters can be determined 

directly and several more electrical quantities can be derived from equivdent circuit 

analysis of the impedance curves. This technique allows for the complete 

characterization of the quartz sensor. 

BVD EQUIVALENT CIRCUIT 

The theory conceming the electrical behaviour of a piezoelectric crystal has been 

derived by Cady '' and surnmarised by Bottom 68. The equation of motion for each 

point of the quartz plate was considered and the result of the analysis was an 

expression for the current density conducted by the crystal, in tems of the voltage 

across the crystal. This cornplex-valued quantity, the admittance. is a function of the 

frequency and of the properties of the crystal. The reciprocal of the admittance. the 

impedance, can be interpreted as an equivalent circuit after some mathematical 

manipuIations and approximations. An equivalent circuit is a combination of ideal 

electrical componenrs, which responds to an applied voltage or current in the same 

way as the device itself. This electrical mode1 will describe exactly the irnpedance 

properties of the device, as a function of frequency. The Butterworth-Van Dyke 

(BVD) equivalent circuit (figure 5 )  corresponds to the thickness-shear mode of 

2 1 



Figure 4: Impedance (a) and phase (b) traces derived from network analysis. (c) and 

(d) are the fitted traces using the electrical elements. 
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Figure 5: Equivalent circuit parameters. 



vibration of the bulk acoustic wave device. It comprises of a capacitor (Co) in paralle1 

with a series combination of a resistor (R,), an inductor &,) and a capacitor (Cm). 

The electrostatic capacitor (Co) accounts for the capacitance of the two electrodes 

sandwiching the insulating quartz. Electro-mechanical coupling gives rise to the 

additional motional contribution (R,, L, and Cm) in parallel with the electrostatic 

capacitance. These are associated with the vibrational motion caused by the 

piezoelectric effect in the resonant region. Thus the electrostatic element will 

dominate the impedance away from resonance while the motional arrn assumes 

contro1 near resonance. A11 four circuit elements can be expressed as a function of the 

physicd characteristics of the quartz plate. These are listed below dong with their 

respective impedances. 

imp. = R, 

imp. = joLm 

1 
imp. = -- 

jcÙC, 

1 
imp. = -- 

jK, 

where e is the thickness, is the dissipation coefficient, A is the area, E is the 

piezoelectric stress constant, p is the density and ~ L Q  is the elastic constant of the 

quartz crystal. The dielectric constant of quartz, k, and the permittivity of free space, 

E,, are unique to the equation describing the electrostatic capacitance, which, by not 

containing E, is independent of the piezoelectric effect. 



Each individual component can be correlated to the physicai properties of the 

device as well as those at the surface and of the surrounding medium. In practice, the 

impedance and phase curves of a TSM device are measured experimentally and the 

electricd elements are fitted to the mode1 to extract information concerning the solid- 

Iiquid interactions. The motional resistance, R,, represents the dissipation of 

electricaI energy in the TSM device. both intemally and externdly. Internally losses 

involve conversion into thermal energy due to interna1 friction while extemally losses 

include mechanical Iosses in the rnounting system and dissipation into the 

surrounding medium via the decaying acoustic waves. While the intemal losses 

depend only on the physical properties of the quartz plate, the external dissipation is a 

function of both the bulk properties of the fluid and the nature of the solid-liquid 

interaction at the interface. L,,,, the rnotional inductance, is the inertial component 

related to the displaced mass during oscillation. It represents the mass of the quartz 

plate, the coating on its surface and the effect of the contacting fluid. The motional 

capacitance, Cm, is the cornpliance of the quartz element, representing the energy 

stored during oscillation. The electrostatic capacitance, Co, is sirnpiy the capacitance 

of the two parallel electrodes on both faces of the TSM device. 

As can be seen from figure 4, there are several characteristic frequencies that can 

be extracted from the experimental impedance and phase angle curves. These 

frequencies have been derived theoreticaIIy in terms of the circuit elements to 

67-68 demonstrate their relationship. The impedance of each of the elements can be 

expressed in terrn of the angular frequency, o (in rads), where o = 2xf and f i s  the 

frequency of the voltage source (figure 5). 2, the complex-valued impedance of the 

BVD circuit, can be written as the impedance combination of the four individual 

components. 



w here 

and 

X, = oL, - (l/oCm) 

or in standard fom,  

Z = R + j X  

where R is the real part of 2, the resistance, and X is the imaginary part, the reactance. 

Both R and X are functions of R,, L, Cm, Co and the angular frequency, o. By 

definition, the admittance, Y, is the reciprocal of the impedance 2. 

where G is the conductance and B is the susceptance. These quantities can be 

expressed in term of the circuit elements. 67.68 

G =  R n ,  
1 

R:+ O.&,-- ( Ur.) 



The magnitude (IZI) and the phase angle (8) of 2, in radians, are given below: 

Physically, Z is the voltage across the crystal divided by the current flowing 

through it. The phase angle, 9, is a measure of the time difference between the 

voltage maximum and the current maximum. If 0 is positive, the voltage leads the 

current and if 8 is negative, the voltage lags the current. Since from basic compiex 

number relations one can wnte 

and 



B 
substituting X = -R - into equation 16 gives 

G 

which reduces to 

G 
and similarly substituting R = -X - into equation 16 and doing the appropriate 

B 

reduction yields 

The condition for a circuit to be resonant is the imaginary part of Z should be 

equal to zero, that is Z is a pure resistance. This is satisfied at zero phase since for 

tan 9 = 0' B / G = O. Therefore, by dividing (B) by (G) and equating to zero, one 

obtains 



The motional resistance, R,, represents the energy dissipation of the device but in 

the gas phase, R, =O. B y  assuming R, = O and by solving the resulting quadratic 

equation, one obtains 

where FR is the resonant frequency and FA is the anti-resonant frequency. For cases in 

which R, is not negligible, Le. upon liquid loading, the solutions must include the 

effect of the motional resistance to obtain 



where r = Co / C,, and Q = oL, / R, . Q, terrned the quality factor, is defined as the 

ratio between the energy stored and the energy dissipated per resonant cycle. The 

quality factor is unique to each crystal and determines its ability to control the 

frequency, Fs and Fp are the zero-phase frequencies at which Z is a pure resistance. 

The low frequency of zero phase, Fs, is termed the series resonant frequency and the 

high frequency of zero phase, Fp, is called the parallel resonant frequency. They are 

the same as those that c m  be measured separately using the oscillator method. 

Network analysis ailows for the simultaneous determination of both frequencies. 

dong with other parameters. Two more characteristic frequencies, obtainable from 

the impedance curves, c m  be derived theoretically via circuit analysis. The 

frequencies of minimum and maximum impedances can be obtained by computing 

the modulus of the admittance Y and differentiating the resulting expression with 

respect to X. 

The admittance of a circuit can be depicted graphicalIy to illustrate the origins of 

the characteristic frequencies and their relationships. The admittance diagram is a 

complex plane with the conductance (G) as the real axis and the susceptance (B) as 

the irnaginary axis (figure 6). The admittance circle depicts the frequency, increasing 



C O N D U C T A N C E  ( G )  

Figure 6: Admittance diagram. 



in a clockwise direction, with any point on the circle representing the vector surn of G 

and B. The relative positions of al1 the characteristic frequencies are depicted on the 

frequency curve, in the foliowing order: FR, Fs. FP, FA and F a 1 A X -  

In an actual experiment, Fs, Fp, FZM[N, FmlAx are measured directly from the 

impedance curves (figure 4), the circuit elernents are derived f L m  a least-squares fit 

of the curves while FR and FA c m  be determined by substituting the respective circuit 

parameters into equations 24 and 25. Other useful parameters that c m  be obtained 

from the magnitude and phase curves are the minimum impedance, ZMIN, the 

maximum impedance, ZMAX, the maximum phase, eMAX, and the frequency of 

maximum phase, FerYIM (figure 4). The response of the TSM device in air and the 

impedance traces obtained with one side of the crystal immersed in a liquid are shown 

in figures 7a and 7b, respectively. Both the magnitude and the phase traces of the 

measurernent in liquid have been broadened and the sharp edges and points have been 

rounded off, compared to those measured in air. These changes can be explained in 

terms of the equivdent circuit parameters, the bulk properties of the liquid and 

phenomena occurring at the solid-Iiquid interface. 

Effect of the Electrostatic Capacitance, Co 

The TSM device behaves as a simple paraIlel-plate capacitor at off-resonance 

frequencies. The capacitance is related to the area of the electrodes, the thickness of 

the resonator and the dielectric constant of the quartz (equation 5). Since the 

dielectric constant is deterrnined by the direction of the field, it must be corrected for 

the fringing of the field, an artefact arïsing from the finite size of the electrodes. 

Mounting stress will aIso affect the dielectric constant thus this also must be taken 

into account. Other factors that will affect Co include double-Iayer formation in polar 

or conductive soIutions and any charge distribution on the surface of the electrodes. 
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Figure 7a: Network analyser traces in air. 
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Figure 7b: Network analyser traces in liquid. 



From equations 24,26 and 28, it can be argued that FR is independent of the 

electrostatic capacitance but that FmrN and & should be dependent on Co since both 

latter equations contain Co. However, due to the high quality factor (Q) for most 

crystals (magnitude in the order of 104), a small change in Co should have a minimum 

effect on both FmIN and Fs. Similady, from equations 25, 27 and 29, it can be seen 

that FA, FZM~x and Fp are al1 dependent on the etectrostatic capacitance. The presence 

of the extra Co tenn in the expressions for FafAX and Fp predict an inverse 

proportionality with Co. These predicted effects of the electrostatic capacitance on the 

characteristic frequencies are illustrated in figures 8 and 9.69 They depict network 

analysis simulations on a real measurement of a 9 MHz device in which Co is varied 

while keeping al1 other parameters constant. Analysis of the impedance curve reveals 

that an increase in Co causes a decrease in the frequency of maximum impedance 

while leaving the frequency of minimum impedance unchanged (figure 8). A similar 

effect is seen for the phase angle curve, in which Fp is reduced while Fs is unaffected 

(figure 9). Overall, this has the effect of reducing the resonant bandwidth which is 

indicative of an increase of energy storage in the resonator. Although the parallel 

resonant Fp is dependent on the circuit elements. its measurement can still be very 

useful in detemining the properties of the media surrounding the resonator. 

Effect of the Motional Resistance, R, 

The expression for R,, depicted in equation X, relates to the energy dissipation 

for an infinitely large, unperturbed TSM device. Assuming al1 the other parameters 

stay constant for a particular resonator, R, is directly proportional to the damping 

constant, cd- This parameter is assumed to contain al1 mechanisms of energy 

dissipation including intemal dissipation, surface friction, coupling to the surrounding 

medium and mounting losses. It was shown by Muramatsu et al.'' that for a quartz 
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Figure 8: Effect of Ca on the magnitude of the irnpedance. 



Figure 9: Effect of Co on the phase of the impedance. 
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crystal in contact with a Iiquid, 

where K is the eIectrornechanical coupling factor, p~ is the liquid density and q~ is the 

liquid viscosity. However, this derivation is of lirnited use since the use of the 

coupling factor is arbitrary and its value cannot be determined experimentally. A later 

treatment of the TSM device through equivaient circuit analysis by Martin et ai. 37 

yielded a more useful expression for R,. 

where qp is the effective quartz viscosity, PQ is the quartz elastic constant, p~ is the 

quartz density, Ci is the unperturbed motional capacitance, Li the unperturbed 

motional inductance and N is the hannonic number with N = 1 for the fundamental 

mode. Unlike equation 30, this expression allows for the prediction of R, from the 

properties of the quartz and the surrounding liquid. It can be seen from the above 

equation that Rm is dependent on both the density and viscosity of the coupled liquid 

thus the energy dissipation will also be proportional to the density-viscosity product. 

Upon analyses of equations 24 and 25, it can be seen that both FR and FA are 

independent of R,. The equations for Fs, Fp ,  FZM~N and Falu al1 contains a R, term 

but once again. due to the high magnitude of the quality factor of quartz, the effects 

R, has on al1 these characteristic frequencies should be minimal for srna11 Rm 

increases. A similar manipulation of the R, values for the experimentally derived 
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F e  O :  Effect of R, on the magnitude of the impedance. 
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Figure 1 1 : Effect of R, on the phase of the impedance. 
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impedance curves is depicted in figures 10 and 1 1. An increase in R, creates a 

damping, broadening effect on both the magnitude and the phase angle curves. This 

translates to an increase in the magnitude of the minimum impedance, Z M I ~ ,  a 

decrease in the maximum impedance, ZMhX (figure IO) and a decrease in the 

maximum phase angle, OMAX (figure 11). The characteristic frequencies, FZMM, 

FniM7 FS and Fp are minimally affected for Iow R, values, as predicted. However, 

the effects on these frequencies becorne more pronounced for Iarger R,. It can be 

seen from the phase angle curve that the values for Fs and Fp converge with 

increasing R, and eventually coincide at R, = 1500 R, where the maximum phase 

angle, €lMAX7 becornes zero (figure Il). This critical value of motional resistance, 

R,', above which both frequencies at zero phase cease to exist can be calculated by 

equating equations X and X and solving for R,. 

This cessation of resonance is one of the main Iirnitations of the oscillator rnethod 

that prevents its application to viscous liquid. The Iarge number of parameters that 

are obtainable through network analysis allows for the characterisation of the quartz 

crystal even under this extreme condition as a11 other elements still exist, regardless of 

the value of R,. 

Effect of the Motional Inductance, Lm: 

According to the Sauerbrey equation, changes in the resonant frequency can be 

related to mass changes at the surface of the TSM device. Such m a s  changes are also 

reflected in the value of the motional inductance, L, since it is the inertial component 
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related to the displaced mass during osciIlation. It represents the mass of the quartz 

plate, any coating on the surface and also must be generalised to account for the 

effects of the contacting fluid. A practical expression reiating L, to the properties of 

the quartz and the coupled fluid was proposed by Lasky et al. " 

where LI is the motional inductance of an unperturbed resonator with the second pan 

accounting for the liquid loading. Analyses of equations 24 to 29 reveal chat the term 

L, is included in al1 the expressions for the characteristic frequencies in manners that 

indicate a dependent relationship. This relationship is depicted in figures 12 and 13, 

in which different values of L, are imposed on the irnpedance measurements of an 

unperturbed TSM device while keeping al1 other parameters constant. Zncreases in 

the value of the inductance produce proportional decreases in al1 the characteristic 

frequencies while keeping the values of ZbI~N, ZHAX and OMAX fairly constant. The 

fact that no changes in the resonant bandwidth is observed is further proof that 

changes in L, is purely mass dependent and has no effect on the energy dissipation 

process of a resonator. 

Effect of the Motional Capacitance, Cm: 

The expression for the motional capacitance (equation 4), determined by 

electromechanical analysis, relates to the elasticity of the quartz crystal. Apart from 

the physical dimensions, an important variable in the equation is the elastic constant, 

p ~ ,  which corresponds to lattice restoring forces. Unlike the other circuit elernents, 



Figure 12: Effect of L, on the magnitude of the impedance. 



FREQUENCY (Hz) 

Figure 13: Effect of L, on the phase of the irnpedance. 



Cm has often been considered to be a constant under liquid Ioading since a Newtonian 

iiquid does not possess any appreciable elasticity. In practice, the value of Cm does 

change in solution-based experirnents but this has always been regarded as a possible 

artefact of the non-linear regression method used to fit the equivalent circuit elements 

to the experimental impedance curves. The effects that changes in Cm could exert on 

the impedance responses of the TSM device are shown in figure 14 and 15. An 

increase in C m  would shift al1 characteristic frequencies to lower values but would 

not have any effect on the magnitudes of the minimum impedance, the maximum 

impedance nor the maximum phase angle. These changes are very similar to those 

effected by a change in Lm. Thus. it is likely that changes that should be attnbuted to 

Lm may be wrongly, or  disproportionally, attnbuted to Cm by the regression routine. 

Recently developed theories concerning the existence of non-Newtonian interfacial 

liquid structures that possess viscoelastic properties may confer intrinsic meaning to 

this variation in motional capacitance and this in tum, could give greater insight into 

interfacial phenomena. 



FREQUENCY (Hz) 

Figure 14: Effect of Cm on the magnitude of the impedance. 
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Figure 15: Effect of Cm on the phase of the impedance. 



ARTIFICIAL NEURAL NETWORK THEORY 

The human brain is the most complex computing device known to man. Artificial 

neural network (ANNs) arose €rom attempts to model its complex functions in a very 

fundamental manner. Neural network research got its s t m  from the neuron model 

proposed by Mc Culloch and Pitts in 1943. '' In 1958, Rosenblatt and CO-workers 

developed perceptrons. which connect the above neurons in layers and used thern to 

study pattern cla~sification.~~ For a two-layer perceptron, convergence of learning was 

theoretically proven, drawing much interest to the field. A boom in neural network 

research followed until 1969 when Minsky and Papert demonstrated an important 

limitation of perceptrons i-e. that they are only applicable in cases where data, 

belonging to different classes, are iinearly separable.7"terest and funding rapidly 

shrank and the field was basically dormant until 1985, when Hopfield devised a 

mutual connected mode1 which can solve a very difficult combinatorial optimisation 

problem  efficient^^.'' A year later, Rumelhart and CO-workers presented a 

multilayered network trained by a back-propagation algorithm.76 Convergence of 

learning was demonstrated and the network was proven to be applicable to non-Iinear 

problems. A renaissance occurred leadinp to new models being developed, new 

applications invented with several neuralnet-based systems being in actual use today. 

OVERVIEW OF ANN's 

The structure of the basic processing elernent in a neuraI network (figure 16), a 

neuron (dso termed neural node or neurode), is designed to mimic that of a biological 

neuron. Both bioIogica1 and artificial neurons receive multiple signds frorn prirnary 

sources or from nearby elements via dendrites and input channels, respectively. The 

magnitudes of these signals are modulated by the synaptic strengths 



x,,= f (WS) 

Figure 16: Structure and operation of a neural node. 
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biologically and by weighting factors artificially Le. these 'weights' act to increase 

(excitatory) or decrease (inhibitory) the incorning signals. A large signa1 arriving 

through an inhibitory synapse may have the sarne or even less effect than a small 

signai entering via an excitatory synapse. In any case, al1 incorning s i p a l s  are 

combined, usually by a simple summation, to produce a net input. 

At this stage: a11 knowledge of the input pattern is lost. The details of each specific 

input are no longer available as only the net effect is recorded. This net input, in turn, 

is transformed by a transfer / activation function into an output signal. Biologically, if 

the combined input is greater than a threshold level, it activates the firing of the 

neuron, producing an output signal. The transfer function for an artificial neuron can 

be an analogous threshold function, in which an output is produced onIy if the interna1 

activity level reaches a certain limit, or it can be a continuous function of the summed 

input. The transfer function acts as a mapping function f (-), producing the output y = 

f (net input). Some cornmon activation functions are depicted in table 2. The output 

signal of a neuron is passed on via the axon and output channels to the dendrites and 

input channels of the next group of biological and artificial neurons, respectively. 

By themselves, both types of neuron are not very interesting. The interesting 

effects result from the way these processing eIements interact with each other. The 

brain consists of tens of biIIions of densely interconnected neurons. Neurons receive 

inputs from affector sensory cells or other neurons and send outputs to other neurons 

or effector organs such as muscles or glands. Only about 10% of the neurons are of 

the input (afferent) and output (efferent) varieties while the other 90% are 



Function 

Linear 

Sinmoid 

Hyperbolic tangent 

Equation 

-Linex, piecewise function. 

-Perceptron and AD ALINE. 

-Not applicable to 
muMayer networks. 

-Threshold function 
andogous to biological 
systems. 

-Piecewise and non- 
differentiable. 

-Smooth version of a (O, 1 } 
step function. 

-Continuous and 
differentiable. 

-Applicable to nonlinear, 
multilayer network. 

-Smooth version of a ( -  1,1} 
step function. 

Continuous and 
differentiable. 

-Applicable to nonlinear, 
nultilayer network. 

Table 2.  Cornmon activation functions for neural networks 



interconnected only to other neurons. The latter type are the ones responsible for the 

storage of information and for the transformations of the signals being propagated 

through the network. A single neuron may be connected to hundreds or  even tens of 

thousands of other neurons via synapses. Neuronal activity is related to the 

generation of an interna1 electric potential which cm be increased or  inhibited by the 

input activity received from other neurons. If the cumulative inputs result in a 

potential above a certain threshold, the neuron fires a series of potential spikes d o n g  

the axon to other neurons. These spikes initiate a signalling process which invoives 

the release of a chernical neuro-transmitter at the terrninating synapses. The strength 

of the signai depends on the amount of neuro-transmitter released by the axon and 

received by the dendrites. This synaptic efficiency, o r  strength, is modified when the 

brain ' l e m s ' .  It is believed also that some form of metabolic growth takes place in 

neurons as a result of increased ce11 activity. This growth process has been linked to 

learning and memory storage and may explain the difference in sizes (areas) of the 

synapses, which can vary by a factor of more than ten. Synapses with larger surface 

areas are believed to be excitatory whiIe those with smaller areas are inhibitory. 

An artificial neural network is also comprised of many interconnected elements 

but the sheer number is much srnaller and the structure is greatly simplified. Like the 

brain, a suitable underlying structure is necessary for a neuralnet. It was determined 

empirically that the most appropriate arrangement is one  in which processing 

elements are organised into interconnected layers, much as is found in the cortex and 

other parts of the brain. A typicaI network consists of several layers with full or  

random connectivity between successive layers (figure 17). There are two layers with 

connection to the outside world: an input layer where data is presented to the network 

and an output layer which holds the response of the network to a given input. The 

actual data transformation is done by the layers in between, termed the hidden layers. 



Hidden Layer 

Output Layer 

Bias 
Input Layer 

Figure 17. Architecture of a neural network extracted from NeuralWorks. 



CHARACTERISTICS OF ANN'S 

Before exarnining specific architecture, it is usehl  to review the general 

characteristics of ANN's that differentiate neural computing from the classical von 

Neumann serial architecture (digital computer) and puailel variations (expert system 

and artificid intelligence). Instead of a centralised rnemory storage device of a digital 

computer, information is stored, or  more accurately? represented, in the pattern of 

variable interconnection weights arnong the neurons. Similady, the computational 

process is a spreading, dynamic pattern of activity distnbuted across al1 the neurons in 

al1 the layers of a network. Unlike a computer, a neuralnet is taught or trained from 

examples rather than progammed. It can be regarded as a black box that transforrns 

input vectors x, from a n-dimension space, to output vectors y, in a m-dimension 

space, using a function f . Le. f: x + y .  The type of mapping a network can perform 

depends on the architecture, with more complex mappings generaily requiring more 

ehborate architectures. Two categories of mapping exist: auto-associative, rnapping 

to an original pattern from a noisy or partially given input pattern, and hetero- 

associative, mapping from an input pattern to a different output pattern. 

The rnost important feature, which neural network shares with the human brain 

and differs from other computational methods, is the ability to generalise. 

Generalisation is the process of describing the whole from some of the parts, defining 

a class of objects from a knowledge of one or more instances or reasoning from the 

specific to the general case. This feature is essential to true l eming ,  as opposed to 

rnerely remernbering, as it allows the system to discem facts that apply to whole 

classes of objects rather than remembering many specific facts that apply only to 

individual mernbers of each class. Generalisation is made possible by the fact that 

both neural network and the biological brain operate as a content-addressable 



associative memory, a system which stores information by correlating it with other 

stored information. It is an extremely efficient mode of data storage and processing 

as without it? an unlimited number of specific events. facts and relationships has to be 

compartrnentalised and stilI readily be available for recall. As a result of this, N W ' s  

are able to compute or recall complete patterns from partial or noisy input patterns. 

This robustness in performance results from the fact that associative mernories 

respond to the gross features of a stimulus and are generally not sidetracked by srnalt 

differences or rninor details. It is the overall input activity pattern that gives rise to 

the output pattern. An apt human analogy is the ability to recognise a farniliar face in 

spite of a haircut or other cosmetic changes. Neuralnets also are able to classify 

objects not previously seen and to pre.dict new outcomes from past behaviours. The 

ability to classify new objects is a form of interpolation arnong trained patterns while 

the predictive capacity is a form of extrapolation. Both types of rnapping c m  be 

regarded as a form of generalisation. 

Another advantage of neural computing arises as a direct consequence of its 

physical structure or architecture. Since the storage and computational processes are 

distrïbuted among al1 weights and neurons, a neural network can be thought of as a 

massively parallel system. Like another massively parallel system, the brain, neural 

networks are highly fault tolerant. Whereas a complete system failure could arise 

from the loss of a single component in a serial cornputer, a neural network will keep 

working even after a significant fraction of its neurons and interconnections have 

become defective or inactive. This built-in redundancy is mirrored by the human 

brain. Thousands of brain cells die everyday with no appreciable decline in mental 

capacity and in extreme cases. portions of the brain can be damaged or removed 

without senously affecting the performance of an individual. The massive parallelism 

of the biological brain is also responsible for the astounding speed at which it process 
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information. Consider the amount of computation required to process a single visual 

image having a resolution of 1 O00 x 1000 receptors, a modest number compared to 

the human retina- Over one million data points (much more for a colour image) must 

be exarnined and several million computations must be perforrned for the 

identification of such an image. Even at the nanosecond clock speed of modem 

digital cornputer, this process would require several seconds, perhaps more to ensure 

adequate recognition / identification. A biological visual system can complete such 

tasks in milliseconds, despite the fact that its signals propagate in millisecond rather 

than nanosecond time frames. This is due to the fact that these millions of 

computations are being performed simultaneousIy by the neurons of the biological 

neural system. Artificial neural networks are theoretidly capable of the same 

performance once their architecture achieve the same complexity as that of biological 

neural networks. 

OPERATION OF A NEURALNET 

There are two main phases in the operation of a neural network: learning (or 

training) and recalI. The learning process, while not identical to the biological model, 

is inspired by it. SimiIar to the brain, learning is the process of adapting or rnodifying 

the connective weights of the network in response to stimuli being presented at the 

input layer. Learning can be in the form of rote or inductive learning. Systems that 

l e m  by rote memorisation are not very interesting since they are just being 

programmed to become mere reference tables. On the other hand, inductive learning 

involves the formation of generalised concepts or rules from a number of specific 

instances. Generalisation is accomplished through the formation of classes of objects. 

This amounts to partitioning a universe of objects into two groups, those belonging to 



the target class and those belonging to the complement class. In neural comguting, 

the classes are defined by the mapping function, f, as boundaries in the weiglht space. 

The boundaries are formed through synaptic weight adjustments during the t-raining 

process. Accurate generalisation occurs when the final class boundaries conrtain only 

the desired target examples and exclude al1 complement examples. The target 

examples include al1 patterns correctly belonging to the given concept classes, 

including those used in the training set and those not used. 

Learning also could be supervised or unsupervised. In supervised learning, 

exemplary or desired outputs are presented to the network at the output layer to aid 

the weight updating process through comparison with the raw output generated by the 

network. The network will update the weights in a way to achieve the desired input / 

output mapping, Most supervised learning processes fails under one of three 

categories: Hebbian learning, gradient descent learning and stochastic learniing. 

Hebbian learning is a rule, originally formuiated to describe the human neural system, 

which States that a neural pathway is reinforced each time the activation on e-ach side 

of the synapse is correlated. In artificial terrns, this means that a connection weight 

on an input path to a neural node is incremented if both the input and the desired 

output is high. Gradient descent learning, an algorithm designed empirically for 

ANN's, is based on the reduction of the error between the actual output of a 

processing element and its desired output through the modification of the connection 

weights. A cornparison is made between the desired output and the computeui output 

to determine the error- The transfer function, f, is required to be differentiabLe since 

the iterative weight updates are based on the gradient of the error, which is defined in 

terms of the weights and the transfer function. The update mle is given as a solution 

to an equation such that 



where q is a learning rate parameter and wij is the weight on the connection between 

neuron i and j. Lastly, in stochastic Iearning, the weights are adjusted in a 

probabilistic manner and the States of al1 units are deterrnined by a probability 

distribution, During the learning phase, stochastic networks are operated in two 

modes: a clamped mode where the neurons are clamped to the values of the associate 

pairs of binary patterns and an unclamped mode in which there is no input. The 

network is allowed to reach an equilibrium at which the energy function of the systern 

is at a minimum. At this stage, the weights of the network are adjusted on the basis of 

the difference between two state probabilities, clamped and unclarnped. 

In unsupervised learning, only inputs are provided to the network as stimuli and 

the learning process is totally dependent on the input pattern. Since there is no 

feedback on the desired or correct output, the systern learns by discovering and 

adapting to features in the input patterns, such as statistical regularities or clustenngs 

of patterns. Two learning rules have been utilised for this category, Hebbian learning 

and cornpetitive learning. In cornpetitive learning, the neurons compete arnong 

themselves and the one which yields the strongest response to a given input will have 

its weight adjusted favourably. There are many variations of this paradigm but most 

of the weight adjustment procedures are modified forms of Hebbian adjustment. In 

one variation, 'winner-tâkes-dl', only the neuron with the highest activity within a 

Iayer is allowed to propagate its output. Also, this neuron will have its weight 

adjusted to resemble the input pattern while the weights of al1 other units remain 



unchanged or get reduced. In other cases, the weights of neighbouring units are also 

strengthened to sorne degree. A third method of learning exists in which no speciEic 

output is provided for a given input but the network is graded on the quality of its 

response to a given input. Typically, the weights on units which give the right answer 

are reinforced while the weights on those giving the wrong answer are reduced. This 

is terrned reinforcernent learning and while interesting, it has not enjoyed the same 

utility and popularity as the other two paradi,ms. 

Whatever kind of learning is used, the defining characteristic of any neuralnet is 

its leaming rule. The learning rule specifies how the nodal weights adapt in response 

to exemplary inputs, Training may require showing a network many examples many 

thousands of times, or only once. The parameters governing a learning mle may 

change over time as the network progresses in its training. The long-term control of 

the Iearning parameters is referred to as a learning schedule. It is possible to overtrain 

a network such that a poor level generalisation is attained even though the error 

function has reached an acceptable Ievel. An overtrained network had Iearned the 

training set too well and is thüs unable to recognize target class patterns that were not 

part of the training set. Excessive training can occur for a limited training set that has 

been used repeatedly too many times in the training process. In attempting to learn 

accurately the individual pattern mappings, the target class boundaries are fitted too 

closely to the individual patterns. As a consequence some patterns, in the same class 

but not in the training set, are excluded from the boundaries, leading to poor 

generalisation. Overtraining can also occur when excessive neurons are used in a 

network for a given number of data points. The network 'memorises' the training set 

instead of fonning a generalisation and in effect. becornes just a look-up table. The 

same phenornenon can be seen in polynomiai function fitting in cases where the 

number of data points and the degree of polynomiaI are not chosen carefuIly. When 
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the degree of polynornial approaches the number of data points, the fit c m  be exact 

but rather than a smooth graph that follows the trend of most of the points, the curve 

follows the points themselves. This is termed overfitting and can be as invaiid as 

underfitting (insufficient degree of polynornial). 

Recall refers to how the network processes an input and generates a response at 

the output Iayer. For a trained network, recall is used to generate the required 

answers. In a supervised learning architecture, recali is an integral part of the learning 

prccess. It is used to create an actud output, which is compared to the exemplary 

output to generate an error signal. This error signal is incorporated into the learning 

mle to direct the weight modification process. For a particular training cycle, if a 

modification for a particular weight leads to a l q e r  error, then either the magnitude 

or the direction of the change will be altered for the next cycle. At each step, the 

magnitude of the weight modulation is usually kept small to ensure that the network 

does not deviate too far from its partiaIly evolved state. Although infinitesimal 

increments are the surest way to train a network, the consequence would be 

excessivdy large training times. This is why most learning schedule will Vary the rate 

at which a network is modified in order to strike a balance between network stability 

and training duration. 

NEURAL NETWORK ARCHITECTURES 

The simplest type of neural network, in which al1 connections are from neurons of 

one layer to the next, is termed feedforward networks. These do not possess 

connections from one layer to the preceeding layer nor even arnong neurons of the 

same mer.  Inputs are processed unidirectionally from input to hidden to output Iayer 

and any weight modification criteria calculated at the output are introduced to the 
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network in the next cycle. Feed forward networks can have as few as two layers, the 

input layer and the output layer. The earliest neuralnets are of this variety but they 

lack the ability to compute arbitrary complex functions such as those bounding 

nonlinearly separable regions. The solution to this problem was first proposed by 

Rurnelhart et al. 76, a feedforward network having at least one hidden layer of neurons 

with each neuron capable of cornputing a nonlinear activation function. There is no 

theoretical lirnit on the number of hidden layers but typically there would be one or 

two. Investigations have been done which indicate that a maximum of three layers 

are required to solve complex pattern classification problems but no verification is 

possible. These multiiayer feedfonvard networks are capable of perforrnïng any 

arbitrary rnappings f : Rn+ Rm if a sufficient number of hidden nodes are provided 

and if a set of weights that perform the desired mapping c m  be found. 

Simple feedforward networks can be modified by connecting the output of one or 

more processing elements (PE) to the inputs of PE's in the same or even in the 

previous layer, yielding what is called recurrent networks. Within these networks, 

information will reverberate within layers and across layers until some convergence 

criterion is met. At this point, the state of the network is then passed to the output 

layer. The incorporation of such feedback connections will result in significant 

changes in the operation and learning processes of a neuralnet but the added 

compIexity also imparts greater computational power over conventional networks. 

UnIike simpte feedforward networks, recurrent networks exhibit dynamic behaviours 

and are able to perforrn mappings that are functions of time andior space. The time 

and space sensitivities allow thern to l e m  spatio-temporal pattern sequences that are 

c haracteristic of phoneme, spoken languages and sequen tial problem-soIving 

methods. Since recurrent networks are basically reconfigured feedforward neuralnets, 

it is possible to derive a feedforward equivalence for any recurrent net. This is 
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accompIished through an unfolding-in-time process, in which each time step of a 

recurrent network is recreated by an additional layer in the feedforward analog. 

Although it will be able to perfonn the same function, the feedfonvard version would 

be significantly Iarger, thus the recurrent architecture ments and is generating 

substantial interest within the neural computing field. 

The majority of neuralnets under investigation is stiIl of the feedforward type. 

Arguably the most studied, the most utilised and thus the most successful paradigm is 

the backward error propagation or more commonly, the backpropagation network. It 

is also the paradiam of choice for this project thus a quick overview will be given 

with regards to its structure, characteristics and operation. 

BACKPROPAGATTON 

The backpropagation network is a gradient descent method designed for a 

rnultilayer feedfonvard network with differentiable, nonlinear activation function. 

The first gradient descent algorithm, the delta rule, was designed for linear transfer 

functions. The update rule fonnulated for this algorithm (equation 35) will always 

find a set of weights which minimise the error for a set of linearly separable patterns. 

However, the delta ruIe cannot be applied to networks with hidden layers as it is 

unable to give credit or assign blame to the nodes in the hidden Iayers for errars that 

occur in the output layer. Since neither credit or blame can be assigned, the weights 

in the hidden layers cannot be updated in a l o g i d  rnanner. This is the 'credit 

assignment7 problem, posed by Minsky and Papert in 1969 " and solved by 

Rumelhart el al. in 1985 76. Backpropagation overcomes this problem by assuming 

that d l  processing elements are somewhat to blame for the computed error. A 

learning cycle for a backpropagation neuralnet is divided into two distinct phases. In 
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the first phase, the training instances are propagated forward layer by layer until an 

output pattern is computed. In the second phase, the error at the output layer is 

calculated, through cornparison with the desired output pattern. This then, is fed 

backward to the previous layer, the last hidden layer, to adjust the weights in that 

layer. Likewise, the error value calculated from the output of the last hidden layer is 

used to adjust the weights of the second-to-last hidden layer. This process is repeated 

until the input layer is reached and once al1 the weights in the necwork have been 

adjusted, the first phase of the next training cycle can continue anew. 

A weight updating rule, analogous to the delta ruIe, c m  be derived for the 

nonlinear backpropagation network. The denvation is simplified if a network is 

assumed to have only one hidden layer but the update mle can be generalised for 

networks with an arbitrary number hidden layers. The following parameters are 

assurned for the derivation: a bounded, differentiable activation function f , n input 

neurons, h hidden neurons, m output neurons and an n-dimension training set of P 

patterns. To avoid confusion, different notations are used for the different layers as 

seen in the following relationships. 



where Hj is the net input to hidden node j, rk is the net input to output node k, Vij is the 

weight connecting input node i and hidden node j, Wjk is the weight connecting hidden 

node j and output node k, Xi is the output from input node i ,  yj is the output from 

hidden node j, zk is the output from output node k, E,, is the mean system error and 

EP is the error of training pattern p. The full expansion of the computed value at the 

output, zk, with respect to the other parameters yields 

The aim of the learning rule is the minimisation of E,,, through the reduction of 

the error for each training pattern, EP. A weight updating procedure that adjusts the 

weights in proportion to a reduction in the error, relative to changes in the weights, is 

required. This is accomplished by adjusting the weights in proportion to the negative 

error gradient Le. at step ( t  + I ) ,  the weight adjustment should be proportional to the 

derivative of the error value EPl calculated on iteration t. This can be written as 

where is the learning coefficient and 



The gradient of the mean system error is then given by 

Since there are inherent differences, different update rules must be dex-ived for the 

input-to-hidden and hidden-to-output connections. The weights connecting the output 

layer to the hidden layer will be considered first. Equation 42 can be modified to 

yield 

The error functions E,,,, and EP are usually defined as the rnean square error in 

most systems since it penalises large deviations more than srnaII ones. The squared 

term aiso provides a differentiable function of the difference between the computed 

and the desired output. 

where t: is the desired output from output node k for the input pattern p and Z: is the 

actuai output from output node k for the input pattern p. Using the chain mle and 
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substituting in equation 37 gives 

The first term can be evaluated using the chain rule and substituting in the derivatives 

of equations 46 and 39. 

The second term of equation 46 can be computed directly. 

and by defining the error term for each output node as 

the weight update rule for the output-to-hidden connections can be written in the same 

form as the delta rule. 



The derivation of the update nile for the weights between the hidden layer and the 

input layer is slightly more complicated since there is no desired values from which 

errors can be computed. The errors from the outpur nodes must be used to perform 

the adjustment and this can be done through the use of the chain rule to relate these 

errors to the weights in question. Equation 4 1 illustrates how deeply these weights 

are embedded in the error function. The update nile should be in a form analogous to 

equation 5 1 and by using the chain rule 

The first derivative c m  be solved using the chain rule again and substituting in the 

derivative of equation 38. 

Substituting equation 4 1 into equation m and differentiating yields 



The second part of equation 52 can be evaiuated directly after substituting in equation 

36. 

Substituting equations 53, 54 and 55 into equation 52 gives the second weight 

updating rule. 

where 

and as above 



In summary, the complete operation of a backpropagation network is as followed. 

Pnor  to training, al1 the weights in the neuralnet are initialised to small, random, r ed  

values. The exemplary input pattern vectors xP (p = 1, 2, 3, ..., P) are presented to the 

network and a corresponding output pattern zP is computed. In detail, each of the 

input vector are multipiied by the appropriate weights vu and summed to produce the 

net input, Hj, to the nodes in the hidden layer. .4 transfer function f is used to 

transform this net input to a signal yj, the output of the jh node in the hidden layer. 

All signals yj are multiplied by the respective weight Wjk and summed to produce the 

net hidden-layer output, 1,. At the output nodes, 1, is transforrned by f into the output- 

layer output z,. This output is compared to the desired / target value tk and an error 

( t  , -z, ) , with k = 1, 2, 3, ..., m, is calculated. The error is used to calculate the delta 

term, 6, to be used in the error backpropagation process, defined by equations 45 and 

5 1. As cm be seen from the gradient descent rule in equation 5 1, each of the weights 

w~ connected to the kth output node is adjusted according to the size and direction of 

the negative gradient on the error surface. 

The error propagation for the set of hidden-to-input weights, vji, is slightly more 

complicated. Since the hidden nodes do not possess target output values, nodal errors 

cannot be computrd directly. The new delta term a j ,  must be computed from the 

output-layer errors according to equation 57. This is then backpropagated to adjust 

each of the weights vji connected to the j" hidden node, according to equation 56. 

Once al1 the weights in the system are manipulated, the training cycle is repeated. 

This process continues iteratively until a set of weights, W, is found. which minimises 

the global error function over al1 the training pattern. Alternatively, the training 

process may be stopped at a pre-set threshold error value or once a prescribed total 
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number of training cycles has been reached. 

Convergence in Backpropagation 

The error surface for a network with nonlinear activation function is a complex 

surface with many local and global minima-79 This multiplicity of minima arises from 

the symmetry of the weights and nodes in the network. For any given error value E, 

there are many permutations of weights which will result in the same value of E. 

Since some E values must be in the minima region, this results in the multiplicity. In 

addition, the error surface is far more irregular than the smooth parabolic bowl-shape 

surface of the linear delta-rule algorithm. It contains flat plateaux, steep crevices, 

shallow troughs and other irregular geometries. These serve to impede the search for 

the global minimum as the network can becorne stagnant in a flat vaItey or trapped in 

a local minimum. This may resuIt in very long training time and non-convergence. 

respectively, thus several training strategies have been devised to optimise the rate of 

convergence. 

Weight Initialisation - The choice of the initial weight values can affect the rate of 

convergence or even induce a convergence failure. E the initial weights al1 have the 

same value, a11 hidden units will receive near identical error updates since the 

backpropagated error value is proportional to the weights. AI1 weight adjustrnents 

will be identical and the system will be trapped at an equilibrium point that keeps the 

weights from changing. It has been shown by Hirose et al. that very small initial 

weight values may lead to non convergence. The network became trapped in local 

minima and cannot escape since the small weights only yield similarly small updates. 



On the other hand if large weights are initidly chosen, the activation function, f, may 

become saturated. This is because the weight update is dependent on the derivative of 

f, which approaches zero as f approaches its maximum. Large initial weights will 

yield a large f values and a near zero f values, leading to insignificant weight updates 

and slow downhill progress. A remedy is the addition of a constant , P, to the 

derivative term so that it will never faIl below this level. A value of = 0.1 has been 

shown to produce significant irnprovements in convergence rates ". 

Learning Rate Coefficient - The learning factor q, in the weight update rule, 

detemines the magnitude of the weight adjustments made at each iteration. Since the 

adjustment is a linear function of the partial derivative (equation 42), an assumption is 

made that the error surface is locally linear with the Iocality being defined by the size 

of the leaming coefficient. In areas of high curvature, this assumption will not hold 

for larse coefficient. Large step sizes near steep, narrow features such as minima rnay 

result in an overshooting of the minimum and may set up an oscillation about the 

minimum. Thus it is advisable to keep this factor low in these areas to avoid 

divergent behaviour. However, if the value of q is too small, the descent will 

progress in very small steps, leading to very slow learning especially for flat or nearly 

linear areas. It is clear that to ensure efficient convergence. the learning coefficient 

should be varied as the training progresses, with the step size being reduced as a 

minimum is approached. This is usually done by adding a momentum term to the 

update rule, in which a portion of the previous weight change is incorporated into the 

present weight change. 



where a is the rnomentum term. The added terrn acts as a low-pass filter since 

general trends are reinforced while oscillatory behaviours tend to cancel themselves 

o u t  This allows an optimally low leaming coefficient but with faster convergence 

rates. 

Batch learning - Two different approaches can be taken in the weight-updating 

procedure for a network: the weight matrix can be adjusted incrementally or in 

batches. Incremental Iearning consists of successively updating the weights after each 

training instance, with each instance presented in a random manner. In batch mode, 

the errors are accumulated over the whoIe training set, for one iteration (an epoch), 

before a single update is performed. The incremental approach inherently imposes a 

stochastic component on the weight update routine, which may heIp the neuralnet 

escape from a Iocal minimum. However, as mentioned earlier, this procedure may 

resuit in the network taking successive steps in opposite directions, impeding 

convergence in the process. Through summation, the batch mode does provide a 

more accurate estimate of the gradient vector but at the costs of extra computing time 

and memory storage demand. The choice between the two approaches is dependent 

on the nature of the data set. The incrernental method has been shown to perforrn 

well for on-line process control applications in which the composition of the training 

set is constantly modified while the batch method is more suitable for non-dynamic 

data set. 



Miscellaneous Options - The introduction of random noise into a network may help 

to avoid local minima traps. The random noise shifts the location of the error 

function which permits the minimisation process to escape from a local minimum. 

Judicious addition of noise may aiso improve the generaiisation ability of the network 

through the prevention of overfitting. ConverseIy, excessive or inopportune noise 

introduction may cause the process to miss a global minimum if the location of the 

error function is shifted too much or at the wrong moment. 

Another strategy that has been used to improve the rate of convergence is the use 

of different error functions. Although the mean-square-error function defined in 

equation m is the most popular, it has many irregularities that make convergence 

difficiilt. Since the summation of quadratic terms descnbes an elliptic rather than 

circular contour, a gradient descent will not point directly in the direction of a 

minimum. This is because the error surface is steeper in one dimension, resulting in a 

combined vector that is shifted more toward that dimension. Other functions that 

have been used with success are a logarithmic function which yielded fewer local 

minima 82, a function based on the information theoretic entropy which resulted in 

faster convergence s3 and a cubic error function. 77 

Implementation of a Backpropagation Network 

The architectural determination of a neural network is the most important criterion 

in a neural computation since it determines the 'trainability' and the generalisation 

capability of the network. This refers specifically to the numbers of hidden layers and 

neurodes, since the numbers of neurons for the input and output layers are determined 

by the nature of the exemplary data. The optimal structure of a neural network is 

highly application-specific and is dependent on the complexity of the desired 
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mapping, the number of training instances available and the desired accuracy. In most 

instances, the architecture of the network is derived empirically i.e. through triai and 

error, but there are two rough guidelines that cm be applied to most networks, Since 

most present neuralnet applications are simulated on serial computer softwares 

instead of true parallel hardware networks, computational cost considerations demand 

that the optimd architecture be aiso the minimal architecture. FortuitousIy, the first 

guideline States that a single hidden layer will be suffkient for most applications. A 

second hidden layer may be required for particular complex or irregular mappings and 

only extremely unusual applications are likely to have more than two hidden layers. 

The chosen number of processing elements for the hidden layers should be large 

enough to effect the desired mapping but not so large that it 'memorises' the training 

set and loses the ability to generaiise over the complete range of mappings. The 

optimal number must be determined through trial and error but a generaI guideline for 

a starting point. proposed by Widrow er n ~ . ~ ' ,  is that 

where h is the number of neurodes for the first hidden layer, P is the number of 

training instances and m and n the numbers of outputs and inputs, respectively. The 

initial number of neurons in the second hidden Iayer, where necessary, should be 

about half of that in the first layer. 

Although the numbers of neurons in the input and output layers are predicated on 

the nature of the exemplary data, the process is by no means trivial. The number of 



input nodes is especially important since these should correspond to the independent 

vector variables. Only relevant and independent variables shouId be chosen as inputs 

as this is crucial to the success of the network. A relevant variable is one which 

contains information which wilI help the network to classi@ objects into the target 

class and the complement class while an independent variable is one that are not 

correlated to other variable (non-collinear) and thus does not contain redundant 

information. The selection process demands a good knowledge of the task domain 

and even then, some preliminary experimentations are usually necessary. The number 

of output neurons corresponds to the dependent variable and is usually apparent from 

the application specifications. For a classification problem such as a writing 

recognition application, the number of output nodes would be twenty six if only 

letters are considered and thirty six if numbers are included. 

Another important consideration in the implementation of a neural network is the 

size and nature of the exemplary data set. The data set shouId be divided into three 

mutual exclusive groups: a training set, a testing set and a validation set. Although 

the training set must be exclusive, the validation set can be culled from the test set if 

necessary. Lf there are enough instances, the training set and the test set should be of 

equal sizes othenvise, the former must take precedent. The training set must be large 

enough to allow for a sufficient number of hidden nodes to perform the desired 

mapping. in addition to sizes, the training test and the test set should also have similar 

RMS errors for a network to be vaiid. A network architecture which trains wel1 Le. a 

low training RMS, but does not test weI1 is one which has poor generalisation 

capability. In this case, new architectures must be examined until this important 

criterion is satisfied. Once a network bas been trained and tested to a satisfactory 

level, it may be advisable to prune the structure before deployment. Pruning refers to 

removal of neurodes which have near constant output over the training set or outputs 
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which are nearly identical to other neurodes. The neurodes with near constant outputs 

can be repIaced by a bias terrn in the weights of the neurodes in the next layer- 

Sirnilarly, one of the identical-outputs neurodes can be removed and its weight simply 

added to the weight of the remaining neurode. Pruning has been shown to reduce the 

processing time at little or no cost to the performance of a network. 



PROJECT OUTLINE 

Since neural calculations are inherently cornplex and data-intensive, this study 

was purposely focused on a relatively simple system; the responses of the TSM device 

to an electrolyte, potassium chlotide (KCI), In the first part of the investigation, a 

series of KC1 solutions of known concentrations were characterised through network 

andysis. While the rnultidimensionality of network anaiysis c m  produce twelve 

different pararneters from irnpedance and equivalent circuit analyses (figure 4), not al1 

were selected to be used in the initial phase. The reasons for this are two-fold: 

simplicity of computation since the ANN analysis was to be sirnulated and suitability 

of the parameters. Preliminary neural network anaiyses on a small data set were done 

to select the most independent, non-collinear variables that are most relevant to the 

desired output, the concentration. The four chosen quantities were the series resonant 

frequency (Fs) which represents mass loading and other interfaciai effects, the paraIlel 

resonan t frequency (Fp) which characterises the capacitive loading effect, the 

motional resist,uice (R,) which is related to the energy dissipation of the oscillating 

sensor and the static capacitance (Co) which reflects changes in the interfacial 

capacitance. 

The selected pararneters were used as inputs in the architectural determination of 

an optimal network using a scaled-up data set. Once the optimal architecture was 

found, the trained and tested network was used to predict concentrations of various 

unknown solutions, given the respective inputs. The accuracy and the generalisation 

capability of the neuralnet were evaluated. In the second phase of the study, an 

interferent, hypothesised to affect only one of the parameters, is added to the 

unknown samples in order to test the robustness of the trained network. The 

adulterant of choice was ethanethiol (CH3CH2SH), which is postulated to affect 



mainly the series resonant frequency (Fs) through its absorption to the surface of the 

goId electrode through the well-known Au-S interaction. It has been shown that R, 

and Ca are not affected by a change in surface mass since the deposited Iayer can be 

regarded as an extension of the matenal comprising the electrode." Thus, power 

dissipation, reflected by R,, and the dielectrïc properties of the quartz plate, reflected 

by Co, should remain constant. The parallel resonant frequency, Fp, can be affected 

by m a s  deposition at the surface but it is not as sensitive to mass changes as Fs4'. 

The network. previously trained on the unadulterated data set, was used to predict the 

concentrations of the contaminated solutions. Its performance was judged for 

robustness Le. the ability to recall the correct pattern from partial or noisy inputs. A 

scheme, designed to improve the predictive abiIity on the adulterated solutions, was 

devised. This involved the manipulation of the weights associated with the affected 

variable, Fs, in an effort to account for the effect of the adulterant. The magnitude of 

the weights connecting the Fs input nodes to the hidden layer were adjusted 

downward to lessen the deleterious effect of the interferent and the performance of the 

adjusted network was evaluated. An analogous calibration scheme may also be 

possible for an array of single-output sensors, but this methodology is expected to be 

far more complex with respect to theory and application. 

A simiIar study, involving a different adulterant, was perfonned to validate this 

calibration scheme. The new adulterant, glycerol, was designed to affect mainly R, 

by changing the viscosity and density of the bulk fluid (equations 30 and 3 1). The 

series resonant frequenc y, Fs, can also be affected by the density-viscosi ty product 

but to a lesser extent whiIe the other two parameters should not be affected 

significantly. The predictive abilities of the unadjusted and the adjusted networks 

were determined in order to evaluate the robustness of the neuralnet and the efficacy 

of the calibration scheme, respectively. Both adulterants were used in the next phase 
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of the project, multiple interferents corrected by a multi-points calibration scheme. 

The robustness of the network was evaiuated for the dual-adulterants system and a 

two-point adjustment scheme was implemented and the results evaluated. 

A parallei project was effected in which a chernically-selective platforrn was 

developed in preparation for the next step, the application of neural analysis and the 

accompanying caiibration scheme to a real-world chemical sensing system. A self- 

assembled. monolayer-based system utilising bifunctionai thiols (thiol one end, 

carboxylic acid the other) was the logical surface-activation strategy for the goId- 

electroded BAW transducer. Thiol systems of a single chain length, mixed chain 

Iengths and single chain length mixed with alkylthiol spacers were investigated to 

determine the optimal surface activation. Amino-terminated, single-strand DNA 

twenty five base-pairs long (25-mer) was immobilised on the thiolated surface via 

carbodiimide chemistry. The reactivity of this functionalised surface with 

complementary and non-complementary DNA strands of the sarne Iength was 

characterised by network analysis. 



AT-Cut quartz piezoelectric crystals coated with gold eiectrodes were obtained 

from Classic Frequency ControI, Inc., Oklahoma City, OK, USA. The resonant 

frequencies of the crystals were - 9 MHz and the electrode surfaces were polished to 

< 1 pm. Potassium chloride ( K I )  and glycerol were procured from J.T. Baker Inc., 

Phillipsburg, NJ, USA. The sait was dried at 120 degrees Celsius before usage. 

Doubly distiIled, deionised water was used as the reference and as the soivent for al1 

standard solutions. Al1 thiois, bromide precursors, the anhydrous ethanol used as 

solvent in the self-assembly process and chernicals for the DNA immobiIisation were 

purchased from Aldrich Chernical Company, Milwaukee, WIS, USA. Thiols, both 

purchased and synthesized, were distilled or recrystdlised prior to usage whiIe al1 

other reagents were used as is. The amino-terminated precursor, phosphoramidites 

and various ultra-pure reagents used in the synthesis of the DNA single strands were 

purchased from Applied Biosystems, Foster City, CA, USA. DNA-synthesis grade 

acetonitrile was used in the DNA immobiIisation procedure. 

APPARATUS 

DNA synthesis was perforrned using an Applied Biosystems 392 DNA/RNA 

synthesiser, Foster City, CA, USA. The TSM device was clamped in a cell with 

Viton O-rings on both sides (figure 18). One side of the crystal was kept under 

nitrogen while the other side was immersed in the analyte solution. Network analysis 



Analyte ou t  

Figure 18: Flow ce11 . 
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was performed using a Hewlett Packard HP 4 195A network/spectrum analyser, 

equipped with an HP 4 195 1 A impedance test kit and an HP 16092A spring clip 

fixture, A constant temperature circulator (model Hybaid 1267-62, Cole Palmer) was 

used to maintain the temperature for dl analyses at 25 OC. Equivalent circuit anatysis 

was performed by an HP pr0prieta-y algorithm built into the network analyser. Al1 

data were transferred to an IBM-compatible computer through an IEEE-488 interface 

from National Instruments, Austin, TX, USA and acquisition was controlled by an in- 

house C++ program running under a LabWindows platform (figure 19). A four- 

chmnel, peristaltir EVA pump, model 1000 was combined with an EVA injector, 

model 2000 (Eppendorf, Hamburg, GER) to introduce the andyticd solutions to the 

cell. 

X-ray photoelectron spectroscopy (XPS) spectral data were obtained with a 

Leybold MAX-200 spectrometer equipped with an unmonochromatic Mg K a  source, 

a concentric hemispherical analyser operating in constant transmission mode and a 

18-channel detector (Leybold AG, Cologne, GER). Data were collected from a 1 mm 

x 1 mm area with a 90" detector-to-sample ahgnment. AFM images were acquired 

using a NanoScope III system (Digital Instruments Inc., Santa Barbara, CA), utilising 

a J-type scanner (maximum scan size 120 x 120 pm) and Nanoprobe Silicon tips 

(Digital Instruments, Inc., Santa Barbara, CA) of 125 pm in length and 5-10 nm in 

radius were employed. Al1 images were acquired under ambient conditions using the 

tapping mode of operation. In this mode, a sharp probe is brought into proximity with 

the surface of the specimen and is oscillated vertically near its mechanicd resonance 

frequency (- 300 kHz). Height and phase imaging were acquired simultaneously to 

maximise surface characterisation. The height mode displays a topographical relief of 

the surface while phase imaging depicts surface heterogeneities. 
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Figure 19: hstmmental setup. 



Two different neural network packages were utilised in this project. The first, 

ANNAT, originates frorn collaborators in Abo Akademi, Finland. This program uses 

the Levenberg-Marquardt algorithm for optimisation that makes use of an 

interpolation between the steepest descent and the Newton - Raphson methods. The 

Newton - Raphson method is a second-order optimisation routine, based on the 

approximation of the Hessian matrix of partial second derivatives of the error 

function. Second-order methods typically have convergence rates one order of 

magnitude higher than those for the gradient method (first partial derivatives). The 

Levenberz-Marquardt algorithm makes use of an adaptive parameter, h, to effect a 

smooth interpolation between the gradient direction and the Newton-Raphson 

direction. The former is used far from the minimum, switching continuously to the 

latter as the minimum is approached. The software is robust, simple-to-use and faster 

thm straight gradient descent backpropagation but it does possess some drawbacks, 

mainly that the number of weights (connections) should be kept below one hundred 

and that the architecture of a network must have the same nurnber of nodes in each 

hidden layer. The second prograrn is a commercial package, NeuralWorks 

Professional II/Plus v. 5.22, from NeuralWare, Pittsburgh, PA, USA. Several 

aIgorithms for RMS optimisation are offered but only back-propagation was utilised. 

This package does not possess the limitations of the in-house program but the typicaI 

back-propagation disadvantages apply here, that is, longer training and testing times 

and a tendency towards local minima. 



PROCEDURES 

Synthetic procedures for the thiols to be used in the modification of the gold 

electrodes were adapted from Whitesides and CO-workers. 85 Thiolacetic acid was 

repiaced by a better nucleophile, potassium thioacetate, to facilitate the reactions and 

increase the yields. 

Synthesis of 1-undecanethio1 - 4.5 mL of 1-bromoundecane (FW 235.22 g, 20 

mmol) was combined with 2.15 mL (FW 76.12 g: 30 mmol) of thioIacetic acid 

(CH~COS-H+) and 0.7 g of sodium metal (FW 22.99 g, 30 mmol) in 100 rnL of 

degassed methanol and refluxed under an inert atmosphere for 2 hrs. 1.1 g of 

NaOMe (FW 54.02 g 20 mmol) was added and the mixture was refluxed for a further 

2 hrs. The resulting solution was cooled, quenched with degassed ammonium 

chloride solution and extracted with ether. The organic fraction was washed with 

water and saturated NaCl. After drying with MgS04, rotor vaporisation yielded 3.2 g 

of the 1-undecculthiol. Flash chromatography with hexanes produced 2.5 g of NMR 

pure product. 'H NMR in CDC13 gives 2.5 (q, 2H), 1.5 (m, 2H), 1.3 (t, IH), 1.0- L -5 

(m, 16H) and 0.8 (t, 3H). 

Synthesis of 6-mercapto-1-hexanoic acid - 9.27 g of 6-bromo- 1 -hexanoic acid 

(FW 195.06 g, 47.5 mmol) was combined with 10.86 g (FW 1 14.21 g, 95 mmol) of 

potassium thioacetate (CH~COS-K+) in 200 mL of degassed methanol and refluxed 

under an inert atmosphere for 6 hrs. 50 mL of 1 : 1 water:conc. HCI was added to the 

cooled solution and the mixture was refluxed ovemight. Extraction with diethyl ether 



yielded a yellow liquid, confirmed by NMR to be the rnethyl ester of the thiol. This 

was refluxed with 50 mL of 1M NaOH in 100 rnL of degassed methanol for 2 hrs, 

Acidification and extraction with ether gave a yellow liquid which solidified into a 

whitish sluny. Purification via flash chromatography with 4: 1 etherhexanes 

produced 6.5 g of the yellow liquid thiol and some white solid disulphide. 'H NMR 

in CDC13 gives 2.5 (q, 2H), 2.3 (t, 2H), 1.6 (m, 4H), 1.4 (m, 2H) and 1 -3 (t, 1H). 

Synthesis of 8-mercapto-1-octanoic acid - 5 g of 8-bromo- 1-octanoic acid (FW 

223.12 g, 22.4 mrnol) was combined with 5.2 g (FW 1 14.2 1 g, 45.6 mmol) of 

potassium thioacetate (CH~COS'K~) in 200 mL of degassed methanol and refluxed 

under an inert atmosphere for 6 hrs. 50 mL of 1: 1 water:conc. HC1 was added to the 

cooled solution and the mixture was refluxed overnight. Extraction with diethyl ether 

produced a yelIow liquid, the methyl ester of the thiol. This was refluxed with 50 mL 

of 1M NaOH in 100 rnL of degassed methanol for 4 hrs. Acidification and extraction 

with ether gave a clear yellow liquid which solidified into a whitish slurry after 

vacuum pumping. Purification via flash chromatography with 4.5: 1 ether:hexanes 

produced 6.5 g of the yelIow liquid thiol and a minute amount of white solid 

disulphide. 'H NMR in CDC13 gives 2.5 (q, 2H), 2.3 (t, 2H), 1.6 (m, 4H) and 1.4 (m, 

6H). 

Synthesis of Il-mercapto-1-undecanoic acid - 15 g of 1 1 -brorno- 1-undecanoic 

acid (FW 265.2 g, 56.6 rnmol) was combined with 12.9 g (FW 1 14.21 g, 1 12.9 mmoI) 

of potassium ihioacetate (CH~COS-K+) in 200 mL of degassed methanol and refluxed 

under an inert atmosphere for 8 hrs. 25 rnL of conc. HCI was added to the cooled 



solution and the mixture was refluxed overnight. Extraction with diethyi ether, 

followed by washes with sat. NaCl and water, yielded a yellow Iiquid, confirmed by 

NMR to be the methyl ester of the thiol. Hydrolysis with 50 rnL of 1M NaOH in LOO 

mL of degassed rnethanol for 8 hrs followed by acidification and extraction with ether 

gave a dirty white solid. NMR showed that this was a 1 :2 mixture of thio1:disulphide. 

Double recrystdlisation from ethanol resulted in most of the disulphide crystallising 

out, leaving mainly thiol in the mother liquor. Further purification via flash 

chromatography with 2: 1 ether:hexanes produced 4.8 g cf the thiol in white powder 

form. 'H NMR in CDC13 gives 2.3 (q, 2H), 2.3 (t. 2H). 1.6 (m, 4H) and 1.4 (m, 12H). 

Synthesis of 16-rnercapto-1-hexadecanoic acid - 5 g of 16-hydroxy- 1 - 

hexadecanoic acid (FW 272.43 g, 18.4 mmol) was combined with 200 rnL of 1: 1 

48%HBr:glacial acetic acid and refluxed under an inert atmosphere for 2 days. 

Cooling of the mixture resuIted in white crystals fa l l i~g  out of solution. The crystals 

were filtered, washed with cold w a m  and recrystaIIised from hexanes, yielding 5.1 g 

of the 16-bromo- 1-hexadecanoic acid. The bromide was converted to the thioI using 

the same procedure outlined above to give 4.2 g of white thiol powder. 

Recrystallisation from hexanes produced 2.8 g of NMR pure thiol in white powder 

form. 'H NMR in CDC13 gives 2.52 (q, 2H), 2.35 (t, 2H), 1.6 (m, 4H) and 1.28 (rn, 

22H). 

Self-Assembly of Thiols - Three different surfaces were prepared: a pure 

monolayer of a single chain length (&), a rnonolayer of mixed chain lengths (C6, C S ,  

Cl 1 and C16) and a single chain Iength (CI6) mixed with a shorter aikyl thiol spacer 

(Cl I) .  AU mixtures were comprised of equd proportions i.e. 1: 1 : 1 : 1 for the rnixed 



bifunctional thiols and 1: 1 for the CIo rnixed with the CI 1 dkyl thiol spacer. The 

crystals were cleaned by soxhlet extraction with THF for up to 3 hrs prior to al1 

immobilisation. An 8020 mixture of ethanol and water was used as the solvent and 

thiol concentrations were kept in the 10 mM range, as per accepted protocols. 85 Al1 

crystals were immersed in the respective thiol solutions for 48 hrs after which they 

were thoroughly rinsed with fresh ethanol and cleaned by soxhlet extraction for up to 

3 hrs to remove physisorbed impurities. Prepared crystals were kept in a dry 

dessicator until required. 

Reactivity Assessment - Surfaces modified wi th the bifunc tional thiols were 

reacted with a suitable probe molecule to determine their respective reactivities. 

Probe molecuIes containing multiple fluorine atoms were chosen to facilitate XPS 

characterisation due to the high sensitivity of XPS to fluorine. Thiolated surfaces 

with distd carboxylic groups (carboxylated surfaces) were reacted with 

pentafluorophenyl hydrazine (PFPH) in distilled dichlorornethane, activated by 1.3 

dicyclohexyl carbodiimide (DCC) and catalysed by 4-dimethylamino pyridine 

(DMAP). A control experiment was performed using the same procedure on an 

unmodified crystal. Al1 modified surfaces were rinsed thoroughly with 

dichIoromethane, cleaned by soxhlet extraction for 3 hrs and stored in a dessicator 

until required. 

DNA Synthesis - Three different DNA sequences twenty five base-pairs in length 

(25-mer) were synthesised: an amino-terminated sequence intended for 

immobiIisation (FI), the complementary sequence for hybridisation (F2) and a non- 

complementary sequence for control purpose (FO). The compositions of al1 three 



sequences are depicted below. 

FI:  5'-arnino-TATAAAAAGAGAGAGAGATCGAGTC-3' 

F2: 5'- GACTCGATCTCTCTCTCTCTTTTTATA-3' 

FO: 5'- CCCTGAGCCACTATCAATCATGAG -3' 

The synthesised DNA sequences were purified with a PoIy-Pak ion-exchange 

cartridge, containing a pH stable polyrneric resin, designeci for the purification of 

oligonucleotides synthesised by the DMT-on procedure. The pure DNA solutions 

were vacuum freeze-dried and stored at -5 "C until required. 

DNA Immobilisation - The carboxylated quartz crystal was immersed in a 

solution of FI DNA ( 1 I-I-M), DCC < IO rnM) and DMAP (< 1 mM), with acetonitrile 

as the solvent. The immobilisation was allowed to proceed for 24 hrs, follow which 

the crystal was rinsed well with acetûnitrile, cleaned by soxhlet extraction for 3 hrs 

and stored in a dessicator until required. 

Network Analysis - The network analyser was set to scan a frequency span of 

40 H z ,  centred about the resonant frequency of the crystal. A complete scan cycle, 

including equivalent circuit calculation, requires 10 seconds. A 50 seconds delay was 

programmed to yield a data acquisition frequency of one scan cycle per minute. Al1 

measurements were perforrned at a controlled 25 OC and the default solution flow rate 

was set at 0.07 W m i n .  This ensured that the crystal always would be exposed to 



fresh anaiyticai solution. 

For al1 KCI related measurements, doubly-distilled, deionised water was 

employed as the reference and as the solvent. The ce11 was filled with the reference, 

using a flow rate of 1 W m i n ,  following which the default flow rate was employed. 

The system was allowed to equilibrate for a short period of time, during which the 

series resonant frequency (Fs) was monitored. Data acquisition for the water 

reference would begin once Fs stabilises and this would be continued until 20+ data 

points had been collected. The flow strearn then would be switched to the analyte and 

maintained there until the signal stabiIises and 20+ stable data points are acquired. 

The flow stream would switch back to the water and a new reference data set wouId 

be collected to check for drift. This cycle would be repeated for any subsequent 

analytical solution. Analyses were performed for KCI concentrations between 

0.00 1M and 1M. Adulterated solutions were KCI solutions, spanning the same 

concentration range, doped with sub-millimolar concentrations of ethanethiol ( 1  rnM 

of thiol in the 1M KCI stock) and glycerol (1% v/v of glycerol in 1M KC1 stock), 

respectively. Both the data for the water reference and the data for the analyte were 

averaged over the stable regime to arrive at mean values prior to any subsequent 

processing. 

A Tris-buffer (pH 7.4) was used as the reference and as the solvent for al1 DNA- 

related measurements. Twenty-plus stable data points for the buffer would be 

collected at the default flow rate after which the flow stream would be switched to the 

complemen tq  or the non-complementary DNA solution (0.25 mM). After enough 

stable data points have been acquired, the flow stream then would switched back to 

the buffer and a new set of data would be collected for the buffer. This cycle would 

be repeated for any subsequent DNA solution. Once again, the reference data set and 



the anaiyticd data set were averaged over the 20+ points stable regime, pnor to 

subsequent processing. 

Neural Computation - The initial phase of neural computation, determination of 

the optimal input parameters, was performed on ANNAT. Six parameters, 

determined from experimental data to be most relevant / sensitive to the output (KCl 

concentration), were chosen to forrn the input pool from which the four most 

independent will be chosen. An optimal architecture was determined for a system 

with 6 inputs and I output. The training error for this system was deemed to be the 

benchmark error, against which subsequent architectures were compared. Next, one 

input parameter was removed and the training RMS was determined. This exercise 

was repeated, each time removing one input parameter. The two parameters whose 

removai caused the least and the second Ieast adverse changes in the training error, as 

compared to the benchmark error, were removed from the input pool. Since they 

contribute the least to the goodness-of-fit of the neuralnet, these two parameters can 

be considered to be less sensitive to the output and/or Iess independent than the others 

i.e. the information they contain is already present in one or more other parameter. 

In the next phase, an optimal architecture was determined for the 4-inputs, 1- 

output system. For this stage, the test error was used in conjunction with the training 

error as criteria for the best design. The training and test sets contain 100 and 50 

instances, respectively. Assessment of the predictive capability of the optimised 

network was performed using a validation set of 35 instances, culled from the test set. 

The third phase invoIved the application of the trained network to the data set 

generated from KCl solutions doped with the interferent, ethanethiol. The network, 

trained on the unadulterated data set, was used to predict the concentrations of the 



adulterated solutions in order to assess the robustness of the neuralnet. The 

magnitudes of the weights associated with the affected parameter, Fs, were adjusted 

downward incrementally until the testing error was minimised. The adjusted network 

was used to generate a new set of predictions for the adulterated solutions in order to 

evaluate the effectiveness of the weight adjustment procedure. 

The fourth phase was anaiogous to the third phase, except that the adulterant was 

now glycerol and the affected parameter was the motional resistance, R,. The 

network was applied to the data obtained from the doped solutions to test the 

robustness of the network with respect to glycerol contamination. The appropriate 

weight adjustments were made, new predictions were computed and the efficacy of 

the process was determined. A two-point calibration routine was also employed in an 

effort to reduce the predictive error. The adjusted network was used to predict the 

KCI concentrations of the doped solutions and the effectiveness of the two-points 

calibration procedure was assessed using the new predictions. 

The fifth phase of the computation concerned the application of the network to 

solutions doped with both ethanethiol and gIyceroI. The robustness of the neuralnet 

with respect to the adulterants was evaluated, after which a two-points weight 

adjustment procedure was effected. Once again, the adjusted network was used to 

predict the KCI concentrations of the doped soIutions and the effectiveness of the 

two-points calibration procedure was assessed using the new predictions. 



RESULTS AND DISCUSSIONS 

NEURAL COMPUTATION 

Network Analyses of KC1 System 

Most applications of TSM devices in the liquid phase, especially in the biosensor 

and electrochemicaI fields, involve the use of conductive solutions. This and the fact 

that it is a relatively simple, well-studied system make the electrolyte, potassium 

chlonde, the logical testbed for neural analysis. The responses of the TSM device to a 

series of KC1 solutions of concentrations ranginz from 0.001 M to 1 M were 

characterised through network analysis. Figures 20 to 23 depict the typical response 

patterns of various network anaiysis parameters, relative to water. These parameters 

exhibit substantial, reversible responses to the electroIyte, rendering them strong 

candidates as inputs in the neural computation for the KCl system. These responses 

cm be explained in tems of the physical properties of the electrolytic solutions. 

It has been demonstrated that for dilute conductive solutions, possessing density 

and viscosity close to those of the solvent, the response of the sensor cannot be 

explained adequately by just the mass and viscous effe~ts. '~ In addition to mass 

loading and viscous coupIing, the mechanisms of interaction between a TSM sensor 

and a solution may also include acoustoelectric coupling Thus, the response of the 

sensor rnay be influenced by the electrical properties of the contacting solution. The 

propagation of an acoustic wave in the quartz crystal generates surface charges 

through the induced electrical polarisation of the crystal. This, in tum, creates an 

extemal electric field which extends into the surrounding fluid. The interaction 
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between this decaying electnc field and the charge carriers and dipoles of the 

conductive solution plays a large role in the storage and dissipation of electrical 

energy of the system. 

The charged nature of the surface also gives rise to the formation of an electrical 

double layer at the solid - liquid interface. Although the thickness of this double Iayer 

has been shown to be Iess than that of the decay length of the electnc field 63, it may 

partially screen the electric field from penetrating into the buIk of the solution, thus 

effectively Iowering the acoustoelectric interaction. Furthemore, the redistribution of 

charged particles at the solid - liquid interface may also cause a Iocalised change in 

the density and viscosity of the solution near the surface, resulting in induced changes 

in the mass Ioading and viscous coupling. In addition, it has been shown that field 

fringing beyond the areas of the electrodes can contribute to the total change in 

frequency 'O, particularly for the parallel resonant frequency, Fp. 

Figures 24 to 27 depict changes in the responses of the same eight parameters (Fs, 

Fp, CO, Rm, Bmax. Q-value, Cm and L) with respect to KCI concentrations. A 

common trend can be seen for al1 eight parameters: a relatively rapid rate of change at 

low concentrations followed by a slowly decreasing, almost asymptotic rate of change 

at higher concentrations. This oft-observed feature has been attributed to the 

screening action of the double layer. 37.40.64 As the ion concentration increases, the 

double layer tends to block more of the electnc field from penetrating into the bulk 

solution. This is reflected in the reduction in the rates of change of the parameters 

with increasing concentrations. Parameters which are most sensitive to electncd 

perturbation, such as FP, CO, Cm, Lm and emZ, seem to adhere to this trend more 

rigorously while mass and viscosity dependent parameters such as Fs, Q-value and R, 

are affected but to a lesser degree. A complete treatise on the effects of conductive 
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liquid loading on the various network analysis parameters has been presented by 

yangg6 More important1 y, the non-linearîties inherent in this system confirm its 

suitability for neural analysis. 

Neural Analysis for the KC1 System 

While al1 eight parameters may be suitable as inputs, only four were chosen for the 

initial phase of neural cornputation in order to reduce the computational complexity, 

with the criteria for selection being relevance and independence. As can be seen from 

equation 27, the quality factor (Q-value) is simply a combination of the motional 

inductance (L) and the motional- resistance (R,). While the information it contains 

may be relevant to the system, it is already present in the other two parameters, thus 

Q-value may be safely eliminated. The other obvious choice for elimination is Cm 

since it has often been considered to be a constant under liquid loading. This is 

because Cm is dependent on the elastic constant, corresponding to lattice restoring 

forces (equation 4), and a Newtonian liquid does not possess any appreciable 

eIasticity. Another factor which places doubt on the physical reaIity of any changes in 

Cm can be seen from its relationship with L. At resonance, the equivalent circuit 

behaves as a pure resistance since the opposite natures of the two reactive elements 

(joLm and l /  joCm) cancel each other out. In other words, for a specific resonant 

frequency, there are numerous combinations of L, and Cm Since the equivalent 

circuit parameters are derived from the regression of the measured impedance data, it 

is likely that changes that should be attributed to L, may be wrongly, or 

disproportionally, attributed to Cm by the regression routine. It should be noted that 

changes in Cm are valid for systems in which a viscoelastic material is adsorbed ont0 

the surface of the sensor as in studies involving poIymer films. However, this is 

1 O3 



clearly not the case here thus Cm can be removed as a possible input. 

The elimination of the next two parameters as inputs was slightly more difficult. 

A neuralnet-based pruning process was required since there was no justification based 

on theoretical considerations alone. A reference network was trained on the KCI data, 

with al1 six remaining parameters as inputs and the concentration as the output- The 

training root-mean-square error (RMS) for this reference network was used as the 

benchmark error, against which subsequent architectures were compared. Next, one 

parameter was removed and the resulting network was trained on the appropriate 

training set. This exercise was repeated , each time removing one input parameter. 

The two parameters, whose removd caused the least and the second least adverse 

changes in the training RMS, as compared to the benchmark RMS, were eliminated 

from the input pool. Since they contributed the least to the goodness-of-fit of the 

neuralnet, these two parameters can be considered to be less sensitive and /or less 

independent than the others. The results of this process are depicted in table 3. It can 

be seen from the RMS results that L, and €lm, are the two least effective inputs, Le. 

they contribute less to the regression than the other four parameters, and can thus be 

elirninated. This, however, does not disqualify them from future calcuIations for 

which more inputs are desired. It is instmctive to take stock of the four input 

variabIes deemed to best describe the electrolytic system. In Fs, the effect of mass 

loading on the sensor is well represented while R, will give a clear indication of the 

viscous coupling affecting the energy dissipation of the system. The static 

capacitance, Co, will describe the electncd properties of the conductive solutions 

while Fp will be affected by the capacitive Ioading, generated by the electrolyte, as 

well any mass Ioading, with the former dorninating. 

Once the optimal se1 of inputs has been detennined, neural computation was 



ARCHITECTURE 

Reference (6, 6,  1) 

Pl  G ? 6 ,  1) 

PRUNED PARAMETER RMS 

Table 3: Detemination of optimal input parameters. 



performed on both software platforms, using the KCI data sets. For the 

"~nadulterated" system, training and testing data sets were constituted of 100 and 50 

instances, respectively, covering the range of concentrations between 0.00 f M and 

LM. The concentrations of the "unknown" samples in the validation set were also in 

this range. A typical NeuraIWare network, with a 4,6,1 architecture: 4 input nodes, 6 

processing nodes in one hidden layer and I output node, is shown in figure 17. A bias 

is used to ensure the nodal outputs are in the optimal range and the window in the top 

left hand corner tracks the decreasing RMS error. It can be seen from the RMS graph 

that for a typical viable network, the RMS decreases in a near exponential fashion. 

A typical output of a trained ANNAT network is depicted in table 4. This 

represents a 4,5,1 network with 30 weights reaching convergence in 1 1000+ 

iterations. Each of the weights can be reIated back to a specific connection in the 

network. The reIevance of this is that it aIlows each of the weights to be traced back 

to a specific input, an important factor for the subsequent weight adjustment process. 

The sum-of-squares error (SSQ) shown was converted to RMS for meaningful 

cornparison with the NeuraIWare platform. The optimal architecture of any network 

is usually derived through a trial and error process. Figure 28 iihstrates the 

relationship between training RMS error and the number of hidden nodes for a 

network with one hidden layer. The E2MS shows an initial rapid improvement with 

increasing number of hidden nodes, followed by a slower and decreasing phase of 

irnprovement. After a certain number, the slight improvements no Longer justify the 

extra computing time and effort, and the network is set. The optimised network is 

then subjected to the test data set to determine the testing RMS error. For a network 

to be viable, Le. one which is able to make generalisations, the testing RMS error 

shouId be simiIar to the training RMS error. At the very least, it should be of the 



Number of input and output nodes: 
Number of hidden layers: 
Number of nodes in each hidden layer: 
Activation function for output nodes: 
Activation function for hidden nodes: 
Gain term - beta: 
File with input patterns znd outputs: 
P i n t  option (O/ 1/2): 
Maximum number of iterations: 
Analytical/numericaI derivatives cA>: 
Limit for initiai weight-guesses: 
Seed: 

Number of patterns in the input file: 100 
The weights W >>> 1 to 30 : 

7.68 15 -.3 1707E-0 1 ,69635E-02 -. 14397 3 -6978 
-48 .O77 -. 12729E-0 1 -.43298E-02 .23473 7.0486 

7.304 -22442E-0 1 -. 13044E-02 -86784E-0 1 -3.7655 
1096.1 - 1097.0 - 1.0025 -4.8776 1.0893 
-25.790 -90235E-0 1 -6.0004 -.347 1 OE-O 29 1.772 
3.1639 -66.097 -3689 1E-0 1 .IO492 -69.200 

SSQ : ,44755E-03 

Nurnber of iterations : 1 1 124 

Table 4: Typical output for M A T  training run. 



2 4 6 8 

NUR4BER OF HIDDEN NODES 

Figure 28. Training RMS vs. Number of Hidden Nodes 



same magnitude as that of the training set. A network which trains well but does not 

test well is likely to be an overtrained network. If testing proves the network to be 

unsuitable then a different architecture must be chosen, usually one with a smâller 

number of hidden nodes. The new network would then be tested to ensure viability, 

pnor to usage. 

The results for the neural calculation on the "unadulterated" KCl data sets are 

depicted in table 5,  Using the ANNAT package, the best architecture obtained is a 

4,7,1 net with no further significant improvement after 10000+ iterations. The RMS 

for the test set can be seen to be of the same magnitude as that of the training set, 

validating the network. For the commercial package from NeuralWare, the best 

architecture is 4,9,1 and the number of iterations required is approximatefy doubled. 

The R-MS for the training and testing sets are also of similar magnitudes, indicating a 

useful architecture. Slightly lower training RMS was observed for NeuralWorks but 

the test RMS for this prograrn was actually slightly higher than that of ANNAT. The 

discrepancy is not large but it could be argued that the Iarger NeurdWorks network, 

although it may have trained better, may not generalise as well as the smaller ANNAT 

architecture. 

Thirty five solutions of various concentrations in the 10" M to 1 M range were 

culled from the test set to become the unadulterated validation set. The response sets 

for these "unknowns", comprising of Fs, Fp, CO and R,, were used to test the 

predictive ability of the trained networks. Using ANNAT, these predictions resulted 

in errors in the range of 3% - 7%, compared to the true values (table 5) .  This can be 

considered to be acceptable given the relatively low precision of neural analysis, 

compared to other regression rnethods, and the large range of concentrations under 

investigation. A network optimised for a smaller range of concentrations will 



PARAMETERS ANNAT 

Best architecture 

Nurnber of iterations 

RMS (training) 

RMS (test) 

Predictive error (unadulterated) 

Predictive error (thiol, unadjusted) 

Optimal weight reduction 

Predictive error (thiol, adjusted) 

Table 5: Cornparison of results from ANNAT and NeuralWare. 



undoubtedly yield a corresponding reduction in the error range- The predictive ability 

of the commercial package. with respect to the unadulterated unknown data sets, is 

slightly better than that of ANNAT (table 5). This is somewhat surprising in light of 

the higher test RMS for NeuralWorks. The differences are srnall enough that they can 

be attributed to the culling process, Le. the sarnples chosen responded better to the 

NeuralWare package, despite the fact that care was taken to select a validation set 

which spans the range of concentrations under study. For both systems, no cIear trend 

in the 5% error cm be observed, with respect to concentration, but the highest % errors 

seem to occur for lower concentrations (figure 39). 

Neural Analysis for the Thiol-Adulterated KCI System 

Neural network analysis has been shown to be effective in handling ideal data sets 

but this alone does not justify the time and effort spent generating the vast arnount of 

data and creating the appropriate architecture. The value of neurai computation lies in 

its ability to classify less-than-ideal data sets, using the same network trained and 

tested on the exemplary data sets. This next step involved the exposure of the trained 

networks to data generated by samples that have been adulterated with an interferent, 

ethanethiol (CH3CHîSH), hypothesised to affect only one of the four input variables. 

This cornpound was chosen specifically so that the thiol functional group will 

interact with the gold electrodes of the TSM device to generate a mass loading effect 

and induce a change in the series resonant frequency, Fs. Although a Iarger rnolecule 

will cause a larger deviation in Fs, ethanethiol was chosen in view of its solubility in 

an aqueous system. The shorter chain length aIso precludes formation of a weII- 

packed monolayer. This, combined with a purposely Iow concentration of thiol 



Predictive Error 
(ANNATIUnadulterated) 

1 I I m 1 I 

O 0.2 0.4 0.6 0.8 1 

i KCI Concentration (M) 
I 

- 

I 1 

i I 
j 

Predictive Error ! I 

i 
! 

1 
(Neural Ware/Unadulterated) j 

1 
l I 

l 9 - l 

i 
3 

1 

1 
O 

7 - 
1 L * O  1 
j E + O *  i 

O 
1 $ 5 - ,  4 , , 0 O , i 
i $ *O* 0 O * *  4 

1 O 
O m O 

3 - 0 0 O 
O 

4 
0. j 

l 

1 l , 
i j 

1 ,  1 1 1 1 1 

1 O 0.2 O -4 0.6 O. 8 1 
1 KCI Concentration (M) I i 
i 

l 

Figure 29: Error distribution of unadulterated unknown. 



(unmol), ensures that changes in the viscosity, density and electricai conductivity of 

the sampIe are kept to a minimum so that the change in Fs can be attributed mainly to 

mass loading. An important corollary effect is that the other three parameters, R,, Co 

and Fp should remain relatively unchanged in order to prevent too large of a 

perturbation of the network. In an effort to ensure meaningful cornparison, the thiol 

was introduced into samples of the same KCI concentrations as those in the 

unadulterated validation set. 

The effects of the contaminant on the responses of the TSM sensor are illustrated 

in figures 30 and 3 1. As expected, a significant relative change in the series resonant 

frequency can be observed upon addition of the thiol interferent. A quick drop 

followed by a more graduai downward trend copcur with the accepted adsorption 

profile for the AU-SH ~ ~ s t e r n . ' ~  The adsorption process seems to be permanent, as 

indicated by the lowered frequency even after the flow was switched back to pure 

water. However, the magnitude of change does not agree with the classicaI Sauerbrey 

mass loading effect, even if a dense packing of thiol can be assumed. The increased 

response can be attributed to changes in density, viscosity and electrical properties 

induced by the addition of the thioI. These changes are confirrned upon examination 

of the other network analysis parameters as they ail registered small but significant 

changes. For al1 three variables, the switch back to pure water restored the responses 

to near starting ievels. The changes induced by the thiol were too small, with respect 

to the noise inherent in the signaIs, to be verified as transient or permanent. 

The set of adulterated "unknown" data was processed by the networks, trained on 

the unadulterated data sets, to determine the robustness of the neural computation. As 

can be seen from table 5, the predictive errors for the adulterated "unknowils" were 

significantly higher than those for the unadulterated "unknowns", between 8% - 14% 
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for m A T  and 7-15921 for NeuraiWorks. These results established the neural 

networks to be fairly robust, but it is obvious that a network trained using 

unadulterated I/O data cannot be used to predict adulterated samples accurately. Once 

again, no clear trend for the % error was observed? with respect to concentrations 

(figures 32 and 33), but the predictive errors for NeuralWorks were now slightly 

higher than those for ANNAT. This seems to indicate that while the l q e r  network 

may generalise an ideal data set better, it does not possess the same robustness for 

tainted data. 

Weight Adjustment - As hypothesised, the thioi-induced changes in FS were 

found to be significantiy l q e r  for the adulterated samples, compared to the changes 

in the other three parameters. It is clear that the degradation in the performance of the 

trained networks can be attributed mainly to the perturbation of the series resonant 

frequency. Knowing this, several possible procedures can be considered to rectify 

this situation. The rnost effective solution would be the development of a new set of 

networks, trained and tested on adulterated data sets. However, this wouId involve 

the generation and network analyses of over one hundred new KCI solutions, with the 

appropriate contamination. In addition the whole training, testing and validation 

process must be repeated for the new set of data. A Iess drastic rneasure would be the 

elimination of Fs as an input parameter from the original data sets. This may prove to 

be useful but it would stiil involve the repetition of the training and testing processes 

to find the optimal architecture for a three-input system. Even then, there is no 

guarantee that the networks trained and tested on three-input, unadulterated data sets 

will be effective for the adulterated "unknowns". An analogous solution is to increase 

the number of input variables, making use of the other available parameters, in order 
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to reduce the effect Fs has on the trained networks. This rnay indeed increase the 

robustness of the network but once again it involves time consuming training and 

testing procedures which are certain to be more intensive due to the extra complexity 

introduced by the larger data set, 

An effective yet facile answer may lie in the manipulation of the existing 

networks- For any trained network, each of the weights c m  be related back to a 

specific connection in the neuralnet. It was hypothesised that manipulation of the 

weights, which are associated with the Fs - to - hidden layer connections, rnay provide 

a possible modulation mechanism of the Fs input and this, in turn, may temper the 

effect of the adulterant. It was discovered that a reduction in the mapitudes of these 

weights resulted in an improvement in prediction accuracy for the adulterated samples 

for both software packages. A process was developed in which the Fs - related 

weights were reduced incrementally, followed by testing with the whole adulterated 

data set. The RMS error of each weight-reduction increment was monitored until the 

optimal RMS error was achieved. The adjusted network would then be used to 

predict the adulterated "unknowns" individudly. Optimal results were obtained with 

reductions of approxirnately 20% in the magnitudes of the affected weights; 18% and 

23% for ANNAT and NeuralWorks, respectively (table 5).  The sirnilarity in the 

magnitudes of the adjustment indicates that this is a systematic phenomenon and not a 

randorn one. The predictive errors achieved for the adjusted networks are close to 

those for the unadulterated sarnples: 3% - 8% for ANNAT and 3% - 9% for 

NeuralWorks, respectively (table 5).  The srnall decrease in efficiency may be 

attributed to the fact that this procedure does not take into account the thiol - induced 

perturbation on the other three input vûriables. The distribution of the % error, with 

respect to concentration, are illustrated in figures 32 and 33. For both software 



platforms, in addition to the reduction in magnitude, a decrease in the variance of the 

data points is also observed. This may be a direct consequence of the weight- 

adjustment procedure as the detrimental effect of the thiol on the predictive ability of 

the neuralnet may have been negated by the adjustrnent process. 

The manipulation of the weights associated with the affected parameter seemed to 

have Iessened the deleterious effect of the interferent, without having to resort to the 

construction of new networks. In effect, the existing networks have been calibrated 

for the presence of the thiol. This procedure can be regarded to be roughly analogous 

to the temperature calibration process for a pH meter. While the results are 

encouraging, more work needs to be done before this weight-adjustment procedure is 

better understood and validated. The introduction of a second and further target 

interferent will help to elucidate the weight-adjusment process. 

Neural Analysis for the Glycerol-Adulterated KCI System 

An analogous experiment was performed in which the KCI system is subjected to 

a different interferent, followed by the appropriate neural computation, in an effort to 

clarify and validate the weight - adjustment procedure developed on the thiol system. 

The same critenon, used in the former system, is applicable here; that is the chosen 

interferent should, preferably, affect only one of the four input parameters. Of the 

remaining input variables, both Fp and Co will respond to a perturbation in the 

electrical property of the anaiyte. The default target is, thus, the motional resistance, 

R,. Since the motional resistance tracks the energy dissipation, via viscous coupling 

with the contacting solution, of the TSM device, the interferent should be chosen to 

affect the viscosity of the KCI system, without disturbing its electrical properties. 



While it is clear that a change in viscosity will also have an effect on the series 

resonant frequency 33.34.35, a judicious dispensation of the interferent rnay minimise 

this effect. The obvious candidate, utilised in numerous viscosity-perturbation 

62.87 investigations . is glycerol. 

The effect of glycerol on the responses of the TSM sensor are illustrated in figures 

34 and 35. As expected, a significant change in the motional resistance can be 

observed upon addition of the glycerol interferent. An increase in the R, value 

indicates a corresponding increase in the energy dissipation, in good agreement with 

the higher viscosity of the solution. More importantly, the capacitive related 

responses, Co and Fp, did not show any appreciable change, denoting an invariance in 

the elecuical properties of the system. Unfortunately, even though the concentration 

of glycerol was kept deliberately low, a change is the series resonant frequency was 

observed. As undesirable as it was, this is a Iogical response to the increase in 

density, thus a change in viscous loading, brought about by the addition of the 

glycerol. The higher density is also reflected in a slight decrease in Fp, confirrning the 

f x t  that although the parallel resonant frequency is sensitive to both mass loading and 

capacitive loading, the latter is the dominating factor. Figure 36 depicts the changes 

induced by glycerol on the motional inductance &) and the motional capacitance 

(C,). Both parameters seem to be immune to the presence of glycerol, making them 

strong candidates for inclusion in any future glycerol-based investigation. 

The results of neural computation on the glycerol-contminated solutions are 

shown in table 6. Since previous studies did not reveal any significant difference 

between the performances of the two software platforms, a decision was taken to 

eliminate ANNAT from subsequent investigations. The main reason for this decision 
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is convenience since the NeuralWare package possesses a rnuch more user-friendly 

interface. Ln addition, the M A T  software is a FORTRAN-based program, located 

on the departmental mainframe, rnaking it relatively inaccessible and non-portable. 

Network analysis data from doped KC1 solutions, of the same concentrations as 

those for previous studies, were subjected to the original 4,9,1 network trained on 

unadulterated data. The predictive results showed unacceptable accuracy in the range 

of 18% - 27%. This is understandable considering that two out of the four input 

parameters are sipnificantEy affected by the contaminant. The reduced robustness of 

the network is a direct consequence of the srnall number of input variables. The gains 

in speed and clarity, from the reduced compiexity, do come at a price. 

Weight Adjustment - A weight-adjustment scheme, analogous to that in the thiol- 

based study, was employed in an atternpt to improve the predictive abiIity of the 

neuralnet. The weights associated with the R, - to - hidden layer connections were 

reduced in magnitude incrementally until an acceptable test RMS error was achieved. 

Even after considerable manipulation, only a slight improvement in predictive ability 

was obtained, yielding errors in the 14% - 21% range. It is obvious that the poor 

performance of the network can be attributed to the uncorrected, glycerol induced 

changes in the series resonant frequency. 

A logical subsequent step would be the concurrent adjustment of the Fs - related 

weishts, in effect a two-point weight-adjustment procedure. This was executed and 

an improvement in the performance of the network was observed (table 6 ) ,  with the 

predictive errors lowered to between 6% - 13%. Although this level of accuracy may 



Predictive Error (Unadjusted) 

Predictive Error (R, - adjusted) 

Predictive Error (Two-point adjustment) 

Glycerol Glycerol + Thiol 

Table 6: Multi-point weight adjustment. 



be acceptable for most applications, a reduction in the efficiency of the weight- 

adjustment procedure is apparent, A possible explanation may Iie in the method 

utilised for the two-point adjustment process. The test RMS error was first optimised 

through the incremental reduction of the R, - related weights. This was followed by 

optimisation using the Fs - related weights. The resulting weight factors rnay not be 

the optimum for the system in question. A better result may be obtained if the two 

sets of weight were to be optimised simuItaneously, perhaps through the use of the 

simplex optimisation method. Such a process will be time consuming but the reward 

may be substantial, as the lowest achievable predictive errors seem to be in the 4% - 

8% (table 5). Another possible explanation for the reduced efficiency may be that a 

two-point adjustment on a system with only four inputs could be considered to be a 

case of ovemanipulation. This would be confirmed if simplex optimisation faiIs to 

yieId an improvement. The inclusion of more input variables also rnay heIp to 

confirrn, or disprove, this hypothesis. 

Neural Analysis for a Dual-Adulterant S ystem 

Neural computation was subsequently applied to KC1 solutions, adulterated 

by both thiol and glyceroI in an attempt to elucidate and validate the two-point 

adjustment procedure. Once again, KC1 solutions of the same concentrations as those 

in the earlier validation sets were doped and the resulting network analysis parameters 

were used to predict the concentrations. The effects of the two contaminants on the 

responses of the sensor are illustrated in figures 37 and 38. As expected, the 

combination of interferents induced significant perturbations in Fs and R, and much 
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Iess effects on Fp and Co. Not surprisingly, the predictive results, as derived from the 

unadjusted network, were less than acceptable (table 6) .  The cornbined effort of the 

two dopants propelled the % error above the 40% mark, rendering the neuralnet 

worthless. A subsequent two-point calibration procedure drastically improved the 

predictive accuracy of the network but the Ievel achieved was nowhere near those of 

earlier adjusted networks. The reasons for this may be two-fold: inefficient 

optimisation of the concerned weights and / or insuff ient  network resources to 

allow for the two-point adjustment process. Once again, the application of a well- 

regarded optimisation routine (simplex) may produce the answer. Failing this, further 

investigation using larger networks may be required before the multi-point procedure 

can be vdidated. 



DEVELOPMENT OF SENSOR PLATFORM 

Surface Modification 

Although the first part of this project was based on an uncoated TSM device, a 

chemicaIly-selective platform is a requirement for the next step, the application of 

neural analysis and the accompanying calibration scheme to a real world, chernical 

sensing system. The logical surface-activation strategy for the gold-electroded TSM 

device was the self-assembly of bifunctional thiols, with carboxylic acid (-COOH) as 

the distal functional group. The formation of stable monolayers of alkykhiol ont0 a 

gold surface was first investigated by Nuzzo and A l ~ a r a . ~ ~  The stability was conferred 

by two factors: the strong af3nity of the sulphur atom for zero-valent gold surfaces 89 

and the orientation and stabilisation effects of Van der Waals forces between 

90 inethyIene groups. It was demonstrated that the effects of the Van der Waals forces 

are most significant for alkylthiols having chain lengths of ten carbon atoms or 

highermgO S trong crystalline formation were obtained for the longer chain lengths 

while less ordered structures resulted from a reduction in chain length. The bonding 

stabiIity of the thiol Iayer was demonstrated via unsuccessful solvent rimes, failed 

displacement utilising moieties with known strong affinities for gold (r, CN-) and 

thermal stability up to 180' Cgl 

While alkylthiols will adsorb strongly to any gold surfaces, an ideal, closely 

packed rnonolayer can only be grown on a mono-crystalline surface. Since this is not 

the case for the TSM device, a strategy was devised to maximise the degree of 

functiondisation and reactivity of the monolayer. Three different surfaces were 

prepared: a pure monolayer of a single chain length (CI6), a monolayer of mixed chain 

lengths (C6, Cg, CI 1 and Ci6) and a single chain length (C16) mixed with a shorter 

alkyl thiol spacer (Ci 1). The different self-assembly schemes are summarised in 



S. L.T. A.T. 

M.T. 

Figure 39: Thiol compositions (SLT=singIe-length bifûnctionai thioI, AT=bi- 

functional and aikylthiol mixture, MT=rnixed-length bifunctional thiols) . 



figure 39. The probe molecule pentafluorophenyl hydrazine (PFPH) was employed to 

assess the reactivities of the respective surfaces, as the amino functional groups wiil 

form amide bonds with the distal carboxylic moieties. The probe molecule was aiso 

chosen for its fluoride content, a highly visible tag for the subsequent X-ray 

photoelectron spectroscopic (XPS) analysis. The high visibility of fluorine arises 

from the large sensitivity factor for the Fls  orbitaL9' Due to the Iowered reactivity of 

a surface-bound functionai group, activation via carbodiimide chemistry was effected 

using dicyclohexyl carbodiimide (DCC). A cataiyst, dimethyl amino pyridine 

(DMAP), was also utilised in the activation process to further the yield. The complete 

linkage reaction is presented in figure 40. It should be noted that although the 

mechanism of carbodiimide activation is well-understood, the role of the catalyst 

DMAP is still not well-defined. It is thought to catalyse the reaction as depicted or in 

a concerted manner, involving a transient, tri-rnolecuIar intermediate. 

Table 7 depicts the results of the surface activation procedures. The blank gold 

surface displays a degree of contamination from air-borne carbonaceous materials. 

This type of contamination is present in al1 sampIes that have been exposed to 

ambient atmosphere, however brief the exposure may be. Since XPS is a highly 

surface-sensitive technique, the uppermost layer will always receive a 

disproportionally high percentage composition. As such, the large percentage of Cls  

does not reflect the true extent of contamination, which was probably quite small. In 

any case. this amount of carbon should be taken into account in the interpretation of 

any subsequent surface. 

The degrees of functionalisation for the three different thiol compositions can be 

determined from the XPS data in table 7 (spectra can be found in appendix). From 

the amounts of O 1s and S2p present, the pure monolayer of a single chain length 

(S.L.T) and the mixture of several chain lengths (M.T.) seem to have comparable, 
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high Ioading, followed by the system of a single chain length mixed with a shorter 

alkyl thiol spacer (A-T.). However, a larger arnount of carboxylic functional group 

rnay not necessarily translate into a higher reactivity. It has been demonstrated that a 

rnixed monolayer, consisting of a bifunctional thiol and a shorter alkylthiol, possesses 

a higher reactivity, with respect to a subsequent immobilisation of the protein 

streptavidin, than a pure monolayer of bifunctional thi01s.9~ The close-packed nature 

of the monolayer combined with the large size of the protein were deemed to have 

stencally hindered the immobilisation process, thus reducing the efficiency. The 

addition of the alkylthiol spacers greatly reduced the steric hindrance and the diluted 

bifunctional moieties were able to act as anchors for the protein. 

The relationship between thiol composition and reactivity is elucidated by the 

reaction with the probe molecule. From the fluorine and nitrogen signais, it is evident 

that the surface compnsing of a mixture of bifunctional thiols (M.T.) possesses the 

highest reactivity. This is not surprising in iieu of the fact that this surface has a high 

COOH loading as well as a reduced steric hindrance from the variety in chain length. 

It should also be noted that the steric hindrance in the immobilisation of the 

streptavidin is caused in part by the relatively huge size of the protein. The small size 

of the probe wouId have reduced this effect and perhaps may have even allowed it to 

"wriggle" into the crevices caused by the variety in chain length, thus increasing the 

degree of reaction. The other two surfaces have somewhat comparable reactivity, 

with the pure monolayer (S.L.T.) being slightly higher. This is contradictory to the 

streptavidin result, but may have proven the irrelevance of steric hindrance for 

reactions invoiving small molecules. A control experiment was performed, from 

which it can be seen that a near negligible amount of non-specific adsorption do occur 

in the absence of the carboxylic end group. From these results, it may be assumed 

that the self-assembly of a thiol mixture of different chain lengths may be the optimal 



surface activation scheme for the TSM device, with respect to subsequent 

immobilisation of smdl molecuIes. 

DNA Immobilisation and Network Analysis 

The next step in the investigation involved the immobilisation of the amino- 

tenninated, 25-mer DNA single strand (Fl) to the carboxyIated surface, using the 

protocol developed for the probe molecule (figure 40). This reaction is expected to 

proceed in a similar fashion, as the terminal arnino group is also a prirnary amine of 

comparable nucleophilic strength. The DNA loading efficiency for al1 three thio1 

compositions can be deduced from the Nls  and P2p signals in table 8. Once again, 

the surface derived from a mixture of bifunctional thiols (M.T.) seems to be the most 

reactive, followed closely by the pure monolayer (S.L.T.) and then the mixture with 

the alkylthiol (A.T.). The severe steric effect seen for the streptavidin is also not 

evident in this scenario, with the reason being the size of the incoming moIecule. 

Although the DNA single strand is larger than the probe molecule, it is still relatively 

small in cornparison to streptavidin. Ln addition, the terminai arnino group is tethered 

to the larger DNA main body by a C3 chain, further reducing the steric hindrance. 

The slight advantzge of the mixture (M.T.) over the pure monolayer (S.L.T.) seems to 

imply a small degree of steric hindrance but it is clear that the absolute loading of 

reactive functiona1 group is the deterrnining factor. 

The viability of the immobilised DNA single strand as a specific receptor was 

assessed through a series of hybridisation experiments. The network analysis results 

from these experiments are depicted in figures 41 to 44. Two curious trends can be 

seen from the responses of the two resonant frequencies to the hybridisation event 

with the complementary F2 DNA strand (figure 41). For Fs, a large drop is observed 



Surface O 1s N 1s C 1s  p 2~ Au 4f 
(532.2 eV) (400.5 eV) (285.4 eV) (1 32.1 eV) (86.1 eV) 

- Blank 12.5 87.5 

- S.L.T. + DNA 19.8 13-6 62.4 2.6 1.6 

- A.T. + DNA 7.2 11.1 66.6 2.0 13.0 

- M.T. + DNA 16.2 13.8 59 -4 3 -4 7.3 

- Blank +DNA 5.6 1.5 30.4 59.2 

S.L,T = HSC15COOH, A.T. = HSC11+HSC15COOH, M.T. = HSC,COOH (n = 5,7, 10, 
15) 

Empiricaily derived Sensitivity Factors were used to estimate the relative % data listed 
above. 

Fls = 1, 0 1 s  = 0.78, N l s  = 0.54, Cls = 0.34, S2p = 0-84, Au4f = 10.8. 

Table 8: XPS data for DNA immobilisation. 



with the injection of the cornplementary F2 strand, followed by a stabilisation 

process. When the pump was stopped to alIow for completeness of hybridisation, a 

gradual increase is seen, which then stabilises. This seems to indicate the removal of 

non-specifically adsorbed F2 strands. As the flow was switched back to pure buffer, 

the frequency increased slightly and quickly flatlined, indicative of further removal of 

non-hybridised fragments. The net change in frequency is on the order of 20 Hz, 

comparable to that obtained for a similar hybridisation event anchored by an avidin - 

biotin i n t e r a ~ t i o n . ~ ~  In both cases, the magnitude of change does not agree with the 

classical Sauerbrey m a s  loading effect regularly invoked for the TSM device. The 

geater  sensitivity may be attributable to changes in density and viscosity at the solid - 

liquid interface.95 

The response of the parallel resonant frequency is markedly different from that of 

Fs. Upon addition of the F2 component, only a slight response is observed which 

quickly stabilises. The system remained relatively invariant throughout the 

equilibration process but underwent a large decrease with the switch back to pure 

buffer. As explained earlier, Fp is highIy sensitive to perturbations in the 

acoustoelectric properties at the solid - liquid interface. The switch to pure buffer 

may have triggered a change in the conformation or  orientation of the coupled DNA. 

This, in turn, may have induced a change in the size or  nature of the charge density at 

the surface-adjacent layer. The decrease in Fp is consistent with an increase in 

acoustoelectric coupling with the bulk solution. A thinner and/or less dense double 

Iayer would bring about such a deviation. 

Examination of the other electrically sensitive parameters, Co and L, revealed 

identical trends (figure 42). Both variables rernained unperturbed throuphout the 

whole hybridisation event only to experience large shifts once the flow was switched 

back to pure buffer. The shifts for Co and L, also appear to reflect either an increase 
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in acoustoelectric coupling or a decrease in the shielding experïenced by the TSM 

sensor. On the other hand, the trends exhibited by parameters influenced by mass and 

viscous effects, R, and Q-value, follow that of the series resonant frequency (figure 

43). In both cases, the largest change is induced by the hybridisation event itself and 

not by a secondary conforrnational change. The changes brought about by the 

equilibration and washing processes mirror that of Fs, gradud and relativeIy minor. 

A control experiment was perfomed in which the target DNA was exposed to a non- 

compIernentary fragment, FO (figure 44). An initial drop in Fs is seen upon exposure 

to the FO solution but once the pump was stopped, the frequency quickIy rose to a 

level just below that of the initial buffer. The washing procedure restored the 

frequency to pre-hybridisation level. The transient initial drop may be attributed to 

the non-specific interaction between the non-complementary strands while the slight 

decrease prior to washing can be ascribed to non-specific adsorption of the DNA 

probes. 

The viability of a DNA receptor system, immobilised via bifunctional thiol 

linkers, has been demonstrated. The sensitivity obtained is comparable to that of a 

system anchored by the well established avidin - biotin coupIing. This is indicative of 

a simiiar packing density or an equal amount of reactive sites. Furthemore, network 

analysis has been shown to be perceptive to both the actual hybridisation event and an 

apparent secondary capacitive-based relaxation process. The multi-pararnetric nature 

of network analysis allows for the simultaneous monitoring of the acoustoelectric 

coupIing as well as the mass and viscous coupling effects. 
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Atornic Force Microscopy Analyses 

Atomic force microscopy (AFM) was employed to further characterise the various 

surfaces produced in the immobilisation of the surface-bound DNA receptors. The 

tapping mode of operation was chosen to minimise the lateraI forces acting on the 

surface, as the contact îime between the probe and the sample is reduced rehtive to 

the contact mode of ~ ~ e r a t i o n . ~ ~  As the tip is lightly oscillated vertically near its 

mechanical resonance frequency, the amplitude of oscillation is reduced via contact 

with features on the surface. The height of the sample platform is adjusted to 

maintaifi a constant amplitude of probe oscillation. This is the "height" mode of 

operation, which gives a topographicd relief of the surface. The brighter the colour in 

the image, the Iarger the vertical displacernent of the feature. 

Images were simultaneously acquired in the phase mode, in which the motion of 

the probe is characterised by its phase relative to the driving oscillator. '' The phase 

lag between the excitation signal and the probe response changes when the tip is in 

contact with chemical heterogeneities. Thus, phase imaging is sensitive to the 

differences in phase between domains on the surface. Phase shifts are registered as 

bright and dark regions in a phase image. However, twisting moiions of the probe, as 

it encounters steep features also give rise to a phase shift. Thus, it is possible to 

observe contrat in a phase image even in the absence of chemical heterogeneity on 

the surface. However, phase imaging is reIatively insensitive to surface roughness, 

which may hinder domain identification in height imaging. The two techniques are 

thus complimentary and provide the maximum characterisation of a surface. 

AFM results for the control TSM surface and the thiolated surface are illustrated 

in figure 45a and 45b. respectively. The left image of each figure portrays the height 

image while the right one depicts the phase image. The height image of the control 
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Figure 45: (a) Height and phase images of the control TSM surface. 
(b) Height and phase images of the thiolated TSM surface. 



surface describes a relatively rough topography with numerous large, irregular 

clusters, of medium brightness (height), which may represent gold islands. A few 

extra bright (high) features seem to be artefacts, as suggested by the replarities in 

their shape and size. The corresponding phase image seems to reinforce this 

interpretation, The contrast in phase between the gold cIusters and the possible 

artefacts is more evident than in the topographic image, The highest (brightest) 

objects were clearIy shown to be circular in shape, supporting the theory that they are 

physisorbed specks of contamination. The structures thorght to be gold clusters were 

confirmed to be irregular in shape, Ienciing credence to their supposed identity. The 

difference between the gold clusters and the darker areas, assumed to be the 

underlying gold surface, may be atttibutable to the topographic component of phase 

imaging. The possibility exists that the darker domain may be the chromium 

underlayer. Both images were obtained at relatively low resolutions (500 nm x 500 

nm) and the smallest visible structures are on the order of I O  nm. Attempts were 

made to obtain molecular resolution but it soon became evident that this was not 

feasible for such a rough surface. However, the combination of topographic and 

phase imaging may yield information about subsequent immobilised overlayers. 

The distributions in size and height of the features on an AFM image can be 

ascertained via cross-sectional analysis and surface roiighness analysis, respectively. 

In the former method, the diameters for several features, of similar composition, are 

measured and averaged to arrive at a mean cross-sectional value, with an 

accompanying measure of variation. Figure 46 depicts the cross-sectional analysis for 

the control TSM surface. The analysis was performed on a 500 x 500 nrn spot size, 

with a vertical resoIution of under lnm. Three srna11 circuIar structures, ail 

hypothesised to be physisorbed artefacts, were chosen as subjects. The mean value 

(L) was found to be 32 nm with a RMS of 2 nm. Using the same method, the 
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Figure 46: Cross-sectional analysis of the control TSM surface. 
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Roughness Analysis 
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Figure 47: Roughness analysis of the control TSM surface. 



diarneters of the gold clusters were found to be in the range of 30 to 50 nm. 

An andogous procedure is perforrned on the verticd scale of an AFM image to 

render a measure of surface roughness. The vertical displacements of the five highest 

peaks and the five lowest valleys, relative to a mean plane, are analysed in a similar 

fashion to yield an average deviation from the mean plane and an accompanying RMS 

value. The roughness analysis of the control surface, illustrated in figure 47, was 

perforrned on a 10 ym x 10 pm area. The large scde image clearly shows the bright 

white (highest) specks to be adsorbed contaminants. Numerous deep (dark) fissures 

are seen, crisscrossing the surface. One large and several smaller defect sites (dark 

spots) are also observed. The range of vertical displacement (2) was found to be 104 

nm, giving an average deviation (Ra) of 1.4 nm and a RMS of 2.4 nm. These values 

agree well with the polish specification provided by the manufacturer of the crystal (< 

1 pm) but the large range value suggests relatively large deviations among the peaks 

and valleys on the surface Le. a microscopically uneven surface. Once again, this 

corresponds well with the contrast in height observed in the height image. 

Figure 45b depicts the height and phase images of the thiolated TSM surface (pure 

monolayer of bifunctional C16 thio1)- A smearing effect is seen for the topographic 

image to the left. The large gold clusters and the circular specks can still be seen but 

there seems to be fewer of them and the differences in vertical displacements are less 

distinct. This may correspond with a layer of thiol being irnmobilised on the surface, 

masking the structures to a degree. A profound difference can be seen in the phase 

image, reIative to the control surface. The surface is neady homogenous in phase, 

with the artefacts clearly shown to be adsorbed on top. Once again, this is consistent 

with the presence of a dense layer of thiol on the gold surface. The white horizonta1 

streaks are thought to be artefacts of the movement of the probe tip as it scans across 

the sample. This is often observed when the tip is contarninated with relatively labile 
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Figure 48: (a) Height and phase images of the thiolated TSM surface. 
(6) Height and phase images of the DNA-immobilised 

TSM surface. 



surface-bound entities. Cross-sectional analysis revealed that the size of the circular 

artefacts remained unchanged (29 nm F 1 nm) while the gold clusters were shown to 

be Iarger, rangîng from 40 to 80 nm. This is further evidence of the immobilisation of 

a layer of thiol on the gold clusters. Roughness analysis results indicated a range (2) 

of 18 nm, an average deviation of 1 nrn and a RMS of 1.4 nm. A11 of these values are 

significantly less than those for the controI surface, further proof of a masking action 

by the thiol layer. 

The AFM images for the thiolated surface are juxtaposed with the height and 

phase images of the DNA-imrnobilised surface for ease of comparison (figure 48). In 

the topographic image, the srnearing effect seen for the thiolated surface has been 

reversed. The features are quite distinct and there are larger variations in height 

arnong thern. This may be evidence of an incomplete coverage of DNA molecules on 

top of a thiol layer. The phase image seems to support this depiction. A homogenous 

underlayer is clearly seen, with numerous outcrops of a material of difference phase. 

The brizht white circular contarninants are also seen, dong with the streaky tip- 

induced artefacts. Cross-sectional analysis pointed to a reduction in the size of the 

features to the range of 30 to 60 nm while roughness rneasurements yielded a ranse of 

99 nm, a mean deviation of 1.8 nm and a RMS of 3.6 nm. The increase in roughness 

corresponds well to an incomplete monoIayer of DNA molecules. 

AFM imaging has proven to be very useful in the characterisation of the 

immobilisation process. AI1 though molecular resohtion was not possible with the 

relatively rough TSM surface, height and phase imaging combined to give important 

supporting evidence at each step of the immobilisation procedure. The employment 

of an atomic flat surface, such as cleaved mica, as the substrate will help to improve 

the resolution and provide further information on the thiol-DNA linkage system. 



CONCLUSION 

In summary, artificial neural networks were applied successfully to the modelling 

of the KCl system. Excellent predictive ability, over a concentration range of three 

orders of magnitude, was obtained for a network with as few as four input parameters. 

The neuralnet was subjected to KCI samples that had been deliberately contaminated 

with a short-chain thiol, designed to affect only one of the input variable. The 

predictive ability of the network suffered a decline but the accuracy remained at an 

acceptable level. A weight adjustment scheme was developed to calibrate the 

network for the presence of the interferent. The magnitudes of the weights, which are 

related to the affected input, were adjusted downward. Essentiall y, the contributions 

from the affected nodes toward the output of the network were reduced. The 

predictive errors achieved by the adjusted network were found to be comparable to 

those for the unadulterated samples. In effect, the adjustment process had lessened 

the deleterious effect of the interferent in a manner roughly analogous to the 

calibration process for a pH meter. 

The effect of a different interferent on the KCI system was investigated. The 

contaminant, glycerol, was designed to affect not one, but two input parameters. The 

predictive ability of the unadjusted network was found to be unacceptable. Weight- 

adjustment on one of the affect inputs did not enhance the performance greatly but a 

two-point adjustment improved the predictive accuracy to an acceptable level. 

Kowever, the network was not totaily caiibrated for the effect of glycerol by the 

adjustment process. This can be attributed to an inefficient weight adjustment process 

and/or an over-extension of the network's resources. The inclusion of more relevant 

parameters, other than the chosen four, may help to lower the errors and improve 



robustness, but at greater computing costs, An investigation was d s o  performed on a 

dual-adulterants system, using both thiol and glycerol. Two of the four input 

parameters were affected and the results followed the same trend as those for just 

glycerol, but with even larger magnitudes of error. The degradation in performance 

can be attributed to the combined effect of the two contarninants. 

A parallel development of a chemically selective sensor platform was effected in 

preparation for the application of neurai analysis to a red-world chernical sensing 

systern. This involved the activation of the goId electrodes on the TSM device via the 

self-assembly of bifunctiond thiols, followed by reactivity assessrnent using a probe 

molecule, pentafluorophenyl hydrazine. The optimal thiol composition, with respect 

to thiol loading and surface reactivity, was found to be a mixture of severai 

bifunctionai thiols with different chain lengths (C6. C8, CI 1 and CI6). The subsequent 

immobilisation of an amino-terminated, 25-mer DNA single strand was performed 

utilising carbodiimide chemistry. catalysed by dimethylamino pyridine. Once again, 

the optimal surface was confirmed to be that activated by a mixture of bifunctionaI 

thiols. 

The viability of the immobilised DNA was confirrned via hybridisation 

experiments with complementary fragments, monitored by network analysis. The net 

change in Fs, upon hybridisation, was found to be comparable to that obtained with a 

system cuichored by the avidin-biotin coupling process. Furthemore, it was 

discovered that the multi-pararnetric nature of network analysis allows for the 

simultaneous charactensation of the actual hybridisation event and a secondary 

capacitive-based conformational change. The changes in mass and viscous loading, 

caused by the initial hybridisation, was tracked by Fs and R, while an apparent 

subsequent conformational change, reflected in the acoustoelectric properties of the 



sensor, was monitored by the electrically-sensitive parameters, Fp, Co and k. 

P M  was also employed in the characterisation of each step of the immobil 

process. The combination of height and phase imaging proved extremely usefu 

isation 

1 in 

providing corroborating evidences pertaining to the presence of the thiol and DNA 

layers. The application of this procedure to a layer of gold that has been sputtered 

ont0 an atornically flat surface may improve resolution to the molecular level. 

Overall, there is still much to be done in both aspects of this investigation. The 

weight-adjustment procedure must be elucidated further before it can be applied to a 

real-world sensor. This wouId involve the creation of a larger network, making use of 

six or more input parameters. The inherent resources of such a network would be 

greater, confemng an increûse in robustness and a higher capacity towards multi-point 

weight inanipulation. The immobilisation procedure must also be optimised for 

greater signal sensitivity towards the hybridisation event. Although the change in 

frequency obtained frorn the DNA coupling is close to that achieved using the avidin- 

biotin interaction (25 Hz vs. 40 Hz), it must be improved to be competitive. This can 

be accomplished via higher receptor loading or increased reactivity. With respect to 

receptor loading, al1 steps of the procedure must be characterised fully with respect to 

surface coverage to determine the deficiencies in the process. This can be done 

through angle-resolved XPS and more ngorous AFM imaging. Different thiol 

compositions should also be attempted since the 1: I ratio used for the thioI mixtures 

rnay not be rhe optimum, with respect to reactivity. Furthemore, an increase in signal 

sensitivity may be achieved simply by increasing the temperature of hybridisation. It 

is a well-known fact that a higher temperature, with the appropriate annealing 

procedure, will Iead to greater hybridisation efficiency. This, in turn, should result in 

greater signal sensitivity but care must be taken since the higher temperature may also 

affect the network analysis signals in a non-specific manner. 



GLOSSARY 

piezoelectncaily active area of a TSM device. 

numerical constant 

numencal constant 

numerical constant 

numerical constant 

numerical constant 

numerical constant 

numerical constant 

numericai constant 

numerical constant 

numerical constant 

numerka1 constant 

static capacitance of the equivalen: circuit 

effective complex shear modulus of a AT-cut piezoelectric quartz 

crys ta1 

fundamental series resonant frequency of a quartz crystal 

frequency at maximum impedance 

series resonant frequency 

complex modulus of a polymer film 

dielectnc constant of the quartz 

electromechanicaI coupling factor 

unperturbed motionaI inductance 

mass per unit area of equivalent Liquid layer 



harmonic number 

pressure difference between two sides of quartz crystal 

motiond resistance 

thickness of a polymer immobilized on a TSM sensor surface 

Acoustic impedance of the film 

piezoelectric stress constant 

dielectric constants for a quartz crystal 

dielectric constant of a liquid 

specific conductivity of a Iiquid 

buIk viscosity of the liquid 

bulk density of a liquid 

elastic constant of quartz (piezoelectrkalIy stiffened) 

polymer density 

density of liquid 

density of quartz 

solution conductivity 

angular frequency 

angular series frequency 
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