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SUMMARY 

In an injection moulding process, the quality of the injection mould is very important as it 

may affect the quality of plastic products which the mould produces and the smoothness 

of injection, cooling and ejection in the moulding process. An injection mould is an 

assembly of a group of mould parts, which perform different functions. These parts are 

manufactured by a series of machining processes. The quality of mould parts are to a 

large extent determined by the performance of these machining processes. The main 

concern of this research is to improve the performance of these processes.  

Statistical Process Control has been widely and successfully applied in many industries 

since it originated when Shewhart first proposed the concept of control chart in the 

1920’s. As the traditional application of SPC demands a huge amount of data, the 

application of SPC in the short-run or small volume production situations faces many 

challenging problems. In recent years, to solve the above mentioned problems, short-run 

SPC methods are proposed by some researchers. These research works mainly focus on 

the data transformation methods and part family formation methods. Some application 

practices have been done in machining processes. However, the manufacture of injection 

mould has its own traits, high variation of machining process and high variation of parts, 

which raises some problems for the application of short-run SPC methods in this area. To 

solve these problems, this research focuses on the following aspects: 

Injection mould part and mould part manufacturing process analysis 

This research proposed to classify the mould parts into standardized part and non-

standardized part according to whether they are directly involved in forming the plastic 
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product. Those not involved in forming the plastic product are identified as standardized 

parts and the features on them are identified as standardized features. Those features that 

directly form the plastic product are identified as non-standardized part, the features on 

which are further classified as standardized features and non-standardized features 

according to whether they directly form the plastic product.  

SPC planning for the manufacture of injection mould 

Firstly, the machining processes in the mould shop are identified as different SPC 

processes according to the specific rules and the part family memberships are identified 

according to the specific rules, based on the engineering knowledge and statistical 

analysis of the historical data. For the standardized part, an approach of SPC plan 

template is proposed to standardize and simplify the process of generating SPC plan. For 

the non-standardized part, the standardized features can be treated similarly as the 

standardized parts. The methods and rules for the generation of SPC plan for the non-

standardized features of each new mould project are stated. 

SPC implementation for the manufacture of injection mould 

Once the SPC is well planned, it is implemented and the implementation process can be 

computerized with the help of CAD / CAM technology, database technology, statistical 

software, pattern recognition technology, artificial intelligence technology and precise 

measurement technology. The possible causes corresponding to the different out-of-

control patterns can be referred to the ones generalized from other manufacturing 

practices. They also need to be generalized from the practice of mould manufacturing 

with the accumulation of application experiences. 
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NOMENCLATURE 

 
SYMBOLS 

ε   error  

φ   Diameter 

µ   Mean of a sample group 

σ   Standard variance 

D   Dimension  

x, y, z   Cartesian coordinate system 

X   Individual measurement 

X    Average of measurements 

X    Average of average 

R   Range 

R    Average of ranges 

SP

2
P   Deviation 

S   Standard Deviation 

  

SUBSCRIPTS AND SUPERSCRIPTS 

Plotpoint  Plot point in control chart 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

With the increasing demand by customers for high quality and low cost products in the 

global market, the need for quality improvement has become increasingly important in all 

industries in recent years.  

In order to supply defect-free products to customers and to reduce the cost on defective 

parts in production, Statistical Process Control (SPC) techniques have been widely used 

for quality assurance. SPC originated when Shewhart control charts, such as Average and 

Range charts, were invented by W. A. Shewhart at Western Electric during the 1920’s. In 

Average and Range chart, sample means are plotted on the Average chart to detect the 

shift of process mean, while sample range or standard deviations are plotted on the Range 

or Standard Deviation chart, respectively, to detect the shift of process variation. In later 

years, Individual and Moving range chart, Cumulative Sum chart, Exponentially 

Weighted Moving Average chart are developed to monitor process in different situations. 

Control chart, as the main tool in SPC was proven to be very effective in many industries. 

Histogram, Check Sheet, Pareto Chart, Cause and Effect Diagram, Defect Concentration 

Diagram, and Scatter Diagram are combined with Control Chart to serve as the 

“Magnificent Seven” powerful tools to effectively locate problem and find causes. They 

made SPC very useful in improving the performance of the process and the quality of the 

products. 

Most of the successful applications of SPC are for mass productions. The nature of multi-

product and short-run of injection mould manufacturing will further create challenging 
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problems for the mould maker to maintain high quality through the application of  SPC. 

Hence it is important to develop an effective approach in the manufacture of injection 

moulds in this research. 

1.2 Problem Statements 

Many definitions such as “low volume”, “short-run” or “small batch” can be found in the 

literatures to describe a production process in which the batch size or lot size is mall, 

usually less than 50 units. This kind of production process presents challenging problems 

in the application of SPC. 

The main problem associated with low volume production is due to lack of sufficient data 

to properly estimate process parameters, i.e. process mean and variance, the meaningful 

control limits for control charts are hard to attain. The availability of rational 

homogeneous subgroups is the basic assumption of traditional SPC. In low-volume 

production, this kind of homogeneous subgroup does not exist. To solve it, short-run SPC 

methods are proposed.  

Firstly, the important basis of short-run SPC is to focus on the process, not the parts. If 

the process is in control and capable, quality of the parts manufactured by it will be 

guaranteed.  To improve the performance of the process, the various parts manufactured 

by it are taken for analysis. To solve the contradiction between variations of parts and 

demand of sample number, the concept of forming part family, which results in 

increasing the number of samples, was proposed. A part family means family of products 

“that are made by the same process that have common traits such as the same material, 

configuration, or type of control characteristic”. (Griffth, 1989) To form a part family, it 

must meet two requirements: homogeneous variance and equal mean (Koons and Luner, 
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1991, Evans and Hubele 1993). The equal mean here means the mean of coded data or 

transformed data, which is usually the difference between the measured value and 

nominal value on one particular quality characteristic. Under the assumptions of 

homogeneous variance and equal mean, quality characteristics with different nominal 

values but similar process variations can be plotted on the same control chart using the 

coded data. Process parameters and control limits are calculated based on these coded 

data collected from different part types. But most of research works focused on the short-

run productions, in which a certain number of part types are alternatively produced.  

An injection mould is a mechanical tool in which molten plastic is injected at high 

pressure to produce plastic products. Figure 1.1 shows the injection moulding process of 

plastic product. An injection mould allows the manufacturers to mass-produce of the 

plastic parts that are highly identical in terms of dimension and appearance. For each 

plastic product, one single cavity mould, a multi-cavity mould or several identical moulds 

may be needed. For each new plastic product design, a new mould has to be made. 

Therefore, the manufacture of injection mould is characterized as one-off. 

A mould assembly usually consists of mould base, cavity insert, core insert, other 

accessories and standard components. Figure 1.2 shows an example of an injection mould 

assembly. Slider or lifter is needed if there is an undercut in the plastic part. To 

manufacture the part, a series of machining processes are needed.  
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Figure1.1  Injection moulding process of plastic product 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  An injection mould assembly (Alam, 2001) 
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Due to the high diversity of plastic products, the shapes, dimensions, and features of 

mould parts can be very different one from another. The manufacturing processes of the 

mould parts can also be very diverse in terms of process type, machine type, machine 

setting, cutting tool, workpiece holding and fixturing, and cutting conditions. The 

problem of high variation of parts and high variation of manufacturing processes makes 

the application of SPC in the manufacture of injection mould more challenging compared 

with other short-run production systems. 

1.3 Research Objectives 

The application of short-run SPC in the manufacture of injection mould consists of two 

main parts – SPC planning and SPC implementation. SPC planning involves defining and 

identifying SPC processes, forming and identifying part families, selecting data 

transformation methods, and selecting control charts. SPC implementation involves 

collecting data, transforming data, plotting transformed data on control charts, analyzing 

and interpreting the charts and suggesting possible causes for out-of-control situations. 

As SPC implementation in the manufacture of mould is similar to other those used in 

manufacturing industries, which have been studied by other researchers, SPC planning is 

thus the main part of this research.  

The main objective of this research is to develop a framework consisting of methods and 

procedures on SPC application in the manufacture of injection mould. 

The second objective is to analyze, summarize and generalize the characteristics of 

different mould parts and the different machining features on the parts and the 

manufacturing processes of the mould parts.  
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The third objective is to propose an approach to define and identify a suitable SPC 

process. The part family is formed and identified based on the characteristics of the 

mould parts manufacturing to make the application of control charts both statistically 

meaningful and operable. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Traditional Statistical Process Control 

Statistical Process Control (SPC) is a systematic set of tools to solve process-related 

problems. Through the application of SPC tools, possible reasons that cause a process to 

be out of control can be identified and corrective actions can be suggested. A control 

chart is the primary tool of SPC and basically used to monitor the process characteristics, 

e.g., the process mean and process variability (Duncan, 1988, Montgomery, 2001).  

The most common types of variable control charts include: 

(1)  Average and Range (X and R) Charts  

(2)  Average and Standard Deviation (X bar and S) Charts 

(3) Individual and Moving Range (X and MR) Charts  

Collectively, above charts are usually called Shewhart charts, as they are based on the 

theory developed by Dr. Walter A. Shewhart. As Shewhart charts are relatively 

insensitive to small shifts in the process, two effective charts may be used to supplement 

them when there are small shifts in the process.  

(1) Cumulative Sum Control (Cusum) Chart  

(2) Exponentially Weighted Moving Average (EWMA) Control Chart  

As they are effective in detecting small shifts, but not as effective as Shewhart charts in 

detecting large shifts, an approach of using a combined Cusum-Shewhart or EWMA-

Shewhart is proposed. Simply adding the Shewhart chart to Cusum chart or EWMA chart 

can effectively improve the responsiveness to both large and small shifts (Montgomery, 

2001). 
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The control charts in traditional SPC are designed to monitor a single product with large 

production runs. The availability of rational homogeneous subgroups is the basic 

assumption of traditional SPC. Many researchers proposed that 20-25 samples with 

sample size of 4-5 from a single part type should be used to calculate the meaningful 

control limits (Duncan, 1986, Griffith, 1996, Montgomery, 2001). Therefore, at least 80-

125 units are needed for setting up a control chart. Since low-volume production does not 

have the aforementioned type of homogeneous subgroups, short-run SPC methods have 

been proposed.  

2.2 Short-run Statistical Process Control 

A short-run problem can be characterized in several ways, but the problem essentially 

concerns insufficient data or untimely data for the determination of control limits. 

Usually it belongs to the following general categories: 

1. Not having enough parts in a single production run to achieve or maintain control 

limits of the process; 

2. The process cycles are too short that even large-size production runs are over 

before data can be gathered; 

3. Many different parts are made for many different customers (in small-lot sizes) 

To apply SPC to any of the above situations, the main emphasis is not on the parts, but on 

the process. Parts are the media to convey the information of the process performance, 

and the main concern is the process. 

Short-run SPC methods work on a variety of different parts, each with a different 

nominal value for the concerned quality characteristic. To make the control chart 
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statistically meaningful, appropriate data transformation and part family formation are 

needed (Griffith, 1996). 

2.2.1 Data transformation methods 

Several data transformation methods have been proposed in the literature by Bothe 

(1988), Cullen (1989), Evans (1993), and Crichton (1988) respectively. The most 

representative ones are discussed below: 

2.2.1.1 Bothe’s approach 

The most commonly used and the simplest data transformation method, Deviation-from-

nominal, was first proposed by Bothe (1988). It uses the deviation between the measured 

and nominal values as the individual data point. This method can be used for both 

Individual Chart and Average and Range Charts. This method is used for process 

variability that is approximately the same for all part types (Al-salti et al, 1992). 

2.2.1.2 Bothe and Cullen’s approach  

Subsequently, Bothe and Cullen proposed another data transformation method, that 

divides the value of the deviation from nominal by the range of the part type (Bothe et al., 

1989). This method can also be used in both Individual Chart and Average and Range 

Chart. 

For Individual Chart, the plot point is  

A

A
plotpoint R

nominalXX −
=               (2.1) 

where XBAB is the measured value of one part of type A, and ⎯RBAB is the historical average 

range of part type A. It can be calculated using equation in below: 
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m

R

R

m

1j
Aj

A

∑
==                

(2.2)        

where RBAj B is the range of the jBth B historical subgroup of part type A. m is the number of 

historical subgroups of part type A.  

For Average and Range charts, the plot points are: 

A

AA
plotpoint R

XXX −
=               (2.3)   

 
A

A
plotpoint R

RR =               (2.4)  

 where ⎯XBAB is the average of measured value of part type A. It can be calculated using the 

equation in below: 

n

X
X

n

1i
Ai

A

∑
==               

(2.5) 

where XBAi B is the i Bth B measured value of part type A. n is the number of measurements. 

AX is the mean of ⎯XBA. BIt can be calculated using the equation in below: 

m

X

X

m

1j
Aj

A

∑
==                  

(2.6) 
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where AjX  is the jBth B subgroup of part type A. m is the number of subgroups of part type 

A. 

B BRBAB is the historical average range of part type A. AR can be calculated using equation 

2.2. 

This method is used when the variation of the process differs significantly with different 

part types.  

2.2.1.3 Evans and Hubele’s approach  

In this method, similar to Bothe and Cullen’s approach, the value of deviation from 

nominal is divided by the tolerance of the part type A (Evans et al., 1993). 

For Individual Chart, the plot point is  

A

A
intpoplot T

inalnomXX −
=               (2.7) 

where XBAB is the measured value of one part of type A, and TBAB is the tolerance of part type 

A. 

For Average and Range Charts, the plot points are: 

 
A

AA
plotpoint T2

XXX −
=                (2.8) 

A

A
tplotpoin T2

RR =               (2.9) 



                                                                                                  Chapter 2 Literature Review 

 12

where⎯XBAB is the average of measured value of part type A. It can be calculated using 

equation 2.5. AX is the mean of ⎯XBA. BIt can be calculated using equation 2.6. TBAB is the 

tolerance of part type A. 

This method is used when the tolerance of different part types are significantly different 

and the process variation also differs with the different tolerances. 

2.2.1.4 Crichton’s approach                  

In this approach, the deviation from nominal is divided by the nominal value (Crichton, 

1988). 

For Individual chart, the plot point is  

nominal
nominalXX A

plotpoint
−

=                        (2.10) 

where XBAB is the measured value of one part of type A. 

For Average and Range chart, the plot points are: 

A

AA
plotpoint

X

XXX −
=                         (2.11) 

A

A
plotpoint

X

RR =              (2.12) 

where⎯XBAB is the average of measured value of part type A. It can be calculated using 

equation 2.5. AX is the mean of ⎯XBAB. It can be calculated using equation 2.6. 

This method is used when process variability differs significantly from one part to 

another and also increases with the nominal size.  
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2.2.2 Part family formation 

For simple short-run productions, parts are manufactured with constant process parameter 

setting, but variation in size. Parts made by the same process naturally belong to the same 

part family. Only data transformation is needed to apply traditional control charts to the 

short-run productions. But in modern manufacturing practices, situations are always not 

so simple. Parts made by the same process may be very different from one to another in 

material or geometrical characteristics. As a result, the corresponding process parameter 

settings may be different. In these complicated situations, after data transformation, there 

are still four types of variation that exists in the transformed data produced by a particular 

process, as shown in Figure 2.1. 

Variation Type I refers to the variation caused by the differences between parts, such as 

difference in material or in geometrical characteristics. 

Variation Type II refers to the variation caused by the different process parameter 

settings. 

Variation Type III refers to the variation caused by the shift of the process. 

Variation Type IV refers to the inherent process variation, which can be reduced by 

improving process capability. 

The purpose of SPC is to eliminate type III variation, and to reduce type IV variation. A 

statistically meaningful control chart is supposed to present only variation type III and 

type IV. Therefore, variation type I and type II should be separated from variation type 

III and type IV in the control chart. 
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To remove the effect of variation type I and type II, the part family has to be carefully 

formed to isolate these two types of variation, so that they will not co-exist within one 

part family. Koons and Luner (1991) and Evans and Hubele (1993) both considered the 

effect of type II variation. In their approaches, these two types of variation are removed 

by forming suitable part families. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Types of variation existing in short-run productions. 
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the operating factor has significant effect, it would be taken as a single process regardless 

of the setting of that factor. 

In Koons and Luner’s approach (1991), it was done in a way that is characterized by 

“division”. Initially, it is assumed that all data set is produced from a single process. The 

validity of this assumption is tested by statistical analysis. The predetermined 

characteristic of each part is measured and recorded. Prior to the test, the data set is 

transformed by using Deviation from Nominal, which is subtracting the nominal value 

from the measured value. The variance of each subgroup is used as a measure of 

subgroup variability. The subgroup variances are displayed in a Variance (SP

2
P) Chart. The 

limits of the variance chart are calculated using the chi-square distribution. 

)1n(
SLCL
j

2
2

999.0 −
χ=             (2.13) 

)1n(
SUCL
j

2
2

001.0 −
χ=            (2.14) 

The subgroup that exceeds the control limits are analyzed. If there is any special cause, 

such as an improper set-up, it is taken out. After taking out the outliers due to special 

causes, the variance chart is revised with new control limits, and new outliers are 

analyzed and taken out if further special causes are found. This is continued until all 

points are within the control limits or no special causes are found to explain the outliers. 

The subgroup corresponding to the outlier will be taken out to form a separate part 

family. 
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The next step is to determine whether any of the operating factors has systematic effect 

on the variation between subgroups. Multiple regression is used, in which the variance of 

the subgroups is used as dependent variable and operating factors are used as independent 

variables. Data sets associated with the different settings of an operating factor, which is 

found to have significant effect on the variation, are formed in separate part families 

(Koons et al., 1991).  

Evans and Hubele’s approach 

In Evans and Hubele’s approach, measured data on the predetermined quality 

characteristics are transformed first using: 

tolerance
)nominalx(

y ij
ij

−
=            (2.12) 

where xBijB represents the original measurements of part j in part type i. This transformation 

permits comparison of data taken from parts with different tolerance. 

Firstly, data of similar parts made by the same process, which is in statistical control, are 

collected and transformed using above formula.  The information on all process 

parameters is also collected, such as machine setting and tools, which may contribute to 

the part variability. A one-way ANOVA is performed on the Levene transformed data to 

test the homogeneity of variance between different part types. The Levene transformation 

is shown as: 

iijij yyz −=             

(2.13) 

where ⎯yBi B is the mean of all the value of part type i. 
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Then the part types are formed with homogeneous variance into one preliminary family 

based on the result of ANOVA on zBijB. ANOVA is performed to each preliminary part 

family to determine whether the difference between the mean of the part types in this 

family exists. 

If no significant difference is found, this preliminary family is finalized as a part family. 

For the preliminary family in which means between part types are found to be 

significantly different, multiple comparisons are performed, such as Duncan’s test, to 

identify the subsets with specific difference in means. Part family is formed with subsets 

with no significant difference in means.  

Subsets with significant difference in means are taken out to form separate families. The 

process parameters associated with each part are now used to identify family 

membership, according to which the future coming parts with the same process 

parameters can be identified and added to the corresponding part family (Evans and 

Hubele, 1993). 

Review of the two approaches 

The above two approaches both proposed a set of procedures on the formation of part 

families in small-volume productions. Statistical analysis is used to avoid type I and type 

II variations in the same part family. In both approaches, type I and type II variations are 

treated together. If any factor among the inherent characteristics of parts, such as material 

of the part or associated process parameter setting, it will be used to identify the family 

membership. 
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One of the differences between these two approaches is that Koons and Luner’s approach 

is more characterized as “division”, starting from large “preliminary family”, and using 

SP

2
P chart to screen out the subsets which are outliers and form them into separate families. 

Evans and Hubele’s approach is more characterized by “grouping”, starting with small 

data subgroups with same process parameter settings, performing ANOVA and multiple 

comparisons to identify the difference in variances and means between subgroups. 

Subgroups with no significant difference in variances and means are grouped to a larger 

part family. Those with significant difference in variance or mean are left as separate 

families (Lin et al., 1997).  

Another difference is that in Koons and Luner’s approach, the equality of means is not 

tested. If difference in the means between the part types exists, this difference will be 

introduced and be mixed up with the variability caused by any process shift.  

These two approaches are both based on productions, where part types are produced 

intermittently and several part types are manufactured in alternate batches. In this kind of 

circumstances, data of one particular part type can be sufficiently collected. The 

processes, which manufacture these part types, are not too many nor too complex to be 

aggregated or analyzed. However, most of the injection moulds are made in one-off or in 

very small batches. It is not easy to aggregate all mould parts in advance, because one 

particular part type may only be produced in one piece, and not be produced again.  In 

mould manufacturing, there is a large number of the processes involved and the processes 

are relatively complex, with many process parameters involved. Therefore, when 

proposing part family formation methods, the characteristics of mould manufacturing 

have to be carefully considered. 
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Application of group technology in part family formation 

A classification and coding system (C & C) used for short-run SPC part family formation 

is proposed by Mamoun Al-salti et al. (1994). This C & C system consists of two main 

codes: a primary code which contains the information on the part, such as the basic shape, 

size, material and the initial form of the part, and a secondary code which contains the 

manufacturing information of the part, such as machine tool, machining process, 

measuring device, cutting tool, cutting tool holding method and workpiece holding 

method. Each of the items can be taken as a variable and expressed as a digit of the code. 

Statistical analysis, including F-test and ANOVA, is used to determine whether the 

variable significantly affects the concerned quality characteristics. If not, the 

corresponding digit can be freed to form a larger family. 

This approach classifies type I and type II variations according to the primary and 

secondary codes, respectively. It lists all the factors which may affect the concerned 

quality characteristics and represents these factors by the code digits. Through using the 

coding system to identify part family membership, this C & C system provides the 

possibility to automate the part family formation work. 

However, the aforementioned method assumes that the parts only have limited number of 

simple machining features for each machining operation. When applying to parts with 

large number of complex machining features, which may involve different machining 

types and operations, such as injection mould parts, it is very hard for the proposed digit 

system to accommodate huge amount of information. Therefore, further considerations 

are needed when applying it to complex mould part manufacturing processes. 
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2.2.3 Short-run SPC control charts 

Variations in short-run processes are generally similar to those in other productions, and 

it is necessary only to identify and eliminate special cause through the use of control 

charts. The cause variation is characterized by as points beyond control limits or a pattern 

of points that indicate a change in the process. Common cause variation occurs in every 

process. It is desirable to minimize it as much as possible. With reduced common cause 

variation the control charts manifests more narrow control limits. 

The control charts most commonly used in short-run productions are: 

Average and range chart (⎯X and R chart) 

The traditional average and range chart can be used in short-run situations after data 

transformation. It applies when the subgroups of identical parts exist (Montgomery, 

2001).  

Individual and moving-range chart (I and MR chart) 

The traditional individual and moving range chart can also be used in short-run situations 

after data transformation. It applies when process has limited output. Results in 

destructive testing, or testing more than one piece is prohibitive due to cost (Nugent, 

1990), The control limits calculation formulas are shown in Appendix C. 

2.3 Control Chart Interpretation 

The control charts have the ability to detect and identify special causes, by means of 

presenting a particular pattern. There are 15 common control chart patterns, cycles, 

freaks, gradual change in level, grouping or bunching, instability, interaction, mixtures, 

natural pattern, stable forms of mixture, stratification, suddenly shift, systematic 
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variables, tendency of one chart to follow another, trends, unstable forms of mixtures 

(Western Electric Co., Inc., 1976). The pattern information is vital for process diagnosis 

and correction as there is a strong cause-and-effect relationship between the pattern 

features and root causes. Some typical chart patterns and the corresponding causes are 

shown in Appendix D. 

More patterns and corresponding causes can be identified and generalized from data  of 

practice in industry by a company. Once a particular pattern is present, the corresponding 

causes are checked. The information on machine tool, measuring tool, part, operator, 

environmental factors, and other possible sources is collected and investigated to 

determine and eliminate the causes.  

Modern technology on pattern recognition helps automate the chart pattern recognition 

and artificial intelligence technology can help automate the search for the causes. This 

offers possibility of automation and computerization of SPC in the manufacture of 

injection mould, when combining with the computer-aided data collection and data 

recording, computerized statistical analysis and control charting (Evans et al., 1988, Swift 

et al., 1995, Tontini,1996, Al-Ghanim et al., 1996, Anagun, 1998). 
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CHAPTER 3 INJECTION MOULD MANUFACTURING 

Plastic products are increasingly applied in various industries nowadays. Among the 

different categories of plastics, thermoplastic is most commonly used and produced in the 

largest scale. Most thermoplastic product is made by injection moulding process. Plastic 

injection moulding process requires an injection mould, which forms the molten plastic 

into a product. An injection moulding machine then injects molten plastic resin into the 

mould, and ejects the formed parts.  The entire moulding processes involve the mould-

filling phase, packing phase, holding phase, cooling phase and lastly the ejection phase. 

Through moulding process, an injection mould can mass produce plastic parts with 

highly identical in size and shape (Mennig, 1998). Quality of the plastic products depends 

very much on the design and quality of injection mould.  

A plastic injection mould assembly consists of cavity, core, slider, lifter, mould base and 

other accessories. Each of these mould parts has its own special function during the 

moulding process. Therefore, each individual mould part needs to be designed and 

precisely manufactured with rules and experiences to guarantee that the whole mould 

performs the required functions, such as making the melt flow smoothly, cool evenly and 

eject successfully.  

3.1 Injection mould manufacturing process 

Nowadays, mould manufacturing company’s work involve mould design when given the 

plastic product design drawing from customer, mould part fabrication, mould assembly 

and mould testing. Some mould companies do both mould making and injection 

moulding, so they also supply the plastic products directly to the customers. With the 
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development of computer-aided design and manufacturing technology, the mould 

manufacturing processes are becoming more automated. But a fully automated 

manufacturing system has not been adopted in most the mould companies. Usually they 

have different departments doing design, process planning, and machining work 

respectively. In the mould shop, there are different types of machines, performing 

different type of operations and workpieces are manually moved from one process to the 

next. After all the mould parts are manufactured, they are assembled. Before testing the 

mould in the moulding machine, visual inspection and ejection movement checking are 

done in the assembly department. After that, then first-article test can be done in the 

moulding machine. Some modifications may be needed. Finally, the mould is delivered 

to customer. A general mould manufacturing process is shown in Figure 3.1. 

3.2 Classification of injection mould parts and features 

Among all the mould parts, some parts are directly involved in forming the plastic 

product, while others perform other functions, such as guiding the mould ejection 

movement, and supporting other parts. Even though the shape of the plastic products may 

vary from one to another, the mould parts that do not involve in forming the plastic 

product do not vary. They may have fixed shape and fixed features to perform the fixed 

function, only varying in sizes to match with the plastic products with of sizes. Therefore 

their manufacturing processes can be standardized by standardizing the process plan. 

These parts are identified as standardized parts. The features on these parts can therefore 

be identified as standardized features. While other parts, which have features that directly 

form the profile of plastic product, are identified as non-standardized parts. On these 

parts, there are still some features, which are not involved in forming the plastic product 
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profile. They perform fixed functions, such as supporting or positioning, and have fixed 

shape, such as the external cubic profile of the core and cavity insert. Therefore, the 

features on non-standardized parts can be further divided into standardized features and 

non-standardized features. Like the standardized parts, the manufacture of standardized 

features on the non-standardized parts can also be standardized, while the manufacture of 

non-standardized features have to be designed for each new mould project, according to 

the given plastic product design file.  

In the following sections, the main mould parts, slider and lifter, core and cavity will be 

discussed, and the classification of their features will be illustrated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 A general mould manufacturing process 
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3.2.1 Slider and lifter 

The main function of a slider in injection mould is to form an external undercut in the 

plastic part. Figure 3.2 illustrates the working principle of a slider. Mould companies 

usually have several typical types of sliders. Figure 3.3 a shows one type of the sliders. 

This type of slider consists of a slider body, slider head, wear plate, guide, heel block, 

angle pin and stop block. The angle pin moves up and down the slider body while the 

guides provide the moving action for the slider body and are attached to the moving half 

of the mould base. The wear plate is a rectangular plate, which prevents the slider body 

from wearing out. The heel block is the locking engagement. The stop block resists the 

slider body from moving out from its actual stroke length.  

Slider head is the key part of slider, which forms the undercut of the plastic product. It 

can be a separate component attached to the slider body by connecting components, when 

it has complex shape and has to be machined separately. Figure 3.3 b shows the profile of 

a slider head. If its shape is not too complex to machine, it can be made integrated into 

the slider body.  
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Figure 3.2 The working principle of slider 
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Among all the slider parts, it can be found that most of them perform fixed function, such 

as the wear plate, guide, heel block, angle pin and stop block. Therefore, they can all be 

identified as standardized parts. A slider body without the slider head can also be 

identified as a standardized part.  A slider body with attached slider head has to be 

identified as non-standardized part. The features on the body portion can be identified as 

standardized features and the features on the head portion are identified as non-

standardized features.  

 

 
 
                       (a)                                                                        (b) 

Figure 3.3  The assembly of a typical type of slider and the slider head portion 

Lifters are used to form internal undercuts as shown in Figure 3.4. The internal undercut 

cannot be formed directly by the core, since the product will be damaged during the 

ejection process. Therefore, a lifter has to be added. When the mould opens, the lifter 

slides away from the undercut at an angle, as the part is being pushed out of the core. At 

the end of the ejection stroke, the lifter would have totally released itself from the 

undercut.  

 



                                                                           Chapter 3 Injection Mould Manufacturing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mould Base 

Mould Base 

Cavity

Core

Product 

Ejector 
Pin 

Internal 
Undercut 

Mould 

Mould Base

Cavity 

Cor

Product 

Ejector 
Pin 

Lifter Mould 
Base 

Mould Base 

Cavit

Core

(a) A product with internal undercut in a mould 
(b) A lifter is incorporated into the mould
Figure 3.4 The working princ
(c) Part releases with the help of lifter
28

iple of lifter. 



                                                                           Chapter 3 Injection Mould Manufacturing 

 29

Figure 3.5 shows an example of a typical type of lifter assembly. This type of lifter 

assembly consists of lifter body, lifter head, lifter base, guide bush, wear plate, etc. The 

lifter head forms the profile of the undercut and it is usually integrated with the lifter 

body. The lifter base supports the lifter body during ejection. The guide bush provides the 

moving pass of the lifter body. The wear plate is a rectangular plate, which prevents the 

lifter body from wearing out.  

Similar to the slider parts, it can be found that most of lifter parts such as wear plate, 

guide bush, and lifter base perform fixed function, not involving the formation of the 

undercut profile,. Therefore, they can all be identified as standardized parts. The lifter 

body has to be identified as non-standardized part, because the lifter head on it involves 

forming the undercut on the plastic product. Similar to the slider body, the features on the 

body portion of the lifter can be identified as standardized features and the features on the 

head portion are identified as non-standardized features.  

 
 

Figure 3.5 The lifter assembly of a typical type of lifter 
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3.2.2 Core and cavity inserts 

Core and cavity inserts are the most crucial components of the injection mould. They 

directly form the main body of the plastic products. They are identified as non-

standardized parts. Usually they have rectangular external shape with specific dimension 

in order to insert into the pocket in the core plate and cavity plate as shown in Figure 3.6. 

In the cavity and core plates, corresponding rectangular pockets are machined to contain 

the core and cavity inserts.   They also have screw holes and positioning holes to attach 

the inserts to the mould base. The external rectangular profile and these holes can be 

identified as standardized features. The internal features on the core and cavity inserts 

vary with the plastic product. Like the slider head and lifter head, they are identified as 

non-standardized features. 

 

Figure 3.6 An example of plastic product, cavity insert and cavity plate 

3.3 Process planning for mould parts manufacturing 

Process planning, which is an important link in the manufacturing cycle, defines in detail 

the processes that transform raw material into the desired form. It mainly comprises of: 

• Selection of processes and tools for processing a part and its features; 
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• Selection of starting surfaces and datum surface to ensure precise processing; 

• Selection of holding fixtures and clamping facility; 

• Determine the sequence of operations; 

• Selection of cutting conditions for each operation (Halevi et al., 1995). 

In the mould manufacturing industry, mould parts, that are non-standardized may have 

many features with very complex shape; the process planning work can be very 

complicated and time-consuming. It can be observed that in a particular company, for a 

particular standardized mould part, the machining processes and their sequences are 

rather fixed. Therefore, a process plan template approach was proposed (Alam, 2000). 

The dimension of the standardized part can vary with the plastic product, which may 

cause some minor change in the process plan, such as cutter size, and cutting parameters. 

An example of process plan template for a type of slider body will be given in section 

4.4. 

For the non-standardized parts, only the process plan for the standardized features, like 

the external cubic profile of core and cavity inserts and the positioning holes on core and 

cavity inserts, can be standardized. Since these features are usually machined before the 

machining of the core and cavity internal profile, the processes for these features are 

usually the first several steps in the process plan.  

For the non-standardized features on the non-standardized part, mainly the internal 

profile, which forms the main part of the plastic product, the process has to be planned 

according to the plastic product design drawing. The machine tool, fixture, cutter, cutting 

conditions are selected for each new mould project based on the specific conditions.  
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CHAPTER 4 SPC PLANNING FOR  

INJECTION MOULD MANUFACTURING 

Due to the complexity of injection mould manufacturing, the application of statistical 

process control in the various machining processes of injection mould manufacturing has 

to be carefully planned. Firstly, the quality characteristics of concern have to be clarified. 

Check Sheet and Pareto Chart can be used here to help find out and prioritize the quality 

characteristics to be improved. In the manufacture of mould parts, most of the concerned 

quality characteristics are the dimensional accuracy and positional accuracy. There are 

also some other quality characteristics, such as geometrical accuracy and surface 

roughness. As sufficient data cannot be obtained for meaningful statistical analysis, SPC 

methods are not suggested. Process should be clearly defined, appropriate data 

transformation method should be selected and part family should be correctly formed to 

make the control chart more statistically meaningful. Suitable control chart should be 

selected to both monitor the large sudden shift of the process as well as the small gradual 

shift. In this chapter, process identification, part family formation, data transformation 

method selection and control chart selection will be discussed. 

4.1 Defining and identifying SPC process 

In SPC, the objective is to improve the performance of the process, through which the 

product quality can be improved. Therefore, in a manufacturing system, which contains 

various process types, it is crucial to initially clearly define the “SPC processes”. It has to 

be noted that the SPC process can be different from the machining process. To define 

SPC process, the machining process has to be analyzed first.  
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For mould manufacturing, different types of process are used. For the corresponding 

processes, different types of machine are used, including the conventional milling 

machine, CNC milling machine, CNC graphite milling machine, radial drilling 

machining, grinding machine, EDM die-sinking, EDM wire-cut, and so on. In a mould 

company, there may be a number of machines available of the same machine type, and 

each machine may be able to perform different types of operation. For each operation 

type, different types of cutting tools may be available. For each type of cutting tool, 

different cutting parameters may be applied. At the same time, different fixtures or 

workpiece holding methods are available for the selection. To better understand the 

problem, several definitions have to be clarified. The process type means the typical 

machining process, such as milling, EDM, and grinding, etc. Operation type refers to the 

different operations which can be performed using one particular machine. For example, 

a CNC milling machine can be used for milling, drilling and chamfering, as shown in 

Figure 4.1.  

Therefore, each particular operation is performed with a combination of many factors, 

including the cutter type, cutter number, fixture type, fixture number and combination of 

cutting parameter settings (Anderson et al., 1991). Cause-and-effect diagram can be used 

here as a powerful tool to help list all the possible relevant factors. As discussed in 

section 2.2.2, the effects of these factors on the quality characteristics of the parts 

machined have to be analyzed to isolate variation type II. The factors are listed in detail 

as follow: 

UFactors of cutterU:  cutter type, including cutter material, cutter size, and cutter geometry, 

cutter holding method, and cutter number 
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UFactors of fixtureU: fixture type, including fixture size, workpiece holding method, and 

fixture number 

UFactors of cutting parametersU: cutting speed, feed rate, and depth of cut (for milling) (Lee 

et al., 1998, Lacalle et al., 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The machining processes in mould shop 
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 To investigate the effect of one particular factor, multiple regression techniques can be 

used, and ANOVA and multiple comparison techniques can also be used (Montgomery, 

1996).  

If any factor is found to have non-significant effect on the concerned quality 

characteristics, this means that its setting will not affect the identification of SPC process. 

The setting of the leftover factors, which have significant effect on the concerned quality 

characteristics, will be used to identify the SPC process. The operations with different 

settings of these factors will be regarded as different SPC processes and will be treated 

separately. If no factor is found to significantly affect the concerned quality 

characteristics, one operation type of the machine will be taken as a natural SPC process. 

It has to be noted that for different concerned quality characteristics, the effect of the 

factors may be different. One factor may have significant effect on one particular quality 

characteristics, but not the others. 

In mould manufacturing, usually a limited number of quality characteristics are of 

concern. These are the dimensional accuracy, positional accuracy and surface roughness. 

Therefore, by careful analysis of all the machining processes in the mould shop, SPC 

processes can be defined and the definitions of the SPC processes are applied to identify 

the SPC process when the process plan and production schedule of a part are given. 
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Figure 4.2 The processes of machining mould part 

Figure 4.2 shows the process of machining a mould part.  It may need several machining 

processes. In each process, there are several set-ups. In each set-up, several operations are 

required to generate the features. By referring to the summarized definitions of the SPC 

process, the SPC process involved for this part are identified and the corresponding 

relationship between the machining feature and the SPC process are also identified. It is 

suggested that the machining feature can be taken as the unit product of an SPC process, 

if they can be measured and their quality characteristics can be expressed separately. The 

measured results are used to plot the control chart after data transformation. 
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4.2 Forming and identifying part family 

By defining the SPC processes, the type II variation can be isolated. However, for the 

parts passing through the same SPC process, the type I variation, which is the variation 

caused by the part’s own characteristics, has to be investigated. Similar to analyzing the 

effect of the process factors, part factors are listed and their effect on the concerned 

quality characteristics are analyzed, for which the Cause-and-effect Diagram can be used. 

As discussed in section 4.1, if the machining feature is taken as the unit product of one 

SPC process, both the characteristics of the part and the feature have to be investigated, 

which mainly refer to the material of the part and the geometrical characteristics of the 

feature. After applying engineering knowledge and statistical methods, the effect of these 

factors, which are related to part and feature’s own characteristics on the concerned 

quality characteristics, are being identified. The factor that significantly affects the 

concerned quality characteristics is used to identify the part family membership. 

After listing all the possible factors, engineering knowledge are first applied to remove 

the factors which obviously do not have significant effect on the concerned 

characteristics. The statistical methods are then used to analyze the effect of the leftover 

factors, in the same way as for defining the SPC processes. 

After all the factors are analyzed, factors which are found to have significant effect on the 

concerned quality characteristics are used to identify the part family membership. If no 

factor is found to have significant effect on the concerned quality characteristic, all the 

features produced by the same SPC process will be naturally grouped in one part family. 

Figure 4.3 shows the concept of the SPC process identification and part family 

identification. 
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Figure 4.3 SPC process identification and part family identification 
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Figure 4.5. If the depth of the pockets, D1 and D2, are the two of concerned quality 

characteristics of the part, the operation and the set-up for machining of these two 

features have to be studied carefully. It is found that D1 and D2 are both affected by the 

machining accuracy in the Z direction, therefore, they can be taken as the same quality 

characteristics to be plotted on same control chart, even though they are not in the same 

coordinate system of the part. 

 

 

 

 

 

 

Figure 4.4 The coordinate system of an end-milling process 
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4.4 SPC planning for standardized part and features 

For standardized mould parts and standardized features of the non-standardized mould 

parts, they have fixed shape and performs fixed functions, therefore the quality 

characteristics can be summarized. Figure 4.6 shows several common types of slider used 

in a mould company. 

For a simple shape undercut, the slider head is easier to machine, therefore it can be 

integrated to the slider body, like type 3, 4, 5, 6 and 7. For more complex or large size 

undercut, the slider head is not easy to machine as an integrated part of the slider body. It 

has to be machined as a separate part and connected to the slider body. Type 1 and type 2 

sliders are for this kind of situation. 

The main portion of the type 3, 4, 5, 6 and 7 is the slider body which consists of only 

standardized features.   

For these standardized parts, they have some fixed features, such as plane, slot, step and 

holes. Once a type of slider is chosen, these features only vary in dimension. It has to be 

noted that the cooling hole is a special feature here, because its size and position have to 

be designed depending on the position of the undercut. However, in practice, the diameter 

and position of these cooling channels are not as crucial as other holes and will not be 

discussed here.  

The quality characteristics of other standardized features can be summarized. Since the 

process plan template of these features is proposed to be possible (Alam et al., 2001), a 

SPC plan template can be worked out. The type 3 slider body is taken as an example for 

illustration. 
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The proposed process plan template for type 3 slider body is shown in Figure 4.7. 

The summarized quality characteristics of this slider body is shown in Figure 4.8. 
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Figure 4.6 Several common types of slider and slider body 
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Figure 4.7 Proposed process plan template for Type 3 slider body 

 

Figure 4.8 The quality characteristics of Type 3 slider body 
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The quality characteristics and the corresponding process type, set-up, operation type 

forms the SPC plan template, since the SPC planning is easier and time is saved. Table 

4.1 gives the example of SPC plan template for Type 3 slider body shown in Figure 4.7. 

Table 4.1 An example of SPC plan template for Type 3 slider body 

Mould Part Quality 
characteristics Machine type Corresponding 

process Set-up Machining 
Direction 

Slider body 
(Type 3) D1 Milling machine Face milling 1 Z 

Slider body 
(Type 3) D2 Milling machine Face milling 2 Z 

Slider body 
(Type 3) D3 Milling machine Face milling 3 Z 

Slider body 
(Type 3) D4 CNC machining 

center End milling 1 Z 

Slider body 
(Type 3) D5 CNC machining 

center End milling 1 Z 

Slider body 
(Type 3) D6 CNC machining 

center End milling 2 X 

Slider body 
(Type 3) D7 CNC machining 

center End milling 2 Z 

Slider body 
(Type 3) D8 CNC machining 

center End milling 3 X 

Slider body 
(Type 3) D9 CNC machining 

center End milling 3 Z 

Slider body 
(Type 3) D10 CNC machining 

center Drilling 4 X 

Slider body 
(Type 3) D11 CNC machining 

center Drilling 4 Y 

Slider body 
(Type 3) Ø1 CNC machining 

center Drilling 4  

Slider body 
(Type 3) D12 CNC machining 

center End milling 5 X 

Slider body 
(Type 3) D13 CNC machining 

center End milling 5 Z 
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With this SPC plan template, the quality characteristics produced by the same process 

type are grouped together awaiting further identification to generate the SPC plan (Table 

4.2). 

Table 4.2 Reorganized SPC plan template for Type 3 slider body 

Mould Part Quality 
characteristics Machine type Corresponding 

process Set-up Machining 
Direction 

Slider body 
(Type 3) D1 Milling machine Face milling 1 Z 

Slider body 
(Type 3) D2 Milling machine Face milling 2 Z 

Slider body 
(Type 3) D3 Milling machine Face milling 3 Z 

Mould Part Quality 
characteristics Machine type Corresponding 

process Set-up Machining 
Direction 

Slider body 
(Type 3) D4 CNC machining 

center End milling 1 Z 

Slider body 
(Type 3) D5 CNC machining 

center End milling 1 Z 

Slider body 
(Type 3) D7 CNC machining 

center End milling 2 Z 

Slider body 
(Type 3) D9 CNC machining 

center End milling 3 Z 

Slider body 
(Type 3) D13 CNC machining 

center End milling 5 Z 

Mould Part Quality 
characteristics Machine type Corresponding 

process Set-up Machining 
Direction 

Slider body 
(Type 3) D6 CNC machining 

center End milling 2 X 

Slider body 
(Type 3) D8 CNC machining 

center End milling 3 X 

Slider body 
(Type 3) D12 CNC machining 

center End milling 5 X 

Mould Part Quality 
characteristics Machine type Corresponding 

process Set-up Machining 
Direction 

Slider body 
(Type 3) D10 Drilling machine Twist drilling 1 X 

Slider body 
(Type 3) D11 Drilling machine Twist drilling 1 Y 
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With each new mould, the detailed process plan for the standardized parts are worked out 

by the process planner and the material of the mould part is chosen. SPC process 

identification and part family identification can then be done, with the definitions 

predetermined in advance. It has to be noted here that different machines of the same 

machine type are monitored separately. Therefore, the machine number has to be 

indicated in the SPC plan after getting the production schedule. The quality 

characteristics, part type, part number and control chart point number are also indicated 

in the SPC plan for future use when cause-finding is needed for out-of-control situations. 

( Table 4.3)  

Table 4.3 An example of proposed SPC plan 

Machine No. U***** U                 SPC process No. U****** U  

 Part Family No. U001 U              Quality characteristic type:U Face milling -Z U 

Quality characteristics Mould Part Part Number Point No.  
in chart 

D1 Slider body  **** **** 

D2 Slider body  **** **** 

D3 Slider body  **** **** 

…. …. …. …. 

       

Machine No. UMakino V55 U      SPC process No. UV55-1-FM-1 U  

 Part Family No. U001 U_            Quality characteristic type: EndU milling -ZU 

Quality characteristics Mould Part Part Number Point No.  
in chart 

D4 Slider body  **** **** 

D5 Slider body  **** **** 

D7 Slider body  **** **** 

D9 Slider body  **** **** 

…. …. …. …. 
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4.5 SPC planning for non-standardized features 

Non-standardized features rquire more consideration compared to standardized features. 

As these features vary with the various shapes of plastic product from one mould to 

another, it is not practical to apply the process plan template or the SPC plan template. As 

these features are usually machined by CNC machining and EDM, the SPC planning for 

these features have to be made based on the individual situation of each mould project.  

4.5.1 Identification of quality features 

A feature machined by CNC or EDM can be a regular-shape machining feature, a feature 

of free-form shape, or the combination of both. For the regular-shape machining features, 

the quality characteristics can be defined in the regular way, like height of a step, width 

of a slot, depth of a pocket or diameter of a hole, etc.  

Some of the CNC or EDM machining features are a combination of some small regular-

shape features, so their quality characteristics have to be subdivided into the quality 

characteristics of these small features. Figure 4.9 shows an example of a complex-shape 

pocket in the core (feature 1), which can be machined in one CNC milling operation. 

However, this feature contains many quality features that have to be measured separately. 

In feature 2, the four aligned slots can be machined in one EDM operation, but have to be 

recognized as four quality features if they are measured separately. 

The quality characteristics of the feature with free-form surfaces are not easy to define. 

However, free-form features are very common in core and cavity inserts.  

In the mould shop, the quality characteristics, mainly referring to dimensional accuracy 

and geometrical accuracy, are being measured by coordinate measuring machines, for 



                                         Chapter4 SPC Planning for Injection Mould Manufacturing 

both regular-shape features and free-form shape features. Therefore, the characteristic of 

the CMM has to be considered when defining quality characteristics and SPC plan for 

non-standardized features.  
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is used to measure the quality characteristics of the non-standardized features, due to its 

high accuracy. The quality of non-standardized features, which directly form the plastic 

product, is of major concern. As the original CMM measurement results are the 

coordinate value of the actual points on the workpiece, they cannot be directly used as 

meaningful data to analyze. Some work was proposed to use deviation ε as the quality 

characteristic variable to monitor the process. Deviation, ε, can be obtained by 

subtracting properly aligned referenced model coordinates value from the direct CMM 

measurement. Alternatively, ε may also be obtained as the distance between the observed 

point S and surface of the nominal model C, in the direction of vector V which is normal 

to the surface of model C (Ho, E. S., 1998), as shown in Figure 4.11. According to the 

mould shop practice, the former method to define deviation is used.  

For the free-form shape feature or the combination of regular-shape and free-form shape 

feature, whose quality characteristic cannot be defined in the usual way, this method of 

measuring the coordinate points can be applied in the same way as the regular shape 

features. The measuring points are usually determined by the design department of a 

mould company. 
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Figure 4.10 Coordinate measuring machine 
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In the approach proposed in this study, as the SPC process identification and part family 

identification already prevent the part types with significantly different variability from 

appearing in the same control chart. The tolerance and the size of the part can both be 

taken as factors of the parts own characteristics whose effect on the variability of the part 

are considered and analyzed when forming part family. Therefore, their effect on the 

variability of the process will not be introduced in same control chart. Within the same 

part family, only Bothe’s approach (Deviation from Nominal) is used to normalize the 

data. 

4.7 Selection of control chart 

The most common control chart, average and range chart, does not apply for one-off 

manufacturing situations, because the subgroup of identical products do not exist. In the 

analysis, the machining feature is taken as the “unit product” in processes, even though 

there are multi-cavity moulds, which have more than one identical core, and cavity 

inserts. One core or cavity insert usually has more than one machining feature, which 

means the identical machining features usually are not machined consecutively. 

Therefore, these identical features cannot form the subgroups for average and range chart. 

Instead, individual-moving range chart is instead proposed here, which uses the 

individual measurement as the data point after data transformation. As the individual-

moving range chart is not so sensitive to small process shift, EWMA or Cusum chart is 

proposed to be used as a supplement to monitor small process shift.   

 



                              Chapter5 SPC Implementation Injection Mould Manufacturing 

 52

CHAPTER 5 SPC IMPLEMENTATION FOR 

INJECTION MOULD MANUFACTURING 

SPC planning can be done before the start of real production, if sufficient information of 

process plan and production schedule is given. SPC implementation starts from the data 

collection in the actual production. Data collection mainly refers to measuring the 

planned quality characteristics of the parts and data recording includes both recording the 

measurement results of the parts, and recording the information of the process. After data 

is collected and recorded as planned, control chart is created with the transformed data 

from the grouped part family either manually or with help of computer software. 

Analyzing the control chart is the most crucial and challenging work in SPC 

implementation stage. 

A good interpretation of the control chart can convey much information about the 

performance of the process. Both industry and statistical knowledge are needed when 

interpreting the chart pattern and suggesting the possible causes for out-of-control 

situations. 

5.1 Data collection and data recording 

In a mould shop, the manufacturing of a mould part usually involves more than one 

machining process. The measurement can be done either immediately after the machining 

process, or after completing all the machining processes.  Note that if a succeeding 

process affects the quality characteristics produced by preceding process, this has to be 

taken into consideration.  
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In mould manufacturing, the common measurement devices are used to measure the 

quality characteristics of some mould parts. Coordinate measuring machines (CMMs) are 

more commonly used to measure the critical dimensions and positions. The working 

principle of CMM has been discussed in section 4.4.2. Nowadays, with the development 

of CMM software, it becomes more and more convenient to manage the measurement 

data and export it to database or statistical analysis software tools. Many CMM software 

packages are available to do statistical analysis and control charting (Robertson 1989, 

Wolf et al., 2000, Richey et al., 2001). The measurement data of the non-computerized 

measuring methods have to be recorded manually into database or statistical analysis 

software tools.  

For further statistical analysis and cause finding, the measurement data and relevant 

process information should be well organized and stored in database. The database 

should contain the following data: 

Process data: 

Machine data:  machine type, machine number, operation type 

Cutting tool data:  tool type, tool number, tool holder type 

Workpiece holding data:  workpiece holding method, fixture type, fixture number  

Cutting parameters data:  for example, for milling process, consist of depth of cut, 

cutting speed, feed rate  

Operator data (if needed); 

Product data:   Material, mould number, part number, feature number 

Quality data:  Quality characteristic type, measured value, nominal value, 

transformed value 
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Since these data are used for cause-finding, the corresponding relations among quality 

data, process data and product data have to be well managed in the database for further 

use (Vosniakos et al., 1997). Figure 5.1 shows the corresponding relationship among 

quality data, process data and product data in database. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Relationship among product data, process data and quality data in database 
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A wide variety of chart patterns can be observed in control charts, and the causes 

corresponding to one particular pattern have been generalized (shown in Appendix D), as 

discussed in section 2.3. Different industries have their own specific special causes, 

which occur in their production processes. Therefore, the cause-finding is a domain-

specific work even though some common rules can be summarized generally. In practice, 

some patterns are commonly seen in the control charts. The causes can be well 

generalized and if any pattern exists, the root cause can be quickly located and the 

correction actions can be taken in time.  
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CHAPTER 6 CASE STUDIES 

Four case studies have been conducted and these characterise in the following three 

aspects: 

Defining and identifying SPC process (case study 1) 

Forming and identifying part family (case study 2) 

Control charting and cause finding (case study 3 and 4) 

Statistical analysis methods, ANOVA and Test-for-equal-variances are used in this 

chapter to analyse the equality of means and variances. The detailed introduction and 

explanations of ANOVA and Test-for-equal-variances are shown in Appendix A. 

Individual-moving range charts and Cusum chart are used in this chapter. The equations 

of their centerline and control limits are shown in Appendix C. 

 

6.1 Case study 1 --- Defining and identifying SPC process  

6.1.1 Process selection 

In this case, the CNC milling process was selected as the process for consideration and 

end milling was taken as the operation type. 

Milling is the process of cutting away material by feeding a workpiece past a rotating 

multiple tooth cutter. The cutting action by the multiple teeth around the milling cutter 

provides a fast method of machining. The machined surface may be flat, angular or 

curved. The surface may also be milled to any combination of shapes.  

A MakinoV55 vertical machining center is the machine of analysis. Its specifications are 

as follows. 
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Table Size: 39.4" x 19.7"  

Product X: 35.4"  

Product Y: 19.7"  

Product Z: 17.7"  

Spindle RPM: 14,000 (20K, 30K)  

Rapid Traverse: 1,969 in/min  

Cutting feed rate: 1,968 in/min  

Maximum Workpiece: 39.3" x 24.8" x 17.7"  

Maximum Payload: 1,540 lbs 

The depth accuracy, which is represented by the Z coordinate value of the CMM 

measurement result of the workpieces, is taken as the concerned quality characteristics. In 

practice, the Z direction usually refers to the direction normal to the machine table, which 

is an important quality characteristic. For core and cavity inserts, the Z direction is 

usually normal to the parting surface, whose accuracy may significantly affect the 

dimensional accuracy of the plastic products.  

6.1.2 Preliminary analysis of process factors 

At the beginning of the study, the factors, which may affect the quality characteristics, 

have to be identified and analysed.  

UFactor of fixture:  

Only one fixture is used in this machine throughout the entire period of this study, thus 

fixture factor would not be discussed in this case study. 

UFactor of cutter: 
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Three types of cutter are selected for analysis: bull-nose cutter, end mill cutter and ball-

nose cutter. 

• For bull-nose cutter: Two commonly used cutter diameters are selected for 

analysis: One cutter with diameter of 12mm, with edge radius of 0.5mm and the 

other with diameter of 4 mm, with the edge radius of 0.5mm 

• For end mill cutter: the cutters are grouped into two groups: 

Group 1: the cutter with diameter from 1mm to 4 mm  

Group 2: the cutter with diameter from 6 mm to 10 mm 

• For ball nose cutter: only the cutter with radius of 3mm are taken for analysis 

Cutter size will also be analyzed as a factor. The bull-nose cutter with diameter of 12mm, 

with edge radius of 0.5mm and the end-mill cutter with diameter from 6 mm to 10 mm 

are classified as large-size type in this study. The bull-nose cutter with diameter of 4 mm, 

with the edge radius of 0.5mm and the end-mill cutter with diameter from 1mm to 4 mm 

are classified as small-size cutters. In practice, the classification of cutter size can be finer 

if given sufficient data in order to produce more statistically meaningful analysis. 

UFactor of cutting conditions U:  

In this study, the cutting conditions used were selected by the process planner based on 

the chosen cutter. A table giving the cutting conditions, corresponding to the workpiece 

material, cutter type and cutter diameter is referred to when choosing the cutting 

conditions. The cutting conditions are the dependent variables, while workpiece material, 

cutter type and cutter diameters are the independent variables. Therefore, in this study, 

the cutting conditions are not discussed separately as they are dependent on the 

workpiece material and the chosen cutter. 
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Note that this study illustrates only the procedures of the proposed approach. Due to 

some constraints, other factors, such as the cutter length-width ratio, cutter material, and 

radius of the bull-nose round corner, with or without insert and other factors are not 

discussed. In production practice, these factors can be similarly analysed but will require 

collection of more data. 

6.1.3 Steps of Analysis 

Step1: 

The factor of the cutter type is analyzed by taking a certain number of machining features 

from different mould parts of same material machined by same machine. They are 

machined by different types of cutters.  

The source data are shown in Appendix B-1. 

The ANOVA analysis data (output of Minitab): 

________________________________________________________________________ 

One-way ANOVA: transformed value versus cutter type 

Analysis of Variance for C2       
Source     DF        SS        MS        F        P 
C1          2 0.0000015 0.0000007     0.01    0.990 
Error      47 0.0035134 0.0000748 
Total      49 0.0035149 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev ------+---------+---------+---------+ 
ball-nos   14  0.000071  0.005413   (--------------*---------------)  
bull-nos   18  0.000500  0.009919      (-------------*------------)  
end-mill   18  0.000333  0.009267     (-------------*-------------)  
                                  ------+---------+---------+---------+ 
Pooled StDev = 0.008646           -0.0030    0.0000    0.0030    0.0060 
___________________________________________________________ 

The above output results show that: 
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From the ANOVA results, it was noted that no significant difference was found in the 

means among these three types of cutters, because the P-value of 0.990 shows strong 

evidence to accept HB0 B, which assumes that the means are equal. Test-of-equal-variance 

was done to test the equality of the variance among these cutter types. The output graphs 

from MiniTab are shown in Figures 6.1, 6.2, 6.3, and 6.4. 

 
Figure 6.1 Test for Equal Variances among ball-nose, bull-nose and end-mill cutter 

 
 

Figure 6.2 Test for Equal Variances between ball-nose and end-mill cutter 
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Figure 6.3 Test for Equal Variances between bull-nose and end-mill cutter 

 

Figure 6.4 Test for Equal Variances between ball-nose and bull-nose cutter 

In the Test-for-equal-variances of the three types of cutter, the P-value of 0.058 in 

Levene’s Test shows evidence to more likely reject HBoB (which assumes that all the 
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variances are equal) than accept it. Then the Test-for-equal-variance was done between 

the pairs of these three types of cutters. The results of the paired-tests show that:  

1. The P-value of 0.975 in the Levene’s Test (Figure 6.3) shows strong evidence to 

accept HBo B (which assumes the variances of bull-nose cutter and end mill cutter are 

equal).  

2. The P-value of 0.021 in the Levene’s Test (Figure 6.2) shows evidence to more 

likely reject HBo B (which assumes the variances of ball-nose cutter and end mill 

cutter are equal) than accept it. 

3. The P-value of 0.038 in the Levene’s Test (Figure 6.4) shows evidence to more 

likely to reject HBo B (which assumes the variances of ball-nose cutter and bull-nose 

cutter are equal) than accept it.  

Therefore, it is suggested that: 

1. The processes where ball-nose cutters are involved have to be treated as a 

separate SPC process. 

2. The processes where bull-nose cutters and end-mill cutters are involved can be 

taken as the same SPC processes. 

Step 2: 

The factor of cutter size is analyzed in this step.  

The bull-nose cutter with diameter of 12mm, with edge radius of 0.5mm and the end-mill 

cutter with diameter from 6 mm to 10 mm are classified as large-size type in this study.  

The bull-nose cutter with diameter of 4 mm, with the edge radius of 0.5mm and the end-

mill cutter with diameter from 1mm to 4 mm are classified as small-size. 
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Source data are shown in Appendix B-2. 

The ANOVA analysis result is as below (output of MiniTab):  

______________________________________________________________________________________ 

One-way ANOVA: transformed value versus Size type 

Analysis of Variance for C16      
Source     DF        SS        MS        F        P 
C13         1 0.0007694 0.0007694    11.07    0.002 
Error      34 0.0023634 0.0000695 
Total      35 0.0031328 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  -------+---------+---------+-------- 
large      17  -4.5E-03  0.008639   (-------*-------)  
small      19  0.004789  0.008059                      (-------*------)  
                                  --------+---------+---------+-------- 
Pooled StDev = 0.008337                 -0.0050    0.0000    0.0050 
________________________________________________________________________ 

The ANOVA output result shows that there is significant difference in the mean between 

the large-size type of cutter and small-size type of cutter, because the P-value of 0.002 

shows strong evidence to reject HBoB, which assumes that the means are equal. This result 

suggests that the cutter size type has to be taken as a factor, which has an effect on the 

concerned quality characteristic. Therefore, the processes where large-size cutters are 

involved should be treated as a separate SPC process from the processes where small-size 

cutters are involved.  

6.1.4 Conclusions 

Based on the above analyses, it can be suggested that the CNC milling processes 

performed on this Makino V55 vertical machining center can be identified as SPC 

processes with the following characteristics: 
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1. Processes where the bull-nose cutters and end-mill cutters are involved should be 

identified in different SPC process from the ones where ball-nose cutters are 

involved; 

2. Processes where the large diameter bull-nose cutters and end-mill cutters are 

involved should be identified in different SPC process from the ones where small 

diameter bull-nose cutters and end-mill cutters are involved. 

6.2 Case study 2 – Forming and identifying part family 

6.2.1 Process selection 

The process under consideration is selected from one of the SPC processes discussed in 

case study 1, which is the CNC milling process on a Makino V55 vertical machining 

center where large diameter bull-nose and end-mill cutters are involved.  The depth 

accuracy, which is represented by the Z coordinate value of the CMM measurement 

result of the workpieces, is still taken as the concerned quality characteristics. 

6.2.2 Preliminary analysis of the factors 

In this study, the characteristics of the part are discussed. As discussed in chapter 4, the 

machining feature is taken as the unit part of the concerned SPC process, so the 

characteristics of the machining features are regarded as the characteristics of the part. 

The factors which may affect the concerned quality characteristic are discussed in the 

following. 

UFactor due to part materialU: Four types of steel commonly used in injection mould are 

used in this study, which are 8407, 618hh, 718hh, and 2311. Their chemical composition, 

hardness and other characteristics are shown in Appendix B-3. 
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UFactor due to geometric characteristics of the feature: 

Usually the geometric characteristics of the CNC milling features are classified as: 

• Flat surface: large area or small area; 

• Free-form surface (three dimensional surface);  

• Step: with or without fillet; 

• Slot, with or without fillet; 

• Pocket, with or without fillet.  

For the mould parts and features used in this study, the geometric characteristics of the 

feature are found to be correlated with the cutter used. For example, large area of flat 

surface is usually machined by face milling. If the area is not large enough, it is usually 

machined by end milling using bull-nose cutter of large diameter and free-form surface is 

always machined by using the ball-nose cutter. Step, slot and pocket with fillet are 

usually machined using bull-nose cutter and those without fillet are usually machined 

using end-mill cutter.  

As the SPC process is selected for analysis, the features used in this study are all medium 

area flat surface feature, which are machined by using bull-nose or end-mill cutter with 

large diameter (φ10R0.5-φ12R0.5). Therefore, in this study, only part material is 

analyzed as the factor of the part characteristics. The source data are shown in Appendix 

B-4. 

6.2.3 Analysis and Conclusions 

The ANOVA analysis results based on the above data are as below: 
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______________________________________________________________________________________ 
 
One-way ANOVA: Transformed versus Material 
 
Analysis of Variance for C5       
Source     DF        SS        MS        F        P 
C1          3  0.000028  0.000009     0.07    0.974 
Error      64  0.008013  0.000125 
Total      67  0.008041 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev --------+---------+---------+-------- 
2311       17  -0.00006   0.00917    (---------------*--------------)  
618hh      18  -0.00056   0.01199   (--------------*--------------)  
718hh      16  -0.00056   0.01093  (---------------*---------------)  
8407       17   0.00100   0.01233      (---------------*--------------)  
                                  --------+---------+---------+-------- 
Pooled StDev =  0.01119                 -0.0035    0.0000    0.0035 
_____________________________________________________________________________________ 
 

From the ANOVA results, it was noted that no significant difference was found in the 

means among the four types of part materials - 8407, 618hh, 718hh and 2311, because the 

P-value of 0.974 shows the strong evidence to accept the HB0 B, which assumes the means 

are equal. Test-of-equal-variance was done to test the equality of the variance among 

these cutter types. The output graphs from MiniTab are shown in Figures 6.5 to 6.11. 

.  

Figure. 6.5 Test for Equal Variances among 8407, 718hh, 618hh, and 2311 
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Figure 6.6 Test-for-equal-variances between 8407 and 718hh 

 

Figure 6.7 Test-for-equal-variances between 8407 and 618hh 
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Figure 6.8 Test-for-equal-variances between 618hh and 718hh 

 

 

Figure 6.9 Test-for-equal-variances between 8407 and 2311 
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Figure 6.10 Test-for-equal-variances between 2311 and 618hh 

 

Figure 6.11 Test-for-equal-variances between 2311 and 718hh 

The above Test-for-equal-variance results show a significant difference in the variances 

among the four materials - 8407, 618hh, 718hh and 2311, as shown in Figure 6.5. The P-
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value of 0.488 in Levene’s Test does not show strong evidence to reject or accept HBo B, 

which assumes the variances are equal. Then the Test-for-equal-variance was done 

between the pairs of the four materials - 8407, 618hh, 718hh and 2311. The results of the 

paired-tests show that  

1. The P-value of 0.906 in the Levene’s Test (Figure 6.8) shows evidence more 

likely to accept HBo B (which assumes the variances are equal) than reject it.  

2. The P-value of 0.009 in the Levene’s Test (Figure 6.11) shows strong evidence to 

reject HBoB (which assumes the variances are equal). Significant differences 

between the variances of 2311 and 718hh was found.  

3. For other pairs, no significant evidence was shown to either accept or reject HB0 B, 

(which assumes the variances are equal). 

Therefore, it is suggested that in one SPC process: 

1. the parts made of 618hh and 718hh can be formed into same part family. 

2. the parts made of 8407 and 2311 should be formed into two other separate part 

families.  

6.3 Case study 3- A family of six-cavity mould core inserts 

Six identical core inserts of a multi-cavity mould are used in this case study.  As they are 

the same in material and geometry, they were machined in the same machine with the 

same settings. Thus, they belong to the same product family in the same SPC process. 

The complex-shaped pocket (Figure 6.12) can be machined in one CNC milling 

operation. The concerned quality characteristic is still taken as the depth accuracy, which 

is the same as the previous two case studies. They can be obtained by measuring the Z 
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coordinate value in a given position (X, Y) using a coordinate measuring machine. The 

measurements were taken in 8 different points, as shown in Figure 6.12.  The data of 

target value, measured value and coded data are shown in Appendix B-5. Figure 6.13 

shows the result of plotting these data into individual and moving range charts, whose 

control limits are calculated based on historical data.  
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Figure 6.12 Part used for case study 3 and the measuring points on it 
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Figure 6.13 Individual and moving range chart for case study 3 
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From this chart, it can be obviously observed that the data is not randomly distributed 

around the centerline. According to the typical chart patterns and corresponding causes, 

which are summarized in the manufacturing practice (Appendix D), some possible causes 

are proposed. This chart presents a “sudden shift in level” pattern.  The typical causes of 

this pattern are: New operator, new inspector, new test set, new machine, new machine 

setting, or change in set-up or method.  

After investigation, it is found that no new operator, new inspector, new test set, new 

machine or new machine setting is involved. Checking up with the data from the process 

database, it is found that the inserts A, B, C are machined in a group in one set-up, and 

inserts D, E, F are machined together in another set-up immediately after A, B and C. 

Therefore, “change in set-up” is suggested as the cause. Correlating the chart point with 

the part number and feature number, it is found that the data points of insert C are all 

above the centerline and all the data points of inserts D, E, and F are below the centerline. 

The data points of insert B have large variation, with one point falling outside the control 

limits. Based on the industry and company experiences, some detailed causes can be 

further suggested: 

1. Workpiece holding problem for the second operation; 

2. Cutting tool coordinate positioning problem for the second operation. 

6.4 Case study 4 -A family with mixed mould parts 

29 features from 9 mould parts are taken in this case study from one SPC process with a 

large diameter bull-nose mill cutter. They are made of material 618hh and 718hh, and 

therefore, they belong to the same part family. The source data of nominal value, 
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measured value, transformed value data point number in the control chart and its relevant 

process information are shown in Appendix B-6. 

The Individual and Moving Range Charts from MiniTab are shown in Figure 6.14. 
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Figure 6.14 Individual and Moving Range Charts for case study 4 
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shown in Figure 6.15. 

e Cusum Chart also indicates an out-of-control signal. Especially in the Cusum chart, 

igure 6.15) it is clearly observed that the process presents out-of-control from the 16th 

ints to the 21st point. According to the characteristics of the Cusum chart, the cause-

ding should start from the data point which is lifted above the centerline of Cusum 

art, to find out where the process initially start to shift. It can be observed that from 

estigating the data source, the data points start to be lifted above the centerline from 

302010Subgroup 0

0.04
0.03
0.02
0.01
0.00

-0.01
-0.02
-0.03

In
di

vi
du

al
 V

al
ue

1

Mean=0

UCL=0.02280

LCL=-0.02280

0.04

0.03

0.02

0.01

0.00

M
ov

in
g 

R
an

ge

1

1

R=0.008571

UCL=0.02801

LCL=0



                                                                                                          Chapter 6 Case Studies 

 74

the 11th point in Cusum chart, so it can suggested the process shift occurs from there. 

Investigating the source data and relevant parameters, it is found that none of the data 

point from the set-up 3, 4, 5 and 6 is below zero. Therefore, it can be suggested that there 

might be some workpiece holding problem for these set-ups. 

 

Figure 6.15 Cusum chart for case study 4 

6.5 Conclusions 

In these four case studies, the methods and procedures proposed in this study on how to 

define SPC process, how to form part family and how to use control charts to identify the 

possible causes for out-of-control situations are illustrated respectively using the real data 

collected from a mould manufacturing company. The feasibility and importance of 

application of Statistical Process Control in injection mould manufacturing are 

demonstrated. 
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CHAPTER 7 CONCLUSIONS AND  

RECOMMENDATIONS FOR FUTURE WORK 

7.1 Conclusions 

The traditional SPC theory demands huge amount of data from the identical products 

produced by a particular process for meaningful statistical analysis. However, the 

injection mould production is characterized as one-off or low volume, which cannot 

provide sufficient data needed in traditional SPC. Several short-run SPC approaches were 

adopted to generate sufficient data from short-run or small-volume situations for 

meaningful statistical analysis and control charting by means of data transformation and 

part family formation. However, there are still some problems when directly applying 

these approaches to the manufacture of injection mould. 

1. Unlike other short-run productions, in which a certain number of part types are 

produced alternately, in the manufacture of injection mould, one mould can be very 

different from another in terms of dimension, shape, features, and material. The high 

variations in parts makes the part family formation very complex for the injection mould 

parts. 

2. The fabrication of injection mould parts involves many different machining processes. 

Each process may have different settings of the process parameters for the different part. 

The high variation in process makes the situation more complex and thus more difficulty 

for the part family formation. 

This research proposed to solve the above problems and the issues in implementing the 

approach in mould production are discussed. 
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7.1.1 SPC planning for the manufacture of injection mould 

In the proposed approach, the problem of high variation in process can be solved by 

defining SPC process. The clearly defined SPC process can help simplify the problem on 

the complexity of different process parameter settings’ effect on the process output. After 

the SPC processes are clearly defined, the definitions of the SPC process can be used to 

identify the identity of each single new machining process for the incoming new mould 

part.  

In order to deal with the problem of high variations in mould parts, mould parts are 

proposed to be classified as standardized part and non-standardized part. For standardized 

parts, the process plan for them can be standardized to some extent by means of process 

plan template. With the process plan template for these parts, the SPC plan template can 

be proposed, based on which it could be much easier to work out the SPC plan once 

given the detailed process plan and production schedule. Time spent on SPC planning can 

be saved in this way. For non-standardized parts, the features on them are proposed to be 

classified into standardized features and non-standardized features. The standardized 

features can be treated in a similar way as the standardized parts. The non-standardized 

features have to be treated separately. The SPC planning for these features has to be done 

each time for each new incoming mould according to the rules of part family formation 

and identification.  

7.1.2 SPC implementation for the manufacture of injection mould 

After the SPC plan has been worked out, the SPC implementation in the manufacture of 

the injection mould can be done with reference to the experience of SPC implementation 

in other industries.  
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The concerned quality characteristics of the mould parts are measured, and the measured 

data and transformed data should be carefully recorded and stored in the database. At 

same time, the information on the process, which produces this measured data, also has to 

be well recorded and stored in the database corresponding to the measured data for future 

cause finding. 

The transformed data can then be easily exported and the control charts can be generated 

with the help of the available statistical analysis software, such as MiniTab. These data 

management work and statistical analysis work can be done efficiently nowadays with 

the help of computer. 

Control chart interpretation is the most crucial and challenging work in SPC 

implementation stage. Both engineering knowledge in mould making industry and 

statistical knowledge in general applications are used here. Once the non-random pattern 

presents, the possible causes corresponding to these patterns generalized from other 

manufacturing industries are referred to in order to find out the real cause. The often-

occurred chart patterns should be summarized. With the accumulation of time and 

experience from the practice of SPC implementation in mould making industry, the 

control chart interpretation will become much easier. 

7.2 Recommendations for future work 

The directions in which this work could be further explored and enhanced are as follows: 

1. The proposed approach in this research does not discuss in details all the common 

machining processes in mould part fabrication. Some processes, such as grinding, 

EDM die-sinking and EDM wire-cut which are also commonly used in mould part 
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making should be carefully studied as their process characteristics may be quite 

different from those of the CNC milling and drilling processes. This proposed 

approach could be improved to achieve a more general and comprehensive level 

while having a wider study on all the machining processes in the mould shop. 

2.  A more comprehensive study on the mould parts, especially on the non-standardized 

mould part, can be done to explore whether there are any more aspects of the mould 

part and the production processes that can be standardized.  Since in SPC, the 

information on the process performance is supposed to be fed back as timely as 

possible, a more standardized framework can save the time to a large extent. 

3. Gage Repeatability and Reproducibility Study are not covered in this research. This 

part of work should be included to make the measurement results convey a more 

accurate and more precise information of the process. 

4. Sampling plan is not discussed in this research. This research is based on the current 

existing sampling plan in the mould shop. A well designed sampling plan will make 

the control chart more meaningful and more sensitive to the process shift 

5. Performance of control chart is not discussed in this research. Studies on Operating 

Characteristics and Average Run Length of control charts can be done to better 

design the control charts and to obtain more accurate information on the processes. 

6. Nowadays, with the demand of manufacturing automation, the computer-aided 

production scheduling and computer-aided process planning, together with computer-

aided design and computer-aided manufacturing call for computerization and 

automation of SPC to automate the whole production. The work on computerization 
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and automation in SPC implementation has been explored. Many advanced automatic 

measuring devices and software packages have been developed. Statistical analysis 

software have been widely available in the market and are becoming more mature and 

more convenient for users to use and manipulate. The work on computerized control 

chart interpretation and cause finding has also been explored with the development of 

an intelligent system and neural network technology. However, the work on 

computerization of SPC planning is still very challenging. Many difficulties may be 

faced in feature recognition, feature classification, and quality characteristics 

identification when automating part family identification. The improved solutions to 

these problems will help the whole automation process of SPC application in the 

manufacture of injection mould.  

7. In an integrated manufacturing system, SPC can be integrated with computer-aided 

process planning and computer-aided production scheduling, as SPC planning needs 

the information on process plan and production schedule. The SPC analysis result on 

the performance of process and machines can be fed back to the process planner and 

production schedule planner for a more optimized selection of machine and process 

parameters. 
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Appendix A 

Appendix A-1 Introduction to ANOVA 

(Engineering Statistics Handbook, http://www.itl.nist.gov/div898/handbook) 

ANOVA is a general technique that can be used to test the hypothesis that the means 

among two or more groups are equal, under the assumption that the sampled populations 

are normally distributed. 

In one-way ANOVA, the null hypothesis is: there is no difference in the population 

means of the different levels of factor A (the only factor). The alternative hypothesis is: 

the means are not the same. 

In an analysis of variance the variation of the response measurements partitioned into 

components that correspond to different sources of variation. The total variation in the 

data is split into a portion due to random error and portions due to changes in the values 

of the independent variable(s). 

The variance of n measurements is given by   

1n
)yy(

s
a

1i
2

i2

−

−
= ∑ =  

where y  is the mean of the n measurements. 

The first term in the numerator is called the "raw sum of squares" and the second term is 

called the "correction term for the mean". Another name for the numerator is the 

"corrected sum of squares", and this is usually abbreviated by Total SS or SS(Total).  
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The SS in a 1-way ANOVA can be split into two components, called the "sum of squares 

of treatments" and "sum of squares of error", abbreviated as SST and SSE, respectively 

Algebraically, this is expressed by: 

Total SS = SST + SSE 
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where k is the number of treatments and the bar over the y.. denotes the "grand" or 

"overall" mean. Each nBi B is the number of observations for treatment i. The total number of 

observations is N (the sum of the n Bi B).  

The mathematical model that describes the relationship between the response and 

treatment for the one-way ANOVA is given by  

ijiijy ε+τ+µ=  

where YBijB represents the j BthB observation (j = 1, 2, ...nBi B) on the i BthB treatment (i = 1, 2, ..., k 

levels). So, YB23 B represents the third observation using level 2 of the factor. µ is the 

common effect for the whole experiment, τ Bi B represents the iBth B treatment effect and ε BijB 

represents the random error present in the j Bth B observation on the i Bth B treatment.  

The errors εBijB are assumed to be normally and independently (NID) distributed, with mean 

zero and variance σP

2
P. µ is always a fixed parameter and τ B1 B, τ B2B…τ Bk B are considered to be 

fixed parameters if the levels of the treatment are fixed, and not a random sample from a 

population of possible levels. It is also assumed that µ is chosen so that ∑
=

=τ
a

1i
i 0      

holds. This is the fixed effects model.  
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HTThe sums of squares SST and SSE THpreviously computed for the one-way ANOVA are 

used to form two mean squares, one for treatments and the second for error. These mean 

squares are denoted by MST and MSE, respectively. These are typically displayed in a 

tabular form, known as an ANOVA Table. The ANOVA table also shows the statistics 

used to test hypotheses about the population means. 

When the null hypothesis of equal means is true, the two mean squares estimate the same 

quantity (error variance), and should be of approximately equal magnitude. In other 

words, their ratio should be close to 1. If the null hypothesis is false, MST should be 

larger than MSE. 

The mean squares are formed by dividing the sum of squares by the associated degrees of 

freedom.  

Let N = ΣnBi B. Then, the degrees of freedom for treatment, DFT = k - 1, and the degrees of 

freedom for error, DFE = NB B- k.  

The corresponding mean squares are:  

MST=SST / DFT  

MSE = SSE / DFE  

The test statistic, used in testing the equality of treatment means is: F = MST / MSE.  

The critical value is the tabular value of the F distribution, based on the chosen level and 

the degrees of freedom DFT and DFE.  
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The calculations are displayed in an ANOVA table, as follows:  

  
ANOVA table 

Source SS DF MS F 

Treatments SST k-1 SST / (k-1) MST/ MSE 

Error SSE N-k SSE / (N-k)  

Total (corrected) SS N-1   
 

 

Appendix A-2 Introduction to Test-for-equal-variance (Levene's test) 

(Engineering Statistics Handbook, http://www.itl.nist.gov/div898/handbook) 

Levene's test ( HTLevene 1960TH) is used to test if k samples have equal variances. Equal 

variances across samples is called homogeneity of variance. Some statistical tests, for 

example the analysis of variance, assume that variances are equal across groups or 

samples. The Levene test can be used to verify that assumption.  

Levene's test is an alternative to the HTBartlett testTH. The Levene test is less sensitive than the 

Bartlett test to departures from normality. If you have strong evidence that your data do 

in fact come from a normal, or nearly normal, distribution, then Bartlett's test has better 

performance.  

The Levene test is defined as:  

HBo B: σ B1 B=σ B2 B=…=σ Bk 

HB1 B: σ Bi B=σ Bj Bfor at least one pair (i, j) 

Test Statistic: 
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Given a variable Y with sample of size N divided into k subgroups, where NBi B is the 

sample size of the ith subgroup, the Levene test statistic is defined as: 

∑ ∑
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where ZBijB can have one of the following three definitions: 

1. .YYZij iij −=  

where .Yi is the HTmeanTH of the i Bth B subgroup. 

2. .Y~YZij iij −=  

where .Y~i is the HTmeanTH of the i Bth B subgroup. 

3. .'YYZij iij −=  

where .'Yi is the trimmed HTmeanTH of the i Bth B subgroup. 

.Zi are the group means of the ZBijB and ..Z is the overall mean of the ZBijB. 

The Levene test rejects the hypothesis that the variances are equal if  
 

)kN,1k,(FW −−α>  
 

where )kN,1k,(F −−α is the HTupper critical valueTH of the HTF distributionTH with k-1 and N-k degrees 

of freedom at a significance level of α.  

In the above formulas for the critical regions, the Handbook follows the convention that 

FBα Bis the upper critical value from the F distribution and FB1-α B is the lower critical value.
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Appendix B 

Appendix B-1 Source data for case study 1- step 1 

Cutter 
type 

Sample 
No. Cutter Size type Nominal 

value 
Measured 

value 
Transformed 

value 
bull-nose bu-1 φ 4R0.5 small -16.142 -16.13 0.012 
bull-nose bu-2 φ 4R0.5 small -14.422 -14.42 0.002 
bull-nose bu-3 φ 4R0.5 small -10.392 -10.40 -0.008 
bull-nose bu-4 φ 4R0.5 small -15.248 -15.25 -0.002 
bull-nose bu-5 φ 4R0.5 small -13.085 -13.07 0.015 
bull-nose bu-6 φ 4R0.5 small -21.759 -21.76 -0.001 
bull-nose bu-7 φ 12R0.5 large -26.550 -26.56 -0.010 
bull-nose bu-8 φ 12R0.5 large -26.679 -26.67 0.009 
bull-nose bu-9 φ 12R0.5 large -32.066 -32.07 -0.004 
bull-nose bu-10 φ 12R0.5 large -15.517 -15.51 0.007 
bull-nose bu-11 φ 12R0.5 large -6.991 -7.01 -0.019 
bull-nose bu-12 φ 4R0.5 small -16.142 -16.14 0.002 
bull-nose bu-13 φ 4R0.5 small -14.422 -14.41 0.012 
bull-nose bu-14 φ 4R0.5 small -10.392 -10.39 0.002 
bull-nose bu-15 φ 4R0.5 small -13.085 -13.07 0.015 
bull-nose bu-16 φ 4R0.5 small -21.759 -21.76 -0.001 
bull-nose bu-17 φ 12R0.5 Large -28.591 -28.60 -0.009 
bull-nose bu-18 φ 12R0.5 large -15.517 -15.53 -0.013 
end-mill em-1 φ 1-φ 4 small -18.500 -18.51 -0.010 
end-mill em-2 φ 1-φ 4 small -16.836 -16.83 0.006 
end-mill em-3 φ 1-φ 4 small -16.937 -16.93 0.007 
end-mill em-4 φ 1-φ 4 small -15.993 -15.99 0.003 
end-mill em-5 φ 6-φ10 large -15.012 -15.02 -0.008 
end-mill em-6 φ 6-φ10 large -21.010 -21.02 -0.010 
end-mill em-7 φ 6-φ10 large -17.440 -17.43 0.010 
end-mill em-8 φ 6-φ10 large -30.351 -30.36 -0.009 
end-mill em-9 φ 6-φ10 large -10.720 -10.71 0.010 
end-mill em-10 φ 1-φ 4 small -18.500 -18.49 0.010 
end-mill em-11 φ 1-φ 4 small -17.591 -17.58 0.011 
end-mill em-12 φ 1-φ 4 small -16.937 -16.94 -0.003 
end-mill em-13 φ 1-φ 4 small -16.009 -15.99 0.019 
end-mill em-14 φ 6-φ10 large -15.015 -15.02 -0.005 
end-mill em-15 φ 6-φ10 large -21.009 -21.01 -0.001 
end-mill em-16 φ 6-φ10 large -17.445 -17.45 -0.005 
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end-mill em-17 φ 6-φ10 large -30.341 -30.35 -0.009 
end-mill em-18 φ 6-φ10 large -10.720 -10.73 -0.010 
ball-nose ba-1 R3 ------- -6.025 -6.02 0.005 
ball-nose ba-2 R3 ------- -4.273 -4.27 0.003 
ball-nose ba-3 R3 ------- -5.983 -5.98 0.003 
ball-nose ba-4 R3 ------- -32.568 -32.57 -0.002 
ball-nose ba-5 R3 ------- -13.009 -13.01 -0.001 
ball-nose ba-6 R3 ------- -10.003 -10.00 0.003 
ball-nose ba-7 R3 ------- -15.995 -16.00 -0.005 
ball-nose ba-8 R3 ------- -6.020 -6.03 -0.010 
ball-nose ba-9 R3 ------- -4.270 -4.28 -0.010 
ball-nose ba-10 R3 ------- -5.983 -5.98 0.003 
ball-nose ba-11 R3 ------- -32.568 -32.56 0.008 
ball-nose ba-12 R3 ------- -13.009 -13.01 -0.001 
ball-nose ba-13 R3 ------- -10.000 -10.00 0.000 
ball-nose ba-14 R3 ------- -15.995 -15.99 0.005 
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Appendix B-2 Source data for case study 1- step 2 

Cutter 
type Size type Nominal

value 
Measured 

value 
Transf. 
value 

bull-nose small -16.142 -16.13 0.012
bull-nose small -14.422 -14.42 0.002
bull-nose small -10.392 -10.4 -0.008
bull-nose small -15.248 -15.25 -0.002
bull-nose small -13.085 -13.07 0.015
bull-nose small -21.759 -21.76 -0.001
bull-nose large -26.55 -26.56 -0.01
bull-nose large -26.679 -26.67 0.009
bull-nose large -32.066 -32.07 -0.004
bull-nose large -15.517 -15.51 0.007
bull-nose large -6.991 -7.01 -0.019
bull-nose small -16.142 -16.14 0.002
bull-nose small -14.422 -14.41 0.012
bull-nose small -10.392 -10.39 0.002
bull-nose small -13.085 -13.07 0.015
bull-nose small -21.759 -21.76 -0.001
bull-nose large -28.591 -28.6 -0.009
bull-nose large -15.517 -15.53 -0.013
bull-nose small -18.5 -18.51 -0.01
bull-nose small -16.836 -16.83 0.006
bull-nose small -16.937 -16.93 0.007
bull-nose small -15.993 -15.99 0.003
bull-nose large -15.012 -15.02 -0.008
bull-nose large -21.01 -21.02 -0.01
bull-nose large -17.44 -17.43 0.01
bull-nose large -30.351 -30.36 -0.009
bull-nose large -10.72 -10.71 0.01
bull-nose small -18.5 -18.49 0.01
bull-nose small -17.591 -17.58 0.011
bull-nose small -16.937 -16.94 -0.003
bull-nose small -16.009 -15.99 0.019
bull-nose large -15.015 -15.02 -0.005
bull-nose large -21.009 -21.01 -0.001
bull-nose large -17.445 -17.45 -0.005
bull-nose large -30.341 -30.35 -0.009
bull-nose large -10.72 -10.73 -0.01
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Appendix B-3 Properties of the material discussed in case study 2 

( HThttp://www.assab.se/prod_toolsteel_pms.aspTH ) 

( HThttp://www.ghcook.com/20plusnew.htmTH ) 

Typical chemical composition
Material 

C MBnB CBr B MBo B 

HB 

(Brinell)

HRC 

(Rockwell) 
Characteristics 

8407 0.37 0.40 5.30 1.40 185 13.2 

Good high temperature strength and 

extreme thermal fatigue resistance 

steel for die casting Tools for 

extrusion, hot pressing, moulds for 

plastics. 

718hh 0.37 1.40 2.00 2.00 340-380 35-40 

Modified pre-hardened plastic 

mould steel. Very good 

polishability. Injection moulds for 

thermo-plastics, extrusion dies for 

thermo-plastics, blow moulds, 

forming tools, press- brake dies, 

structural components, shafts.   

618hh Similar as 718hh 

2311 0.37 1.40 1.90 0.2 280-325 29-35 

Hardened and tempered mould steel. 

Suitable for plastic mould tools 

where further heat treatment and 

consequent risk of distortion is to be 

avoided.  It is also suitable for 

pressure die casting tools.  If a 

higher hardness is required the tools 

should first be annealed and then the 

following details observed. 
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Appendix B-4 Source data for case study 2 

 

Material Sample 
No. 

Nominal 
value 

Measured 
value 

Transformed 
value Material Sample 

No. 
Nominal 

value 
Measured 

value 
Transformed 

value 
8407 1 -2.870 -2.88 -0.010 618hh 1 -49.514 -49.51 0.004 
8407 2 -20.268 -20.27 -0.002 618hh 2 -47.491 -47.48 0.011 
8407 3 -24.227 -24.21 0.017 618hh 3 -4.509 -4.52 -0.011 
8407 4 -3.939 -3.92 0.019 618hh 4 -2.488 -2.50 -0.012 
8407 5 -10.000 -9.99 0.010 618hh 5 -9.860 -9.86 0.000 
8407 6 -10.720 -10.71 0.010 618hh 6 -45.110 -45.11 0.000 
8407 7 -20.000 -20.02 -0.020 618hh 7 -35.841 -35.86 -0.019 
8407 8 -21.516 -21.50 0.016 618hh 8 -30.000 -30.00 0.000 
8407 9 -15.000 -14.99 0.010 618hh 9 -36.040 -36.06 -0.020 
8407 10 -3.480 -3.47 0.010 618hh 10 -62.220 -62.23 -0.010 
8407 11 -26.550 -26.56 -0.010 618hh 11 -21.239 -21.25 -0.011 
8407 12 -32.066 -32.07 -0.004 618hh 12 -64.159 -64.16 -0.001 
8407 13 -22.934 -22.94 -0.006 618hh 13 -54.895 -54.88 0.015 
8407 14 -10.519 -10.54 -0.021 618hh 14 -90.140 -90.14 0.000 
8407 15 -9.223 -9.22 0.003 618hh 15 -37.776 -37.75 0.026 
8407 16 -10.651 -10.65 0.001 618hh 16 -39.790 -39.78 0.010 
8407 17 -7.924 -7.93 -0.006 618hh 17 -63.958 -63.95 0.008 

     618hh 18 -70.000 -70.00 0.000 

Material Sample 
No. 

Nominal 
value 

Measured 
value 

Transformed 
value Material Sample 

No. 
Nominal 

value 
Measured 

value 
Transformed 

value 
718hh 1 -11.313 -11.30 0.013 2311 1 -18.000 -17.99 0.010 
718hh 2 -6.243 -6.23 0.013 2311 2 -17.500 -17.49 0.010 
718hh 3 -6.203 -6.22 -0.017 2311 3 -17.500 -17.50 0.000 
718hh 4 -69.802 -69.81 -0.008 2311 4 -18.000 -18.02 -0.020 
718hh 5 -12.000 -11.99 0.010 2311 5 -7.000 -7.00 0.000 
718hh 6 -12.000 -11.99 0.010 2311 6 -7.500 -7.50 0.000 
718hh 7 -67.330 -67.35 -0.020 2311 7 -7.000 -7.01 -0.010 
718hh 8 -12.000 -11.99 0.010 2311 8 -7.500 -7.49 0.010 
718hh 9 -53.000 -53.01 -0.010 2311 9 -1.659 -1.66 -0.001 
718hh 10 -53.000 -53.00 0.000 2311 10 -4.759 -4.76 -0.001 
718hh 11 -12.000 -11.99 0.010 2311 11 -11.105 -11.12 -0.015 
718hh 12 -11.979 -11.98 -0.001 2311 12 -18.341 -18.33 0.011 
718hh 13 -67.322 -67.32 0.002 2311 13 -7.085 -7.08 0.005 
718hh 14 -11.979 -11.98 -0.001 2311 14 -1.659 -1.66 -0.001 
718hh 15 -53.000 -53.01 -0.010 2311 15 -12.915 -12.92 -0.005 
718hh 16 -53.000 -53.01 -0.010 2311 16 -8.895 -8.90 -0.005 

     2311 17 -15.241 -15.23 0.011 
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Appendix B-5 Source data for case study 3 

Measurement 
point # Nominal Measured. 

-A 
Transf. 

-A 
Data # 

in Chart 
Set-up 

No. 
Measured 

-B 
Transf. 

-B 
Data # 

in Chart
Set-up 

No. 
1 -9.61 -9.6 0.01 1 1 -9.6 0.01 9 2 
2 -1.01 -1.01 0 2 1 -1 0.01 10 2 
3 -8.6 -8.6 0 3 1 -8.6 0 11 2 
4 -8.6 -8.6 0 4 1 -8.63 -0.03 12 2 
5 -8.6 -8.6 0 5 1 -8.61 -0.01 13 2 
6 -8.6 -8.6 0 6 1 -8.62 -0.02 14 2 
7 -1.01 -1.01 0 7 1 -1 0.01 15 2 
8 -0.8 -0.8 0 8 1 -0.8 0 16 2 

Measurement 
point # Nominal Measured.

-C 
Transf. 

-C 
Data # 
in Chart 

Set-up 
No. 

Measured 
-D 

Transf. 
-D 

Data # 
in Chart

Set-up 
No. 

1 -9.61 -9.6 0.01 17 1 -9.63 -0.02 25 2 
2 -1.01 -1 0.01 18 1 -1.03 -0.02 26 2 
3 -8.6 -8.59 0.01 19 1 -8.62 -0.02 27 2 
4 -8.6 -8.59 0.01 20 1 -8.62 -0.02 28 2 
5 -8.6 -8.59 0.01 21 1 -8.61 -0.01 29 2 
6 -8.6 -8.59 0.01 22 1 -8.62 -0.02 30 2 
7 -1.01 -1 0.01 23 1 -1.02 -0.01 31 2 
8 -0.8 -0.79 0.01 24 1 -0.82 -0.02 32 2 

Measurement 
point # Nominal Measured. 

-E 
Transf. 

-E 
Data # 

in Chart 
Set-up 

No. 
Measured 

-F 
Transf. 

-F 
Data # 

in Chart
Set-up 

No. 
1 -9.61 -9.62 -0.01 33 2 -9.63 -0.02 41 2 
2 -1.01 -1.03 -0.02 34 2 -1.03 -0.02 42 2 
3 -8.6 -8.62 -0.02 35 2 -8.63 -0.03 43 2 
4 -8.6 -8.62 -0.02 36 2 -8.63 -0.03 44 2 
5 -8.6 -8.62 -0.02 37 2 -8.63 -0.03 45 2 
6 -8.6 -8.62 -0.02 38 2 -8.63 -0.03 46 2 
7 -1.01 -1.02 -0.01 39 2 -1.03 -0.02 47 2 
8 -0.8 -0.82 -0.02 40 2 -0.82 -0.02 48 2 
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Appendix B-6 Source data for case study 4 

Nominal 
value 

Measured 
value 

Transf. 
value Cutter Mould no. Material Set-up 

No. 
Data No. 
in chart 

-2.870 -2.88 -0.010 Φ12R0.5 0013-ca-1 618hh 1 1 
-3.939 -3.92 0.019 Φ12R0.5 0013-ca-1 618hh 1 2 

-20.268 -20.27 -0.002 Φ12R0.5 0013-ca-1 618hh 1 3 
-2.870 -2.87 0.000 Φ12R0.5 0013-ca-2 618hh 2 4 
-3.939 -3.94 -0.001 Φ12R0.5 0013-ca-2 618hh 2 5 

-20.268 -20.27 0.001 Φ12R0.5 0013-ca-2 618hh 2 6 
-9.732 -9.73 0.002 Φ12R0.5 0013-co-1 618hh 3 7 

-26.061 -26.06 0.001 Φ12R0.5 0013-co-1 618hh 3 8 
-27.130 -27.13 0.000 Φ12R0.5 0013-co-1 618hh 3 9 

-9.732 -9.73 0.002 Φ12R0.5 0013-co-2 618hh 4 10 
-26.061 -26.05 0.011 Φ12R0.5 0013-co-2 618hh 4 11 
-27.130 -27.13 0.000 Φ12R0.5 0013-co-2 618hh 4 12 

-6.203 -6.19 0.013 Φ10R0.5 0016-co 718hh 5 13 
-6.243 -6.23 0.013 Φ10R0.5 0016-co 718hh 5 14 

-11.321 -11.30 0.021 Φ10R0.5 0016-co 718hh 5 15 
-12.000 -11.98 0.020 Φ12R0.5 0030-ca-1 718hh 6 16 
-12.000 -11.99 0.010 Φ12R0.5 0030-ca-1 718hh 6 17 
-67.332 -67.32 0.012 Φ12R0.5 0030-ca-1 718hh 6 18 
-12.000 -11.99 0.010 Φ12R0.5 0030-ca-2 718hh 6 19 
-12.000 -11.99 0.010 Φ12R0.5 0030-ca-2 718hh 6 20 
-67.332 -67.30 0.032 Φ12R0.5 0030-ca-2 718hh 6 21 
-53.000 -53.01 -0.010 Φ12R0.5 0030-co-1 718hh 7 22 
-53.000 -53.00 0.000 Φ12R0.5 0030-co-1 718hh 7 23 
-53.000 -53.01 -0.010 Φ12R0.5 0030-co-1 718hh 7 24 
-53.000 -53.00 0.000 Φ12R0.5 0030-co-1 718hh 7 25 
-53.000 -53.01 -0.010 Φ12R0.5 0030-co-2 718hh 7 26 
-53.000 -53.01 -0.010 Φ12R0.5 0030-co-2 718hh 7 27 
-53.000 -53.00 0.000 Φ12R0.5 0030-co-2 718hh 7 28 
-53.000 -53.01 -0.010 Φ12R0.5 0030-co-2 718hh 7 29 
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Appendix C 

Appendix C-1 

The Individual and Moving Range Charts (X and MR charts) 

The X and MR chart is a refinement of run chart. Individual measurements are plotted 

instead of average of sample, and at the same time, the moving range between 

measurements are also recorded and charted. Control limits are used to monitor the 

process. MR value is the positive difference between two consecutive measurements, 

12 xxMR −= .  

The control limits can be calculated using the following formulas: 

Upper control limit for the Individual chart:  

MREXUCL 2X +=  

Lower control limit for the Individual chart: 

MREXLCL 2X −=  

Upper control limit for the Moving Range chart:  

MRDUCL 4MR =  

Lower control limit for the Moving Range chart: 

MRDLCL 3MR =  

Where DB3 B, DB4 B and EB2 B are constants. 
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Appendix C-2 

The Cumulative Sum Control Chart (Cusum Chart) 

The Cusum chart incorporates all the information of the samples by plotting the 

cumulative sums of the deviations of the sample values from a target value. Suppose ⎯X Bj B 

is the average of the jBthB sample, µB0 B is the target of the process mean, the cumulative sum 

control chart is formed by plotting the statistic against sample number i: 

∑
=

µ−=
i

1j
0ji )x(C  

Because they include information of several samples, cumulative sum chart is more 

effective than Shewhart charts for detecting small process shifts. Furthermore, they are 

very effective when sample size n=1. 

There are two ways to represent Cusum, the tabular (or algorithmic) cusum and the V-

mask form of the cusum. Of the two representations, the tabular cusum is preferred and 

more often used. 

The tabular cusum works by accumulating deviations from µB0 Bthat are above target with 

one statistic CP

+
P and deviations from µB0 Bthat are below target with one statistic CP

-
P. The 

statistics CP

+ 
Pand CP

-
P are called one-sided upper and lower cusums, respectively. They are 

computed as follows: 

[ ]+
−

+ ++µ−= 1i0ii C)K(x,0maxC  

[ ]−
−

− +−−µ= 1ii0i Cx)K(,0maxC  

Where the starting values are CB0 PB

+
P=CB0 PB

-
P=0. 

K is usually called the reference value and it is often chosen about halfway between the 

target µB0 B and out-of-control value of the mean µB1 B that is interested to detect. 
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If either CBi PB

+
P or CBi PB

- 
Pexceeds the decision interval H, the process is considered out of 

control. A common selection of H is the five times the process standard deviation σ.  
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Appendix D 

Typical control chart patterns and corresponding causes 

(Western Electric Co., Inc. Statistical Quality Control Handbook ) 

Cycles 

Cycles are short trends in the data which occur in repeated patterns. The causes of cycles 

are processing variables which come and go on a more or less regular basis. In the case of 

machines, they may be associated with a succession of movements, positions or heads. In 

the case of manually controlled operations, they may be associated with fatigue patterns, 

shipping schedules, conditions affecting the day and night shifts. In some types of 

product, they may be associated with seasonal effects which come and go more slowly. 

The causes for the cycle patterns in X bar chart and Individual chart are as follows: 

• Seasonal effect such as temperature and humidity 

• Worn positions or threads on locking devices 

• Roller eccentricity 

• Operator fatigue 

• Rotation of people on job 

• Difference between gages used by inspectors 

• Voltage fluctuation 

Freaks 

Freaks result from the presence of a single unit or a single measurement greatly different 

from the others. Such units are generally produced by an extraneous system of causes. 
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Another common source of freaks is a mistake in calculation. Occasionally an apparent 

freak is the result of a plotting error.  

The causes for the freak pattern in X bar chart and Individual chart are as follows: 

X bar chart 

• Wrong setting, corrected immediately 

• Error in measurement 

• Error in plotting 

• Data obtained on a non-linear scale 

• Incomplete operation 

• Omitted operation 

• Breakdown of facilities 

• Accidental inclusion of experimental units 

Individual chart 

• Accidental damage in handling 

• Incomplete operation 

• Omitted operation 

• Breakdown of facilities 

• Experimental unit 

• Set-up part 

• Error in subtraction 

• Occasional parts from end of a rod or strip 

• Measurement error 

• Plotting error 
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• Some obvious physical abnormality which can be detected by examining the units 

in the sample that produce the freak point 

Gradual Change in Level 

A gradual change in level will ordinarily indicate one of the two things: 

1. There is some element in the process which is capable of affecting a few units at 

first and them more and more as time goes on. After the change has taken place 

the chart tends to settle at some new level. 

2. It may be that some element in the process has been changed abruptly, but 

because of the amount of product, it shows up gradually at the later operations. 

The causes for the gradual change in level patterns in X bar chart and Individual chart are 

as follows: 

• Gradual introduction of new material, better supervision, greater skill or care on 

the part of the operator 

• Change in maintenance program 

• Introduction of process controls in this or other areas 

Grouping or Bunching 

It is an indication of unnaturalness if all or most of the similar measurements occur quite 

close together. When measurement cluster together in such a non-random pattern it 

indicates the sudden introduction of a different system of causes. 

The causes for the grouping or bunching pattern in X bar chart and Individual chart are as 

follows: 

X bar chart 

• Measurement difficulties 
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• Change in the calibration of a test set or measuring instrument 

• Different person making the measurements 

• Shift in distribution for a limited period. 

Individual chart 

• Extraneous cause resulting in a totally different distribution for a limited period of 

time 

• Errors in plotting 

Sudden Shift in Level 

A sudden shift in level is shown by a positive change in one direction. A number of 

consecutive points appear on one side of the chart only. 

On an X bar chart or Individual chart, this type of pattern indicates the sudden 

introduction into the process of a new element or cause (usually a simple or single cause) 

which moves the center of the distribution to a new location and then ceases to act on it 

further. The pattern shifts up or down from the centerline and rapidly establishes itself 

around the new level. 

The causes for the sudden shift in level pattern in X bar chart and Individual chart are as 

follows: 

X bar chart and Individual chart 

• Change to a different kind of material 

• New operator 

• New inspector 

• New test set 

• New machine 
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• New machine setting 

• Change in set-up or method 

Individual chart 

• New equipment 

• Change to different material or different supplier of piece parts 

Trend 

A trend is defined as continuous movement up or down, a long series of points without a 

change of direction. Trends may result from any cause which work on the process 

gradually. 

The causes for the trend pattern in X bar chart and Individual chart are as follows: 

X bar chart and Individual chart 

• Too wear 

• Wear of treads, holding devices or gages 

• Aging 

• Inadequate maintenance on test set 

• Seasonal effects, including temperature and humidity 

• Operator fatigue 

• Increase or decrease in production schedules 

• Gradual change in standards 

• Gradual change in proportions of lots 

• Poor maintenance or housekeeping procedures 

• Pumps becoming dirty 

• Degreaser becoming exhausted 
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The graphs of the above-mentioned patterns are shown as follows: 
 

Cycles 

 
 

Freaks 

 
 

Gradual Change in Level 

 

 
 

Grouping or Bunching 

 
 

Sudden Shift in Level 
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