

APPLICATION OF THE COLLISION-IMPARTED VELOCITY METHOD FOR ANALYZING THE

 RESPONSES OF CONTAINMENT AND DEFLECTOR STRUCTURES TO ENGINE ROTOR FRAGMENT IMPACTThomas P. Collins
Emmett A. Witmer
 Department of Aeronautics and Astr Massachusetts Institute of Technology Cambridge, Massachusetts 02139

August 1973

Prepared for
AEROSPACE SAFETY RESEARCH AND DATA INSTITUTE LEWIS RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLEVELAND, OHIO 44135

1. Report No NASA CR -134494	2. Government Accession No.		3. Recipuent's Catalog No.	
4 Title and Subtitle Application of the Collısion-Imparted Velocity Method for Analyzing the Responses of Containment and Deflector Structures to Engine Rotor Fragment Impact			5 Report Date August 1973 6. Performing Organızation Code	
7. Author(s) Thomas P. Collins and Emmett A. Witmer			8 Performing Organizatoon Report No ASRL TR 154-8	
9. Performing Organization Name and Address Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory Cambridge, Massachusetts 02139			11. Contract or Grant No NGR 22-009-339	
12 Sponsoring Agency Name and Address Natıonal Aeronautics and Space Adminıstration Washington, D.C. 20546			13. Type of Report and Period Covered Contractor Report	
15 Supplementary Notes Patrick T. Chıarıto and Solomon Weıss, Aexospace Safety Research and Data Technıcal Monıtors: Institute Technical Advisor: Richard H. Kemp, Materials and Structures Division NASA Lewis Research Center, Cleveland, Ohıo				
16 Abstract An approximate analysis texmed the collision jmparted velocity method (CIVM) has been employed for predicting the transient structural responses of containment rings or deflector rangs which are subjected to ampact from turbojet-engine rotor burst fragments. These $2-d$ structural rangs may be initially curcular or arbitrarily curved and may have either unaform or variable thackness; elastic, strain hardenang, and strain rate materıal properties are accommodated. Also these rings may be free or supported in various ways. The fragments have been ideallzed, for convenience, as being circular and non-deformable with appropriate mass and pre-impact velocity properties for each of the one to n fragments considered. The effects of friction between each fragment and the impacted ring are taken into account. This approximate analysis utilizes kinetic energy and momentum conservation relations in order to predict the after-ampact velocities of the fragment and the impacted ring segment. This information is then used in conjunction wath a finite element structural response computation code to predict the transient, large deflection responses of the ring. Similarly, the equations of motion for each fragment are solved in small steps in time. The effects of varying certain geometric and mechanical property parameters upon the structural ring responses and upon the fragment motions have been explored briefly for both free complete containment rings and for partial-ring fragment deflectors which are supported in each of several ways. Also, some comparzsons of predictions with experimental data for fragment-impacted free contalnment rings are presented.				
17. Key Words (Suggested by Author(s)) Turbojet Rotor Containment Alrcraft Hazards Aırcraft Safety Structural Mechanics Finite Element Method Transient Structural Response	Large Deflections Elastic-plastic Behavior Strain Analysis Computer Program	18. Distribution Statement Unclassified, Unlimited		
19. Security Classif (of this report) Unclassified	20. Security Classif Unclassifi	f this page)	21 No of Pages -249 250	$\begin{aligned} & 22 \text { Price* } \\ & 14,50 \end{aligned}$

'For sale by the Natronal Technical Information Service, Springield, Virgina 22151

FOREWORD

This report has been prepared by the Aeroelastlc and Structures Research Laboratory (ASRL), Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts under NASA Grant No. NGR 22-009-339 from the Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio 44135. Mr. Patrick T. Chiarito and Mr. Solomon Welss of the Lewis Research Center served as technical monitors and Mr. Richard H. Kemp served as technical advisor. The valuable cooperation and advice received from these individuals is acknowledged gratefully.

We are indebted to Messrs. G.J. Mangano and R. DeLucià of the Naval Alr Propulsion Test Center, Phila., Pa. for supplying pertinent rotor fragment data and 4130 cast steel uniaxial static stixess-strain data.

The authors especially wish to acknowledge the careful reviewing of this report and the many constructive suggestions from their colleagues Dr. R. W-H. Wu and Dr. John W. Leech. Mr. R.P. Yeghiayan of the MIT-ASRL also provided valuable advice and discussion during the conduct of these studies.

The use of SI units (NASA Policy Directive NPD 2220.4, September 14, 1970) was waived for the present document in accordance with provisions of paragrph 5d of that Directive by the authority of the Director of the Lewis Research Center.

CONTENTS

Section Page1 INTRODUCTION1
1.1 Outline of the Engine Rotor Fragment Problem 1
1.2 Review of Some Analysis Options 5
1.3 Current Status of the Fragment Ring Collision-Interaction and Response Analyses I2
1.3.1 TEJ-JET Status 13
1.3.2 CFM-JET Status 1.4
1.3.3 CIVM-JET Status 15
1.4. Purposes and Scope of the Present Study 16
2 COLLISION-IMPARTED VELOCITY METHOD 18
2.1 Outline of the Method 18
2.2 Fragment-Idealization Considerations 19
2.3 Collision-Interaction Analysis, Including Friction 27
2.4 Prediction of Containment/Deflector Ring Motion and Position 32
2.5 Prediction of Fragment Motion and Position 35
2.6 Collision Inspection and Solution Procedure 36
2.6.1 One-Fragment Attack 36
2.6.2 N-Fragment Attack 40
3 CONTAINMENT RING RESPONSE PREDICTIONS 41
3.1 Single-Fragment Examples 42
3.2 Three-Fragment Examples 46
4 DEFLECTOR RING RESPONSE PREDICTIONS 48
4.1 Hinged-Fixed/Free Deflector Examples 50
4.2 Elastic-Foundation-Supported Deflector Examples 53
4.3 Comments 56
5 SUMMARY AND COMMENTS 61 58REFERENCES
64-112
IJILUSTRRATIONS

CONTENTS Continued

Section Page
Appendix A:USER'S GUIDE'TO THE CIVM-JET-4A PROGRAM 113
A. 1 General Description of the Program 113
A.l.I Introduction 113
A.1.2 Containment/Deflector Ring Geometry, Supports, Elastic Restraints, and Material Properties 114
A.l. 3 Fragment Geometry and Initial Con- ditions 115
A.1. 4 Solution Procedure 116
A. 2 Description of Program and Subroutines 118
A.2.1 Program Contents 118
A.2.2 Partial List of Variable Names 121
A. 3 Input Information and Procedure 131
A.3.1 Energy Accounting Option 142
A.3.2 Input for Special Cases of the General Stress-Strain Relations 142
A. 4 Description of the Output 143
A. 5 Complete FORTRAN IV Listing of the CIVM-JET-4A Program 146
A. 6 Illustrative Examples '199
A.6.1 Free Circular Uniform-Thickness Containment Ring Subjected to Single-Fragment Attack 199
A.6.1.1 Input Data 200
A.6.1.2 Solution Output Data 205
A.6.2 Elastic Foundation-Supported Variable-Thickness Partial Ring (Deflector) Subjected to Single- Fragment Attack 216
A.6.2.1 Input Data 217
A.6.2.2 Solution Output Data 221
APPENDIX B: SUMMARY OF THE CAPABILITIES OF THE COMPUTER CODESJET 1, JET 2, AND JET 3 FOR PREDICTING THE TWO-DIMENSIONAL TRANSIENT RESPONSES OF RING STRUCTURES 237

CONTENTS Continued

LIST OF ILLUSTRATIONS

Figure Page
12Schematics of Various Types of Rotor-Burst Frag- .ments and Failures66
4 Schematics of Two-Dimensional and Three-Dimensional-
Engine Casing Structural Response to Engine Rotor Fragment Impact 67
5 Summary of Choice of Transient Structural Response Analysis Method and Plan of Action for the Engine Rotor Fragment Containment/Deflection Problem 68
6 Containment-Structure Schematics 69
7 Deflector Structure Schematics 70
8 Schematic of a 2D Containment Ring Subjected to Fragment Impact 71
9 Information Flow Schematic for Predicting Ringand Fragment Motions in the Collision-ImpartedVelocity Method72
10 Schematics of Actual and Idealized Fragments 73
11 Idealization of Ring Contour for Collision Analysis 76
12 Exploded Schematic of the Lumped Mass Collision
Model at the Instant of Impact 78
13 The Trajectory of the Tmage Point \bar{P} in the $p_{N}-p_{T}$plane to Describe the State at each Contact Instantfor Various Impact Processes79
14 Coordinates, Generalized Displacements, and Nomen-
clature for a 2D Arbitrarily-Curved-Ring Finite Element 82
Inspection for Determining a Collision of the Fragmentwith the Ring83

CONTENTS Continued

Figure PageRing-Fragment Modeling and Response Data for Con-talnment Rings Subjected to Single-Fragment Attack86
Effect of Friction on the Predicted Maximum Circum- ferential Strain Produced on 4130 Cast Steel Con- tainment Rings by Single Fragment Impact 90
Predicted Maximum Circumferential Strain for SingleFragment Attack as a Function of Ring Thickness ForFixed Ring Axial Lengths91
Predicted Maximum Circumferential Strain for Single Fragment Attack as a Function of Ring Weight for Fixed Ring Axial Lengths 92
Influence of the Initial-Impact Location θ_{I} upon the Path of the Fragment which Impacts the IdealizedHinged-Fixed/Free Deflector101
Predicted Maximum Circumferential Strain as a Functionof Deflector Ring Thickness (h/R Ratio) for Various AxialLengths103

CONTENTS Concluded

Figure Page
27 Predicted Variation in Maximum Circumferential Strain as a Function of Deflector Ring Weight (wr/(KE) ${ }_{0}$ Ratio) for Various Axial Lengths 104Predicted Deflector Ring Weight for Single Fragment Attack asa Function of Ring Axial Length for Fixed Values of MaximumCircumferential Strain105Fragment Path Data at TAII $=650 \mathrm{Micxoseconds}$ for $\theta_{I}=$.16 Degrees as a Function of Deflector Ring Thicknessfor Fixed Values of L (Idealized H-F/F Deflector)106
Predicted Maximum Circumferential Strain of the Foundation-Supported Deflector as a Function of Deflector Thickness for two Different Sets of Support-Structure Rigidities 108
Predicted Fragment-Path Diversion as a Function of Time After Initial Impact for Two Different Sets of Support- Structure Rigidities 109
32 Predicted Fragment Path Diversion Data at 650 Microseconds after Initial Impact as a Function of Deflector Thickness, h_{d} for Iwo Different Sets of Support-Structure Rigidities 111
A. 1 Geometrical Shapes of Structural Rings Analyzed by the CIVM-JET-4A Program 230
A. 2 Nomenclature for Geometry, Coordinates, and Displacements of Arbitrarily-Curved Variable-Thickness Ring Elements 231
A. 3 Schematics for the Support Conditions of the Structure 232
A. 4 Schematic of Possible Piecewise Linear Representation of Uniaxial Static Stress-Strain Material Behavior 234
A. 5 Example Problem: Uniform Thickness Containment Ring 235
A. 6 Example Problem: Variable-Thickness 90-Deg Partial Ring (Deflector) with Uniform Elastic Foundation Applied to a Portion of the Ring 236

SUMMARY

Arguments are presented supporting the proposition that the development and the selective utilization of prediction methods which are restricted to two-dimensional (2-d) transient large-deflection elastic-plastic responses of engine rotor burst fragment containment/deflector structures are useful and advisable for parametric and trends studies. In conjunction with properly-selected experimental studies of rotor-burst fragment interaction with actual containment and/or deflector structure -- wherein three-dimensional effects occur -- one may be able to develop convenient rules-of-thumb to estimate certain actual 3-d containment/deflection structural response results from the use of the very convenient and more efficient but simplified 2-d response prediction methods.

Accordingly, the collision-imparted velocity method (CIVM) for predicting the collision-interaction behavior of a fragment which impacts containment/deflector structures has been combined with a modified version of the JET 3C two-dimensional structural response code to predict the transient large-deflection, elastic-plastic responses and motions of containment/deflector structures subjected to impact by one or more idealized fragments. Included are the effects of friction between each fragment and the attacked structure. A single type of fragment geometry has been selected for efficiency and convenience in these fragment/structure interaction and response calculations, but the most important fragment parameters, it is believed, have been retained; n fragments each with its own $m_{f}, I_{f}, V_{f}, \omega_{f}, r_{f}$, and $r_{c g}$ may be employed.

Calculations have been carried out and reported illustrating the application of the present CIVM-JET analysis and program for predicting $2-\mathrm{d}$ containment ring large-deflection elastic-plastic transient responses to (a) single-fragment impact and (b) to impacts by three equal-size fragments. The influence of containment ring thickness, axial length, and strain-rate dependence, as well as friction between the fragment and the impacted structure have been explored.

Similar illustrative calculations have been performed and reported for the responses of (a) ideal hinged-fixed/free and (b) elastic-foundation-supported fragmentdeflector rings of uniform thickness to impact by a single idealized fragment. With respect to the latter more-realistic and yet-idealized model, it was found that plausible increases in the values for the stiffnesses of the "elastic foundation" was a more effective means for changing the path of the attacking fragment than by plausible increases in the thickness of the deflector ring itself.

Although calculations were of very limited scope, some interesting response trends were noted. More extensive calculations in which more of the problem variable: accommodated in the CIVM-JET-4A analysis and program are included and in which each of certain quantities are varied over plausible ranges would provide a more illuminating picture of the roles and effectiveness of these parametexs with respect to fragment-containment and/or fragment-deflection protection.

It is believed that the present analysis method and program (CIVM-JET-4A) provides a convenient, versatile, and efficient means for estimating the effects of numerous problem variables upon the severe nonlinear $2-d$ responses of variablethickness containment/deflector structures to engine-rotor-fragment impact. Although a limited number of comparisons of predictions with appropriate experimental data shov encouraging agreement, more extensive comparisons are required to establish a firmer assessment and confidence level in the accuracy and the adequacy of the present prediction method, consistent with its inherent 2-d limitations.

SECTION 1

INTRODUCTION

1.1 Outline of the Engine Rotor Fragment Problem

As pointed out in Refs. I through 6, for example, there has been a notinsignificant number of failures of rotor blades and/or disks of turbines and compressors of aircraft turbojet engines of both commercial and military aircraft each year, with essentially no improvement in the past 10 years in the number of uncontained failures. The resulting uncontained fragments, if sufficiently energetic, might injure personnel occupying the aircraft or might cause damage to fuel lines and tanks, control systems, and/or other vital components, with the consequent possibility of a serious crash and loss of life. It is necessary, therefore, that feasible means be devised for protecting (a) on-board personnel and (b) vital components from such fragments.
. Two commonly recognized concepts for providing this-protection are evident. First, the structure surrounding the "failure-prone" rotor region could be designed to contain (that is, prevent the escape of) rotor burst fragments completely. Second, the structure surrounding this rotor could be designed so as to prevent fragment penetration in and to deflect fragments away from certain critical regions or directions, but to permit fragment escape readily in other "harmless" regions or directions. These two concepts are illustrated schematically in Figs. 1 and 2. In certain situations, the first scheme (complete containment) may be required, while in other cases either scheme might be acceptable. For the latter situation, one seeks the required protection for the least weight and/or cost penalty. A definitive comparative weight/cost assessment of these two schemes is not available at this time because of (a) inadequate knowledge of the fragment/structure interaction phenomena and (b) incomplete analysis/design tools, although much progress has been made in these two areas in the past several years; however, this question is explored in a limited preliminary fashion in the present report.

Studies reported in Refs. 1 through 3 of rotor burst incidents in commerical aviation from the Federal Aviation Administration (FAA), the National Transportation Safety Board (NTSB), and other sources, indicate that uncontained-
fragment incidences occur at the rate of about 1 for every 10^{6} engine flight hours. In 1971, for example, 124 fragment-producing rotor failures were reported in U.S. commercial aviation (Ref. 2); in 35 of these incidents, uncontained rotor fragments were reported. The total number of failures and the number of uncontained failures are classified as to fragment type in three broad categories as follows (Ref. 2):

Fragment Type

> Total No. of Failures

Disk Segment	13	13
Rim Segment	6	4
Rotor Blades	105	18

The sizes and the kinetic energies of the attacking fragments, however, are not reported.

From a detailed study of NTSB and industrial records, Clarke (Ref. 3) was able to find 32 case histories with descriptive and photographic information sufficient to permit a reasonable determination of the type and size of the largest fragment and the associated kinetic energy. His assessment is that these data are sufficient to define trends for disk bursts. According to Clarke, the disk breakup modes for the 11,000 to $19,000-1 b$ thrust range of engines studied are classified into four categories: (l) rim segment failures, (2) rim/ web failures, (3) hub or sector failures, and (4) shaft-type failures; these and other types of engine rotor fragments are illustrated in Fig. 3. Rim failures contain only rim sections or serrations. Rim/web failures include rim and web sections but do not include hub structure. Hub or sector fragments result when the rotor fails from the rim to the hub, thus nullifying the disk hoop strength and allowing the disk to separate into several large sections. The shaft-type failure mode usually occurs as a result of a bearing failure or a disk unbalance that fails the disk shaft or the attaching tie rods; this mode can release more than one engine stage from the nacelle. Accordingly, the 32 cases of failure are divided into these four categories as follows; with the number of failures and percent of total failures shown in parentheses (number/percent) : rim (15/47), rim/web (3/9), sector (10/31), and shaft (4/13). Thus the rim and the sector failures comprise the lion's share of the failure modes for these 32 cases. Although in one case there were 10 major fragments, in about 80 percent of the
cases there were 4 or fewer fragments, with an overall mean of 3 major fragments. A major fragment is defined as one which contains a section of the rotor disk whose largest dimension is greater than 20 per cent of the disk diameter and also contains more kinetic energy than a single blade from the same stage. In that report, blade failures are not included as major fragments. Failed blades (excluding fan blades) tend to be contained in accordance with Federal Aviation Regulations (FAR) Part 33. In only about 15 to 20 per cent of rotor blade failuxes does casing penetration occur. These "escaped single-blade fragments" possess reduced kinetic energy; thus, their potential for further damage is limited.

In the Ref. 3 study, the size of the largest major rotor fragment as a cumulative percentage of the 32 cases analyzed is reported. Also, it is deduced that the largest translational kinetic energy of a major fragment will not exceed 40 per cent of the total rotational kinetic energy of the unfailed rotor. For a large majority of rotor burst fragments, the kinetic energy possessed by each fragment will be substantially less than this 40 per cent value.

The studies of Refs. 1 through 3 and 6 through 11 indicate that for disk fractures, a 120° sector is a good candidate as a "maximum-size fragment and danger" criterion. If one examines the translational and rotational energy content of rotor disk fragments as a function of sector-angle size, it is found that a sector of about 120° contains the maximum translational kinetic energy. However, in view of the fragment-size and type statistics available, the choice of a smaller and less energetic "criterion fragment" for fragment containment/ deflector design appears to be much more sensible for obtaining a reasonable and feasible improvement in the "safety index" of aircraft turbojet engine/ airframe installations with respect to rotor-burst damage effects. Also, fragments of this class apparently occur much more frquently than do those of the 120-degree sector type. In this vein, Clarke suggests that enhanced safety would be achieved by requiring the complete containment of a fragment consisting of a rim segment (serration) with 3 blades attached; the authors of the present report concur in this judgment.

Despite intensive conscientious effort through the use of improved
materials, design, fabrication, and inspection, the annual number of aircraft engine rotor bursts remains at a too-high level -- with little or no improvement in the past decade. With the large increase of wide-body and jumbo jets, the potential for a large-life-loss accident from this cause grows monthly. In order to assist the FAA (and industry) to achieve improved safety in this respect, NASA has been sponsoring a research effort with the following longrange objectives:
(1) to improve the understanding of the phenomena attending engine rotor fragment attack upon and the transient structural response of engine casing fragment-containment and/or fragment-deflection structure via an integrated program of appropriate experiments and theoretical analysis,
(2) to develop and verify theoretical methods for predicting the interaction behavior and the transient structural responses of containment/deflection structure to enginerotor fragment attack, and
(3) to develop (a) an engine rotor fragment test capability to accommodate reasonably foreseeable needs, (b) experimental containment/deflection data in limited pertinent parametric studies, (c) experimental techniques and high quality experimental data for evaluating and guiding the development of theoretical-analysis methods, and (d) a "proof test" capability for conducting test fragment and structure combinations which are too complex to be analyzed reliably by available methods.

Hopefully, useful theoretical analysis tools of limited complexity could be devised, verified, demonstrated, and transmitted to both the FAA, and industry to assist via parametric design calculations and appropriate experiments the development of improved protection without imposing excessive weight penalties.

Starting about 1964, the Naval Air Propulsion Test Center (NAPTC) under NASA sponsorship has constructed and employed a spin-chamber test facility wherein rotors of various sizes can be operated at high rpm, failed, and the interactions of the resulting fragments with various types of containment and/or
deflection structures can be studied with high-speed photography and transient strain measurements, in addition to post-mortem studies of the containment/ deflection structure and the fragments. Many such tests involving single fragments or many complex fragments impinging upon containment structures of various types and materials have been conducted (Refs. 6 through 11) and have substantially increased the body of knowledge of the attendant phenomena. Since mid-1968 NASA has sponsored a research effort at the MIT Aeroelastic and Structures Research Laboratory (ASRL) to develop methods for predicting theoretically the interaction, behavior between fragments and containment-deflection structures, as well as the transient deformations and responses of containment/deflection structures -- the principal objective being to devise reliable prediction/ design procedures and containment/deflection techniques: Important crossfertilization has occurred between the NAPTC experimental and the MIT-ASRL theoretical studies, with special supportive-diagnostic experiments and detailed measurements being designed jointly by NASA, NAPTC, and MIT personnel and conducted at the NAPTC. Subsequent analysis and theoretical-experimental correlation work has been increasing both the understanding of the phenomena involved and the ability to predict these•interaction/structural-response phenomena quantitatively.

1.2 Review of Some Analysis Options

Because of the multiple complexities involved in the very general case wherein the failure of one blade leads to impact against the engine casing, rebound, interaction with other blades and subsequent cascading rotor-failures and multiple-impact interactions of the various fragments with the casing, and with each other, it is necessary to focus attention initially upon a much simpler situation in order to develop an adequate understanding of these col-lision-interaction processes. Accordingly, rather than considering the general three-dimensional large deformations of actual engine casings under multiple rotor-fragment attack (see Fig. 4, for example), the simpler problem of planar structural response of containment structures has been scrutinized. That is, the containment structure is regarded simply as a structural ring lying in a plane; the ring may undergo large deformations but these deformations are confined essentially to that plane. For such a case, numerical finite-difference.
(Refs. 12 and 13) and finite element (Ref. 14) methods of analysis to predict the transient large-deformation responses of such structures to known impulsive and/or transient external loading and/or to a known distribution, magnitude, and time history of velocities imparted to the structure have been developed at the MIT-ASRL and have been verified by evaluative comparison with high-quality experimental data to provide reliable predictions.

In the present context, therefore, the crucial information which needs to be determined (if the structural response of a containment ring is to be predicted reliably) concerns the magnitude, distribution, and time history of either the loading or the impact-induced velocities which the ring experiences because of fragment impact and interaction with the ring. Two means for supplying this information have been considered:
(1) The TEJ concept (Refs. 15 and 16) which utilizes measured experimental ring position-time data during the ring-fragment interaction process in order to deduce the external forces experienced by the ring. This concept has been pursued. An important merit of this approach is that it can be applied with equal facility to ring problems involving simple single fragments such as one blade, or to cases involving a complex multi-bladed-disk fragment. The central idea here is that if the TEJ-type analysis were applied to typical cases of, for example, (a) single-blade impact, (b) disk-segment impact, and/or (c) multi-bladed disk fragment impact, one could determine the distribution and time history of the forces applied to the containment ring for each case. Such forces could then be applied tentatively in computer code response-prediction-and-screening studies for similar types of ringfragment interaction problems involving various other materials, where guidance in the proper application of these forces or their modification could be furnished by dimen-sional-analysis considerations and selected spot-check experiments. It remains, however, to be demonstrated whether adequate rules can be devised to "extrapolate" this
forcing function information to represent similar types of fragment attack (with perhaps different fragment material properties) against containment vessels composed of material different from that used in the aforementioned experiments.*
On the other hand, this approach suffers from the fact that experimental transient structural response data of high quality muist be available; the forcing function is not determined from basic material property, geometry, and initial impact information.
(2) The second approach, however, utilizes basic material property, geometry, and initial impact information in an approximate analysis. If the problem involves only a single fragment, this method can be carried out and implemented without undue difficulty, but can become complicated if complex fragments and/or multiple fragments must be taken into account. However, measured transient structural response data are not required in order to employ this method successfully.
Approach 1 is explained in detail in Refs. 14 and 15. The present report deals with one version of approach 2 ; other versions of approach 2 (denoted by CIVM and/or CFM) are discussed in Refs. 14 and 17.

Various levels of sophistication may be employed in approach 2. One could, for example, utilize a finite-difference shell-structure analysis such as PETROS 3 (Ref. 18) or REPSIL (Refs. 19 and 20), or similar finite-element codes, to predict the large general transient- deformations of. engine casing containment/deflection structure to engine rotor fragment impact. For even more general behavior, one could employ 3 - d solid-continuum finite-difference

[^0]codes such as HEMP (Ref. 21), STRIDE (Ref. 22), or HELP (Ref. 23) wherein both the containment ring and fragment may be represented by a suitably fine threedimensional mesh, and the conservation equations can be solved in time in small time increments; these latter codes can handle only a limited number of simple configurations. Both the $3-\mathrm{d}$ shell codes and the $3-\mathrm{d}$ solid codes take into account elastic, plastic, strain hardening, and strain-rate behavior of the material. Such computations (especalally the 3-d solid type) while vital for certain types of problems are very lengthy and expensive, and are not well suited for the type of engineering analysis/design purposes needed in the present problem; for complicated or multiple fragments, such calculations would be prohibitively complicated, lengthy, and expensive. A simpler, less complicated, engineering-analysis attack with this general framework is needed; namely, the 2-d structural response analysis method (see Fig. 5).

Two categories of such an engineering analysis in the approach 2 classification may be identified and are termed: (a) the collision-imparted velocity method (CIVM) and (b) the collision-force method (CFM). The essence of each method follows:
(a) Colilision-Imparted Velocity Method (CIVM)

In this approach (Ref. 14), the local deformations of the fragment or of the ring at the collision interface do not enter explicitly, but the containment ring can deform in an elastic-plastic fashion by membrane and bending action as a result of having imparted to it a collision-induced velocity at the contact region via (a) a perfectlyelastic, (b) perfectly-inelastic, or (c) intermediate behavior. Since the collision analysis provides only collision-imparted velocity information for the ring and the fragment (not the collision-induced interaction forces themselves), this procedure is called the collisionimparted velocity method.

(b) Collision-Force Method (CFM)

In this method (Ref. 17) the motion of the fragment and the motion of the containment/deflection ring ($2-\mathrm{d}$ idealized structure) is predicted and followed in small increments Δt in time. If fragment/ ring collision occurs during such a Δt increment, a collision-interaction
calculation is performed. This calculation provides an estimate of the force experienced by the ring at the contact region during an appropriate portion of this Δt time period; an equal and opposite force is experienced by the (rigid or deformable) fragment. The calculation advances similarly during the next Δt increment. In practice the TEJ, CIVM, and CFM procedures are employed in intimate conjunction with one or more of the 2-d structural response ring codes*: JET 1 (Ref. 15), JET 2 (Ref. 16), or JET 3 (Ref. 24). These ring codes have various different capabilities but each permits one to predict reliably the 2-d, large-deflection, elastic-plastic, transient deformations of structural rings for either (1) transient external forces of prescribed distribution, magnitude, and time history or (2) locally-imparted velocities of prescribed distribution, magnitude, and time history. Accordingly, these respective fragment/ring response analyses are termed TEJ-JET, CIVM-JET, and CFM-JET. These procedures are indicated in the information flow diagram on page 10.

Finally, it is useful to note that these three approaches to analyzing the transient structural responses of two-dimensional containment/deflection structure subjected to engine rotor fragment attack play useful complementary roles rather than duplicatory roles. In cryptic self-explanatory form, these complementary roles are summarized on page 11.

[^1]

COMPLEMENTARY ROLES OF

 TEJ-JET , CIVM-JET , CFM-JET- TEJ-JET
- Applicable to Simple Single as well as Complex Multiple Fragments

Must have Measured Structural Response Data

- Predicted Transient Externally-Applied Loads are Useful for Preliminary Design

A Use as Unchanged in Screening Calculations for Vaxious Containment Vessel Materials
or
\ldots
A Conduct Spot Check Tests and TEJ-JET Analysis for One or Two Other Materiais to Guide Forcing Function Modification

CIVM-JET AND/OR CFM-JET Does Not Require Measured Transient Response Data

Uses Basic Geometry, Material Property, and Initial Condition Data

Readily Applied to Single Fragments
Wultiple or Complex Fragments
A More Difficult to Apply
A Needs Further Development; Complex Logic
Complex but has Much Potential for Future

1.3 Current Status of the Fragment/Ring Collision-Interaction and Response Analyses

Having chosen for engineering convenience and simplicity to restrict initiăl theoretical prediction method developments to two-dimenslonal* structural response behavior of containment and/or deflector structures, the development of the analyses TEJ-JET, CIVM-JET, and CFM-JET have been pursued to the extent permitted by the available time and funds. In this context the plan of action included the following elements (see Fig. 5):

1. Use TEJ-JET, CIVM-JET, etc. for materials screening studies, parametric calculations, and thickness estimates for $2-\mathrm{d}$ containers and/or deflector structure.
2. Conduct experiments to determine the structural thickness required for fragment containment or fragment deflection, as desired:
(a) conduct such experiments on axially short (2d) containment/deflection structure to evaluate and verify the 2-d predictions for the required structural thickness $h_{2 d}$, and
(b) conduct such experiments on containment/deflection structure of various axial lengths in order to determine the smallest wall thickness $h_{\text {opt }}$ required (and the associated shortest axial length) for fragment containment or deflection for realistic three-dimensional deformation behavior.
3. Next, carry out 2-d calculations and correlations with experiments in order to seek convenient rules of thumb for relating $h_{2 d}$ to the desired $h_{\text {opt }}$.

Therefore, the first task to be carried out was the development of TEJ-JET, CIVM-JET, and/or the CFM-JET analyses for idealized $2-\mathrm{d}$ structural models

[^2]for containment and/or deflector structure. Schematics of "actual" and idealized 2-d models of, respectively, containment structure and deflector structure are shown in Figs. 6 and 7.
1.3.1 TEJ-JET Status

References 15 and 16 document the early studies of the TEJ-JET concept and its feasibility. The theoretical feasibllıty of the TEJ-JET concept has been verified. This has been carried out by predicting the large-deflection elastic-plastic transient response of an initially-circular, uniform-thickness, containment rung subjected to a prescribed curcumferential distribution and time history of externally-applied forces via the JET 1 computer program; this provided position-time data for many mass points (typically 72) around the carcumference of the ring. In ordex to simulate the effects of experimental and data conversion uncertainties upon this position-time information, these data were perturbed by random numbers with a mean of zero but with various plausible levels of probable error. The resulting "simulated experımental position-time data" were then subjected to TEJ processing in order to "extract" predictions of the externally-applied forces which produced these "modified structural response data"; the resulting predicted external forces were in very good agreement whth-the original known prescribed external forces.

Analysis of an early set of hagh-speed photographic measurements carried out by the NAPTC of the transient response of a containment ring subjected to impact from a single rotor blade from a 758 turbine rotor revealed certain data deficiencles. Subsequently, the effects upon the TEJ-JET prediction process of various uncertainty factors have been studied, and means for reducing the prediction uncertainty, including both analysis improvements and improvements in measurement precision and accuracy, are in progress. Improved NAPTC experimental data are expected to be received shortly for use in a more definitive evaluation of the REJ-JET analysis method.

It should be noted that the success of this method depends crucially upon the availability of very high quality experimental data to define the time history of the motion of the contanment/deflection structure and of the fragments and/or other moving structure which strikes the containment-deflection
structure. The feasibility and accuracy of the TEJ-JET method for estimating the impact forces applied to the containment ring in an actual experimental situation have been verified only in part and then only for the simplest case: a single blade impacting a free circular containment ring. These forces have been deduced (it is believed successfully) from the analysis of the CG motion of therring, but another independent estimate involved in the TEJ-JET scheme is obtained from analyzing the motion of indıvidual mass points of the ring. The latter estimate has not yet been carried out successfully -- this work utilizing recent experimental data of improved quality is still in progress.

If this TEJ-JET method (especially the second scheme) turns out to be successful for this simplest of all cases, serious consideration could then be given to the further development of this method in order to predict the fragment/ ring collision forces for more complex problems such as (a) an n-fragment burst of a rotor, (b) a single blade failure from a fully-bladed rotor, (c) a rim chunk with a few blades attached, etc. If successful for these cases of more practical interest (such as case (c), for example), the attendant predicted external forces could then be employed as first-approximation forcing function information in 2-d JET codes to predict the transient structural responses of various candidate containment/deflection rings and materials. For a given type of fragment attack for which one presumes the availability of the above-noted forcing-function information, one will need to develop some means of estimating how these forces would be altered if radically different containment/deflection structural materials, thicknesses, etc. from those used in the "source experiment are used in parametric/design studies.

1.3.2 CFM-JET Status

A study of the collision force method (CFM) is reported in Ref. 17. This method was applied successfully to predict the transient structural response of a simply-supported steel beam subject to impact by a steel ball; comparısons of CFM-JET predictions for this case were in good agreement with independent predictions.

The CFM-JET method was also applied to analyze the impact interaction and transient response of an aluminum containment ring to impact from a single
blade from a T58 engine turbine rotor; experimental transient response photographic data were available from NAPTC experiments for comparison. In these CFM-JET studies, the rotor blade was modeled in three different ways: (l) the blade was prescribed to remain straight and to experlence purely-elastic behavior, (2) the blade was permitted to shorten and to experience elastic-plastic behavior but to remain straight, and (3) the blade was permitted to undergo a plausible curling deformation behavior over a region near the impacted end and to behave in an elastic-plastic fashion. In all cases, the free initiallycircular alumınum containment ring was permitted to experience large-deflection, elastic-plastic bending and stretching behavior. For all three blade-behavior cases, the predicted containment ring transient responses were very smilar, with type (3) providing the best theoretical-experiment agreement. Also, the type (3) prediction demonstrated the best agreement between the predicted and the observed fragment motion. For the type (3) model, impact between the blade and the ring was treated as either frictionless or as involving various fixed values of the fxiction coefficient μ.

For plausible combinations of the curling-blade-model parameters and the fxictional coefficient, the CFM-JET predictions for both the transient response of the ring, and the motion and the final deformed configuration of the blade were in very good agreement with experimental observations.

As is made clear in Refs. 14 and 17, the CIVM-JET method is more readily extendable than is the CFM-JET method to more complex types of fragments and fragment-attack situations. Hence, future development effort has favored the CIVM-JET method.

1.3.3 CIVM-JET Status

Initial studies of the CIVM-JET method of analysis are reported in Ref. 14. In analyzing containment and deflection ring responses to impact from a single blade, the blade is modeled in the analysis as being nondeformable (remains straight rather than deforming as observed experimentally). However, the effect of neglecting this type of blade deformation, and its attendant changing moment of inertia, has a very minor influence on the transient response of the containment/deflection structure. Another simplification
used in that initial CIVM-JET study was to ignore the effects of fxiction between the ring and the impacting blade. As a result of these two simplifications, one finds a fair discrepancy between predictions and observations of the motion of the blade after inltial impact with the ring. However, one observes very good agreement between predictions and measurements of the transient large deformations of the containment ring.

Also reported in Ref. 14 are some illustrative CIVM-JET calculations to predict the responses of 90 -degree sector partial rings (fragment deflectors) to impact by a single blade. One end of the partial ring was either ideally clamped or pinned-fixed while the other end was free. Frictionless impact and a non-deformable blade were assumed also in these cases. There were, however, no appropriate experimental data available for comparison.

1.4 Purposes and Scope of the Present Study

Experience gained in these inntial CIVM-JET studies and in the subsequent CFM-JET investigations suggested that the former approach would be more readily extendable than the latter to analyze containment/deflection structural responses to impact from more complex types of fragments. Accordingly, it was decided to extend the CIVM-JET analysis and to carry out some illustrative calculations.

Specıfically, the tasks undertaken and discussed in this report follow:

1. To include the effects of friction between the fragment and the impacted structure.
2. To combine the resulting CIVM collision-interaction analysis with the JET 3 structural response computer program in order to make available a convenient CIVM-JET computer code for interested users, together with a user's manual and example problems.
3. To include an approximate means of accounting for the "restraint effects" of adjacent structure upon the responses of fragment-impacted 2-d containment and/or deflector structures.
4. To illustrate the utilization of this updated CIVM-JET
analysis and program for predicting
(a) containment ring responses to single-fragment and multiple-fragment attack and
(b) deflector ring responses to single-fragment attack.

Section 2 us devoted to describing the CIVM-JET method including the updating features cited in tasks 1 through 3. Illustrative containment ring response studies are discussed in Section 3, while illustrative fragmenṭ deflector response calculations are described in Section 4. A summary of the present studies, pertinent conclusions, and suggestions for further research are presented in Section 5.

Appendix A contains a description and a listing of the resulting CIVM-JET-4A computer program together with input and output instructions. Included are example problems, the associated proper input, and solution data which may aid the user in adapting this program to his computer facility.

Appendix B contains a concise sumary of the capabilities of the twodimensional, elastic-plastic, large-deflection, transient structural response computer codes JET 1, JET 2, and JET 3.

SECIION 2

COLLISION-IMPARTED VELOCITY METHOD

2.1 outline of the Method

For present purposes, attention is restricted to analyzing the transient responses of two-dimensional containment and/or deflector rings which are subJected to fragment impact; examples of these types of structural models are indicated schematically in Figs. 6 and 7. Accordingly, these structures may undergo large elastic-plastic bending and stretching deformations but those deformations as well as the fragment motions are assumed to lie in one plane; namely, the Y, Z plane as shown in Fig. 8.

Using this ring-fragment problem as an illustrative example, this section is devoted to a description of the general procedure used to calculate the transient motions of the ring and the fragment in accordance with the process called the collision-imparted velocity method (CIVM). An information flow schematic of this procedure is shown in Fig. 9. Briefly, the analysis procedure indicated in Fig. 9 consists of the following principal steps:

1. Motions and Positions of Bodies

The motions of the fragment and of the containment ring are predicted and the (tentative) region of space occupied by each body at a given instant in time is determined.

2. Collision Inspection

Next, an inspection is performed to determine whether a collısion has occurred durang the small increment (Δt) in time from the last instant at which the body locations were known to the present instant in time at which body-location data are sought. If a collision has not occurred during this Δt, one follows the motion of each body for another Δt, etc. However, if a collision has occurred, one proceeds to carry out a collision-interaction calculation.
3. Collision-Interaction Calculation

In this calculation energy and momentum conservation relations are
employed in an approximate analysis to compute the collisioninduced changes (a) in the velocities V_{f} (translation) and ω_{f} (rotational) of the fragment and (b) nodal velocities of the ring segment which has been struck by the fragment. The coordinates which locate the positions of the fragment and of this particular ring segment are thereby corrected from their tentative uncorrected-for-ımpact locations.

One then returns to step 1 , and the process is repeated for as many time increments as desired.

The details of this analysis procedure as well as various considerations and simplifying assumptions employed are discussed in the remainder of this section.

2.2 Eragment-Idealızation Considerations

Consistent with the decision to idealıze containment and deflector structure as behaving in a two-dimensional fashion, a similar decision has been reached to idealize the various types of rotor-burst fragments in a way which is both versatile and convenient for analysis. Further, it was desired to include from 1 to n fragments, where these fragments may have exther identical or different masses, velocities, kinetic energies, etc. Some of the considerations which led to the selected fragment idealızation are discussed in the following.

In the initial theoretical studies reported in Refs. 14 and 17, only a single rotor blade fragment was utilized. Various types of blade fragment behavior were assumed and the consequences investigated. The assumed types of behavior included:
(a) straight non-deforming blade
(b) elastically-deforming straight blade
(c) elastic-plastic straight blade
(d) elastic-plastic curling blade

In all cases before initial impact, these blades had identical masses, mass moment of inertıa about the CG, translation velocities, and rotational
velocities. Although the motion of the blade fragment after initial impact differed from model to model, the large-deflection elastic-plastic transient responses of the fragment-impacted containment rings exhibited only small differences for the various blade-fragment models. Thus, the effect of the changing geometry of the deforming blade fragment during impactinteraction with the ring is of distinctly secondary importance with respect to containment ring response. Accordingly, the most important fragment quantities requiring duplication in the idealized fragment model are its mass and translational kinetic energy; of lesser importance are it's rotational kinetic energy, mass moment of inertia, and "geometrıc size".

Therefore, one may idealize the fragment geometry in order to reduce the complexıty of determining at successive instants of time during predictions whether ox not the fragment has collided with the ring. However, it is possible to analyze and follow in detail the deforming configuration of a rotor-blade fra ment (or even of a bladed disk fragment) during impact-interaction with a containment ring if one is whlling to pay the price in complexity and in computational expense. At the present stage of study, this degree of complexity is considered to be unjustified. Hence, the "severe" but convenient and reasonable idealization that a single rotor blade, a bladed-rim segment, or bladed rim-web segments, for example, may be represented as a non-deformable circuiar configuration of appropriate diameter, mass, and mass moment of inertia has been adopted. This decision also greatly simplifies the matter of determining at a given instant in time whether or noṭ a given fragment has collided with the ring because the space occupied by the fragment is readily defined by the Y, Z coordinates of its center, and its radius. The space occupied is compared with the space instantaneously occupied by the ring in order to determine whether or not a fragment/ring collision has occurred.

Shown schematically in Fig. 10 are pre-impact and final-deformed configurations of a single rotor blade, a one-sixth bladed disk segment, and a one-third bladed disk segment from a T58 turbine rotor. These fragments were employed in containment ring experiments conducted at the NAPTC; information on intermediate states of typical fragment deformation are also available (Refs. 10 and 25). Also deplcted in Fig. 10 are certain fragment ıdealizations,
including the currently adopted non-deformable circulax configuration used in the present 2-d analysis. It is seen that a circle of approprlate diameter may be chosen to circumscribe each type of undeformed and deformed fragment. Since for a given type of fragment these diameters do not vary greatly (up to about 30 per cent or less typically), one may choose the diameter of the idealized non-deformable fragment to be either "extreme" or some intermediate value because these fragment-size extremes produce very little effect upon the predicted transient deformation of the ring and the maxımum carcumferential strains experienced by an impacted contanment ring.

2.3 Collision-Interaction Analysis, Including Friction

The collision-interaction analysis employed is described in the following in the context of two-dimensional behavior of both the containment/deflection structure* and the fragment. Further, the analysis wall be described for a case in which only a single idealized fragment is present; similar relations are employed for the individual impacts of each of n fragments when n fragments are present.

For the CIVM approach, the following simplafying assumptions are invokea:

1. Only the fragment and the ring segment or element struck by that fragment are affected by the "instantaneous collision" (see Fig. 8) .
2. In an overall sense, the fragment is treated as being rigid but at the "immediate contact region" between the fragment and the struck object (termed "target" for convenience), the collision process is regarded as acting in a perfectly elastic ($e=1$), perfectly inelastic ($e=0$), or an intermediate fashion ($0<e<1$), where e represents the coefficient of restitution.

[^3](3) The colliding surfaces of both the fragment and the target may be either perfectly smooth ($\mu=0$) or may be "rough" ($\mu \neq 0$), where μ denotes the coefficient of sliding friction. Hence, respectively, force and/or momentum (or velocities) are transmitted only in the normal-to-surface direction or in both the normal and the tangential direction.
(4) During the collision, the contact forces are the only ones considered to act on the impacted ring segment and in an antiparallel fashion on the fragment. Any forces which the ring segment on either side of the impacted ring segment may exert* on that segment as a result of this instantaneous collision are considered to be negligible because this impact duration is so short as to preclude their "effective development".
(5) To avoid unduly complicating the analysis and because of the smallness of the arc length of the ring element being impacted, the ring element is treated as a straight beam (see Fig. 11) in the deravation of the impact inspections and equations. However, for modeling of the ring itself for transient response predictions, the ring is treated as being arbitrarily curved and of variable thickness.

As indicated in Fig. lla the curved variable-thickness (or uniform thickness) containment/deflector ring is represented by straight-line segments:
(1) to identify in a simple and approximate way the space occupancy of the beam segment under imminent impact attack and
(2) to derive the impact equations.

The ends of ring segment or element i are bounded by nodal stations i and $i+1$ at which the ring thlckness is h_{i} and h_{j+I}, respectively; these nodes are located in Y, z inertial space by Y_{i}, Z_{i}, and Y_{i+1}, Z_{i+1}, respectively.

[^4]In the CIVM-JET studies reported in Ref. 14, the inertial effects of the impacted segment were taken into account by means of two different models: a consistent-mass model and a lumped-mass model. It was found that the lumped mass collision model provides more convenient and reliable collision-interaction predictions. Accordingly, only the lumped-mass collision model is employed in the present studies. With respect to the inertia forces of the structural ring itself, the studies of Ref. 14 have shown that lumped-mass modeling is somewhat more efficient than consistent-mass modeling of the ring insofar as transient response prediction accuracy is concerned. Hence, lumped mass modeling of the ring is employed in the present work.

For the lumped-mass collision model, the impacted beam segment is represented, as depicted in the exploded line schematic of Fig. 12, by concentrated masses m_{1} and m_{2} at nodes 1 (or i) and 2 (or $i+1$), respectively. Also, for the impacted segment indicated in Fig. lib, it is assumed that the two surfaces of this variable-thickness element are close enough to being parallel that the cosine of one half of the angle between them is essentially unity. Accordingly, it is assumed that the direction normal to the mpacted surface is the same as the perpendicular to a straight line joining nodes 1 and 2. For the collision analysis, it is convenient to resolve and discuss velocities, impulses, etc., in directions normal (N) and tangential (T) to the straight line jolning nodes 1 and 2; the positive normal dırection is always taken from the inside toward the outside of the ring, while the positive-tangential direction is along the straight line from node 1 toward node 2 (see Figs. llb and llc) -- a clockwise numbering sequence is used (for all impacted ring segments). Hence, the impacted ring segment lumped-mass velocitres and the idealized-fragment velocities are expressed with respect to this local, N, T inertial coordinate system as $V_{1 N}, V_{1 T}, V_{2 N}, V_{2 T}, V_{\mathrm{fN}^{\prime}}$ and V_{ET} in the exploded schematic shown in Fig. 12.

As shown in Fig. 12, the center of gravity of the idealized impacted beam (ring) segment is located at a distance $\gamma_{L} s$ from mass m_{I}, and a distance $\delta_{L} s$ from mass m_{2}, where s is the distance from m_{1} to m_{2}. The "point of fragment impact" between masses m_{1} and m_{2} is given by the distances α s and βs, respectively; at this location, it is assumed that the fragment applies a normally-directed impulse P_{N} and a tangentially directed impulse P_{T} to the
impacted idealized rang segment. Denoting by primes the "after-impact" translational and/or rotational velocities, the impulse-momentum law may be written to characterize the "instantaneous impact behavior" of this system, as follows: Normal-Direction Translation Impulse-Momentum Law

$$
\begin{align*}
& m_{1}\left[V_{I N}^{\prime}-V_{I N}\right]+m_{2}\left[V_{2 N}^{\prime}-V_{2 N}\right]=P_{N} \quad \text { (ring segment) } \tag{2.1}\\
& m_{f}\left[V_{f N}^{\prime}-V_{f N}\right]=-P_{N} \tag{2.2}
\end{align*}
$$

Tangential-Direction Translational Impulse-Momentum Law

$$
\begin{align*}
& m_{1}\left[V_{1 T}^{\prime}-V_{i T}\right]=\beta P_{T} \tag{2.3}\\
& m_{2}\left[V_{2 T}^{\prime}-V_{2 T}\right]=\alpha P_{T} \tag{2.4}\\
& m_{f}\left[V_{f T}^{\prime}-V_{f T}\right]=-P_{T} \tag{2.5}
\end{align*}
$$

Rotational Impulse-Momentum Law

$$
\begin{gather*}
-m_{1}\left[V_{I N}^{\prime}-V_{I N}\right] \gamma_{L} s+m_{2}\left[V_{2 N}^{\prime}-V_{2 N}\right] \delta_{L} s \tag{ringsegment}\\
=-P_{N}\left(V_{L}-\alpha\right) S+P_{T}\left(\frac{h_{T}}{2}\right) \\
I_{f}\left[\omega_{f}^{\prime}-\omega_{f}\right]=P_{T} r_{f}
\end{gather*}
$$

where

$$
\begin{aligned}
& p_{N}=\text { normal-direction impulse } \\
& p_{T}=\text { tangential-direction impulse } \\
& \gamma_{I}=m_{2} /\left(m_{I}+m_{2}\right) \\
& \delta_{I}=m_{1} /\left(m_{1}+m_{2}\right) \\
& h_{I}=\text { ring thickness at the immediate "impact point" } \\
& m_{f}=\text { mass of the fragment } \\
& I_{f}=\text { mass moment of inertia of the fragment about its } C G
\end{aligned}
$$

The relative velocity of sliding S^{\prime} and the relative velocity of approach A^{\prime} at the immediate "contact points" between the fragment (at A) and the ring segment (at C) are defined by

$$
\begin{align*}
& \left.S^{\prime}=\left[V_{f T}^{\prime}-\omega_{f}^{\prime} r_{f}\right]-\left[\left(\beta V_{1 T}^{\prime}+\alpha V_{2 T}^{\prime}\right)+\frac{\left(h_{I}\right)}{2} \frac{\left(V_{2 N}^{\prime}-V_{I N}^{\prime}\right)}{S}\right)\right] \tag{2.8}\\
& A^{\prime}=V_{f N}^{\prime}-\left(\beta V_{1 N}^{\prime}+\alpha V_{2 N}^{\prime}\right) \tag{2.9}
\end{align*}
$$

Substituting Eqs. 2.1 through 2.7 into Eqs. 2.8 and 2.9 , one obtains

$$
\begin{align*}
& S^{\prime}=S_{0}-B_{3} P_{N}-B_{1} P_{T} \tag{2.10}\\
& A^{\prime}=A_{0}-B_{2} P_{N}-B_{3} P_{T} \tag{2.11}
\end{align*}
$$

where the initial. (pre-impact) relative velocity of sliding S_{0}, the initial relatave velocity of approach A_{0}, and the geometrical constants B_{1}, B_{2}, and B_{3} are given by

$$
\begin{align*}
& S_{0}=\left[V_{f T}-\omega_{f} r_{f}\right]-\left[\left(\beta V_{1 T}+\alpha V_{2 T}\right)+\left(\frac{n_{I}}{2}\right)\left(\frac{V_{2 N}-V_{1 N}}{s}\right)\right] \tag{2.12}\\
& A_{0}=V_{f N}-\left(\beta V_{1 N}+\alpha V_{2 N}\right) \tag{2.13}\\
& B_{1}=\frac{1}{m_{f}}+\frac{r_{f}^{2}}{I_{f}}+\frac{\beta^{2}}{m_{1}}+\frac{\alpha^{2}}{m_{2}}+\left(\frac{h_{I}}{2 s}\right)^{2}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \tag{2.14}\\
& B_{2}=\frac{1}{m_{f}}+\frac{\beta^{2}}{m_{1}}+\frac{\alpha^{2}}{m_{2}} \tag{2.15}\\
& B_{3}=\left(\frac{h_{I}}{2 s}\right)\left(\frac{\alpha}{m_{2}}-\frac{\beta}{m_{1}}\right) \tag{2.16}
\end{align*}
$$

where in Eqs. 2.12 and 2.13, by definition $A_{o} \geq 0$; otherwise, the two bodies will not collide wath each other. Also, if $S_{o} \geq 0$, the fragment slides initially along the ring segment. It perhaps should be noted that sliding of the bodies on each other is assumed to occur at the value of "limiting friction" which requires that $p_{T}=\left|\mu p_{N}\right|$, and when $p_{T}<\left|\mu p_{N}\right|$, only rolling (i.e., no sliding) exists. For a given value of e and a given value of μ which,
respectively, describes the degree of "plasticity" of the collision process, and accounts for the frictional properties (roughness) of the contact surfaces, nine equations (Eqs. 2.1-2.7 and Eqs. 2.10-2.11) can be solved to obtain the post-impact quantities $V_{1 N}^{\prime}, V_{1 T}^{\prime}, V_{2 N}^{\prime}, V_{2 T}^{\prime}, V_{f N}^{\prime}, V_{f T}^{\prime}$, and ω_{f}^{\prime}, as well as p_{N} and p_{T}; these are nine "unknowns".

The graphic technique which provides a convenient way to obtain the values of p_{N} and p_{T} at the instant of the termination of impact as described in Ref. 26 is employed in the present collision-interaction analysis. In this technique, the trajectory of an "image" point \bar{P} in the plane formed by the impulse coordinates p_{N} and p_{T} (Fig. I3) represents the state of the colliding bodies at each instant of the contact interval. The image print $\overline{\mathrm{P}}$ which is initially located at the origin and is denoted by $P_{0}\left(p_{N}=0, P_{T}=0\right)$ will always proceed in the upper half-plane with increasing p_{N}. The locations of the line of no sliding $S^{\prime}=0$ and the line of maximum approach $A^{\prime}=0$ are determined by the system constants B_{1}, B_{2}, and B_{3}. From Eqs. 2.10 through 2.16, it is noted that B_{1} and B_{2} are positive; also since $B_{1} B_{2}>B_{3}^{2}$, the acute angle between the p_{N} axis and the line $A^{\prime}=0$ is greater than the corresponding acute angle formed by the line $S^{\prime}=0$ with the p_{N} axis; hence, the line $A^{\prime}=0$ and the line $S^{\prime}=0$ cannot intersect with each other in the third quadrant of the $p_{N} s p_{T}$ plane. Depending on the values of the coefficient - of sliding friction μ, the coefficient of restitution e, the system constants B_{1}, B_{2}, and B_{3}, and the initial conditions S_{0}, and A_{0}, several variations of the impact process may occur and will be discussed in the following.

First, the cases in which the coefficient of sliding friction μ range from $0<\mu<\infty$ will be considered; the two special cases with $\mu=0$ (perfectlysmooth contact surfaces) and $\mu=\infty$ (completely rough surfaces) will be discussed shortly thereafter.

Case I: If $0<\mu<\infty$ and $B_{3} \leq 0$, both the slope of line $S^{\prime}=0$ and the slope of line $A^{\prime}=0$ are non-negative (when $B_{3}=0$, lines $S^{\prime}=0$ and $A^{\prime}=0$ are parallel to the p_{N} axis and the p_{T} axis, respectively). The two lines $S^{\prime}=0$ and $A^{\prime}=0$ intersect with each other at point P_{3} as shown in Figs. 13a and $13 b$, where the friction angle ν and the angle Λ formed with the p_{N} axis by the line connecting points P_{0} and P_{3} and are defined by .

$$
\begin{equation*}
\nu=T A N^{-1} \mu \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda=T_{A N}{ }^{-1}\left(\frac{B_{2} S_{0}-B_{3} A_{0}}{B_{1} A_{0}-B_{3} S_{0}}\right) \tag{2.18}
\end{equation*}
$$

InItially, the image point $\overline{\mathrm{P}}$ travels from point P_{o} along the path $P_{o} L$ which subtends an angle v with the P_{N} axis because the limiting friction impulse $p_{T}=\mu p_{N}$ is developed during the initial stage of impact. Subsequently:
(a) if $\mu=\tan \nu<\tan \Lambda$ (Fig. 13a), line $p_{0} L$ will intersect the line of maximum approach $A^{\prime}=0$ at point. P_{1}, before reaching the line of no sliding $S^{\prime}=0$. The intersection point P_{I} represents the state at the instant of the termination of the approach period. This is followed by the restitution period; the impact process ceases at point P' (path $\left.P_{0}-P_{1}-P^{\prime}\right)$. The coordinates of P^{\prime} are

$$
\begin{align*}
& p_{N}=(1+e) p_{N 1} \tag{2.19}\\
& p_{T}=\mu P_{N}=\mu(1+e) p_{N 1} \tag{2.20}
\end{align*}
$$

where $p_{N 1}$, the ordinate of point p_{1} is determined from the simultaneous solution of equations $p_{T}=\mu p_{N}$ and $A^{\prime}=0$, and is given by

$$
\begin{equation*}
P_{N 1}=\frac{A_{0}}{B_{2}+\mu B_{3}} \tag{2.21}
\end{equation*}
$$

(b) However, if $\mu=\tan v>\tan \Lambda$ (Fig. 13b), line P_{o} L will intersect the line of no sliding $S^{\prime}=0$ first at the intersection point P_{2} which marks the end of the initial sliding phase. The image point $\overline{\mathrm{P}}$ then will continue to proceed along the line of no sliding $S^{\prime}=0$ through the intersection point P_{3} with line $A^{\prime}=0$ to the end of impact at point P^{\prime} (path $\left.P_{0}-P_{2}-P_{3}-P^{\prime}\right)$. The final values of p_{N} and p_{T} are:

$$
\begin{align*}
& P_{N}=(1+e) P_{N 3} \tag{2.22}\\
& P_{T}=\frac{S_{0}-B_{3} P_{N}}{B_{1}}=\frac{S_{0}-B_{3}(1+e) P_{N 3}}{B_{1}} \tag{2.23}
\end{align*}
$$

where $P_{N 3}$, the ordinate of point P_{3} which represents the end of the approach period, is given by

$$
\begin{equation*}
P_{N 3}=\frac{B_{1} A_{0}-B_{3} S_{0}}{B_{1} B_{2}-B_{3}^{2}} \tag{2.24}
\end{equation*}
$$

Case II: If $0<\mu<\infty$ and $B_{3}>0$, both the lines $S^{\prime}=0$ and $A^{\prime}=0$ have negative slopes as shown in Figs. 13c, 13d, and 13e. By following the same argument as in Case I, one has:
(a) If $\mu=\tan \nu<\tan \Lambda(F i g .13 c)$, line P_{o} I will intersect the line $A^{\prime}=0$ first, before reaching the line $S^{\prime}=0$, and the impact process ends at point P^{\prime} (path $\left.P_{0}-P_{1}-P^{\prime}\right)$, whose coordinates are

$$
\begin{align*}
& P_{N}=(1+e) P_{N i} \tag{2.25}\\
& P_{T}=\mu(1+e) P_{N 1} \tag{2.26}
\end{align*}
$$

where

$$
\begin{equation*}
P_{N 1}=\frac{A_{0}}{\left(B_{2}+\mu B_{3}\right)} \tag{2.27}
\end{equation*}
$$

(b) If $\mu=\tan \nu>\tan \Lambda$ (Figs. 13d and 13e), the image point \bar{P} moves first along line $P_{o} L$ to the intersection with line $S^{\prime}=0$ at point P_{2}; up to that point, the two bodies will slide along each other. However, beyond point P_{2}, only as much friction will act as is necessary to prevent sliding, provided that this is less than the value of the limıting friction (Ref. 26). Let the angle Ω formed by the line $s^{\prime}=0$ with the p_{N} axis be defined as

$$
\begin{equation*}
\Omega=\operatorname{TAN}^{-1}\binom{B_{3}}{B_{1}} \tag{2.28}
\end{equation*}
$$

(bi) If $\Omega<\nu$ (Fig.13d), the maximum fraction is not required to prevent sliding; hence, \bar{P} will continue to move along line $S^{\prime}=0$, through the end of approach period at point P_{3}, which is the intersection pount with line $A^{\prime}=0$, to the termination of impact at point P^{\prime} (path $P_{o}-P_{2}-P_{3}-P^{\prime}$) whose coordinates are

$$
\begin{align*}
& P_{N}=(1+e) P_{N 3} \tag{2.29}\\
& P_{T}=\frac{S_{0}-B_{3}(1+e) P_{N 3}}{B_{1}} \tag{2.30}
\end{align*}
$$

where

$$
\begin{equation*}
P_{N 3}=\frac{B_{1} A_{0}-B_{3} S_{0}}{B_{1} B_{2}-B_{3}^{2}} \tag{2.31}
\end{equation*}
$$

(bil) On the other hand, if $\Omega>V(F i g$. 13e), more friction than available is required to prevent sliding. Thus, the friction impulse will change its direction beyond P_{2}, and maintain its limıting value; the point $\overline{\mathrm{P}}$ moves along line $\mathrm{P}_{2}{ }^{\mathrm{M}}$ which is the line of reversed limiting friction and is defined as

$$
\begin{equation*}
P_{T}=\mu\left(2 P_{N 2}-P_{N}\right) \tag{2.32}
\end{equation*}
$$

$$
\begin{equation*}
P_{N 2}^{\text {where }}=\frac{S_{0}}{\mu B_{1}+B_{3}} \tag{2.33}
\end{equation*}
$$

Through the intersection with line $A^{\prime}=0$ at point P_{4} to its final state P^{\prime} at the end of
impact (path $P_{0}-P_{2}-P_{4}-P^{\prime}$). The coordinates of P^{\prime} are

$$
\begin{align*}
P_{N} & =(1+e) P_{N 4} \tag{2.34}\\
P_{T} & =\mu\left[2 P_{N 2}-(1+e) P_{N 4}\right] \tag{2.35}\\
\text { where } P_{N 2} & \text { is defined in Eq. } 2.33 \text { and } \\
P_{N 4} & =\frac{A_{0}-2 \mu B_{3} P_{N 2}}{B_{2}-\mu B_{3}} \tag{2.36}
\end{align*}
$$

The above solution process can be specialized to represent the cases with $\mu=0$ and $\mu=\infty$.

Case III: If $\mu=0$ (perfectly smooth contact surfaces), line $P_{0} L$ coalesces with the p_{N} axis. The image point \bar{P} will move along the p_{N} axis to the end of impact. Thus

$$
\begin{align*}
& P_{N}=(1+e) \frac{A_{0}}{B_{2}} \tag{2.37}\\
& P_{T}=0 \tag{2.38}
\end{align*}
$$

Case IV: If $\mu=\infty$ (completely rough contact surface), point $\overline{\mathrm{P}}$ moves initially along the P_{T} axis.
(a) If $\frac{S_{0}}{B_{1}}<\frac{A_{o}}{B_{3}}$ or if $\frac{A_{o}}{B_{3}}<0$, point \bar{P} will move along the P_{T} axis to the intersection with $S^{\prime}=0$, then will follow the line $S^{\prime}=0$ to the end of impact. The post-impact value of p_{N} and p_{T} are

$$
\begin{align*}
& P_{N}=(1+e) P_{N 3} \tag{2.39}\\
& P_{T}=\frac{S_{0}-B_{3}(1+e) P_{N 3}}{B_{1}} \tag{2.40}
\end{align*}
$$

where

$$
\begin{equation*}
P_{N 3}=\frac{B_{1} A_{0}-B_{3} S_{0}}{B_{1}} \frac{B_{2}-B_{3}^{2}}{} \tag{2.41}
\end{equation*}
$$

(b) However, if $\frac{S_{O}^{-}}{B_{1}}>\frac{A_{0}}{B_{3}}>0$, point \bar{P} moves along the p_{T} axis and ceases at the Intersection with line $S^{\prime}=0$. Thus the final value of p_{N} and p_{T} are

$$
\begin{align*}
& P_{N}=0 \tag{2.42}\\
& P_{T}=\frac{S_{0}}{B_{1}} \tag{2,43}
\end{align*}
$$

Knowing the values of p_{N} and p_{T} at the end of impact for the above discussed various impact processes, the corresponding post-impact velocities then can be determined from Eds. 2.1 through 2.7 as follows:

$$
\begin{align*}
& V_{1 N}^{\prime}=V_{1 N}+\frac{\beta P_{N}-\left(\frac{n_{I}}{2}\right) P_{T}}{m_{1} s} \tag{2.44}\\
& V_{1 T}^{\prime}=V_{1 T}+\frac{\beta P_{T}}{m_{1}} \tag{2.45}\\
& V_{2 N}^{\prime}=V_{2 N}+\frac{\alpha s P_{N}+\left(\frac{h_{I}}{2}\right) P_{T}}{m_{2} s} \tag{2.46}\\
& V_{2 T}^{\prime}=V_{2 T}+\frac{\alpha_{N}}{m_{2}} \tag{2.47}\\
& V_{f N}^{\prime}=V_{f N} \tag{2.48}\\
& V_{f T}^{\prime}=V_{f T} \tag{2.49}\\
& V_{f}^{\prime}=\frac{P_{T}}{m_{f}^{\prime}} \tag{2.50}\\
& \omega_{f}^{\prime}
\end{align*}
$$

Thus, this approximate analysis provides the post-impact velocity information for the impacted ring segment and for the fragment so that the timewise step-by-step solution of this ring/fragment response problem may proceed. Note that these post-impact velocity components are given in directions N and T at each. end of the idealized impacted ring segment; as explained later, these velocity components are then transformed to (different) directions appropriate for the curved-ring dynamic response analysis.

2.4 Pxediction of Containment/Deflector Ring-Motion

 and PositionThe motion of a complete containment ring or of a partial-ring fragment deflector may be predicted conveniently by means of the finite-element method of analysis described in Ref. 14 and embedded in the JET 3 series of computer programs described in Ref. 24. These structures may be of either uniform or of variable thickness, with various types of support conditions. Large deflection transient Kirchhoff-type* responses including elastic, plastic, strain hardening, and strain-rate sensitive material behavior may be accommodated.

In this method, the ring is represented by an assemblage of discrete (or finite) elements joined compatibly at the nodal stations (see Fig. 8). The behaviox of each finite element is characterized by a knowledge of the four generalized displacements g at each of its nodal stations, referred to the η, ζ local coordinates (see Fig. 14). The displacement behavior within each finite element is represented by a cubic polynomial for the normal displacement w and a cubic polynomial for the circumferential displacement v, anchored to the four generalized displacements q_{1}, q_{2}, q_{3}, and q_{4} or v, w, ψ, and X at each node of the element (see Refs. 14 and 24 for further details).

For present purposes, it suffices to note that the resulting equations of motion for the "complete assembled discretized structure (CADS)", for which the independent generalızed nodal displacements are denoted by q^{*}, are (Ref. 14):

[^5]$$
[M]\left\{\ddot{q}^{*}\right\}+\{p\}+[H]\left\{q^{*}\right\}+\left[K_{s}\right]\left\{q^{*}\right\}=\left\{F^{*}\right\}(2.51)
$$
where
\[

\left.$$
\begin{array}{rl}
\left\{q^{*}\right\},\left\{q^{*}\right\} & \text { represent the generalized displacements and } \\
& \text { generalized accelerations, respectively } \\
{[\mathrm{M}]} & \text { is the mass matrix for the cADS }
\end{array}
$$\right] .
\]

Further, it is assumed that all appropriate boundary conditions have already been taken into account in Éq. 2.51.

The timewise solution of Eq. 2.51 may be accomplished by employing an appropriate timewise finite-difference scheme such as the central difference method. Accordingly, for the cases of CIVM fragment impact or of prescribed externally-applied forces, Eq. 2.51 at time instant j may be written in the following form:

$$
\begin{equation*}
[M]\left\{\ddot{q}^{*}\right\}_{j}=\left(\left\{F^{*}\right\}-\left[K_{s}\right]\left\{q^{*}\right\}-\{p\}-[H]\left\{q^{*}\right\}_{j}\right. \tag{2.52}
\end{equation*}
$$

Let it be assumed that all quantities are known at any given time instant t_{j}. Then one may determine the generalized displacement solution at time t_{j+1} (i.e., $\left\{q^{*}\right\}_{j+1}$) by the following procedure. First, one employs the timewise central-difference expression for the acceleration $\left\{\ddot{q}^{*}\right\}_{j}$:

$$
\begin{equation*}
\left\{\ddot{q}^{*}\right\}^{\approx} \frac{1}{(\Delta t)^{2}}\left(\left\{q^{*}\right\}_{j+1}-2\left\{q^{*}\right\}_{j}+\left\{q^{*}\right\}_{j-1}\right) \tag{2.53}
\end{equation*}
$$

It follows that one can solve for $\left\{q^{*}\right\}_{j+1}$ since $\left\{\ddot{q}^{*}\right\}_{j}$ is already known from Eq. 2.52 and all other quantities in Eq. 2.53 are known. However, a fragmentrang collision may occur between time instants t_{j} and t_{j+1}; this would require a "correction" to the $\left\{q^{*}\right\}_{j+1}$ found from Eq. 2.53. Thus, one uses and rewrites Eq. 2.53 to form a trial value (overscript T):

$$
\begin{equation*}
\left\{\Delta q^{*}\right\}_{j+1}=\left\{\Delta q^{*}\right\}_{j}+(\Delta \dot{t})^{2}\left\{\ddot{q}^{*}\right\}_{j} \tag{2.54}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left\{\Delta q^{*}\right\}_{j}=\left\{q^{*}\right\}_{j}-\left\{q^{*}\right\}_{j-1} \\
& \left\{\Delta q^{*}\right\}_{j+1}=\left\{q^{*}\right\}_{j+1}-\left\{q^{*}\right\}_{j} \quad=\text { trial increment } \\
& \left\{q^{*}\right\}_{j}=\left\{q^{*}\right\}_{0}+\left\{\Delta q^{*}\right\}_{1}+\ldots \ldots+\left\{\Delta q^{*}\right\}_{j} \\
& \Delta t \quad=\text { time increment step }
\end{aligned}
$$

Note that $t_{j}=j(\Delta t)$ where $j=0,1,2, \ldots$, and $\left\{\Delta q^{*}\right\}_{o} \equiv 0$. Also, no such trial value is needed if only prescribed external forces were applied to the containment/deflection ring.

Let it be assumed that one prescribes at $t=t_{0}=0(j=0)$ values for the initial velocities $\left\{\dot{q^{*}}\right\}_{0}$ and external forces $\{F *\}_{0}$, and that the initial stresses and strains are zero. The increment of displacement between time t_{o} and time t_{1} is then given by:

$$
\begin{equation*}
\left\{\Delta q^{*}\right\}_{1}=\left\{\dot{q}^{*}\right\}_{0}(\Delta t)+\left\{\ddot{q}^{*}\right\}_{0} \frac{(\Delta t)^{2}}{2} \tag{2.56}
\end{equation*}
$$

where $\{\ddot{\mathrm{q}} *\}_{0}$ can be calculated from

$$
\begin{equation*}
[M]\left\{\ddot{q}^{*}\right\}_{0}=\left\{F^{*}\right\}_{0} \tag{2.57}
\end{equation*}
$$

wherein it is assumed that no ring-fragment collision occurs between t_{0} and t_{1} (accordingly, overscript T is not used on $\left\{\Delta q^{*}\right\}_{1}$ in Eq. 2.56).

2.5 Prediction of Fragment Motion and Position

In the present analysis, the fragment is assumed to be undeformable and, for analysis convenience to be circular; hence, its equations of motion for the case of no externally-applied forces are:

$$
\begin{align*}
& m_{f} \ddot{Y}_{f}=0 \tag{2.58}\\
& m_{f} \ddot{z}_{f}=0 \tag{2.59}\\
& I_{f} \ddot{\theta}=0 \tag{2.60}
\end{align*}
$$

where $\left(Y_{f}, Z_{f}\right)$ and $\left.\ddot{Y}_{f}, \ddot{Z}_{f}\right)$ denote, respectively, the global. coordinates and acceleration components of the center of gravity of the fragment (see Figs. 8 and in)
θ represents the angular displacement of the fragment in the $+w_{f}$ direction (Fig. 12).

In timewise finite-difference form, Eqs. 2.58 through 2.60 become

$$
\begin{align*}
& \left(\Delta Y_{f}^{T}\right)_{j+1}=\left(\Delta Y_{f}\right)_{j} \tag{2.61}\\
& \left(\Delta Z_{f}^{T}\right)_{j+1}=\left(\Delta Z_{f}\right)_{j} \tag{2.62}\\
& (\Delta \theta)_{j+1}^{T}=(\Delta \Theta)_{j} \tag{2.63}
\end{align*}
$$

where ovexscript "T" signifies a taal value which requires modification, as explained later, if rang-fragment collision occurs between t_{j} and t_{j+1}.

By an inspection procedure to be described shortly, the instant of rung-fragment collision is determined, and the resulting collision-induced velocities which are imparted to the fragment and to the affected ring seqment are determined in accordance with the analysis of Subsection 2.3.

2. 6 Collision Inspection and Solution Procedure

2.6.1 One-Fragment Attack

The collision inspection and solution procedure will be described farst for the case in which only one idealized fragment is present. With minor modifications this procedure can also be applied for an n-fragment attack as discussed in Subsection 2.6.2.

The following procedure indicated in the flow diagram of Fig. 9 may be employed to predict the motions of the ring and the rigid fragment, their possible collision, the resulting collision-imparted velocities experienced by each, and the subsequent motion of each body:

Step 1: Let it be assumed at instant t_{j} that the coordinates $\left\{q_{j}{ }_{j}\right\}, Y_{F_{j}}$, and $Z_{f_{j}}$, and coordinate increments. $\left\{\Delta q^{*}\right\}_{j}, \Delta Y_{f_{j}}$, and $\Delta z_{f_{j}}$ are known. One can then calculate the strain increments $\Delta \varepsilon_{j}$ at all Gauss stations j along and through the thickness of the ring (see Ref. 14).

Step 2: Using a suitable constitutive relation for the ring material, the stress increments $\Delta \sigma_{j}$ at corresponding Gaussian stations within each finite element can be determined from the now-known strain increments $\Delta \varepsilon_{j}$. Since the σ_{j-1} are known at time instant t_{j-1}, the stresses at t_{j} are given by $\sigma_{j}=\sigma_{j-1}+\Delta \sigma_{j}$. This information permits determining all quantities on the right-hand side of Eq. 2.52, where for the present CIVM problem $\left\{F^{*}\right\}_{j}$ is regarded as being zero.
Step 3: Solve Eq. 2.52 for the trial ring displacement increments. $\left\{\Delta \Delta^{\mathrm{T}}{ }^{*}\right\}_{j+1}$. Also, use Eqs. 2.61, 2.62 , and 2.63 for the trial fragment displacement increments $\left({ }^{\top} y_{f}\right)_{j+1},\left(\Delta Z_{f}^{\top}\right)_{j+1}$, and $\left.{ }^{(\Delta \theta}\right)_{j+1}^{\top}$.

Step 4: Sunce a ring-fragment collısion may have occurred between t_{j} and t_{j+1}, the following sequence of. substeps may be employed to determine whether or not a collision occurred and, if so, to effect a correction of the coordinate increments of the affected ring segment and of the fragment.

Step 4a: To check the possibility of a collision between the fragment. and rang element i (approximated as a straight beam) as depicted in Figs. 11, 12, and 14, compute the trial projection $\left(\mathrm{P}_{\mathbf{i}}\right)_{j+1}$ of the line from ring node $i+1$ to point A at the center of the fragment, upon the straight line connecting ring nodes 1 and $i+1$, as follows, at time instant t_{j+1} :

$$
\begin{align*}
& \left(\dot{P}_{i}\right)_{j+1}=\left[\dot{Y}_{i+1}^{T}-\dot{Y}_{f}\right]_{j+1} \quad \cos \left({ }_{j+1}^{\top}\right)_{j+1} . \\
& +\left[Z_{i+1}^{T}-Z_{i}^{T}\right]_{j+1} \quad \operatorname{SiN}(\alpha)_{j+1} \tag{2.64}
\end{align*}
$$

where the Y, Z are inertial Cartesian coordinates. Now, examine $\left({ }^{\top} p_{i}\right)_{j+1}$; three cases are illustrated in Fig. 15 a .

Step 4b: If $\left({ }^{\top}{ }_{i}\right)_{j+1}<$ or if $\left({ }^{\top} p_{i}\right)_{j+1}>s_{i}$. where $s_{i}>0$, a collision between the fragment and ring element-i is impossible. Proceed to check ring element i+1, etc. for the possibility of a collision of the fragment with other ring elements.
Step 4c: If $0 \leq\left(\bar{p}_{i}\right){ }_{j+1} \leq s_{i}$, a collision with xing element 1 is possible, and further checking is pursued. Next, calculate the fictitious "penetration distance" $\cdot\left(a_{i}^{\prime}\right){ }_{j+1}$ of the fragment into ring element i at point C by (see Fig. 15b):

$$
\begin{equation*}
\left(a_{i}^{\top}\right)_{j+1}=\left[\frac{1}{2} h_{1 i}+\frac{\alpha}{2}\left(h_{2 i}-h_{1 i}\right)+r_{f}\right]_{j+1}- \tag{2.65}
\end{equation*}
$$

where

$$
\left[d^{\top}\right]_{j+1}
$$

$$
\begin{aligned}
{\left[\frac{1}{2} h_{1 i}+\frac{\alpha}{2}\left(h_{2 i}-h_{1 i}\right)\right]=} & \text { local semi-thickness of the ring } \\
& \text { element which is approximated as } \\
& \text { a straight beam in this "collision } \\
& \text { calculation". } \\
x_{f}= & \text { radius of the fragment }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{j+1}=1-\left(\frac{p_{i}^{\top}}{s_{i}}\right)_{j+1}=\begin{array}{l}
\text { fractional distance of } s_{i} \text { from node } i \\
\\
\text { to where the collision occurs (recall: }
\end{array} \\
& \alpha+\beta=1 \text {, and } \alpha_{j+1} \text { should not be con- } \\
& \text { fused with the angle } \left.\left(\alpha_{i}\right){ }_{j+1}\right) \text {. }
\end{aligned}
$$

$$
\begin{align*}
& =\text { the projection of the line connecting } \\
& \text { node isl with the center of the frag- } \\
& \text { cent upon a line perpendicular to the } \\
& \text { line joining nodes i and i+1. } \\
& \text { Next, examine }\left({ }_{a}^{\top}\right)_{j+1} \text { which is indicated } \\
& \text { schematically in Fig. 15b and is given } \\
& \text { by Eq. } 2.65 . \\
& \text { Step id: } \\
& \text { If }\left(a_{i}^{\top}\right)_{j+1} \leq 0, \text { no collision of the fragment } \\
& \text { upon element i has occurred during the time } \\
& \text { interval from } t_{j} \text { to } t_{j+1} \text {. Hence, one can } \\
& \text { proceed to check element } i+1 \text {, etc. for the } \\
& \text { possibility of a collision of the fragment } \\
& \text { with other ring elements. } \\
& \text { Step ie: If }\left(a_{i}^{\top}\right)_{j+1}>0 \text {, a collision has occurred; } \\
& \text { corrected coordinate increments (overscipt } \\
& \text { "C") may be determined approximately by } \\
& \text { (see Figs. } 14 \text { and 15b)': } \\
& \left(\Delta Y_{f}\right)_{j+1}=\left(\Delta Y_{f}^{\top}\right)_{j+1}+\left(\Delta t^{*}\right)\left[\left(V_{f N}^{i}-V_{f N}\right) \sin \left(\alpha_{i}^{\top}\right)_{j+1}\right. \text { (2.67a) } \\
& \left.-\left(V_{f T}^{\prime}-V_{f T}\right) \cos \left(\alpha_{i}\right)_{j+1}\right] \\
& \left.\stackrel{C}{\left(\Delta Z_{f}\right.}\right)_{j+1}=\left(\Delta Z_{f}^{T}\right)_{j+1}+\left(\Delta t^{*}\right)\left[-\left(V_{f N}^{\prime}-V_{f N}\right) \cos \left(\alpha_{i}^{\top}\right)_{j+1}^{(2.67 b)}\right. \\
& \left.-\left(V_{f T}^{\prime}-V_{f T}\right) \sin \left(\alpha_{j}^{\top}\right)_{j+1}\right] \\
& \left(\Delta^{C} \theta\right)=\left(\Delta^{\top} \theta\right)_{j+1}+\left(\Delta t^{*}\right)\left(\omega_{f}{ }^{\prime}-\omega_{f}\right) \tag{2.67c}
\end{align*}
$$

$$
\begin{align*}
& \left(\Delta V_{i}^{C}\right)_{j+1}=\left(\Delta^{T} V_{1+1}+\left(\Delta t^{*}\right)\left[\left(V_{I N}^{\prime}-V_{I N}\right) S I N\left(\phi_{i}-\alpha_{i}^{T}\right)_{j+1}\right.\right. \\
& \left.+\left(V_{i T}^{\prime}-V_{1 T}\right) \cos \left(\phi_{\mu}-\alpha_{i}^{T}\right)_{j+1}\right] \\
& \left(\Delta W_{i}^{C}\right)_{j+1}=\left(\Delta W_{1}^{\top}\right)_{j+1}+\left(\Delta t^{*}\right)\left[\left(V_{i N}{ }^{1}-V_{i N}\right) \cos \left(\phi_{i}-\alpha_{i}^{\top}\right)_{j+1}\right. \tag{2.67d}\\
& \left.c \quad-\quad-\left(V_{1 T}{ }^{\prime}-V_{1 T}\right) \sin \left(\phi_{i}-\alpha_{i}^{T}\right)_{j+1}\right]_{(2.67 e)} \\
& \left(\Delta V_{i+1}^{c}\right)_{j+1}=\left(\Delta V_{2}^{T}\right)_{j+1}+\left(\Delta t^{*}\right)\left[\left(V_{2 N}^{\prime}-V_{2 N}\right) \sin \left(\phi_{i+1}{ }^{T} \alpha_{i}^{T}\right)_{j+1}^{12 .}\right. \\
& +\left(V_{2 T}{ }^{\prime}-V_{2 T}\right) \cos \left(\phi_{i+1}{ }^{-} \alpha_{i}^{\top}{ }_{j+1}\right]_{(2.67 f)} \\
& \begin{aligned}
\left(\Delta W_{i+1}\right)_{j+1}^{T}=\left(\Delta W_{2}\right)_{j+1}+\left(\Delta t^{*}\right) & {\left[\left(V_{2 N}^{i}-V_{2 N}\right) \cos \left(\phi_{i+1}-\alpha_{i}^{T}\right)_{i+1}^{i+1}(2.67 f)\right.} \\
& \left.-\left(V_{2 T}^{\prime}-V_{2 T}\right) \sin \left(\phi_{i+1}-\alpha_{i}^{T}\right)_{j+1}\right]_{(2.67 \mathrm{~g})}^{1}
\end{aligned} \\
& \begin{aligned}
\left(\Delta W_{i+1}\right)_{j+1}^{T}=\left(\Delta W_{2}\right)_{j+1}+\left(\Delta t^{*}\right) & {\left[\left(V_{2 N}^{i}-V_{2 N}\right) \cos \left(\phi_{i+1}-\alpha_{i}^{T}\right)_{i+1}^{i+1}(2.67 f)\right.} \\
& \left.-\left(V_{2 T}^{\prime}-V_{2 T}\right) \sin \left(\phi_{i+1}-\alpha_{i}^{T}\right)_{j+1}\right]_{(2.67 \mathrm{~g})}^{1}
\end{aligned} \\
& \text { where the after-impact (primed) quantities } \\
& \Delta t^{*}=\frac{\left(a_{i}^{T}\right)_{j+1}}{\left(V_{R i}\right)_{j}}=\begin{array}{l}
\text { be found from Es. } 2.44 \text { through } 2.50 \text { and } \\
\text { where time interval from actual }
\end{array} \quad \begin{array}{l}
\text { Impact on ring element i until } t_{j+1} \quad \text { (2.68a) }
\end{array} \\
& \left(V_{R i}\right)_{j}=V_{f N}-\left(\beta V_{1 N}+\alpha V_{2 N}\right) \tag{2.68b}\\
& =\text { preimpact relative velocity of point } A \\
& \text { on the fragment and point } C \text { on the ring. } \\
& \text { The terms, in Es. } 2.67 \mathrm{a} \text { through } 2.67 \mathrm{~g} \text {, which are multiplied } \\
& \text { by (} \Delta t^{*} \text {) represent corrections to the trial incremental quant- } \\
& \text { ties for the (} \Delta t^{*} \text {) time interval. Also, since } \Delta t \text { is small, one } \\
& \text { may use either angle }\left(\alpha_{i}^{\top}\right)_{j+1} \text { or angle }\left(\alpha_{i}^{\top}\right)_{j} \text { in Es. 2.67a. } \\
& \text { through } 2.67 \mathrm{~g} \text {. }
\end{align*}
$$

Step 5: Having determined the corrected coordinate increments ${ }^{+}$for the impacted ring element, this time cycle of calculation is now complete. One then proceeds to calculate the ring nodal coordinate increments and the fragment coordinates for the time step from t_{j+1} to $t_{j+2}{ }^{\prime}$ starting with Step 1. The process proceeds cyclically thereafter for as mañy time increments as desired.

This solution procedure may be carried out for as many time steps as desired or may be terminated by invoking the use of a termination criterion such as, for example, the reaching of a critical value of the strain at the inner surface or the outer surface of the ring. Appropriate modifications of this approximate analysis could be made, if desired, to follow the behavior of the ring and the fragment after the initiation and/or completion of local fracturing of the ring has occurred.

Finally, note that it is possible for the fragment to have impacted more than one ring segment during the Δt time step in question. The collision inspection process reveals this. Then, the quantities noted in Step 4 e are corrected in sequence staxting with the ring segment experiencing the "largest penetration", the next largest penetration, etc.

2.6.2 N-Fragment Attack

In the case of "attack" by n idealized fragments, each with its individual $m_{f}, I_{f} r r_{f}, \omega_{f}, V_{f N}$, and $V_{f T^{\prime}}$, a similar procedure is used. During each Δt, the collision-inspection procedure is carried out for every fragment; none, some, or all of these n fragments may have collided with one or more ring segments. The penetration distance is computed (see Eq. 2.65, for example) for each impacted segment; this penetration information is then ordered from the largest to the smallest. Then the corrected quantities indicated in Step 4 e of Subsection 2.6.1 are determined in succession, starting with the largest penetration combination, the next largest, etc. After all of the corrections have been carried out for the present Δt time interval, the calculation process of Fig. 9 proceeds similarly for the next Δt.

[^6]
CONTAINMENT RING RESPONSE PREDICTIONS

In order to illustrate the application of the present CIVM-JET analysis for predicting the transient responses of $2-\mathrm{d}$ containment structures, two types of problems have been investigated and are described in this section. These types involve the responses of containment rings to attack either (I) by a single fragment or (2) by three equal-size fragments. For convenience and simplicity, lnitially circular 4130 cast steel containment rings of uniform thickness* and fixed inner-surface radius are employed.

For the single-fragment-attack cases, it was desired to explore in a preliminary fashion, if possible, the "effectiveness" of complete containment as compared with combined containment-and-deflection (to achieve a desired fragment trajectory path) for the ldentical single-fragment attack. Accordingly, a plausible candidate for such comparisons was believed to be either a rotor rim segment with a number of attached blades or perhaps a disk segment with a number of attached blades. Thus, since the NAPTC had conducted numerous rotor burst experiments on T58 turbine rotors which were caused to fail in $2,3,4$, or 6 equal-size fraqments and since hiqh-speed photoqraphic data were available to show the behavior of these fraqments as well as of the containment rangs which were subjected to attack by these fxaqments, an example sinqle fraqment having the properties of one sixth of a $T 58$ turbine rotor was selected for the present CIVM-JET predıction studies. Similarly, for illustrative CIVM-JET studies of the response of containment rinqs subjected to 3-fraqment attack, the NAPTC fraqments for tri-hub T58 rotor bursts were chosen. In each case these selected fraqments were ideallzed to be "riqid circular fraqments" for use in the CTVM-JEX calculations, as depicted in Figs. 16a and 16b.

[^7]The main objectives of the studies discussed in Sections 3 and 4 are (a) to demonstrate an illustratuve utilization of the present approximate analysis capability included in the CIVM-JET program and (b) to display typical response behaviox and the influence of varying a limited number of geometric and material parameters which can be used to characterize 2-d containment/ deflector structures.

3.1 Single Fragment Examples

The selected single fragment xepresented by a one-sixth T58 turbine rotor fragment is shown in Fig. $16 a$ together with its mass, m_{f}, mass moment of inertia I_{f} about its $C G$, translational velocity V_{f}, rotational velocity ω_{f}, and its general dimensions. This fragment is idealized for CIVM-JET analysis purposes as being a circular disk with duplicate properties, m_{f}, I_{f}, V_{f}, and ω_{f}; its fixed radius (non-deformable fragment) was chosen to be $r_{f}=3.37$ inches, as a reasonable size-compromise between that for a circle circumscribing the undeformed pre-impact fragment and an "effective radius" of the deformed fragment as revealed from NAPTC high-speed photographs. The chosen r_{f} is, however, nearly the same as one would select based upon physical considerations in the absence of such photographs. With these properties, the pre-impact fragment possesses a translational kinetic energy (KE) of of $9.6 \times 10^{4} \mathrm{In}-1 \mathrm{~b}$ and a rotational kinetic energy (KE) or of $5.4 \times 10^{4} \mathrm{in}-\mathrm{lb}$ or a total kinetic energy (KE) o of $15 \times 10^{4} \mathrm{in}-1 \mathrm{~b}$.

Listed below are the characterizing quantities which remained fixed and those that were varied in the present calculations:

CONTAINMENT RING

Material

Fixed Quantitıes

Inner Surface Radius, r
Variables
Radial Thickness, h
Axial Length, L
where r_{Cg} is the distance from the fragment $C G$ to the rotor axis. For most of
the calculations, frictionless impact ($\mu=0$) was assumed; in a few cases the effects of $\mu \neq 0$ were explored.

In the present containment-structure response calculations, the quantity of pramary interest was the maximum transient circumferential strain ($\varepsilon_{\theta \theta}$) max produced on the containment ring during its response to fragment attack, since $\varepsilon_{\theta \theta}$ may be a convenient indicator of imminent containment ring fracture; in all cases this maximum occurred at the outer surface of the containment ring.

According to well-establıshed principles of dimensional analysis, one may express the dimensionless response parameter $\left(\varepsilon_{\theta \theta}\right)$ max as a function of the following dimensionless variables:

where w denotes the weight of the contalnment ring. Alternatively, if one assumes that a known critical value of $\varepsilon_{\theta \theta}$ can be used to define the limit of fragment containment, one can represent the containment threshold by the following dimensionless characterızation:

$$
\begin{equation*}
(w r) /(K E)_{0}=g(h / r, L / r, \mu) \tag{3.2}
\end{equation*}
$$

In Eqs. 3.1 and 3.2, fand g, respectively, denotes an unknown but experimentally and/or theoretlcally determinable functional dependence of the left-hand side "result" upon the dimensionless variables on the raght-hand side.

Although dimensionless representation of the type given by Eqs. 3.1 and 3.2 provide the most systematic and orderly way to present $\left(\varepsilon_{\theta \theta}\right)_{\max }$ or containment threshold results, it may be more graphic and clear to show (for the latter condition) simply containment ring weight w instead of only (wr)/(KE) once in the present example both r and (KE$)_{o}$ are held fixed. Other dimensional-result displays will be presented for similar reasons.

Fox the present CIVM-JET calculations, the free containment ring was modeled by means of 40^{*} uniform length finlte elements or segments in the

[^8]the circumferential direction as indicated in Fig. l7a; shown also is the nodal numbering of the ring, the attacking fragment, and the point of initial impact. The unlaxial static stress-strain properties of the 4130 cast steel ring material used in these calculations were approximated by a piecewise stralght-line-segment fit of static test data furnished by the NAPTC (Ref. 25), defined by the following stress-strain pairs (σ, ε) : $\sigma, \varepsilon=0,0 ; 80,950 \mathrm{psj}$, $.00279 \mathrm{in} / \mathrm{in} ; 105,300 \mathrm{psi}, .02250 \mathrm{in} / \mathrm{in} ; ~ a n d 121,000 \mathrm{psi}, 0.20 \mathrm{in} / \mathrm{mn}$. All of the calculations discussed in this section have utilized these static stressstrain properties; later, strain-rate effects are discussed briefly. The central-difference-operator time-step value used in all cases considered in this illustratlve study was one microsecond. This value was found to yield stable, convexgent fragment/ring interaction and response results*. In all cases, the inner surface radius of the ring was held constant at 7.50 inches. The density of this steel ring material was taken to be $0.283 \mathrm{lb} / \mathrm{cu}$ in.

Shown in Fig. 17b is the outer surface strain $\varepsilon_{\theta \theta}$ at the midlength location of elements 4,5 , and 6 as a function of time for cases of $\mu=0$ and $\mu=0.5$ for a containment ring with an axial length $\mathrm{L}=2.50 \mathrm{in}$. and a radial thickness $h=0.40$ in; the sequential locations of fragment-ring impact as a function of time are shown in Fig. 17c. One observes that for this rather extreme value ($\mu=0.5$) of friction coefficient used, the effect on $\varepsilon_{\theta \theta}$ compared with that for frictionless impact/ınteraction ($\mu=0$) is small; hence, most of the subsequent results in this report are for $\mu=0$. Also, the peak strain response (see Fig. 17b has occurred by about 450 microseconds after initıal impact. Figure l7d illustrates the distribution of the energy of the system among fragment kinetic energy, rang plastic work, ring kinetic energy, and ring elastic energy as a function of time for the case $\mu=0.5, \mathrm{~L}=2.50 \mathrm{in}$, and $\mathrm{h}=0.40 \mathrm{in}$; it is seen

[^9]that by about 600 microseconds after initial impact, these energies have reached essentially an "equilibrium" state.

The effect of $\mu=0$ vs. $\mu=0.5$ on the maximum circumferential normal strain $\left(\varepsilon_{\theta \theta}\right) \max ^{\text {is shown in Fig. } 18 \text { as a function of both the rang thickness } h ~}$ and the thickness ratio h / r for containment rings of 2.50 -inch axial length. It is seen that the value of friction coefficient μ has only a small effect upon the predicted $\left({ }_{\theta}{ }_{\theta \theta}\right)_{\text {max }}$. Hence, to minimize computing time, the results produced and discussed in this section are for cases of $\mu=0$.

Predictions of containment ring responses to impact by the single idealized fragment shown in Fig. 16a for rings of axial lengths $L=5 / 8$ in, $5 / 4$ in, and $10 / 4$ in (each axial length is increased by a factor of 2) were carried out for various ring thicknesses h and for $\mu=0$.

Shown in Fig. 19 is $\left(\varepsilon_{\theta \theta}\right)_{\max }$ as a function of h (and h / r) for fixed values of L (and L / r) ; $\left(\varepsilon_{\theta \theta}\right)_{\text {max }}$ is seen to decrease rapidly with increasing ring thickness for each given ring axial length ratio.

Instead of plotting ($\varepsilon_{\theta \theta}$) max versus h / x for given values of L / x one can plot with equal validity the implied rıng weight w and/or (wr)/(KE) 0_{0}. This is shown in Fig. 20. As expected on physical grounds, $\left(\varepsilon_{\theta \theta}\right)_{\max }$ decreases essentially monotonically with ring weight for each given value of L or L / r.

A further interesting way to depict these maximum strain predictions as a function of the problem variables is to plot ring weight w (or (wr)/(KE) ${ }_{o}$) versus ring axial length L (or L / r) for fixed value of $\left(\varepsilon_{\theta \theta}\right)_{\text {max }}$ as shown in Fig. 2l. If one assumes that ring fracture might occur at various fixed values of the normal strain $\varepsilon_{\theta \theta}$, these curves could be regarded as giving an estimate of the containment ring weight as a function of ring axial length. Thus, one notes that these predictions indicate that (assuming that a known fixed value of $\varepsilon_{\theta \theta}$ denotes the containment threshold) the contalnment ring weight decreases monotonically as the axial length (or length ratio) of the ring increases. However, the present predictions lose their validity as L increases too much because the actual structural response to attack by a fragment of given axial-direction dimensions becomes three dımensional whereas, in the present $2-d$ model this added axial direction ring material is treated as
behaving in a 2-d fashion. The result is that the present predictions tend to underestimate the structural response compared with the actual 3-d behavior. Hence, as pointed out in Subsection 1.3, one may employ the present CIVM-JET analysis to do parametric calculations, to study trends, and to compare various potential containment-structure materials;however, it remains essential as of now to develop selected experimental containment-threshold data to bridge the gap between the present simplified, convenient $2-\mathrm{d}$ predictions and the actual behavior.

3.2 Three Fragment Examples

To illustrate the use of the CIVM-JET-4A analysis and program to predict containment ring responses to multiple fragment attack, it was decided to analyze NAPTC Test No. 67 in which a 4130 cast steel containment ring of $\mathrm{L}=\mathrm{I} .501 \mathrm{in}, \mathrm{h}=.339 \mathrm{in}$, and inner surface radius $=7.50 \mathrm{in}$. was subjected to a trihub burst of a T 58 turbine rotor operating at $18,830 \mathrm{rpm}$. It appears from the high-speed movies and from post-test inspection that the ring did succeed in containing these fragments.

Shown in Fig. 16b is a schematic of one pre-impact trihub burst fragment together with the idealized fragment model selected for use in the present calculations. Each fragment has $m_{f}=0.932 \times 10^{-2} 1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{in}, \mathrm{I}_{\mathrm{f}}=0.666 \times 10^{-1}$ lb-sec-in, $V_{f}=5515 \mathrm{~nm} / \mathrm{sec}, \omega_{f}=1918 \mathrm{rad} / \mathrm{sec}$, and (KE) $=27.1 \times 10^{4} \mathrm{in}-1 \mathrm{~b}$. For the idealized model r_{f} is taken to be 2.42 in.

Because of time and funding constraints, only two illustrative calculations have been carried out for this problem -- both assuming frictionless mpact interaction ($\mu=0$). In one case the 4130 cast steel ring material was assumed to behave in an elastic, strain hardening (EL-SH) fashion without strain-rate effects. In the other case, this behavior was modified to include strain-rate effects by assuming this material to behave like "mild steel" with strain-rate constants $p=5$ and $D=40.4 \sec ^{-1}$ (Ref. 27) where the ratedependent mechanical sublayer yıeld stress σ_{y} is related to the corresponding static yield stress σ_{0} by

$$
\begin{equation*}
\sigma_{y}=\sigma_{o}\left[1+\left|\frac{\dot{\varepsilon}}{D}\right|^{1 / P}\right] \tag{3.3}
\end{equation*}
$$

For these calculations the ring was modeled by a total of 36 finite elements (segments) so that convenient impact symmetry would occur.

Deformed ring profiles observed experimentally as well as those predicted in these two calculations are shown in Fig. 22 at the following times after initial impact (TAII) : 0, 350, 700, and 1400 microseconds. It is seen that these two predictions exhibit small differences; in turn, these predictions compare favorably with the photographic observations (Ref. 25). Since there are uncertainties in the "proper modeling" of this fragment (i.e., r_{f}) and fragment/ring interactions (value or values for $\mu \neq 0$) as well as for the strain-rate material properties of 4130 cast steel, these comparisons should be regarded only as tentative. Further modeling and calculation studies should be carried out; also, more detailed and precise experimental data for such a case should be obtained by using the recently improved experimental techniques, as well as ancluding transient strain measurements.

Although no transient strain measurements are available for comparison with predictions, it is interesting to examine the predicted outer-surface strains at several locations on a "lobe" of the deformed ring as a function of time for both the EL-SH and the EL-SH-SR calculations. These transient strains are shown in Fig. 23. It is seen that the "effective material stiffening" associated with the increased yield stress arising from strainrate dependence results in significantly smaller peak transient strains.

Finally, by an inspection of the outer surface mad-element circumferential strains of all elements throughout each calculation*, the maximum $\varepsilon_{\theta \theta}$ was determined for each case. It was found for this "lobe" that $\left(\varepsilon_{\theta \theta}\right)_{\max }$ was 17.74% and 12.40% for the EL-SH and the EL-SH-SR calculation, respectively.

[^10]
DEFIECTOR RING RESPONSE PREDICTIONS

The primary purpose of this section is to illustrate via some simple examples the application of the CIVM-JET method for predicting the responses of idealized 2-d fragment-deflector structures subjected to impact by a single idealized fragment. Predicted also is the (changed) path of the attacking fragment. As depicted in Fig. 2, one seeks to prevent the attacking fragment from entering the "protected zone" but to permit or perhaps even encourage, if feasible, fragment escape from the engine casing, and penetration into the "unprotected zone", since this condition might define a minimumweight design.

In order to apply the present 2-d transient structural response analysis method to this fragment/structure interaction problem, it is useful and convenient for present purposes to view the deflector structure as consisting of an integral locally-thickened portion of the engine casing as shown schematically in Figs. 2, 7, and 24. Further, one may account approximately for the "restraining effect" of the adjacent portion of the engine casing upon the (thlck) "deflector structure" by regarding the non-thickened engine casıng as consisting of a very long cylindrical shell of uniform thickness as depicted in Fig. 24a; section views through the "standard" casing and through the deflector region are shown in Figs. 24 b and 24 c , respectively. Hence, one is led to the idealized elastic-foundation-supported deflector model shown in Fig. 24d, where the uniformly distributed elastic foundation stiffnesses per unit circumferential length are denoted by k_{N} and by $\mathrm{k}_{\mathrm{T}^{\prime}}$ in the normal and in the tangential direction, respectively.

As perhaps a reasonable first estimate, these elastic foundation constants k_{N} and k_{T} may be estimated from (a) the stiffness of this casing in a uniform radial expansion mode for k_{N}, and (b) the torsional first mode stiffness for k_{T}. In the limit of an infinitely long cylindrical shell, one may readily show from free-body equilibrium of a circumferential portion of length $d \eta$. the strain-displacement equations, and the stress-strain relations for
isotropic material that dk_{N} Is given by

$$
\begin{equation*}
d K_{N}=\left[\frac{E_{c} h_{c}}{\left.r_{m c}^{2}(1-2)^{2}\right)}\right] d \eta \tag{4.1a}
\end{equation*}
$$

or, for a short cylindrical shell by

$$
\begin{equation*}
Q K_{N}=\left[\frac{E_{c} h_{c}}{r_{m c}}\right] d m \tag{4.1b}
\end{equation*}
$$

where subscript c pertains to the engine casing (cylindrical), E_{c} is the eliastic modulus, ν_{c} is the Poisson ratio, and h_{c} is the thickness and $x_{m c}$ is the midsurface radius of the engine casing. Hence, the foundation stiffness k_{N} per unit circumferential length ($\mathrm{d} \eta=1$) is given by the quantity in square brackets in Eq. 4.la or Eq. 4. lb. Similarly, from St. Venant's torsion theory for a cylindrical shell element of $d x$ axial length, one can. show that $d k_{T}{ }^{2}$ given by

$$
\begin{equation*}
d K_{T}=\frac{1}{d x}\left[G_{C} h_{C}\right] \tag{4.2}
\end{equation*}
$$

where G_{c} is the shear modulus of the engine casing material. Since the corsional stiffness is independent of the axial length of the cylindrical shell, one may employ $k_{T}=G_{C} h_{C}$.

Because of the many geometric, mechanical, and impact variables present in fragment/deflector interaction and response problems, it is instructive to utilize some even simpler, more approximate 1 dealizations for such problems as indicated, for example, in Fig.. 24e. After studying the responses of such simpler models in various impact situations, one can more effectively select the more interesting and illuminating conditions for study in conjunction with the more realistic modeling depicted in Fig. 24d. Accordingly, studies involving the use of the simpler model shown in Fig. 24e are discussed in Subsection 4.1. This is followed in Subsection 4.2 by a description of a more restricted set of calculations carried out utilizing the more realistic model of Fig. 24d. In both of these studies because of time and funding constraints, only uniform-thickness deflector structures were analyzed although variablethickness deflectors as indicated schematically in Figs. 2 and. 7 might very well be of interest in practical applications and can be analyzed by the

CIVM-JET-4 program described in Appendix A. Also, for similar reasons, only deflectors with an included angle ψ of 90 degrees, an inner surface radius of 7.50 in, and conditions of frictionless impact ($\mu=0$) were analyzed. In all cases, the deflector structure was assumed, for illustration, to consist of 4130 cast steel, the physical and mechanical properties of which have been cited in Subsection 3.1.

For both types of idealized deflectors (Figs. 24d and 24e), these studies employed a single idealized fragment with the following properties:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{f}}=4.6 \times 10^{-3}\left(1 \mathrm{~b}-\mathrm{sec}^{2}\right) / \mathrm{nn} \quad r_{f}=3.37 \mathrm{in} \quad V_{f}=6400 \mathrm{in} / \mathrm{sec} \\
& I_{f_{i}}=2.61 \times 10^{-2} 1 \mathrm{~b}-\mathrm{sec}^{2}-\mathrm{in} \quad r_{\mathrm{cg}}=3.05 \mathrm{in} \quad \omega_{\mathrm{f}}=2100 \mathrm{rad} / \mathrm{sec} \\
& (\mathrm{KE})_{\text {ot }}=9.6 \times 10^{4} \mathrm{in}-\mathrm{lb} \quad(\mathrm{KE})_{\text {or }}=5.4 \times 10^{4} \mathrm{in}-\mathrm{lb} \quad(\mathrm{KE})_{\mathrm{o}}=15 \times 10^{4} \mathrm{in}-\mathrm{lb}
\end{aligned}
$$

A structural response quantity of interest with respect to preventing deflector structure rupture (along the to-be-protected zone) might be the maximum circumferential tensile strann $\left(\varepsilon_{\theta \theta}\right)$ max which occurs at either the outer surface or the inner surface of the deflector ring at some to-be-determined circumferential station for each case. Similarly, the determination (see Fig. 24e) of the quantities $z_{d}{ }^{*}, \alpha_{d}{ }^{*}$, and β^{*} at the instant of fragment escape from the deflector structure should be adequate to define whether or not the deflector has changed the path of the attacking fragment sufficiently to prevent its entering the "protected region" ${ }^{+}$. Therefore, these four quantities ($\varepsilon_{\theta \theta}{ }^{\text {j }}$ max $^{\prime}{ }^{\prime}{ }_{d}{ }^{*}, \alpha_{d}{ }^{*}$, and β^{*} (or their dimensionless countexparts) are of primary interest in the studies reported in Subsections 4.1 and 4.2.

Finally, for these studies each deflector ring was modeled by 10 equallength segments or finite elements (see Fig. 24e, for example).

4.1 Hinged-Fixed/Free Deflector Examples

As shown in Fig. 24e, the idealized fragment deflector structure has a hinged-fixed support at one end but is free at the other. Thus under fragment

[^11]attack, this structure experiences mpact/interaction forces (or velocity increments), inertial forces, internal elastic and plastic forces, and "translational support forces" at its hinged-fixed end. The initial point of fragment impact against the structure is identified in Fig. 24 e by the angle θ_{I}. By applying the CIVM-JET analysis and computer program, one can predict the motion and path of the fragment as well as the large-deflection elasticplastic transient response of the deflector structure.

Summarized concisely in the following tabulation are the characterizing quantities which were held fixed and those which were varied in the present studies:

HINGED-FIXED/FREE DEFLECTOR EXAMPLES

Utilizing dimensional analysis, one may, in principle, express the "dimensionless response parameters" $\left(\varepsilon_{\theta \theta}\right)_{\text {max }} \alpha_{d}{ }^{*}, z_{d}{ }^{*} / r$, and $\beta *$ as a function of the dimensionless variables, as follows for somewhat more general cases than indracated in the above tabulation:

$$
\begin{align*}
& \left(\varepsilon_{\theta \theta}\right)_{\text {max }}=f_{1}\left(h_{d} / r, L / r, \psi, \theta_{x_{1}}(W r) /(K E)_{0}, \mu\right) \tag{4.3a}\\
& \alpha_{d}{ }^{*}=f_{2}\left(h_{d} / r, L / r, \psi, \theta_{\mathrm{I}},(W r) /(K E)_{0}, \mu\right) \tag{4.3b}
\end{align*}
$$

$$
\begin{align*}
Z_{d}^{*} / r & =f_{3}\left(h d / r, L / r, \psi, \theta_{I}(W r) /(K E)_{0}, \mu\right) \tag{4.3c}\\
\beta^{*} & =f_{4}\left(h_{d} / r, L / r, \psi, \theta_{I},(w r) /(K E)_{0}, \mu\right) \tag{4.3d}
\end{align*}
$$

where a single idealized fragment with the previously-defined geometric parameters is assumed to be employed in all cases. For the present studies, however, $\mu, \psi, r,(K E)_{o}$, and the deflector ring material are held fixed. Thus, Eqs. 4.3a through 4.3d reduce to

$$
\begin{align*}
& \left(\varepsilon_{\theta \theta}\right)_{M A X}=f_{1}\left(h_{d / r}, L / r, \theta_{I}\right) \tag{4.4a}\\
& \alpha_{d}^{*}=f_{2}\left(h_{d / r}, L / r, \theta_{I}\right) \tag{4.4b}\\
& z_{d / r}^{*}=f_{3}\left(h_{d / r}, L / r, \theta_{I}\right) \tag{4.4c}\\
& \beta^{*}= \tag{4.4d}
\end{align*}
$$

Geometric similarity $1 s$ assumed to be maintained.
In order to make a limited assessment of the effects of initial impact location θ_{I} upon the fragment-deflector responses, calculations were carried out by varying θ_{I} for $L=1.25 \mathrm{in}$. and $h=0.40 \mathrm{in}$. These results are summarized below for θ_{I} vs. $\left(\varepsilon_{\theta \theta}^{-}\right)$max :

$\theta_{I}(\mathrm{deg})$	16	27.5	39	61
$\left(\varepsilon_{\theta \theta}\right)_{\max }$ (percent)	12.6	10.6	7.2	4.9

and in Figs. $25 a$ and $25 b$ for α_{d} and z_{d} (and z_{d} / r), respectively, as a function of time after initial impact (TAII) ; β is of lesser interest and is not shown.

For this highly-idealized configuration, it is seen that the response quantities are largest when θ_{I} is the smallest. However, the closer the point of initial impact is to the hinged-fixed support, the less valid is this model for approximating the behavior of deflector structures such as that depitted in Fig. 2. Further, the CIVM-JET-4A program which was utilized for these calculations has in it the restriction that proper predictions will not 'result if the attacking fragment impacts the finite element whose one end is located at the hinged-fixed support ${ }^{+}$; fragment impact/interaction is handled

[^12]properly when impact occurs with any of the other finite elements with which the deflector structure is modeled for analysis. In subsequent calculations it was decided to keep θ_{I} fixed at 16 degrees, and to vary h for each of several fixed values of L. The resulting predictions for $\left(\varepsilon_{\theta \theta}\right)_{\max }$ are shown in Fig. 26 as a function of h_{d} (or h_{d} / r) for various fixed values of L (or L / r). Alternatively, one may display $\left(\varepsilon_{\theta \theta}\right)_{\max }$ as a function of ring weight w or (wr)/(KE) for vari- . ous fixed values of L (or L / r); see Fig. 27. Further, one may display the deflector ring weight w or $w r /(K E)_{o}$ as a function of L ($O x / L$) for various fixed values of $\left(\varepsilon_{\theta \theta}\right)_{\text {max }}$ as shown in Fig. 28. If one assumes that some given ($\varepsilon_{\theta \theta}$) max will insure the avoidance of deflector ring fracture, Fig. 28 indicates that the attendant deflector ring weight decreases monotonically as the axial length L of the fragment-deflector structure is increased; of course if L becomes too large, the actual behavior will deviate from the 2-d behavior which the present CIVM-JET analysis and program requires. All of these trends are consistent with the behaviol that is expected on physical grounds.

A similar effectiveness trend may be observed by examining the effect upon the path of the fragment from its impact and interaction with the deflector structure. Shown in Figs. 29a and $29 b$ are, respectively, α_{d} and z_{d} (or z_{d} / x) at TAII $=650$ microseconds as a function of h_{d} (or h_{d} / r) for various fixed values of L (or L / r). Here again it is seen that an increase of L for, otherwise fixed conditions leads to larger fragment path deviations. Note that Figs. 29a and 29b show fragment path information at TAII $=650$ microseconds rather than at the fragment-escape point (definang $\alpha_{d}{ }^{*}$ and $z_{d}{ }^{*}$); the latter occurs somewhat later for most of the cases shown, and would have re- quired longer computer runs to obtain. For present illustrative and comparative purposes, however, the α_{d} and z_{d} data shown at TAII $=650$ microseconds are believed to be informative and (from spot check examınations) to differ little from α_{d} and z_{d}.

4.2 Elastic-Foundation-Supported Deflector Examples

The influence of "support structure" upon the response and effectiveness of deflector structure has been explored in a brief approximate fashion by employing the idealized elastic-foundation-supported deflector model shown in Fig. 24d. A single idealized fragment with the same properties as defined in Subsection 4.1 was the "attacking fragment".

Summarized in the following are the fixed quantities and the variables employed:

ELASTICALLY-SUPPORTED DEFLECTOR EXAMPIES

DEFLECTOR RING	SUPPORT STRUCTURE	FRAGMENT	OTHER CONDITIONS
Fixed Quantities			
Material Inner Surface Radius, r Axial Length, L Subtended Angle, ψ	$\begin{gathered} \text { Material } \\ \text { Inner Surface Radius, } r \end{gathered}$	Material $\begin{array}{ll} m_{f}, & I_{f} \\ V_{f}, & \omega_{f} \\ r_{f}, & r_{C G} \end{array}$	$\begin{aligned} & \mu=0 \\ & \theta_{I} \end{aligned}$
Variables			
Thickness, h_{d}	Thickness, h_{c}	None	None

For the previously-discussed elastic-foundation modeling (Fig. 24d) and for somewhat more general sltuations than indicated in the above tabulation, one may express the dimensionless response quantities $\left(\varepsilon_{\theta \theta}\right)$ max $\alpha_{d}{ }^{*}, z_{d}{ }^{*} / r$, and β^{*} as a function of appropriate dimensionless variables as follows:

$$
\begin{align*}
\left(\varepsilon_{\theta \theta}\right)_{\text {MAX }} & =g_{1}\left(h_{d} / r, L / r, \psi, h_{c} / r, \theta_{I}(W r) /(K E)_{0}, \mu\right) \tag{4.5a}\\
\alpha_{d}^{*} & =g_{2}\left(h_{d} / r, L / r, \psi, h_{c} / r, \theta_{I}(W r) /(K E)_{0}, \mu\right) \tag{4.5b}\\
Z_{d} / r & =g_{3}\left(h d / r, L / r, \psi, h_{c} / r, \theta_{I}(W r) /(K E)_{0}, \mu\right) \tag{4.5c}\\
\beta^{*} & =g_{4}\left(h_{d} / r, L / r, \psi, h_{c} / r, \theta_{I},(w r) /(K E)_{0}, \mu\right) \tag{4.5d}
\end{align*}
$$

In Eqs. 4.5a through 4.5d, it is assumed that geometric similarity is maintained and that the deflector structure and the engine casing (support) structure consist of the same ${ }^{+}$given material. Also, a single idealized fragment having the previously-defined geometric properties is assumed to be used in all cases ${ }^{+}$.

[^13]In addition, surice $\psi, r, \dot{L},(K E)_{o}, \theta_{I}$, and μ are held fixed in the present studies, Eqs. 4.5a through 4.5d reduce to:

$$
\begin{align*}
& \left(\varepsilon_{\theta \theta}\right)_{\text {MAX }}=g_{1}\left(h_{d / r}, h_{c} / r\right) \tag{4.6a}\\
& \alpha_{d}^{*}=g_{2}\left(h_{d / r} h_{c} / r\right) \tag{4.6b}\\
& Z_{d}^{* / r}=g_{3}\left(h_{d / r}, h_{c} / r\right) \tag{4.6c}\\
& \beta^{*}=g_{4}\left(h_{d} / r, h_{c} / r\right) \tag{4.5d}
\end{align*}
$$

where the above-noted fixed values are

$$
\begin{aligned}
\psi & =90 \mathrm{deg} & (\mathrm{KE})_{O} & =15 \times 10^{4} \mathrm{in}-1 \mathrm{~b} \\
r & =7.50 \mathrm{in} & \theta_{I} & =16 \mathrm{deg} \\
\tau & =1.25 \mathrm{in} & \mu & =0
\end{aligned}
$$

Thus it is seen that the "retained variables" are h_{d} and h_{c}.
For time-and-economy reasons only two values of casing thickness, h_{c}, were explored: 0.1 in and 0.6 in ; three values of deflector-ring thickness, h_{d}, were used: $0.20,0.40$, and 0.80 nn . Assuming the engine casing to consist of steel with $\mathrm{E}=29 \times 10^{6} \mathrm{psi}$ and $\mathrm{G}=11.5 \times 10^{6} \mathrm{psi}$, the elastic foundation stiffnesses were estimated to be:

CASE	A	B
h_{C} (in)	0.10	0.60
$k_{N}\left(l b / i n^{2}\right)$	$.544 \times 10^{5}$	3.07×10^{5}
$k_{T}\left(1 b / i n^{2}\right)$	1.15×10^{6}	6.90×10^{6}

Here, in accordance with the estimates furnished by Eqs. 4.1a and 4.2, the thicker (0.60 in) engine casing (or foundation support) provides increased normal-direction and increased tangential-direction elastic stiffness compared with that for the thinner (0.10 in) casing structure.

Shown in Fig. 30 is $\left(\varepsilon_{\theta \theta}\right)_{\max }$ as a function of deflector structure thickness h_{d} (or h_{d} / r) for the two sizes of support structure thickness*:

[^14]Case A for $h_{c}=0.1$ in. and Case B for $h_{c}=0.6$ in. Note that $L=1.25$ in, $\theta_{I}=16 \mathrm{deg}$, and $\mu=0$ have been used. It is seen that the more rugged Case B support structure reduces $\left(\varepsilon_{\theta \theta}\right)_{\max }$ for all values of deflector structure thickness h_{d}. However, for either Case A or Case B, the dependence of ($\varepsilon_{\theta \theta \text { max }}$ upon the deflector thickness h_{d} is somewhat unexpected in that the "expected monotonic decrease" of ($\varepsilon_{\theta \theta}$) max with increasing h_{d} is not observed. The curious behavior seen in Fig. 30 may be the result of having "inspected" the $\varepsilon_{\theta \theta}$ value at the inner and the outer surface only at the midspan station of each finite element. It should be expected that the location of $\left(\varepsilon_{\theta \theta}\right)_{\max }$ may very well be at some other spanwise location. Hence, a more thorough "inspection" of $\varepsilon_{\theta \theta}$ should reveal a more "sensible" trend of $\left(\varepsilon_{\theta \theta}\right)_{\text {max }}$ with increasing h_{d}. For example, one could feasibly make such evaluations at the inner and the outer surface at each of the three spanwise Gaussian stations of each finite element. Such more thorough studies will be conducted in the near future. Finally, for all of the cases shown in Fig. $30,\left(\varepsilon_{\theta \theta}\right)_{\max }$ was found to have occurred on the outer surface of the ring, but not necessarily in the same deflector-ring finite element.

- The influence of support-structure thickness h_{c} upon diverting the attacking fragment from its pre-impact path is shown in Fig. 3la for α_{d} and β, and in Fig. 3lb for z_{d} (or z_{d} / r) as a function of time for a deflector structure with $L=1.25$ in and $h_{d}=0.40$ in. It is seen, as expected, that the more rugged support structure increases the amount by which the fragment is caused to deviate from its pre-impact path.. On the other hand, the amount of frag-ment-path deviation changes only slightly as a function of deflector ring thickness h_{d} for a fixed value of engine casing (or support) thickness h_{c} as seen from Figs. 32 a and 32 b for α_{d} and z_{d} (or z_{d} / r), respectively, at WAII = $650 \mu \mathrm{sec}$ which is close to but not at the fragment escape point for all cases. Thus, Figs. 3la through 32 b suggest that the ruggedness of the (Iinear elastic) support structure is much more effective in changing the path of the attacking fragment than is achieved by simply increasing the thickness h_{d} of the deflector structure itself for a given set of support stiffness values k_{N}, k_{T}.

In Figs. 3la and 32a, both the fragment location angle α_{d} and the fragment path angle β (angle between the original and the current direction of the translational velocity vector of the fragment) are shown. Note that while the slope of the β curve is zero, no fragment-ring impacts are occurring (see β for Case B in Fig. 3la); at later times one would observe further fragmentring impacts.

4. 3 Comments

Since these parametric calculations have been of very limited scope, one must use caution so as to avoid coming to premature conclusions. More extensive studies of this type together with carefully posed "protection criteria" are recomended in order to assemble enough "trends predictions" to permit making more soundly based' conclusions. Further, one should remember that the effect of support structure upon the behavior of deflector structure has been approximated as that of a linear elastic foundation. This approximation is believed to be a good one for small deformations but clearly degenerates when the deflections become larger and larger. Further effort to develop a better (nonlinear) approximation for the "foundation stiffness" may be advisable -- preferably either concurrent with or following the recommended more extensive parametric studies.

It is apparent that the carcumferential extent of fragment-deflector structures required for most prospective situations would most likely be about 180 degrees, more or less, in order to insure protection for all critical directions of possible "fragment release"; hence further studies of frag-ment-deflector pexformance involving $\psi=180$ degrees appear to be advisable. Also, the effectiveness of variable thickness deflector structure should be explored.

With these more extensive and realistic calculations* together with experimental fragment deflector performance data for verification and to assess 3 -d response effects, it should then be possible to reach a reasonable judgment as to whether complete fragment containment or fragment deflection will be the more efficient approach for those cases for which either alternative is, basically, permissible.

[^15]SUMMARY AND COMMENTS

Arguments are presented supporting the proposition that the development and the selective utilization of prediction methods which are restricted to two-dimensional (2-d) transient large-deflection elastic-plastic responses of engine rotor burst fragment containment/deflector structures are useful and advisable for parametric and trends studies. In conjunction with properlyselected experimental studies of rotor-burst fragment interaction with actual containment and/or deflector structure -- wherein three-dimensional effects occur -- one may be able to develop convenient rules-of-thumb to estimate certain actual 3-d containment/deflection structural response results from the use of the very convenient and more efficient but simplified $2-\mathrm{d}$ response prediction methods.

Accordingly, the collision-imparted velocity method (CIVM) for predicting the collision-interaction behavior of a fragment which impacts containment/deflector structures has been combined with a modified version of the JET 3C two-dimensional structural response code to predict the transient large-deflection, elastic-plastic responses and motions of containment/deflector structures subjected to impact by one or more idealized fragments. Included are the effects of friction between each fragment and the attacked structure. A single type of fragment geometry has been selected for efficiency and convenience in these fragment/structure interaction and response calculations, but the most important fragment parameters, it is believed, have been retained; n fragments each with its own $m_{f}, I_{f}, V_{f}, \omega_{f}, r_{f}$, and $r_{C g}$ may be employed.

Calculations have been carried out and reported illustrating the application of the present CIVM-JET analysis and program for predicting 2-d containment ring large-deflection elastic-plastic transient responses to (a) single-fragment impact and (b) to impacts by three equal-size fragments. The influence of containment ring thickness, axial length, and strain-rate dependence, as well as friction between the fragment and the impacted structure have been explored.

Similar illustrative calculations have been performed and reported for the responses of (a) ideal hinged-fixed/free and (b) elastic-foundationsupported fragment-deflector rings of uniform thlckness to impact by a single' idealized fragment. With respect to the latter more-realistic and yetidealized model, it was found that plausible increases in the values for the stiffnesses of the "elastic foundation" was a more effective means for changing the path of the attacking fragment than by plausible increases in the thickness of the deflector ring i.tself.

Because of time and funding constraints, these calculations were of very limited scope; some interesting response trends, however, were noted. More extensive calculations in which more of the problem variables accommodated in the CIVM-JET- 4 A analysis and program are included and in which each of certann quantities are varied over plausible ranges would provide a more illuminating picture of the roles and effectlveness of these parameters with respect to fragment-containment and/or fragment-deflection protection.

It is believed that the present analysis method and program (CIVM-JET-4A) provides a convenient, versatile, and efficient means for estimating the effects of numerous problem variables upon the severe nonlinear $2-\mathrm{d}$ responses of variable-thickness containment/defelctor structures to engine-rotorfragment impact. Although a limited number of comparisons of predictions with appropriate experimental data show encouraging agreement, more extensive comparısons are required to establish a firmer assessment and confidence level in the accuracy and the adequacy of the present prediction method, consistent with its inherent $2-\mathrm{d}$ limitations.

Finally, in addition to carrying out more extensive parametric calculations and comparisons with appropriate experiments (both containment and deflector type), it is recommended that the following CIVM-JET analysis matters be investigated:
(1)* The development of an improved model for accounting for the restraint effects of structure attached to

[^16]or located adjacent to the containment and/or the deflector structure; this may involve defining an appropriate nonlinear hardening-type elastic or elasticplastic "foundation model".
(2) The feasibility of CIVM-JET-type analyses of situations wherein engine rotor-burst fragments strike the containment/deflector structure and then are struck by remaining rotor structure attached to the shaft, and then once again strike the C / D structure, etc.
(3)* The necessity for including transient deformation effects of the attacking fragments.
(4) The feasibility of employing the CIVM scheme in conJunction with finite-difference or finite-element shell-structure codes in order to represent the actual 3-d transient large-deflection elastic-plastic structural response behavior of shell structures subjected to fragment attack.

[^17]1. Chiarito, P.T., "Status of Engine Rotor Burst Protection Program- for Aircraft." NASA Aircraft Safety and Operating Problems Conference, Volume 1. Langley Research Center, NASA SP-270, May 4-6, 1971, pp. 75-88. Also see AIAA Journal of Aircraft, Vol. 9, No. 7, July 1972, pp. 449-450)
2. Delucia, R.A.; and Mangano, G.J.: "Rotor Burst Protection Program: Statistics on Aircraft Gas Turbine Engine Failures that Occurred in Commercial Aviation during 1971." NAPTC-PE-12, U.S. Navy, Feb. 1973. (Available as NASA CR-121151.)
3. Clarke, R.B., "Rotor Disk Burst Characteristics Data Analysis." Report No. S \& A 73-1, Boeing Commercial Airplane Company, Feb. 28, 1973.
4. --- "Eastern Grounds Nine L-l011s for Inspection." Aviation Week \& Space Technology, Vol. 98, No. 3, January 15, 1973, p. 24.
5. --- "Dlsk Plating Cited in 747 Engine Incldent." Aviation Week \& Space Technology, Vol. 96, No. 9, February 28, 1972, p. 50-51.
6. Martino, Albert A., "Murbine Disk Burst Protection Study. Phase I Final Report on Problem Assignment NASA DPR R-105." NAEC-AEL-1973, U.S. Navy, Mar. 1965. (Available as NASA CR-80962.)
7. Martino, A.A.; and Mangano, G.J., "Turbine Disk Burst Protection Study. Phases II-III - Final Report on Problem Assignment NASA DPR R-105." NAEC-AEL-1848, U.S. Navy, Feb. 1967. (Available as NASA CR-84967.)
8. Martino, A.A.; and Mangano, G.J., "Rotor Burst Protection Program Initial Test Results. Phase IV - Final Report [on Problem Assignment] NASA DPR R-105." NAPTC-AED-1869, U.S. Navy, Apr. 1968. (Available as NASA CR-95967.)
9. Martano, A.A.; and Mangano, G.J., "Rotor Burst Protection Program. Phase V - Final Report [on] Problem Assignment NASA DPR R-105." NAPTC-AED-1901, U.S. Navy, May 1969. (Available as NASA CR-106801.)
10. Mangano, G.J., "Rotor Burst Protection Program. Phases VI \& VII Exploratory Experimentation to Provide Data for the Design of Rotor Burst Fragment Containment Rings." NAPTC-AED-1968, U.S. Navy, Mar. 1972. (Available as NASA CR-120962.)
11. --- "Rotor Burst Protection Program." (Study for NASA Lewis Research Center on NASA DPR R-105 and NASA Interagency Agreement C-41581-B), Naval Air Propulsion Test Center, Phila., Pa., Progress Reports, September 1969 to April 1973.
12. Balmer, H.A. and Witmer, E.A., "Theoretical-Experimental Correlation of Large Dynamic and Permanent Deformations of Impulsively-Loaded Simple Structures." Massachusetts Institute of Technology, AFFDL-TDR-64-108, July 1964.
13. Balmer, H.A., "Improved Computer Program -- DEPROSS 1, 2, and 3 -to Calculate the Dynamic Elastic-Plastic Two-Dimensional Responses of Impulsively-Loaded Beams, Rings, Plates, and Shells of Revolution." Massachusetts Institute of Technology, ASRL TR 128-3, August 1965.
14. Wu, R.W.-H.; and Witmer, E.A., "Finite-Element Analysis of Large Mransient Elastic-Plastic Deformations of Simple Structures, with Application to the Engine Rotor Fragment Containment/Deflection Problem." ASRL TR 154-4, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, January 1972. (Available as NASA CR-120886.)
15. McCallum, R.B.; Leech, J.W.; and Witmer, E.A., "Progress in the Analysis of Jet Engine Burst-Rotor Containment Devices." ASRL TR 154-1, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, August 1969. (Available as NASA CR-107900.)
16. McCallum, R.B.; Leech, J.W.; and Witmer, E.A., "On the Interaction Forces and Responses of Structural Rings Subjected to Fragment Impact. "ASRL TR 154-2, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Sept. 1970. (Available as NASA CR-72801.)
17. Zirin, R.M. and Witmer, E.A., "Examination of the Collision Force Method for Analyzing the Responses of Simple Contalnment/Deflection Structures to Impact by One Engine Rotor Blade Fragment." ASRL TR 154-6, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, May 1972. (Available as NASA CR-120952.)
18. Atluri, S., Witmer, E.A., Leech, J.W., and Morino, L., "PETROS 3: A Finite-Difference Method and Program for the Calculation of Large Elastic-Plastic Dynamically-Induced Deformations of Multilayer VariableThickness Shells." BRL CR-60 (also MIT-ASRL TR 152-2), November 1971.
19. Huffington, N.J., Jr., "Blast Response of Panels." U.S. Army Ballistic Research Laboratories, Technical Note No. 1702, August 1968.
20. Santiago, J.M., "Formulation of the Large Deflection Shell Equations for Use in Finite Difference Structural Response Computer Codes." U.S. Army Ballistic Research Laboratories, Report BRL R1571, February 1972.
21. Wilkins, M.L., "Calculation of Elastic-Plastic Flow." Lawrence Radlation Laboratory, Livermore, UCRL-7322, Rev. I, Jan. 1969.
22. Kreyenhagen, K.N., Read, H.E., Rosenblatt, M., and Moore; W.C., "Hardening Technology Studies -- III, STRIDE Code Solutions and Extension to Multimaterial Systems." SAMSO-TR-69-16, December 1968.
23. Hageman, L.J. and Walsh, J.M., "HELP: A Multimaterial Eulerian Program for Compressible Fluid and Elastic-Plastic Flows in Two Space Dimensions and Time." (Vol. I - Formulation; Vol. II - Fortran Listing of HELP), BRL CR No. 39, Systems, Science, and Software, La Jolla, Calif., May 1971.
24. Wu, R.W.-H. and Witmer, E.A., "Computer Program - JET 3 - to Calculate the Large Elastic-Plastic Dynamically-Induced Deformations of Free and Restrained, Partial and/or Complete Structural Rings." ASRL TR 154-7, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, August 1972. (Available as NASA CR-120993.)
25. Private communlcations from G.J. Mangano, Naval Aır Propulsion Test Center, Phila., Pa., 1972 to August 1973.
26. Goldsmith, W., Impact: The Theory and Physical Behaviour of Colliding Solids, Edward Arnold (Publishers) Ltd., London, 1960.
27. Ting, T.C.T., "The Plastic Deformation of a Cantilever Beam with Strann Rate Sensitivity under Impulsive Loading." Brown University, TR 70, ONR Contract 562(10), July 1961.

(a) Before Rotor Burst

(b) After: Fragments Contained Within Casing

FIG. 1 ROTOR BURST CONTAINMENT SCHEMATIC

FIG. 2 SCHEMATICS OF THE ROTOR BURST FRAGMENT-DEFLECTION CONCEPT

SINGLE-BLADE FRAGMENT

RIM SEGMENTS

MULTIPLE-BLADE FRAGMENTS

RIM-WEB SEGMENTS

SHAFT-TYPE FAILURE

HUB OR SECTOR FRAGMENTS (DISK FRAGMENTS)

FIG. 3 SCHEMATICS OF VARIOUS TYPES OF ROTOR-BURST FRAGIENTS AND FAILURES

(a) 2D: Short Cylindracal Container

FIG. 4 SCHEMATICS OF TWO-DIMENSIONAL AND THREE-DIMENSIONAL ENGINE CASING STRUCTURAL RESPONSE TO ENGINE ROTOR FRAGMENT IMPACT

CHOICE OF TRANSIENT STRUCTURAL RESPONSE ANALYSIS METḢOD

2D	3D	3D
RINGS; BEAMS	SHELLLS	SOLIDS
RESTRICTED TYPE OF	MORE GENERAL DEFORMATIONS	EVEN MORF GENERAL TYPE
DEFORMATION		OF DEFORMATION
INCLUDES MAIN TYPES	CAPABLE OF PHYSICALLY MORE	LIMITED NUMBER OF CON-
OF EXPECTED BEHAVEOR	REALISTIC SIMULATION	DITIONS READY FOR IM-
		MEDIATE ANALYSIS
CALCULATIONS ARE	MORE COMPLEX AND EXPEN-	MUCH MORE EXPENSIVE TO
RELATIVELY SIMPLE,	SIVE TO USE	USE
SHORT, AND INEX-		

PETROS, REPSIL
HEMP, HELP, STRIDE
CHOICE FOR ENGINEERING CONVENIENCE AND SIMPLICITY

PL,AN OF ACTION
USE JET, CIVM-JET, ETC. (2D CODES) FOR
MATERIALS SCREENING

- PARAMETRIC CALCULATIONS

THICKNESS ESTIMATES FOR CONTAINERS
AND DEFLECTORS: $h_{2 D}$
CONDUCT EXPERIMENTS TO DETERMTNE THICKNESS NEEDED FOR CONTAINMENT/DEFLECTION

- 2D SHORT STRUCTURES
- 3D LONGER STRUCTURES \rightarrow FIND MIN.

REQUIRED THICKNESS: $\mathrm{h}_{\mathrm{OPT}}$
CORRELATE 2D CALCULATIONS WITH EXPERIMENT TO FIND RULE-OF-THUMB CONVERSION FOR ESTIMATING $h_{\text {OPT }}$

FIG. 5 SUMMARY OF CHOICE OF TRANSIENT STRUCTURAL RESPONSE ANALYSIS METHOD AND PLAN OF ACTION FOR THE ENGINE ROTOR FRAGMENT CONTAINMENT/DEFLECTION PROBLEM

ACTUAL 3D STRUCTURE

FREE RING

RADIAL AND TANGENTIAL

FOUNDATION-SUPPORTED RING
IDEALIZED 2D MODELS
FIG. 6 CONTAINMENT-STRUCTURE SCHEMATICS

ACTUAL 3D STRUCTURE

IDEALIZED 2D MODELS

FIG. 7 DEFLECTOR STRUCTURE SCHEMATICS

NOTE: Ring is divided into discrete segments (or finite elenents)
for analysis.
y,z represents a Cartesian inertial reference frame.

FIG. 8 SCHEMATIC OF A 2D CONTAINMENT RING SUBJECTED TO FRAGMENT IMPACT

FIG. 9 INFORMATION FLOW SCHEMATIC FOR PREDICTING RING AND FRAGMENT MOTIONS IN THE COLLISION-IMPARTED VELOCITY METHOD

FIG. 10 SCHEMATICS OF ACTUAL AND IDEALIZED FRAGMENTS

BEFORE IMPACT

(b) 1/6 T58 Turbine Rotor Bladed-Disk Fragment

FIG. 10 CONTINUED

(c) 1/3 T58 Turbine Rotor Bladed-Disk Fragment

FIG. 10 CONCLUDED

(b) Fragment and Impacted Segment

FIG. 11 IDEALIZATION OF RING CONTOUR FOR COLLISION ANALYSIS

(c) Directions $+N$ and $+T$

FIG. 11 CONCLUDED

$$
\begin{aligned}
& \gamma_{L}=\frac{m_{2}}{m_{1}+m_{2}} \\
& \delta_{L}=\frac{m_{1}}{m_{1}+m_{2}}
\end{aligned}
$$

FIG. 12 EXPLODED SChematic of the lumped mass COLlision MODEL AT THE INSTANT OF IMPACT

FIG. 13 THE TRAJECTORY OF THE IMAGE POINT $\overline{\mathrm{P}}$ IN THE $\mathrm{p}_{\mathrm{N}}-\mathrm{p}_{\mathrm{T}}$ PLANE TO DESCRIBE THE STATE AT EACH CONTACT INSTANT FOR VARIOUS IMPACT PROCESSES

(c) $\mathrm{B}_{3}>0, v<\Lambda$

FIG. 13 CONTINUED

(e) $\mathrm{B}_{3}>0, \quad v>\Lambda, \quad v<\Omega$

FIG. 13 CONCLUDED

FIG. 14 COORDINATES, GENERALIZED. DISPLACEMENTS, AND NOMENCIATURE FOR A 2D ARBITRARILY-CURVED-RING FINITE ELEMENT

(a) Projection Inspection

FIG. 15 INSPECTION FOR DETERMINING A COLLISION OF THE FRAGMENT WITH THE RING

"MAXIMUM PENETRATION CONDITIION"

NOTE: 1. $\quad\left(p_{i}\right)_{j+1}=\left(\alpha s_{i}\right)_{j+1}$
2. $\underset{\left(a_{j}\right)_{j+1}}{T}=\left(V_{A_{N}}-V_{C_{N}}{ }^{\prime}\right)_{j}(\Delta t *) \equiv\left[V_{R_{i}}\right]_{j}(\Delta t *)$ $\Delta t *$ is the time interval from actual impact until t_{j+1} (see Eq. 2.68a)
(b) Penetration Inspection

FIG. 15 CONCLUDED

1/6 T58 TURBINE ROTOR FRAGMENT

$$
\begin{aligned}
\mathrm{m}_{\mathrm{f}} & =4.6 \times 10^{-3} \mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN} \\
\mathrm{I}_{\mathrm{f}} & =2.61 \times 10^{-2} \mathrm{LB}-\mathrm{SEC}^{2}-\mathrm{IN} \\
\omega_{\mathrm{f}} & =20,000 \mathrm{RPM} \\
\mathrm{~V}_{\mathrm{f}} & =6400 \mathrm{RAD} / \mathrm{SEC}) \\
& (2100 \mathrm{SEC}
\end{aligned}
$$

CIRCULAR DISK IDEALIZED MODEL

$$
\mathrm{m}_{\mathrm{f}}=4.6 \times 10^{-3} \mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN}
$$

$$
I_{f}^{f}=2.61 \times 10^{-2} \mathrm{LB}-\mathrm{SEC}^{2}-\mathrm{IN}
$$

$$
\begin{aligned}
\omega_{\underline{F}}= & 20,000 \mathrm{RPM} \\
& (2100 \mathrm{RAD} / \mathrm{SEC})
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{f}}=6400 \mathrm{IN} / \mathrm{SEC}
$$

$$
x_{£}=3.37 \mathrm{IN}
$$

(a) Circular Disk Representation of a $1 / 6$ T58 Turbine Rotor Fragment

$1 / 3$ T58 TURBINE ROTOR FRAGMENT
CIRCULAR DISK IDEALIZED MODEL

$$
\begin{aligned}
\mathrm{m}_{\mathrm{f}} & =9.32 \times 10^{-3} \mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN} \\
\mathrm{I}_{f} & =6.66 \times 10^{-2} \mathrm{LB}-\mathrm{SEC}^{2}-\mathrm{IN} \\
\omega_{f} & =18,830 \mathrm{RPM} \\
v_{f} & =5515 \mathrm{IN} / \mathrm{SEC}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{m}_{\mathrm{f}} & =9.32 \times 10^{-3} \mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN} \\
\mathrm{I}_{\mathrm{f}} & =6.66 \times 10^{-2} \mathrm{LB}-\mathrm{SEC}^{2}-\mathrm{IN} \\
\omega_{\mathrm{f}} & =18,830 \mathrm{RPM} \\
& (1972 \mathrm{RAD} / \mathrm{SEC}) \\
\mathrm{V}_{\mathrm{f}} & =5515 \mathrm{IN} / \mathrm{SEC} \\
\mathrm{r}_{\mathrm{f}} & =2.42 \mathrm{IN}
\end{aligned}
$$

(b) Circular Disk Representation of a $1 / 3$ T58 Turbine Rotor Fragment

FIG. 16 FRAGMENT IDEALIZATIONS USED IN THE PRESENT STUDY

RING
4130 CAST STEEL
$r=7.5 \mathrm{IN}$
$\mathrm{L}=2.50 \mathrm{IN}$
$\mathrm{h}=0.40 \mathrm{IN}$
$\rho=0.283 \mathrm{LB} / \mathrm{CU} . \mathrm{IN}$

FRAGMENT
$r_{f}=3.37 \mathrm{in}$
$\mathrm{m}_{\mathrm{f}}=4.6 . \times 10^{-3} \mathrm{LB}-\mathrm{SEC}^{2} / \mathrm{IN}$
$I_{f}=2.61 \times 10^{-2} \mathrm{LB}-\operatorname{SEC}^{2}-\mathrm{IN}$
$\mathrm{V}_{\mathrm{f}}=6400 \mathrm{IN} / \mathrm{SEC}$
$\omega_{f}=-2100 \mathrm{RAD} / \mathrm{SEC}$
(a) Ring/Fragment Modeling and Nomenclature

FIG. 17 RING/FRAGMENT MODELING AND RESPONSE DATA FOR CONTAINMENT RINGS SUBJECTED TO. SINGIE-FRAGMENT ATTACK

(b) Ring Element Midlength Outer Surface Cạcumferential Strain Histories

FIG. 17 CONTINUED

(c) Fragment Impact Position as a Function of Time After Initial Impact for Frictional and Frictionless Impact Cases for a Ring of Constant Thickness

FIG. 17 CONTINUED

(d) Illustration of the Time Histories of Fragment Kinetic Energy, and Containment Ring Elastic Enexgy, Kinetic Energy, and
Plastic Work
FIG. 17 CONCLUDED

FIG. 18 EEFECT OF FRICTION ON THE PREDICTED MAXIMUM CIRCUMFERENTIAL
STRAIN PRODUCED ON 4130 CAST STEEL CONTAINMENT RINGS BY
SINGLE FRAGMENT IMPACT

FIG. 19 PREDICTED MAXIMUM CIRCUMFERENTIAL STRAIN FOR SINGLE FRAGMENT ATTACK
AS A FUNCTION OF RING THICKNESS FOR FIXED RING AXIAL LENGTHS

LENGTH SCALE (IN)

FIG. 22 COMPARTSON OF PREDICTED RING PROFILES OBTAINED WITH AND WITHOUT STRAIN RATE EFFECTS-WITH NAPTC PHOTOGRAPHIC TEST DATA

Lengeth scale -(IN)

FIG. 22 CONTINUED

FIG. 22 CONTINUED

- EXPERIMENT

FIG. 22 CONTINUED

FIG. 23 COMPARISON of RING OUTER SURFACE STRAINS AT A "LOBE" of the ring deformed by 3-Fraciment Attack for the El-Sh And El-Sh-SR CASES AS A FUNCTION OF TIME AFTER INITIAL IMPACT

(a) Idealized Engine Casing with an Integral Deflector

(b) Section Through "Standard" Casing
(c) Section Through "Deflector"

FIG. 24 SCHEMATICS AND NOMENCLATURE FOR AN IDEALIZED INTEGRAL-TYPE FRAGMENT DEFLECTOR

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{N}} \text { - see Eqs. } 4.1 \mathrm{a} \text { and/or } 4.1 \mathrm{~b} \\
& \mathrm{k}_{\mathrm{T}} \text { - see Eq. } 4.2
\end{aligned}
$$

(d) Idealized Elastically-Supported Deflector Model Selected for Analysis

FIG. 24 CONCLUDED
100

fig. 25 influence of the initial-impact location θ upon the path of the fragment which impacts THE IDEALIZED HINGED-FIXED/FREE DEFLECTOR

(b) FRAGMENT DIVERSION z_{d} NORMAL TO ITS PRE-IMPACT PATH

FIG. 2.5. CONCLUDED

FIG. 26 predicted maximum circumperential strain as a function of deflector ring thickness (h / x RATIO) FOR VARIOUS AXIAL LENGTHS

FIG. 27 PREDICTED VARIATION IN MAXIMUM CIRCUMFERENTIAL STRAIN AS A FUNCTION OF DEFLECTOR RING WEIGHT (wr)/(KE) ${ }_{0}$ RATIO) FOR VARIOUS AXIAL LENGTHS

FIG. 28 PREDICTED DEFLECTOR RING WEIGHT FOR SINGLE FRAGMENT ATTACK AS A FUNCTION OF RING AXIAL LENGTH FOR FIXED VALUES OF MAXIMUM CIRCUMFERENTIAL STRAIN

(a) Fragment Path Diversion Angle, α_{d}

FIG. 29 FRAGMENT PATH DATA AT TAII $=650$ MICROSECONDS FOR $\theta_{I}=16$ DEGREES AS A FUNCTION OF DEFLECTOR RING THiICKNESS FOR FIXED VALUES OF L (IDEALIZED H-F/F DEFLECTOR)

(b) Fragment Diversion \mathbf{z}_{d} Normal to Its Pre-Impact Path

FIG. 29 CONCLUDED

FIG. 30 PREDICTED MAXIMUM CIRCUMFERENTIAL STRAIN OF THE FOUNDATION-SUPPORTED DEFLECTOR AS A FUNCTION OF DEFLECTOR THICKNESS FOR TWO DIFFERENT SETS OF SUPPORTSTRUCIURE RIGIDITIES

FIG. 31 PREDICTED FRAGMENT-PATH DIVERSION AS A FUNCTION OF TIME AFTER INITTAL IMPACT FOR TWO DIFFERENT SETS OF SUPPORT-STRUCTURE RIGIDITIES

FIG. 32 PREDICTED FRAGMENT PATH DIVERSION DATA AT 650 MICROSECONDS AFTER INITIAL IMPACT AS A FUNCTTON OF DEFLECTOR THICKNESS h_{d} FOR TWO DTEFERENT SETS OF SUPPORT-STRUCTURE RIGYDITIES

(b) Fragment Diversion z_{d} Normal to its Pre-Impact Path

FIG. 32 CONCLUDED

APPENDIX A

USER'S GUIDE TO CIVM-オET-4A

A. 1 General Description of the Program

A. 1. 1 Introduction

The CIVM-JET-4A computer program is an addition to the series of computer programs which are intended to be made available to the aircraft industry for possible use in analyzing structural response problems such as containment/deflection rings intended to cope with engine rotor-burst fragments.

The CIVM-JET-4A program written in FORTRAN IV permits one to predict the fragment collision-induced large, two-dimensional, elastic-plastic transient, Kirchoff-type responses of a complete or partial single-layer, vari-able-thickness ring with various supports, restraints, and/or initiallyprescribed displacements.*

The geometric shapes of the structural rings can be simple circular or arbitrarily curved with variable thickness along the circumferential direction. Strain hardening and strain-rate sensitive material behavior are taken into account, as well as the presence of fragment/ring surface friction.

The CIVM-JET-4A program predicts the collision-induced rigid body velocity and position changes of the attacking fragment.

The CIVM-JET-4A program which combines the CIVM scheme with a convenient but modified version of the JET 3C code of Ref. 24 embodies the spatial finite element and temporal finite difference analysis features. The relative ease and versatility with which the spatial finite element technique can be applied to a structure with complicated boundary conditions, geometric shape, and material properties makes this method of analysis well suited for use in the present application. The pertinent analytic development and the solution method upon which CIVM-JET-4A is based are presented in Ref. 14. The reader is invited to consult Ref. 14 for a very detailed description of this anformation. The

[^18]CIVM-JET-4A computer program can analyze the collision induced ring responses and rigid-body fragment motions of:
(a) Collisions involving a maximum of six fragments, each possessing different mass, mass moment-of-inertia, velocity-component, radius, and $r_{C G}$ parameters.
(b) Collisions involving the presence of fragment-ring surface friction.
(c) Structural rings, complete or partial, whose geometric shape can be circular or arbitrarily curved, with variable thickness.
(d) A structural ring, with various support conditions, subjected to distributed elastic restraints (Fig. A.3c).

A. 1. 2 Containment/Deflector Ring Geometry, Supports,

 Elastic Restraints, and Material PropertiesIn the present analysis the transient structural responses of the ring are assumed to consist of planar (two-dimensional) deformations. Also the Bernoulli-Euler (Kirchhoff) hypothesis is empioyed; that is, transverse shear deformation is excluded. In the structural finite element context, such problems are termed "one-dimensional".

The geometric shapes of the ring that can be treated are divided for convenience into the following four groups as shown schematically in Fig. A.I:
(1) Circular partial ring with uniform thickness.
(2) Circular complete ring with uniform thickness.
(3) Arbitrarily curved complete ring with variable thickness.
(4) Arbitrarily curved partial ring with variable thickness.

For each of these configurations, the cross sections of the ring are assumed to be rectangular in shape.

In the spatial finite-element analysis, the ring is represented mathematically by an assemblage of discrete (or finite) elements compatibly joined
at the nodal stations. The geometry and nomenclature of an arbitrarily curved ring element is shown in Fig. A.2. For application to arbitrarily-curved, variable-thickness ring structures, the finite elements are described by reading in the global Y and Z coordinates, the local-coordinate slope ϕ, and the thickness of the ring at each node. The displacements within each element are determined from the displacement values at these nodes through the means of' appropriate interpolation functions. The reader interested in a detailed derivation of this assumed-displacement method is referred to Ref. 14 for an in-depth discussion.

As for the support conditions of the structure, the CIVM-JET-4A program includes three types of prescribed nodal displacement conditions (see Fig. A.3a):
(1) Symmetry*

$$
\begin{aligned}
& (v=\psi=0) \\
& (v=w=\psi=0) \\
& (v=w=0)
\end{aligned}
$$

(2) Ideally-Clamped*
(3) Smoothly-Hinged/Fixed
and two types of elastic restraints (see Fig. A. 3b) :
(a) Point elastic restraints (elastic restoring spring) at given locations. (3 directions: normal, tangential, and rotational),
(b) Distributed elastically restrained (elastic foundation) over a given number of elements (3 directions; see Fig. A. 3c).

In the CIVM-JET-4A program, the mechanical sublayer model is used to describe the material properties of the ring. The input to the program takes the form of a series of stress-strain coordinates that define the straight line segments that the user has chosen to represent the stress-strain diagram of the material used. Various examples of different types of material behavior (elastic-perfectly-plastic (EL-PP), elastic, strain-hardening strain-rate dependent (EL-SH-SR), etc.) input are shown in Fig. A. 4.
A.1.3 Fragment Geometry and Initial Conditions

As was shown schematically in Fig. 3, the possible fragment types

[^19]resulting from turbine engine failure are of various geometric configurations. A wide range of velocity components is also foreseen. The representation chosen for use in the CIVM-JET-4A program is the circular disk model that is shown in Fig. 16. The model-fragment mass, moment of inertia, and velocity components are specified to correspond with those of the actual fragment. The diameter of the idealized circular-disk fragment may be chosen, for example, so that the model covers the actual fragment outline out to a position midway between the fragment center of gravity and the tip of the attached blades for the disk sector shown. The user is free to employ any other plausible value that he chooses.

The specification of the idealized attacking fragment, therefore, is accomplished through the input of the following parameters for each attacking fragment (maximum of six): •
(1) Fragment mass
(2) Fragment mass moment of inertia. about its center of gravity
(3) Diameter of the idealized fragment
(4) Initial position of fragment in the Y, Z global axes system (ćenter of gravity)
(5) Initial fragment velocity components in the global y and z directions
(6) Initial fragment rotational velocity
(7) Coefficient of restitution chosen for the collision behavior of each fragment
(8) Coefficient of ring surface friction chosen for each attacking fragment.

A. 1.4 Solution Procedure

The spatial finite-element approach is utilized in conjunction with the Principle of Virtual Work and D'Alembert's Principle to obtain the equations of motion of the structural ring subjected to a collision-induced velocity change at the nodal points. The ring structure studied is permitted to undergo large elastic-plastic transient deformations. In the interest of conciseness and convenience, the reader is invited to consult Ref. 14 for a
detailed derivation of this method that results in the following modified form of the equations of motion:

$$
\begin{equation*}
\left[M^{*}\right]\left\{\ddot{q}^{*}\right\}+\left\{p^{*}\right\}+\left[H^{*}\right]\left\{q^{*}\right\}=\left\{F^{*}\right\}-\left[K_{s}^{*}\right]\left\{q^{*}\right\} \tag{A.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
{\left[\mathrm{M}^{*}\right] \quad=} & \text { the mass matrix of the entire structure } \\
\left\{\mathrm{q}^{*}\right\},\{\ddot{\mathrm{q}} *\}= & \text { the global generalized displacements and } \\
& \text { accelerations } \\
\left\{\mathrm{P}^{*}\right\} \quad= & {\left[\mathrm{K}^{*}\right]\left\{\mathrm{q}^{*}\right\} \text { and also some plastic behavior } } \\
& \text { contributions } \\
{\left[\mathrm{K}^{*}\right] \quad=} & \text { the usual stiffness matrix of the entire } \\
& \text { structure } \\
{\left[\mathrm{H}^{*}\right]\left\{\mathrm{q}^{*}\right\}=} & \text { generalized loads resulting from large } \\
& \text { deflections and plastic strains } \\
\left\{\mathrm{F}^{*}\right\} \quad= & \text { the prescribed externally-applied gen- } \\
& \text { eralized loading acting on the structure } \\
{\left[\mathrm{K}_{\mathrm{s}}^{*}\right] \quad=} & \text { the effective stiffness matrix supplied } \\
& \text { by the presence of the elastic restraints. }
\end{aligned}
$$

The displacement and acceleration vectors in the above equation represent the quantities obtained from the impact-corrected nodal velocities of the structure.

As has been shown in Section 2, the resulting equations of motion are solved through the use of the central difference temporal operator with a timestep value that must be chosen to meet both stability and convergence criteria; this matter is discussed later in conjunction with the input.list. In the following paragraph the general solution method used is reviewed briefly.

First, information is.provided to define the geometry of the ring including its prescribed displacement conditions and elastic restraints. In addition, the required material property and attacking-fragment parameters are specified. It should be noted that the Gaussian quadrature method is used in the present analysis to evaluate the element-property matrices -- this requires that the stresses and strains be evaluated at a selected number of Gaussian stations over the "spanwise" and depthwise region of each finite element; three
spanwise and four depthwise Gaussian stations are used in the CIVM-JET-4A program. The mass and stiffness matrices for the entire structure are assembled from these individual element matrices.

Starting from a set of given initial conditions at time t_{o}, the collision inspection and correction procedure is begun. If a collision has occurred, the corrected values of the fragment velocities are used to compute the position change of the fragment during the given time interval. The ring responses are evaluated for the impact-induced displacement changes in the following manner. The strain increment developed during the particular time interval is evaluated at each spanwise and depthwise Gaussian station for each element. From a knowledge of the prescribed initial stresses and the strain increments, one can determine the stress increments, the stresses and/or the plastic strains and plastic strain increments through the use of the pertinent elastic-plastic stress-strain relations including the plastic yield condition and the flow rule. Next, the equivalent generalized load vector due to large deformations and plastic strains may be calculated. The resulting system of linear equations is solved for the unknown increments of generalized displacement at each nodal station.
A. 2 Description of Programs and Subroutines
A.2.1 Program Contents

The main CIVM-JET-4A program and the name of each subroutine are listed in the following with a brief description of the functions of each: MAIN Reads the ring geometry, material property data, the structural discretization information, and/or the prescribed displacement conditions and elastic restraints, the fragment geometry parameters and the fragment initial-velocity components. It computes the quantities that are constant throughout the program and initializes most of the variables used in the subroutines. It controls the logical flow of information supplied by the various subroutines and the overall time cycle.

ASSEF This subroutine assembles the generalized nodal load vectors (due to externally applied forces and/or large-deflection elastic-plastic effects) of each individual element into a generalized nodal load vector for the structure as a whole.

This subroutine updates the effective stiffness matrix [$K_{s}{ }^{*}$] supplied by the presence of the elastic restraints as the element effective stiffness matrices are generated. The components of the assembled effective stiffness matrix [$\mathrm{K}_{\mathrm{s}}{ }^{*}$] which is. a symmetric matrix are stored in lineararray form; only the lower triangular part of $\left[\mathrm{K}_{\mathrm{s}}{ }^{*}\right.$] need be and is stored (row-wise), starting with the first nonzero element in the row and ending with the diagonal term.

DINIT This subroutine initializes all ring response calculation vectors. Advances each of N fragments to its position at time TPRIM. (Time before which no ring impact is possible.)

ELMPP

ENERGY Performs the energy accounting procedure for the ring-
This subroutine evaluates the transformation matrices between the strain at each spanwise checking station (Gaussian) and the generalized nodal displacements for each discrete element. fragments system. Calculates the current fragment kinetic energy (for each fragment), ring kinetic energy, ring elastic energy, ring plastic work, and energy stored in the elastic restraints. Use of this subroutine is optional; it may be employed by following the procedure outlined in the input description section. For those cases where there is no need of performing the energy accounting, be sure to replace this subroutine by the dummy subroutine of the same name. (See listing of the CIVM-JET-4A program for both of these subroutines.) Finds the corresponding location of an element in the lineararray expression to a location in a two-dimensional array expression of the $[K *]$ matrix.
IDENT The IDENT subroutine is used at the beginning of the run to
print out the values of certain input parameters, such as the
ring structural discretization, geometry, and material proper-
ties; the fragment geometry and initial velocity conditions;
and prescribed ring displacement and elastic restraint con-
ditions.
This subroutine carries out the search for impact occurrence
involving one of N fragments on each element of the ring for all
fragments considered. When it is determined that a fragment-
ring collision has taken place, IMPACT calculates and applies
the appropriate correction factors to the velocities of the
fragment and the nodal points of the element impacted.
Performs the matrix inversion; a standard Gauss-Jordan
technique is used.
OMULT \quad Computes various linear arrays (in which a two-dimensional
array is stored) and vector products. A. vector results.
The PRINT subroutine computes the strain on the inner

A.2.2 Partial List of Variable Names

A ($1, \mathrm{~J}$)	A, an 8×8 matrix, defines the transformation between the element generalized nodal displacements $\{q\}$ and the parameters. $\{\beta\}$ in the assumed displacement field of each element. It is destroyed in computation and is replaced by its inverse A^{-1}.
$\mathrm{AA}(\mathrm{I}, \mathrm{M}, \mathrm{N})$	Equals A^{-1}; it defines the transformation between the element generalized nodal displacements $\{q\}$ and the parameters $\{\beta\}$ in the assumed displacement field of the Ith element.
AINT	Pre-impact approach velocity of the fragment-impacted ring element system normal to the ring element.
AL (I)	Element arc length of the Ith element.
ANG (I)	The slope which is the angle between the tangent vector and the $+Y$ axis at the Ith node.
APD	Work done on the structure by the collision of the fragments during a particular time step.
APDEN	'Total work done on the structure by the' collision of the fragments.
APN	Fragment induced impulse normal to the impacted ring element surface.
APT	Fragment induced impulse tangential to the impacted ring element surface.
$\underset{\sim}{\operatorname{ASFL}}(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L})$.	Stress and/or plastic strain weighting factor on the Lth sublayer in the Kth depthwise Gaussian point at the Jth spanwise Gaussian station of the Ith element.
AWG (I)	- Input vectors with dimension NOGA; contain Gaussian
AXG (I)	$\begin{aligned} & \text { quadrature weights } w_{i} \text { and constants } x_{i} \\ & \qquad \int_{0}^{1} f(x) d x=\sum_{i} f\left(x_{i}\right) W_{i} \\ & \text { employed in the spanwise integration of each element. } \end{aligned}$
B	Width of ring.

$\left.\begin{array}{l}\text { CMU } \\ \text { CMW }\end{array}\right\}$
$\left.\begin{array}{l}\operatorname{COIY}(I) \\ \operatorname{COIZ}(I)\end{array}\right\}$

DELD (I).

DELTAT

DENS
DET DFCGU (J)

DFCGW (J)

DISP (I)

DS

ELAST

ELFP (I)

The Y and Z components of the distance between the centroid of the fragment and the position of the I+lth node.

The initial position of nodal point I measured with respect to the Y and Z global coordinate axes.
The current position of the Ith node with respect to the global Y and Z coordinate axes.

Impact-corrected displacement increment applied to the angular position of fragment J at the current time instant. sensitivity formula. .

Total elastic energy present in the structure during the current time instant.
Element generalized nodal load vector due to the presence of large deflections and plastic

	current time instant.
FACTNT	Impact-induced correction factor applied to the tan-gential-to-impact displacement increment of node NNBIG at the current time instant.
$\left.\begin{array}{c} \text { FARE } \\ \text { FCUR } \end{array}\right\}$	Midplane axial strain and curvature increment, respectively, at the selected spanwise Gaussian station of each element.
$\left.\begin{array}{l}\operatorname{FAU}(J) \\ \operatorname{FAW}(J)\end{array}\right\}$	Location of centroid of fragment J at the present time cycle in the global y, z plane.
FLVA (I)	Assembled generalized load vector corresponding to large deflections and plastic strain presence; it equals $\{\mathrm{P} *\}+[\mathrm{H} *\}\left\{\mathrm{q}^{*}\right\}$
GFL (IR,I, J)	Stress and/or plastic. strain, weighting factor on the Jth depthwise Gaussian point at the Ith spanwise Gaussian station of the IRth element.
GZETA (IR, I, J)	Distance from the centroidal axis of the Jth depthwise Gaussian point at the Ith spanwise Gaussian station of the IRth element.
H(I)	Thickness of the ring at the Ith
HHALF (I)	Half the thickness of the ring at. the midspan of element I
HNL (I)	Work vector of dimension 8, required for the evaluation of the element generalized nodal load vector due to large deflections and elasticplastic strains.
HT (I)	Thickness of ring segment I at the point of impact.
IBIG	the .subroutine IMPACT, IBIG represents the element number on which impact occurs; element 'bounded by nodes IBIG and IPLUS=IBIG+1. In the MAIN PROGRAM; IBIG is the element: number whose midspan computed tensile strain exhibits the largest value during the run.
ICOL (I)	Vector, of length NI, contains the column number of the first nonzero entry in the Ith row of the structural mass and/or stiffness matrix.

IDET	Work vector used in subroutine FAC
IK	Number of discrete elements into which the whole structure is discretized for analysis.
INUM (1)	Vector of dimension NI contains the corresponding position in the linear array of the first nonzero entry in the Ith row of the structural mass and/or stiffness matrix.
ISIZE	Number of locations necessary for the storage of the structural mass and/or stiffness matrix in the linear array form.
IT	Current time step cycle number. Measured as time cycle after the specified TPRIM value.
JBIG	Number of fragment involved in ring element impact.
KROW (I)	The row number of the Ith irregular row in the structural mass and/or stiffness matrix.
LM (I)	Work vector of length 8 used by subroutine MINV.
M1	Cycle at which regular printout starts.
M2	Printout will occur every m2 cycles.
MM	Time step (cycle) at which run is to stop.
MMI (I)	Work vector of length 8 used by subroutine MINV.
$\left.\begin{array}{l} \text { MREAD } \\ \text { MWRITE } \\ \text { MPUNCH } \end{array}\right\}$	Number for the data input tape unit, the printed output tape unit, and the punched output tape unit, respectively. These names must be assigned numbers corresponding to the user's computing center requirements.
NBC (I)	The prescribed displacement type number
NCOND	The number of nodes at which displacement conditions are to be specified.
NFL	The number of depthwise Gaussian points through the thickness for the numerical evaluations of stress resultants (axial forces and bending moments) at each spanwise Gaussian station.

NI	Total number of degrees of freedom of structure (unrestrained); it equals the number of nodes times 4. Also, it is the number of rows in the assembled stiffness matrix.
NIRREG	Number of irregular rows in the assembled stiffness matrix.
NNBIG	Node number at which nodal impact occurs.
NODEB (I)	The node at which the prescribed displacements -are specified.
NOGA	The number of Gaussian stations to be employed for the spanwise integration of the element properties over each element.
$\left.\begin{array}{l} \text { NORP } \\ \text { NORU } \end{array}\right\}$	The number of point elastic restraints (elastic restoring springs) and the number of locally distributed elastic restraints, respectively, which are to be specified over the structure.
NQR	Number which, if greater than zero, indicates that there are elastic restraints specified over the structure.
NREL (I)	The element number at which the Ith point elastic restraint is to be specified.
NRST (1)	The first element and the number of elements,
NREU (I)	respectively, over which the Ith uniformly distributed elastic foundation is to be specified.
NSFL	Equals the number of mechanical sublayers in the strain hardening material model; also is the number of coordinate pairs defining the piecewise. linear stress-strain curve.
P	Material constant used in the strain-rate sensitivity formula.
$\operatorname{PAX}(1, J)$	Projection of the distance between the centroid location of the Jth fragment and the I+l node along the straight-line-beam-representation axis

TWG (I) TXG(I)	Input vectors with dimension NFL; contain Gaussian quadrature weights and constants of $\int_{-1}^{1} f(x) d x=\sum_{i} f\left(x_{i}\right) w_{i}$ used in the numerical integration of stresses and/or plastic strains through the thickness.
UNK (J)	Coefficient of friction between the Jth fragment and the surface of the ring.
VFA	Fragment angular velocity prior to impact.
VFN	Fragment velocity normal to ring surface prior to impact.
VFT	Fragment velocity tangential to ring surface prior to impact.
VNIBIG	Velocity of node IBIG normal to ring surface prior to impact.
VNIPLS	Velocity of node IPLUS normal to ring surface prior to impact.
VTIBIG	Velocity of node IBIG tangential to ring surface prior to impact.'
VTIPLS	Velocity of node IPLUS tangential to ring surface prior to impact.
Young	Elastic (Young's) modulus (the slope of the first segment in the piecewise linear representation of the uniaxial stress-strain curve).
$\left.\begin{array}{l} Y(I) \\ Z(I) \end{array}\right\}$	Initial Y and Z coordinates of node I in the global coordinate system.
$\left.\begin{array}{l} \text { YZET } \\ \text { ZZET } \end{array}\right\}$	The Y and Z coordinate, respectively, at a given spanwise quadrature station.

A. 3 Input Information and Procedures

The information required to punch a set of data cards for a run of the CIVM-JET-4A program is presented in a step-by-step manner in this section. The variables to be punched on the nth data card are outlined, and in a box to the right is the format to be used for that card; the definition of and some restrictions for each variable are given below. This is done for each card in turn until all are described.

Format

Card 1
B, DENS, EXANG, . 3D15.6
where
B The width of the ring (inches)
DENS The mass density of the ring material ($1 \mathrm{~b}-\sec ^{2} / \mathrm{in}^{4}$)
EXANG The total subtended angle of the ring (degrees)
(For a complete ring specify EXANG - 360 degrees)
Card 2
IK, NOGA, NFL, NSFL, MM, M1, M2, NF, 8 , 5
where
IK The number of discrete elements used to model the whole ring structure. This number cannot exceed 50 (although this limitation may be relaxed by a changing of the appropriate dimension statements of the program).
NOGA The number of spanwise Gaussian stations to be used for the spanwise numerical integration over each element in evaluating the element properties \{p\} and [h]; NOGA $=3$ is used in CIVM-JET-4A.
NFL The number of depthwise Gaussian points to be used for the numerical-integration through the thickness of the element. Used to calculate the stress resultants at each spanwise Gaussian station. NFL $=4$ is used in CIVM-JET-4A.

NSFL The number of mechanical sublayers in the strainhardening model of the material. Equals the number
of coordinate pairs defining the polygonal approximation of the stress-strain curve of the material. This number must not exceed 5 . Corresponds to the cycle number at which the run is to stop.
Ml The cycle number at which the regular printout is to begin. MI must not equal 0 . Cycles are numbered after TPRIM.
The number of cycles between regular printout (i.e., print every M2 cycles).

NF The number of fragments considered to be impacting the ring. This number is not to exceed 6 .

Card 2a
$Y(1), Z(1), \quad$ ANG (1), $H(1) \quad 4 \mathrm{DI5.6}$
$Y(1)]$ Initial Y and Z coordinates, respectively, of the
$Z(1)\}$ the first node (inches)
ANG(1) The slope (degrees) which is the angle between the tangent vector and the $+Y$ axis at the first node. An angle.from the $+Y$ axis to the tangent vector in a counter clockwise direction is defined as a positive ANG(1).
H(1) The thickness at the first node (inches)
Additional cards $2 \mathrm{aa}, 2 \mathrm{ab}, \ldots$ are punched in exactly the same format as Card $2 a$ until the total number of $2 a$ cards equals $I K+1$ for a partial ring and equals IK for a complete (360 degree) ring, where $I K$ is the value appearing on Card 2. Also, the following conditions must be satisfied by $\operatorname{ANG}(\mathrm{I}):(\mathrm{a})-180^{\circ}<\operatorname{ANG}(\mathrm{I}) \leq 180^{\circ}$, and (b) $|\operatorname{ANG}(\mathrm{I}+1)-\operatorname{ANG}(\mathrm{I})|<15^{\circ}$.

Card 3
DELTAT, CRITS, DS, P 4D15.6 where

DELTAT The time step Δt, to be employed for the timewise finitedifference operator. This value must meet all stability and convergence criteria.

CRITS Value of the "critical material fracture strain" chosen by the user. Program will indicate the time cycle at which this value is first exseeded. The value of the constants D, and p, respectively; P used in the strain-rate sensitivity formula

$$
\sigma_{y l}=\sigma_{o l}\left(1+\left|\frac{\varepsilon}{D}\right|^{1 / p}\right)
$$

where D has units $\sec ^{-1}, \sigma_{o l}$ is the static yield stress of the ℓ th mechanical sublayer and $\sigma_{y l}$ is the corresponding rate-dependent yield, stress. If the material does not exhibit strain -rate sensitive behavior, set $D S=0$ and leave P blank.

Generally speaking, the value of $\Delta t \underset{\sim}{\sim} .8\left(2 / \omega_{\max }\right)$ does not produce convergent transient ring response results for the fragment/ring structure impact situation. It is recommended; therefore, that an initial value chosen for this input parameter be tested for convergence by repeating the same calculation only with an appropriately smaller DELTAT value and evaluating the effect upon the ring response. If the change in ring response is negligible, the initial value may be used with confidence that it is a converged result. If large discrepancies exist, however, subsequent calculations must be performed to determine the most economical time step that still maintains convergent behavior.

Card 4
EPS (1), SIG (1), EPS (2), SIG (2) 4D15.6
where
EPS (1) Make up the first coordinate pair of strain and stress (ε, σ)
SIG (1) \int coordinates which are used to define the piecewise-linear. approximation of the uniaxial static stress-strain curve. The stress-strain curve for which these values and those values following are obtained must be upwardly convex with nonnegative slope. $\left(E P S=i n / i n, \operatorname{SIG}=1 b / i n^{2}\right)$.

EPS (2) Make up the second coordinate pair of strain SIG(2) , and stress coordinates.

Additional Cards $4 a$ and $4 b$ are punched in exactly the same format as Card 4 until the number of coordinate pairs equals the-value NSFL punched on Card 2. The total number of strain, stress coordinate pairs specified must not exceed 5 .

Caxd 5

FH (I), FCG(I), FCGX(I), FMASS (I), FMOI (I) 5D15.6
Card 6

UNK (I)
D15.6.
Card 7

UDOT(I), WDOT(I), ADOT(I), TPRIM(I), CR(I)
5D15.6
where
FH(I) The diameter of the circular disk model of fragment (I) (inches).
FCG(I) 'The initial Z coordinate of the centroid of fragment (I) measured from the global Y axis. The positive direction represents an initial location above the global Y.axis (inches).
FCGX(I) 'The initial ' Y coordinate of the centroid of Exagment '(I) measured from the global Z axis. The positive direction represents an initial Iocation to the right of the global : axis (inches)
FMASS (I) The mass of fragment (I)'(1b-sec ${ }^{2} /$ in).
,FMOI (I) The mass moment of inertia of fragment '(I) (1b-sec ${ }^{2}$-in)

UNK (I) Coefficient of friction between fragment (I) and the ring surface. For analyses in which the effects of an "infinitely rough" ring' surface are to be investigated; the value to be input for this variable is UNK (I) $=10.0 .(0.100000 \mathrm{D}+02)$
UDOT(I) 'The velocity component of fragment (I) parallel to the global Y axis before initial, impact (in/sec).

Positive UDOT(I) represents a fragment traveling to the right.

WDOT(I) The velocity component of fragment (I) parallel to the global Z.axis before initial impact. The positive direction denotes a fragment traveling. in an upwards (+Z) direction (in/sec.).
ADOT(I) The initial angular velocity of fragment (I) (rad/ sec.). Positive sign denotes counter clockwise rotation.

TPRIM(I) A time before which there is no possibility of fragment I impacting anywhere on the ring. The checking process begins at this time instant. It may be used to decrease the number of time cycles considered by the given run. For multiple fragments, all TPRIM values must coincide (sec).

CR(I) Coefficient of restitution between the fragment (I) and the impacted ring surface.

- Cards 5, 6, and 7 must be repeated in that order, NF times, where NF is the number of fragments involved in the present analysis.

Card 8

- $\operatorname{AXG}(1), \operatorname{AXG}(2), \operatorname{AXG}(3) \quad 3 F 15.10$
where
AXG.(I) Vector of dimension NOGA contains Gaussian quadrature constants \dot{x}_{i} for the numerical integration of

$$
\int_{0}^{1} f(x) d x=\sum_{i} f\left(x_{i}\right) w_{i}
$$

If NOGA $=3$ for example, then the following data appear on this card.
$0.1127016654 \quad 0.5 \quad 0.8872983346$

Card 9.
AWG (1) , AWG(2), AWG(3)
3F15.10
where
AWG.(I). Vector of dimension NOGA contains Gaussian quadrature weights W_{i} for the numerical integration of

$$
\int_{0}^{1} f(x) d x=\sum_{i} f\left(x_{i}\right) w_{i}
$$

If NOGA $=3$, the following data appear on Card 6

$$
0.2777777 .778^{\circ} \quad 0.4444444444 \quad 0.2777777778
$$

Card 10
TXG(1), TXG(2), TXG(3), TXG(4) . $\dot{4}$ F15.10
Card 11
TWG (1), TWG(2), TWG(3)., TWG(4) . 4 F15.10
where
$\left.\begin{array}{l}\text { TXG(I) } \\ \text { TWG (I) }\end{array}\right\} \begin{aligned} & \text { Vectors of dimension NFL contain Gaussian quadrature } \\ & \text { constants } x_{i} \text { and weights } w_{i}, \text { respectively, for the } \\ & \text { numerical-integration of: } .\end{aligned}$

$$
\int_{-1}^{1} f(x) d x=\sum_{i} f\left(x_{i}\right) w_{i}
$$

If $\mathrm{NFL}=4$. for example, then the following data appear on Card 10: .
$-0.8611363115 \quad-0.3399810435 \quad 0.3399810435$
0.8611363115
and the data
$0.3478548451 \quad 0.6521451548 \quad 0.6521451 .548$
0.3478548451
appear on Card 11.

Format

Card 12

NBCOND I5
where
NBCOND The total number of prescribed nodal displacement conditions to be specified on the structure. This number must not exceed 4. If NBCOND $\neq 0$ punch Cards 12á, ...

Card 12a
$\operatorname{NBC}(I), \operatorname{NODEB}(I) \cdot \quad 2 I 5$
where
$\left.\begin{array}{r}\text { NBC(I) } \\ \text { NODEB(I) }\end{array}\right\} \begin{aligned} & \text { The identification number and the node number, } \\ & \text { respectively, for which the Ith displacement }\end{aligned}$ condition is to be imposed.

The appropriate form of the data group $\operatorname{NBC}(I)$, NODEB(I) should be repeated•NBCOND times. If $N B C O N D=0$, there are no prescribed displacement conditions to be imposed on the structure; then omit NBC(I) and NODEB(I) on Card 12a.

The prescribed displacement identification number can be equal to 1 , 2 , or 3 , depending on the type of the prescribed displacement condition. Its description follows:
$\operatorname{NBC}(I)=1 \quad$ Symmetry displacement condition. Setting the degrees of freedom v and ψ at the node $\operatorname{NODEB}(I)$ equal to zero.
$\operatorname{NBC}(I)=2$ Ideally-clamped condition. Setting v, w, and ψ at node NODEB(I) to zero.
$\operatorname{NBC}(I)=3 \quad$ Smooth-hinged/fixed condition. Setting v and w at node NODEB(I) to zero.

Card 13
NQR, NORP, NORU 3 I5
where

NQR Inaicator which if greater than 0 indicates that the structure is subject to elastic restraints (point and/or distributed).

NORP The number of point elastic restraints (elastic restoring springs) which are prescribed over the structure. This number must not exceed 4. NORU The number of local distributed elastic restraints (elastic foundations) which are to be prescribed over the structure. This number must not exceed 4.

If there are no prescribed elastic foundations on the structure, set NQR $=0$ and leave NORP and NORU blank.

Cards l3a and 13b are included only if $N Q \bar{R}$ is greater than zero on Card 13.

If NORP $=0$ skip to Card l3b.
Card 13a
SCTP, SCTY゙, SCRP . 3DD15.6
Card I3aa
NREL(1), REX(1), NREL(2), REX(2); ... NREL(4), REX(4) 4(I5,D15.6)
where
SCTP The translational tangential restoring spring constant (lb/in)
SCTY The translational radial restoring spring constant (lb/in)

SCRP The torsional restoring spring constant.
NREL(I) The element number and the length coordinate, respec$\operatorname{REX}(I)\}$ tively, along the centroidal axis from node NREL (I) of the element at which the Ith point elastic restraint is specified. The positive direction of REX(I) is the clockwise direction from the midpoint of the element.

The data group NREL(I), REX(I) must be repeated NORP times.
If NORU $=0$ on Card 13 omit Card 13b and Card 13c. Card 14 then follows immediately.

Card 13b
SCTU, SCRU, NRST (1), NREU (1) , .. , NRST (4), NREU (4) . 2DI5.6,8I5.
where
SCTU Elastic foundation stiffness in translation, tangential to the midsurface of the ring ($\mathrm{lb} / \mathrm{in}^{2}$)
SCRU Elastic foundation stiffness in torsion (in-lb)/(rad-in)
NRST (I) $]$ The first. element and the number of elements
NREU(I) $\}$ respectively, over which the Ith elastic founda-
tion is to be specified (the first elastic foundation is distributed to element NRST(1) through and including element (NRST(1) + NREU(1)-1)

Data group NRST (I) and NREU(I) are repeated NORU times.
Card 13c
SCTW, NRST (1), NREU (1) , ... , NRST (4) , NREU (4) . D15.6,8I5
where
SCTW Elastic foundation stiffness in translation along the line of the normal to the ring's surface ($\mathrm{lb} / \mathrm{in}^{2}$). .
Card 14
ICONT
where
ICONT
Indicator which if greater than 0 indicates that this is a continuation run. It should be noted that included in the output of each completed run is a set of continuation cards which contains all of the information that is necessary to continue the same run, if desired, to obtain further timehistory information. Each completed continuation run also produces a continuation deck, so the process may be continued indefinitely as long as desired.

If the indicator ICONT is greater than zero, the continuation deck produced from the output of the previous run follows immediately. The continuation deck contains the following information:

Card 14a • 4I5
IT, IBIG, ISURF, MCRIT
where
IT The number of the time cycle at which the previous run had stopped, and is the beginning time cycle of the present continuation run.

IBIG The element number whose midspan computed tensile strain exhibits the largest value during the previous run.

ISURF Equals 1 means largest computed tensile strain occurs on the inner surface; equals 2 means on the outer surface.

MCRIT A dummy variable which controls the strain checking process to check the location where the strain first exceeds a prescribed value.
Card 14b 4D15.7

TIME, BIG, BTIME
where

- TIME The absolute time at which the previous run stopped, and is the beginning time of the present continuation run.
BIG . The largest computed tensile strain during the previous run
BIIME The time at which the largest computed tensile strain occurred during the previous run.

Card 14bb
4D15.7
DISP (I)
DISP (I) The displacement of the Ith degree of freedom at time cycle IT. Repeat cards until all degree of freedom displacements are specified with 4 different values/cara.

Format

Card 14bc

DELD (I)
4D15. 7
DELD(I) The displacement increment change of the Ith degree of freedom of the structure at time cycle IT. Repeat cards until all degrees of freedom are included, with 4 different values/ card.

Card 14bd
SNS (IR, J, K, LI)
4DI5.7
SNS (IR, J, K,L) The axial stress on the Lth mechanical sublayer at the Kth depthwise Gaussian point at the Jth spanwise Gaussian station of the IRth element at time cycle IT. Repeat cards until. all values for the entire structure are included, with 4 different values/card.
Card l4be
FCGU(J), FCGW(J), ALFA(J), DFCGU(J), DFCGW(J), DALFA(J) 6D12.6
FCGU (J) The centroidal position of the Jth fragment in the Y direction at time cycle IT (inches).

FCGW(J) The centroidal position of the Jth fragment in the Z direction at time cycle IT (inches).

ALFA(J) The total angular displacement of the Jth fragment at time cycle IT (radians).

DFCGU (J) The displacement increment in the Y global direction of the Jth fragment at the time cycle $I T$ (inches).

DFCGW(J) The displacement increment in the Z
global direction of the Jth fragment at time cycle IT (inches).

DALFA(J) The angular displacement increment of the Jth fragment at time cycle IT (rad).

A.3.1 Energy Accounting Option

To exercise the energy accounting option that is included in the CIVM-JET-4A program, the procedure is as follows:
(1) Remove, the dummy subroutine ENERGY from the source deck.
(2) Replace this duminy súbroutine with the actual ENERGY subroutine that is used to perform the energy-accounting calculation.
(3) No changes or additions to be input described above are needed.
A.3.2 Input for Special Cases of the Generai

Stress-Strain Relations
In the following, the specific input data for three special cases of the general elastic, stráain-hardening constitutive relation handled by the computer proğram áre given. Only the relevant data are noted:

1. Purely Elastic Case

Set NSFL=1 on Card 2, and make EPS(1) and SIG(I) on Card 4 sufficiently high so that no plastic deformation occurs; for example, $\operatorname{EPS}(1)=1.0, \operatorname{SIG}(1)=E S(1)$; where $E S(1)$.equals the elastic (Young's) modulus.
2. Elastic, Perfectly-Plastic Case

Set NSFL=1 on Card 2 and make EPS (I) $=$ SIG (1)/ES (I) on Card 4.
3. Elastic, Liñear Strain-Hardeñing Case

Set NSFL=2 on Card 3 and set EPS(1)=SIG(1)/ES(1): ĀIso EPS (2) and SIG(2) on Card 4 are taken sufficiently high in order to avoid plastic deformation in the second subflangé. For example, EPS(2)=1.0, and $\operatorname{SIG}(2)=(1 . .=\operatorname{EPS}(1)) \mathbf{x}$ ES(2) + SIG(1), where ES(2) is the siope of the segment in the plastic range.

A. 4 Description of the Output

The printed output begins with a partial re-iteration of the input quantities specified for the ring structüral geometry, displacement conditións, and material properties. The fragment-properties output include not only those specified by user input but also the calculated initial kinetic energy of each fragment.

After the initial printout has been completed, the following information is printed at time cycle Ml and at intervals of M2:

```
J = [IT] TIME = [TIME]
```

I V PSI CHI COPY COPZ L. M STRAIN(IN) STRAIN (OUT)
1
2
3
-
\cdot
.

PSI=	The generalized nodal displacement $\psi=(\partial w / \partial \eta)-v / R \text { at node } I(r a d)$
$\mathrm{CHI}=$	The generalized nodal displacement
	$\chi=(\partial v / \partial \eta)+w / R$ at node $I(x a d)$
COPY=	The current global y coordinate of nodal point I (in)
COPZ $=$	The current global z coordinate of nodal point I (in)
$L=$	Axial internal force resultant over the cross section at the midspan point of element I (lb)
$\mathrm{M}=$	Internal bending moment of the cross section at the midspan point of element I (in-lb)
STRAIN (IN) =	Strain on the inner surface at the midspan point of element I
STRAIN (OUT) $=$	Strain on the outer surface at the midspan point of element I
$J=$	Fragment number
FCGU (J) $=$	Global Y coordinate of the centroid of fragment J at the current time instant (in)
FCGW (J) $=$	Global Z coordinate of the centroid of fragment J at the current time instant (in)
$\operatorname{ALFA}(J)=$	Angular rotation of fragment J to the current time instant (rad).
The de a given time	tion of an impact between a fragment and a ring element le results in the following printout at that cycle:
IMPACT IT $=$ [IT $]$	ELEMENT NO. $=[\mathrm{I}]$ FRAGMENT NO. $=[\mathrm{J}]$
LOCATION ON E	ENT $=[\operatorname{PAX}(\mathrm{I}, \mathrm{J})]$ PENETRATION DIST $=$ [PD (J) $]$
$I T=$	Time cycle during which impact occurs
$\mathrm{I}=$	Ring element involved in this particular collision
$J=$	Fragment involved in this particular collision
$\operatorname{PAX}(\underline{I}, \mathrm{~J})=$	Distance from node Itl of element I to point of impact for this particular collision.

```
PD (I,J)= "Penetration distance" calculated for this particular
    collision.
    For cases involving, impact at a nodal point of the discretized struc-
ture, the output is as follows:
IMPACT IT=[IT] NODE NO.=[NNBIG] FRAG NO.=[N] PD=[PND(I,J)]
NNBIG= Node number at which impact occurs
PND(I,J)= "Penetration distance" calculated for this
    particular, collision.
For those analyses in which a check of the energy characteristics of the system is desired, the following information is output for each print time cycle
\begin{tabular}{cccc} 
CURRENT TIME CYCLE & FRAGMENT & KINETIC ENERGY \\
[IT.] & {\([J]\)} &. & [CINETF (J)]
\end{tabular}
WORK INPUT INTO RING TO TIME STEP [IT] = [RWORK]
RING KINETIC ENERGY AT TIME STEP [IT] = [CINETO]
RING ELASTIC ENERGY TO TTME STEP [IT] = [CELAS]
RING PLASTIC WORK TO TIME STEP [IT] = [PLAST]
ENERGY STORED IN ELASTIC RESTRAINTS = [SPDEN]
```



```
*It should be noted that the rigid body part of the kinetic energy, which is used to accelerate the "rigid body" mass of the structure, can be extracted and identified separately. However, for the present program dealing with rather general structural geometries and with various support/restraint conditions, it would be very unwieldy (but not impossible) to identify these separate kinetic energies; hence, the total kinetic energy is calculated and printed out.
```

PLAST $=$	Total plastic work done on the ring to the current time instant.*
SRDEN=	Energy stored in the elastic restraints (if the \quadpresence of elastic restraints is specified).

At each printout cycle, a strain-checking process is carried out. Asterisks are printed to the right of the strain printout only for the cycle when the strain first exceeds the "critical" value. No further strain checking or action is taken by the program, however, and the computational process proceeds until the end of the run as if the material had not "failed".

At the conclusion of each run, a statement "LARGEST COMPUTED STRAIN= ... OCCURS AT THE INNER (OX OUTER) SURFACE MIDSPAN OF ELEMENT ... AT TIME (SEC) = ..." is printed out. This statement gives the largest computed strain, and the time and the location at which it occurs during the transient respon se. It should be noted that the strains are computed only at every . printout cycle, and also only on the inner and outer surface at the midspan of each element.

A. 5 Complete FORTRAN IV Listing of the CIVM-JET-4A Program

The CIVM-JET-4A program consists of the following main program and
14 subroutines:

1. 'CIVM-JET-4A MAIN PROGRAM
2. ASSEF
3. ASSEM
4. DINIT
5. ELMPP
6. ENERGY

[^20]7. ERC
8. FICOL
9. IDENT
10. IMPACT
11. MINV
12. OMULT
13. PRINT
14. QREM
15. STRESS

A complete listing of the CIVM-JET-4A program is given below in the above order. The number of memory locations required on the IBM 370/165 computer at MIT is approximately 350,000 bytes. This includes the locations required for the MIT computer library subroutines.

C	*****CIVM JET 4 A *****	MAINOOLO
	INPLICIT REAL*8($\Delta-H \cdot C-Z)$	NAINOO2C
	CIMENSICN AFP $(3,3,8)$, BEPS 3,3$)$	MAINOO30
	CIMENSICN RMOI(51), CL(51), CLP(51), CLA (51), CLPA(51)	NAINOC40
	DIMENSICN A A $(50,8,8), \operatorname{TXG}(6), \operatorname{TWG}(6), E S(6), G F L(50,3,6)$	MAINOO50
	*, SOL (205), INUM(205), KROW(8), NDEX(8).	MAINOC60
	COMMON /BA/ $\operatorname{BEP}(50,3,3,8), \triangle L(50), A X G(3), A W G(3)$	MAINOO70
	COMMON/ABC/RMX(51),RWORK, CINEY(205)	MAINOO8C
	COMMON /TAPE/ MREAD, NWRITE,MPUNCH	MAINOC90
	COMMCN/SC/CRITS,RIG, ETINE,MCRIT, IBIG, ISURF	MAINO 100
	COMMON /VQ/ FLVA(205), $\mathrm{CISP}(205)$, DELD 205$), \mathrm{SAS}(50,3,6,5)$,	MAINO 110
		MAINOL20
	*COIY(205) , COIZ (205), CELTAT	MAINO 130
	COMMON/FG/Y(51), Z (51), ANG(51), $\mathrm{H}(5.1)$, B, EXANG, NS, IK, NOGA, NFL, NSFL,	MAINO140
	*NI, ICOL (205), NBCOND, NEC (4), NODEP(4)	MAINO150
	COMMON /HM/ YOUNG, DS, C5, C6, ASFL (50, 3, 6, 5), GZETA $50,3,6), \mathrm{SNO}(5)$	MAINOL60
	CCMMON/FRAG/FH(6), FCE(6), FMASS (6), FMOI (6), FCGL (6), FCGW (6), $\triangle L F A(6)$,	, MAINOI70
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\infty}}$	*UCCT (6), $\mathrm{HDOT}(6), \operatorname{ADCT}(6), \operatorname{TPRIM}(6), \mathrm{CR}(6), \mathrm{FCCX}(6)$, UNK (6), NF	MAINO 180
	COMMON /OFRAG/DFCGU(6), CFCGW(6), DALFA (6)	MAINO 190
	COMNGN/ENERG/FK (6), CINETG, CUMW, DELKE, CELAS, ELAS, PLASTC	MA INO200
	COMMCN/LEFT/P,EPS(5),SIC(5), RMASS (51)	MAINO210
	COMMON/ELFU/SPRIN(20G0), FQREF (205), REX (4), NQR, NORP, NORU, NREL (4) ,	MAINO220
	- \#NRST(4), MREU(4)	MAINO230
	CCMMON /EF/ EPSI(50), EPSO(50)	MAINO225
	$\operatorname{SIN}(G)=C S I N(Q)$	NAINO240
	$\operatorname{CCS}(Q)=\operatorname{CCCS}(6)$	MAINO250
	$\operatorname{ATAN(Q)}=\mathrm{CATAN(Q)}$	NAINO260
	$\operatorname{ABS}(Q)=[\triangle B S(6)$	MAINO270
	$S Q R T(Q)=0 \leq Q R T(Q)$	MAINO280
	MREAD $=5$	MAIN0290
	NWRITE=6	MAINO 300
	IRRUN= 1	MAINO305
	MPUNCH=7	MAINO310
5555	READ (MREAD, 1) B, DENS, EXAAG, IK, NQGA, NFL, NS FL, MM, M1, M2, NF	MAINO320
1	FQRMAT 3 C15.6/8I5)	MAINO330
	PIE=3.14159265	NAINO340

```
        IKPI=IK+1
        NS=IK
        IF(EXANG.NE.360.)NS=IKP1
        REAO(MREAC,11) (Y(I),Z(I),ANG(I),H(I),I=1,NS)
            FORMAT(4E15.6)
            CO 111 I=1,NS
        111 ANG(I)=ANG(I)*PIE/180.
        IF(EXANG.NE.360.)GO TO COl
        Y(IKP1)=Y(1)
        Z(IKP1)=Z(1)
        H(IKPII=F(1)
        ANG(IKP1)=ANG(1)
        READ(MREAC, 2IDELTAT,CRITS,DS,P,(EPS(LI,SIG(L),L=I,NSFL)
        CC,2C2 I=1,NF
        READ(MREAD,G01)FH(I),FCG(I),FCGX(I),FMASS(I),FMOI(I)
        READ(MREAD,6C1)UNK(I)
        202 READ(MREAC,602)UDOT(I),hDOT(I),ACOT(I),TPRIM(I),CR(I)
        FCRMAT(EC15.6)
        FCRMAT (5[15.6)
    FGRMAT(4E15.6/(4E15.6))
    REAC(MRFAD,3)(AXG(K),K=1,NOGA)
    REAC(MREAD,3)(AWG(K),K=1,NOGA)
    READ(MREAD,3)(TXG(K),K=1,NFL)
    RFAC(MREAD.3)(TWG(K),K=1,NFL)
    FORMAT(4F15.10)
    NI=NS*4
    READ(MREAC,4)NBCOND
        IF(NBCCNC.EQ.OTGC TC 748
        READ(MRFAD,4)(NBC(I),NODFB(I),I=1,NBCOND)
    FCRNAT(GI5)
    READ(MREAD,9).NOR,NCRP,NCRU
    FORMAT(?I5)
NX=N1
NY=M2
CUMW=O.C
CELKE=C.C
```

MAINO350
MAINO 360
MAINO 370
MAINO 380
MAINO390
MAINO400
MAINO410
MAINO 420
MAINO430
MAINO440
MA INO450
MAINO460
MAINO470
MAIN0480
MAINO490
MAINOSOO
MAINOS:10
MAINO520
MAINO530
MAINOS40
MAINO550
MAIN0560
MAINO570
MAINO580
MAINO590
MAINO600
MAIN0610
MAINO6 20
MAINO630
NAIN0640
MAIN0650
NAIN0660
MAIN067C
MAINO680
MA.IN0690
MAINOTOO

MAINO720
*)**21
MAINOT30
CALL IDENT(NQR,DENS) NAINO740
CO 70 IR=1, IK
NAINO750
DO $70 \mathrm{~J}=1$,NOGA
MAINO760
$R H=H(I R) *(1 .-A X G(J))+H(I R+1) * A X G(J)$
MAIN0770
CO $70 \mathrm{~K}=1$, NFL
GFL (IR, J, K) $=$ RH*TWG(K)*E/2.
GZETA(IR,J,K)=RH*TXG(K)/2.
ES(1)=SIG(1)/EPS(1)
MAIN0780
MAINOT90
MAINO800
IF(NSFL-1)77,77,76
MAINO810
MAINO 820
CO $78 \mathrm{~L}=2$,NSFL
$E S(L)=(S I G(L)-S I G(L-1)) /(E P S(L)-E P S(L-1))$
ES(NSFL+1)=0.0
MAINO830

CO $79 \mathrm{~L}=1$,NSFL
MAINO840

SNO(L)=ES(1)*EPS(L)
YCUNG=ES(1)
DO 71 IR=1,IK
DO $71 \mathrm{~J}=1$, NGGG
CO $71 \mathrm{~K}=1, \mathrm{NFL}$
MAI NO 850
MAINO860
MAINO 870
MAINO880
MA INO890
NAINOGOO
DO $71 \mathrm{~L}=1, \mathrm{NSFL}$
MAINO910
MAINO920
$\operatorname{ASFL}(I R, J, K, L)=G F L(I R, J, K) *(E S(L)-E S(L+1)) / E S(1)$
MA INO930
DO $15 \mathrm{I}=1$, 8
ICOL (I) $=1$
IKMI=IK-1.
IF(EXANG.NE.360.)GC TO ¿10
$0016 \mathrm{I}=3, \mathrm{JKMI}$
IK $4=1$ * 4
MAINO960
MAINOG70
MAINO980
MAINOG90
MAIN1000
IK3 $=1$ K $4-1$
IK2 $=1 \mathrm{~K} 4-2$
IK1=1K4-3
$J J=(I-1) * 4-3$
ICOL(IK1)=JJ
$\mathrm{rCGL}(I K 2)=\mathrm{JJ}$
ICOL (IK3) $=\mathrm{JJ}$
MAINLCLO
MAINi020
MAIN1030
NAIN1040
MAIN 1050
MAIN1060
MAIN1070
MAIN1080

```
                ICOL(IK4)=J.J MAIN1090
    16 CCNTINUE
            ICOL(IK*4)=1
            ICOL(IK*4-1)=1
            ICCL(IK*4-2)=1
                ICOL(IK*4-3)=1
            GC TO 218
    210
H
CONTINUE
    INLM(1)=1
        DO 99, I=2,NI
        INUM(I)=I-ICOL(I-1)+INLN(I-1)
        DO 990 I=1,NI
    990 INUM(I)=INUM(I)-ICOL(I)
        NIRREG=C
        INDEX=C
        ISET=1
        DO 116 I=1,NI
        L=ICOL(I)
        IF(ICCL(I)-ISET)117,116,119
    119 ISET=ICOL(I)
        GO TO 11E
117 AIRRFG=NIRREG+1
        IF(NIRREG-NI/2)711,711,90
    711 - KRCW(NIRREG)=I.
        NDEX(NIRREG)=INDEX
        INDEX=INDEX+I-L
```

MAIN1090
MAIN1100
MAINIIIO
NAINL120
MAIN1 130
MAIN1140
MAINLI 150
MAINL160
MAINLi70
MAIN1180
MAIN1190
NAINI 200
MAIN1210
MAINL220
NAIN1230
MAIN1240
NAIN1250
MAIN1260
MAIN1270
NAINI 280
MAINL290
MAINL300
MAINI 310
MAIN1320
MAIN1330
MAIN1340
MAIN 1350°
MAIN1360
MAINI 370
MAIN1 390
MAIN1390
MAIN1400
MAIN1410
MAIN1420
MAIN1430
MAIN1440

```
            90 CALL FICCL(NI,NI,L,ICCL)
            ISIZE=L
            WRITE(MWRITE,17) L
            FORMAT(/;' SITE OF ASSEMBLED MASS OR STIFFNESS MATRIX =',I5)
            CALL ELNPP(DELTAT,AA,ISIZE,KROW,NDEX;NIRREG,INUM,DENS,YOUNG)
        DG 981 IR=1,IKP1
        RNASS(IR)=0.C
    981 RNX(IR)=0.0
        CO 980 IR=1,IK
        CL(IR)=(2.*H(IR+1)+H(IR))/(3.*H(IR+1)+3.**(IR))
        CLP(IR)=1:0-CL(IR)
        CLA(IR)=AL(IR)*CL(IR)
        CLPA(IR)=AL(IR)*CLP(IR)
        RMOI(IR)=(H(IR)**2+4**H(IR)*H(IR+1)+H(IR+1)**2)*AL(IR)**3/
        *(36.*(H(IR)+H(IR+1)))*&*DENS
        CO 982 I=1,IKMI
        RMASS(I)=RMASS(I)+(H(I)+H(I+I))*B*DENS*CLPA(I)/2.0
N
        RMASS(I+1)=RNASS(I+1)+(H(I)+H(I+1))*E*DENS*CLA(I)/2.0
        RMX(I)=RMX(I)+RMOI(I)*CLP'(I)
    982 RMX(I+1)=RMX(I+1)+RMCI(I)*CL(I)
        IF(EXANG.EQ.360.1GO T0.583
        RMASS(IK)=RMASS(IK)+(H(IKK)+H(IK+1|)*B*DENS*CLPA(IK)/2.0
        RMASS(IK+I)=RMASS(IK+I)+(H(IK)+H(IK+1))*B*DENS*CLA (IK)/2.0
        RMX(IK)=RMX(IK)+RMOI(IK)*CLP(IK).
        RMX(IK+1)=RMX (IK+I)+RMGI IIK)*CL(IK)
        GO TO c&4
    983 RMASS(IK)=RMASS(IK)+(H(IK)+H(IK+1))%B*DENS*CLPA(IK)/2.0
        RMASS(1)=RMASS(1)+(H(IK)+H(IK+l))*B*DENS*CLA(IK)/2.0
        RMX(IK)=RNX(IK)+RMOI(IK)*CLP(IK)
        RMX(1)=RNX(1)+RMOI(IK)*CL(IK)
    984 CCNTINUE
        CO }5\mathrm{ IR=1,NS
        SGL(IR*4-3)=RMASS(IR)
        SOL(IR*4-2)=RMASS(IR)
        SOL(IR*4-1)=RMX(IR)
        SGL(IR*4)=RNX(IR)
```

MAIN1450 MAIN1460 MAIN1470 MAIN1480 MAIN1490 NAIN1500 MAIN1510 MAINI 520 NAIN1530 MAIN 1540 MAINI550 MAIN1560 MAIN1570 MAIN1580 MAIN 1590 MAIN1600 MAIN1,610 MAIN1620 MAINI 630 MAIN1640 MAIN1650 MAIN1660 MAIN1670 NAIN1680 MAIN1690 MAIN1700 MAIN1710 MAIN1720 MAIN1730. MAIN 1740 MAIN1750 MAINL 760 MAIN1770 MAIN1780 NAIN1790
MAIN1800

```
        DC 6 I=1,NI
    SCL(I)=CELTAT**2/SOL(I)
    IF (NQR .EQ.O) GQ TO 22
    DO. 23 L=1,ISIZE
    S'PRIN(L)=0.C MAIN1850
                                CALL QREM(AA,AL,AXG,AWG). MAINI860
    IF(DS.EQ.O.C) GO. TO. 21
    C5=1./P
    C6=1./DS/DELTAT
    21 M,CRIT=0
    BIG=10.***(-10)
    IBIG=0
    CC 75 I= 1,NS
    CCIY(I)=Y(I)
    COIZ(I)=Z(I)
    READ(MREAC,82)ICONT
    FORMAT(I5)
    FORMAT(4[5)
    FCRMAT(4E15.7)
    FCRMAT(GE!2.E)
    IF(ICONT-1)80,81,81
    CALL DINIT(IT,TIME)
    CC TO GS2
    READ(MREAC, 83)IT, IBIE,ISURF,MCRIT
    READ(MREAD,84)TIME,BIG,ETINE
        READ(MREAD,84)(DISP(I),I=1,NI)
        READ(MREAD,84)(DELD(I),I=1,NI)
        READ(MREAD,84)(()(SNS(IF,J,K,L),L=1,NSFL),K=1,NFL),J=1,NOGA),IR=1
        *,IK)
        READ(MREAL,385)(FCGU(J),FCGW(J),ALFA(J),DFCGU(J),DFCGW(J),
        * [ALFA(J), J=1,NF)
        IT=IT+1
        CALL IMFACT(IT,NIRREG,CEAS)
CC 994 I=1,NI N:AIN2140
```

```
MAIN1810
    MINI820
    IF (NQR -EQ.01)
    MAINI830
MAIN1840
    NAIN1870
NAIN1880
MAIN1890
M.CRIT=0 NAINI900
MAINIG10
MAINLg10
MAIN1920
MAIN1930
MAIN1940
NAIN1950
MAIN1960
MAIN1970
NAIN1980
MAIN1990
MA IN2000
MAIN2010
MAIN2020
MAIN2030
MAIN2040
MAIN2050
MAIN2060
MAIN207C
MAIN2080
vAIN2090
* AIN209.0
MAIN210.0
NAIN2110
NAIN2120
MAIN2130
DISP(I)=0ISP(I)+DELD(I)
N:A IN2140
DO 822 I= I,NF
MAIN2150
MAIN2160
```

```
            FCGU(I)=FCGU(I)+DFCGU(I) NAIN2170
            FCGW(I)=FCGW(I)+DFCGW(I) MAIN2180
            ALFA(I)=ALFA(I)+DALFA(I) MAIN2190
            DC 5.22 I=1,NI. MA.IN22.00
            FQREF(I)=0.0
    522 FLVÄ(I)=C.0
            CALL STRESS
            IF(NQR.EQ.O)GO TO 735
            CALL OMULT(SPRIN,DISP,ICOL,NI,FQREF,KROW,NDEX,NIRREG)
            DO 736 I=1,NI
    736 FLVA(I)=FLVA(I)+FQREF(I)
    735 GCNTINUE
        IF(IT-MX)815,816,815
    816 . MX = MX +MY
        CALL ENERGY(IT,KROW,NDEX,NIRREG)
    815 CONTINUE
    686 IF(NBCOND.EQ.OIGO TO 88G
        DO 888 [=1,NBCOND
        NXY=NOCEB(I)
        IF(NBC(I).EQ.1)GO TO &8\epsilon
        IF(NBC(I).EQ.2)GG TO }88
        IF(NBC(I).EQ.3)GO TO &&5
        FLVA(NXY*4-3)=0.0
        FLVA(NXY*4-1)=0.0
        GO'TO.888
    887 FLVA(NXY*4-3)=0.0
        FLVA(NXY*4-2)=0.0
        FLVA(NXY*4-1)=0.0
        GE TO 888
    885 FLVA(NXY*4-3)=0.0.
        FLVA(NXY*4,-2)=0.0
        continue
        NIFE=NI
        DC 525 I=1,NI
        DELD(I)=DELD(I)-FLVA(I)*S@OL(I)
        TINE=IT*CELTAT
```

NAIN2170
MAIN2180
MAIN2190
MAIIN2200
MAIN2210
NAIN2220
MAIN2230
MAIN2230
MAIN22.90
MAIN2300
MAIN2310
MAIN2320
MAIN2240
NAIN2250
MAIN2260
MAIN2270
MAIN2330
MAIN2340
MAIN2350
MAIN2360
MAIN2370
MAIN2.380
MAIN2390
MAIN2400
MAIN2410
MAIN2420
MA IN2430
MAIN2440
NAIN2450
MAIN2460
MAIN2470
MAIN2480
88
525

```
    00 60 IR=1,IK MAIN2500
    DO 604 I=1,NOGA MAIN2502
    CG 604 J=1,3 MAIN2504
    BEPS (I,J)=0.0 MAIN2508
    DO 604 K=1,8
    INDEX=(IR-1)*4+K
    604 BEPS(I,J)= BEPS(I,J)+ BEP(IR,I,J,K )* DISP(INDEX)
    IP=IR+1
    HDIF=H(IP)-H(IR)
    DO 60 M =1,3
    HHAG=(H(IR)+AXG(M)* HCIF) /2.0
    FARE= BEPS(M,1)+BEPS (N,2)**2/2.0
    EPI= FARE -HHAG* BEPS(N,3)
    EFO= FARE+ HHAG* BEPS (N,3)
    IF(M-2) 594,595,594
    595 EPSI(IR I=EPI
    EPSO(IR)=EPO
    594 IF (EPI .LE.BIG) GO TE 59I
    EIG=EPI
        IBIG=IR
        ISTA=M *
        ISURF=1
        BTIME=TIME
    591 IF (EPO .LE . BIG) GO TE 60
    EIG=EPD
    IBIG=IR.
    ISTA=M
        I SURF=2
        BTIME= TIME
        CONTINUE
        IF(IT-M1)S87,988,150 MAIN2562
988MI=MI+M2 NAIN2564
    MI=MI+M2
    IF(IT-MM)992,965,150
        IF(IBIG) 62,150,62
        IF(ISURF-2) 64,65,65
        FORMAT(" AT GAUSSIAN STATION =',I3)
            WRITE(MHRITE,66) BIG,IEIG,BTIME
    FORMAT(//I, LARGEST COMPUTED STRAIN =',D15.6,' OCCURS AT THE
    #INNER SURFACE OF ELEMENT =',I3,' AT TIME (SEC.) =',D15.6) MAN2610
        WFITE(MWRITE,580) ISTA MAIN2612
            GO TO 150
            WRITE(MKRITE,67) BIG,IBIG,BTIME MAIN2630
            FORMAT(///,', LARGEST COMPUTED STRAIN =',D15.6,' OCCURS AT THE MAIN2640
    #OUTER SURFACE OF ELEMENT =',I3," AT TIME (SEC.) =',D15.6) MAIN2650
        HRITE(MHRITE,580) ISTA MAIN2652
    150 HRITE(MPUNCH,83)IT,IEIG,ISURF,MCRIT MAIN2660
    WRITE(MPUNCH,84)TIME,BIG,BTIME
    WRITE(MPUNCH,84)(DISP(I),I=1;NI)
    WRITE(MPUNCH,84)(DELD(I),I=1,NI)
        HRITE(MPUNCH,84)(()(SNS(IR,J,K,L),L=1,NSFL),K=1,NFL),J=1,NOGA),
    * (R=1,IK)
        WRITE(MPUNCH,385)(FCGU{J),FCGW(J),ALFA(J),DFCGU(J),DFCGW(J),
        *DALFA(J);,J=1,NF)
1110 CALL EXIT
    END
```

 SUBROUTINE ASSEF(IR,IK,ELFP,FLVA,EXANG) ASSFOO10
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION NN(8),FLVA(1),ELFP(1)
 SIN(Q)=DSIN(Q)
 COS(Q)=DCOS(Q)
 ATAN(Q)=DATAN(G)
 ABS(Q)=DABS(Q)
 SQRT(Q)=DSQRT(Q)
 J1=IR*4
 NN(1)= J1-3
 NN(2)=J1-2
 NN(3)=\1-1
 NN(4)=J1
 IF(EXANG.NE.360.)GO TO 121
 IF(IR-IK) 121,122,122
 121 J2=(IR+1)*4
 NN(5)= \2-3
 NN(6)=J 2-2
 NN(7)=\2-1
 NN(8)= 12
 GO TO 123
 NN(5)=1
 NN(6)=2
 NN(7)=3
 NN(8)=4
 0 101 I=1,8
 M=NN(I)
 FLVA(M)=FLVA(M)+ELFP(I)
 101 CONTINUE
 RETURN
 END.
 ASSFOC20
ASSFCC30
ASSF0040
ASSF0050
ASSF0C60
ASSF0070
ASSF0080
ASSFCO90
ASSFO100
ASSF01.10
ASSF0120
ASSF0130
ASSF0140
ASSF0150
ASSFC160
ASSF0170
ASSF0180
ASSFO190
A SSF0200
ASSF0210
ASSF0220
ASSF0230
ASSF0240
ASSFO250
ASSF0260
ASSF0270
ASSF0280
ASSF0290
ASSF03C0
ASSF0310

```
```

 SUBROUTINE ASSEM(IR,ELNAS,STIFM) ASSMCOIO
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION ELMAS (8,8),NN(8),STIFM(1)
 CONMON/FG/Y(51),Z(51), ANG(51),H(51),B,EXANG,NS,IK,NOGA,NFL,NSFL, ASSMOC4O
 *NI, ICOL(205),NBCOND,NBC(4),NODEB(4)
 SIN(Q)=DSIN(Q)
 COS(Q)=DCOS(Q)
 ATAN(Q)=DATAN(Q)
 ABS(Q)=DABS(Q)
 SQRT(Q)=DSQRT(G)
 J1=IR*4
 NN(1)=J1-3
 NN(2)=Jl-2
 NN(3)=\sqrt{1-1}{1}
 NN(4)=J1
 IF(EXANG.NE.360.)GO TO 203
 IF(IR-IK) 203,204,204
 J2=(IR+1)*4
 NN(5)=J2-3
 NN(6)=N2-2
 NN(7)=J2-1
 NN(8)=J2
 GO TO 202
 204 NN(5)=1
NN(6)=2
NN(7)=3
NN(8)=4
202 DO 40.2 I= = ,8
M=NN(I)
DO 402 J=1,8
N=NN(J)
IF(M-N)402,403,403
4 0 3 ~ C A L L ~ F I C O L (M , N , L , I C O L) ~
STIFM(L)=STIFM(L)+ELMAS(I,J)
402 CONTINUE
RETURN
END
ASSMCO10
ASSMOO20
ASSM0030
ASSMCC40
ASSMCO50
ASSM0060
ASSMCC70
ASSMOC80.
ASSM009.0
ASSMO 100
ASSM0110
ASSMO 120
ASSMO130
ASSMO140
ASSMO150
ASSM0160
ASSMO170
ASSM0180
ASSMO190
ASSMC200
ASSM0210
ASSM0220
ASSM0230
ASSMO240
ASSM0250
ASSM0260
ASSM0270
ASSM0280
ASSM0290
ASSMC3CO
ASSM0310
ASSM0320
ASSM0330
ASSM0340
ASSM0350
ASSM0360
END
ASSMO370

```
```

 SUBROUTINE DINIT(IT,TIME) DINT0010
 IMPLICIT REAL*8(A-H,O-Z) DINTCC2O
 CONMON /VQ/ FLVA(205),DISP(205), CELD(205),SNS(50,3,6,5), DINTOC30
 *BINP(50,3),BIMP(5C,3),TDISP(205),TU(205),TW(205), DINT0040
 *COIY(205),COIZ(205),OELTAT
 DINTCO50
 CONMCN/FG/Y(51),Z(51),ANG(51),H(51),B,EXANG,NS,IK,NOGA,NFL,NSFL, DINTCO6O
 *NI,ICOL(205),NBCOND,NBC(4),NODEB(4)
 DINT0070
 CONMON /HM/ YOUNG,DS,C5,C6,ASFL(50,3,6,5),GZETA(5C,3,6),SNO(5) DINTOC80
 CONMCN/FRAG/FH(6),FCG(6), FMASS(6),FMOI(6),FCGU(6),FCGW(6), ALFA(6),DINTCCSO
 *UDOT(6),WDOT(6),ADOT(6),TPRIM(6),CR(6),FCGX(6),UNK(6),NF DINTOICO
 CONMCN /DFRAG/DFCGU(6),DFCGW(6),DALFA(6) DINT0110
 IT=0 DINTOL20
 TIME = 0.
 DO 1 I=1,205 DINTO140
 DELC(I)=0.0 DINT0150
 1
 DISP(I)=0.0 DINTO160
 DO 2 IR=1,IK DINTOI70
 DO 2 J=1,NOGA DINTOL80
 DO 2 K=1,NFL D DINTC190
 DO 2 L=1,NSFL DINT0200
 SNS(IR,J,K,L)=0.0 DINTO210
 DO 5 I=1,NF DINTC220
 DFCGU(II)=UDOT(I)*DELTAT DINTO230
 DFCGW(I)=WDOT(I)*DELTAT DINT0240
 DALFA(I)= ADCT(I)*DELTAT DINTO250
 FCGU(I)=FCGX(I)+UDOT(I)*TPRIM(I) DINT0260
 FCGW(I)=FCG(I)+WDOT(I)*TPRIM(I) DINT0270
 ALFA(I)= ADOT(I)*TPRIM(I) DINT0280
 DINTC290
 END DINT0300
    ```

SUBRCUTINE ELMPP(CELTAT,AA,ISIZE,KROW,NDEX,NIRREG, INUM,DENS,YOUNG)ELMPOCIO IMPLICIT REAL*\& \(\left\{\begin{array}{l}\text { A-H, } O-Z) \\ \text { ELMP0020 }\end{array}\right.\)
DIMENSICN A(8,8),AA(50,8,8),LMI(8),MMI(8) ELMPCO30
*, \(\operatorname{BE}(3,3,8), \operatorname{KRCW}(1), \operatorname{NDEX}(1), \operatorname{INUM}(1), \operatorname{BNG}(51)\)
CONMON/FG/Y(51), Z(51), ANG(51), H(51), B, EXANG,NS,IK,NCGA,NFL,NSFL, *NI, ICOL(205), NBCOND,NBC(4),NODEB(4)

COMMON /BA/ BEP(50,3,3,8), AL(50), AXE(3), AWG(3)
CONNON /TAPE/ MREAD,MWRITE,MPUNCH
\(\operatorname{SIN}(Q)=\operatorname{DSIN}(Q)\)
\(\operatorname{Cos}(Q)=D \operatorname{Cos}(Q)\)
\(\operatorname{ATAN}(Q)=\operatorname{DATAN}(Q)\)
\(\operatorname{ABS}(Q)=\operatorname{DABS}(Q)\)
\(\operatorname{SQRT}(Q)=\operatorname{DSQRT}(Q)\)
DO 101 IR=1,IK
P5 \(=\mathrm{Z}(\mathrm{IR}+1)-\mathrm{Z}(\mathrm{IR})\)
\(\mathrm{P} 6=\mathrm{Y}(\mathrm{IR}+1)-\mathrm{Y}(\mathrm{IR})\)
P7 \(=A N G(I R+1)-A N G(I R)\)
ELMP 0040
ELMPOO50
ELMP0060
ELMP 0070
ELMP 0080
ELMP0090
ELMPO100
ELMP 0110
ELMPO120
ELMP0130
ELMP 0140
ELMP0150
ELMPO160
ELMP 0170
\(A P H A=A T A N(P 5 / P 6)\)
IF (P6.LT. O.O.AND.P5.LT.O.0) APHA=APHA-3.14159265
IF(P6.LT.0.0 .AND. P5.GE.0.0) APHA=APHA +3.14159265
IF(P7.EQ. 0.0) GC TO 60
ELMP0180
ELMP0190
ELMP 0200
ELMP 0210
\(A L(I R)=P 7 * S Q R T(P 5 * * 2+P 6 * * 2) / \operatorname{SIN}(P 7 / 2.1 / 2\).
\(\operatorname{IF}(P 7 . G T .4 .71238897) A L(I R)=(P 7-6.2831853) * S Q R T(P 5 * * 2+P 6 * 2)\)
*/SIN(P7/2.-3.14159265)/2.
\(\operatorname{IF}(P 7 . L T .(-4.71238897)) A L(I R)=(P 7+6.2831853) * S G R T(P 5 * * 2+P 6 * * 2)\)
*/SIN(P7/2.+3.14159265)/2.
GO TO 61
\(A L(I R)=S Q R T(P 5 * * 2+P 6 * * 2)\)
BNG (IR+1) \(=\operatorname{ANG}(I R+1)\)
BNG(IR)=ANG(IR)
IF(P7.GT.(4.7124).AND.APHA.LT.0.0) BNG(IR+1)=ANG(IR+1)-6.2831853 \(\operatorname{IF}(P 7 . G T .(4.7124)\). AND. APHA.GT.0.0) BNG(IR) \(=\) ANG (IR) +6.2831853 IF(P7.LT. (-4.7124).AND.APHA.GT.0.0) BNG(IR+1)=ANG(IR+1)+6.2831853 \(\operatorname{IF}(P 7 . L T .(-4.7124)\). AND.APHA.LT.0.0) BNG(IR)=ANG(IR)-6.2831853
\(B Z E R=B N G(I R)-A P H A\)
ELMP0220
ELMP0230
ELMP 0240
ELMP0250
ELMP0260
ELMP 0270
ELMP 0280
ELMP0290
ELMP03CO
ELMP0310
ELMP0320
ELMP 0330
ELMP 0340
ELMP0350
\(B 1=(-2 . * B N G(I R+1)-4 . * B N G(I R)+6 . * A P H A) / A L(I R)\)
ELMP0360
```

 B2=(3.*BNG(IR+1)+3.*BNG(IR)-6.*APHA)/AL(IR)**2
    ```
    B2=(3.*BNG(IR+1)+3.*BNG(IR)-6.*APHA)/AL(IR)**2
ELMP0370
    DO 102 I= 1,8
    DO 102 I= 1,8
    DO 102 J=1,8
    DO 102 J=1,8
102 A(I,J)=0.0
102 A(I,J)=0.0
A(1,1)= COS(BNG(IR)-APHA)
A(1,1)= COS(BNG(IR)-APHA)
    A(1,2)= SIN(BNG(IR)-APHA)
    A(1,2)= SIN(BNG(IR)-APHA)
    A(2,1)=-SIN(BNG(IR)-APHA)
    A(2,1)=-SIN(BNG(IR)-APHA)
    A(2,2)= COS(BNG(IR)-APHA)
    A(2,2)= COS(BNG(IR)-APHA)
    A}(3,3)=1
    A}(3,3)=1
    A(5,1)=COS(BNG(IR+1)-APHA)
    A(5,1)=COS(BNG(IR+1)-APHA)
    A(5,2)=SIN(BNG(IR+1)-APHA)
    A(5,2)=SIN(BNG(IR+1)-APHA)
    A(5,3)=P6*SIN(BNG(IR+1))-P5*COS(BNG(IR+1))
    A(5,3)=P6*SIN(BNG(IR+1))-P5*COS(BNG(IR+1))
    A(6,1)=-SIN(BNG(IR+1)-APHA)
    A(6,1)=-SIN(BNG(IR+1)-APHA)
    A(6,2)=CES(BNG(IR+1)-APHA)
    A(6,2)=CES(BNG(IR+1)-APHA)
    A(6,3)=P6*COS(BNG(IR+1))+P5*SIN(BNG(IR+1)).
    A(6,3)=P6*COS(BNG(IR+1))+P5*SIN(BNG(IR+1)).
    A}(7,3)=1
    A}(7,3)=1
    A(4,4)=1.
    A(4,4)=1.
    A(5,4)=AL(IR)
    A(5,4)=AL(IR)
    A(5,7)=AL(IR)**2
    A(5,7)=AL(IR)**2
    A(5,8)=AL(IR)**3
    A(5,8)=AL(IR)**3
A(6;5)=AL(IR)**2
A(6;5)=AL(IR)**2
A(6;6)=AL(IR)**3
A(6;6)=AL(IR)**3
P8=B1+2:*B2*AL.(IR)
P8=B1+2:*B2*AL.(IR)
A(7,4)=AL(IR)*P8
A(7,4)=AL(IR)*P8
A(7,5)=2.*AL(IR)
A(7,5)=2.*AL(IR)
A (7,6)=3.*AL(IR)**2
A (7,6)=3.*AL(IR)**2
A(7,7)=AL(IR)**2*P8
A(7,7)=AL(IR)**2*P8
A(7,8)=AL(IR)** 3*P8
A(7,8)=AL(IR)** 3*P8
A(8,4)=1:0
A(8,4)=1:0
A}(8,5)=-AL(IR)**2*P
A}(8,5)=-AL(IR)**2*P
    A(8,7)=2.*AL(IR)
    A(8,7)=2.*AL(IR)
    A(8,6)=-AL (IR)**3*P8
    A(8,6)=-AL (IR)**3*P8
    A(8,8)=3**AL(IR)**2
    A(8,8)=3**AL(IR)**2
    CALL NINV(A,8,DET,LMI,MMI)
    CALL NINV(A,8,DET,LMI,MMI)
    DO 52 I=1,8
    DO 52 I=1,8
DO 52 J=1,8
DO 52 J=1,8
ELMP0380
ELMP0390
ELMP 04CC
ELMP0410
ELMP0420
ELMP 043C
ELMP0440
ELMP0450
ELMP0460
ELMP0470
ELMP0480
ELMP0490
ELMP 05CO
ELMP0510
ELMP.0520
ELMP0530
ELMP 0540
ELMP0550
ELMP0560
ELMP0570
ELMP0580
ELMP0590
ELMP 06CO
ELMP0610
ELMP0620
ELMP0630
ELMP0640
ELMP0650
ELMP0660
ELMP0670
ELMP0680
ELMP0690
ELMP0700
ELMP0710
ELMP0720
```

 AA(IR,I,J)=A(I,J)
 DO 103 J=1,NOGA
 ZET=AL(IR)*AXG(J)
 PHIP=B1+2.*B2*ZET
 PHI=BZER+B1*ZET+B2**ET**2
 WET=AL(IR)*AWG(J)
 YZET=0.0
 ZZET=0.0
 DO 104 JJ=1,NOGA
 P2=BZER+B1*ZET*AXG(JJ)+B2*(ZET*AXG(JJ))**2+APHA
 YZET=YZET+COS(P2)*ZET*AWG(JJ)
 104 ZZET=ZZET+SIN(P2)*ZET*AWG(JJ)
P3=YZET*SIN(PHI+APHA)-ZZET*COS(PHI+APHA)
P4 =YZET*COS(PHI+APHA)+ZZET*SIN(PHI +APHA)
DO 201 M=1,3
DO 201 N=1,8
201 BE1(J,N,N)=0.0
BE'1(J,1,4)=1.
BE1(J,1,5)=-ZET**2*PHIP
BE1(J,1,6)=-2ET**3*PHIP
BE1(J,1,7)=2.*ZET
BE1(J,1,8)=3.*ZET**2
BE1(J,2,3)=1.
BEI(J,2,4)=ZET*PHIP
BE1(J,2,5)=2.*ZET
BE1(J,2,6)=3.*2ET**2
BE1(J,2,7)=ZET**2**PHIP
BE1(J,2,8)=2ET**3*PHIP
BE1(J,3,4)=-PHIP-ZET*2.*B2*
BE1(J,3,5)=-2.
BE1(J,3,6)=-6.*ZET
BE1(J,3,7)=-2.*ZET*PHIP-ZET**2*2.*B2
BE1(J,3,8)=-3.*ZET**2*PHIP-2ET**3*2.*B2
DO 202 N=1,3
DO 202 N=1,8
BEP(IR,J,M,N)=0.0

```

ELMP 0730
ELMP0740
ELMP 0750
ELMP 0760
ELMP0770
ELMP0780
ELMPC790
ELMP 0800
ELMP0810
ELMP 0820
ELMP0830
ELMP 0840
ELMP 0850
ELMP 0860
ELMP 0870
ELMP0880
ELMP0890
ELMP 0900
ELMP0910
ELMP09.20
ELMP 0930
ELMP 0940
ELMP0950
ELMPCS60
ELMP0970
ELMPO980
ELMPC990
ELMP 1000
ELMP 1010
ELMPIC20
ELMP 1030
ELMP 1040
ELMP1C50
ELMP 1 C60
ELMP 1070
ELMP 1080

DO \(202 \mathrm{~K}=1,8\) ELMP 1090
\(202 \operatorname{BEP}(I R, J, M, N)=B E P(I R, J, M, N)+B E I(J, M, K) * A(K, N)\)
EL.MP 1100
CONTINUE
continue
ELMP1110
ELMP 1120
ELMP 1130
RETURN
ELMP1140

SUBROUTIAE ENERGY (IT,KROW, NCEX, NIRREG, NOPE) ENGDOCIO
C THIS SUBRQUTINE IS THE DUMMY ROUTINE THAT MUST BE REPLACED BY THE ENGDOO20 C CALCULATION ROUTINE IN THOSE CASES IN WHICH AN ENERGY ACCOUNTING
C
IS DESIRED
RETURN
ENGD0030
ENGDOC40

END
ENGOOC50
ENGO0060
    SUBRCUTINE ENERGY(IT,KROW,NCEX,NIRREG,NCPE)
        IHIS IS THE ENERGY CALCULATION SUBROUTINE
        IMPLICET REAL*8(A-H,O-Z)
        DIMENSICN ANKE(205)
        DIMENSION CINETF(6)
        COMMON/BA/ BEP(50,3,3,8),AL(50), AXG(3),AWG(3)
        COMNON /TAPE/ MREAC,MWRITE,MPUNCH
    COMMON/SC/CRITS,BIG,BTIME,NCRIT,IBIG,ISURF
    COMMON /VQ/ FLVA(205),DISP(205),DELD(205),SNS(50,3,6,5), ENERO090
* BINP(50,3), BIMP(50,3),TDISP(205),TU(205),TW(2C5),
*COIY(205),COIZ(205),DELTAT
    COMMON/FG/Y(51);Z(51),ANG(51),H(51);B,EXANG,NS,IK,NCGA,NFL,NSFL,
    *NI, ICOL (205), NBCOND,NBC(4),NODEB(4)
    CONMON/HM/ YOUNG,CS,C5,C6,ASFL(50,3,6,5),GZETA(50,3,6),SNO(5) ENERO140
        COMMON/FRAG/FH(6),FCG(6),FMASS(6),FMOI(6),FCGU(6),FCGW(6), ALFA(6), ENERO150
        *UDOT (6),WDOT (6), ADOT(6),TPRIM(6),CR(6),FCGX(6),UNK(G),NF
        CONMCN /DFRAG/DFCGU(6),DFCGW(6),DALFA(6)
        CONMON/ENERG/FK(6),CINETO,CUMW,DELKE,CELAS,ELAS,PLASTC
        CONMON/ABC/RMX(51),RWORK,C INEY(205)
        CONMGN/LEFT/P,EPS (5),SIG(5),RMASS(51)
        COMMON/ELFU/SPRIN(2060),FQREF(205),REX(4),NQR,NORP,NORU,NREL(4),
        *NRST(4),NREU(4)
    SIN(Q)=DSIN(Q)
        COS(Q)=DCOS(Q)
        ATAN(Q)=DATAN(Q)
        ABS (Q)=DABS (Q)
        SQRT (O)=DSQRT (G)
        NOPE=1
        WRITE(MWRITE,7)
    FORMAT(" CURRENT TIME CYCLE', 10X,' FRAGMENT',10X, 'KINETIC
        *ENERGY',/)
    IMX=IK+1
    IF(EXANGG.NE.360.)GOTO 1'
    DO 2 I=1,IK
    AMKE(I*4-3)=RMASS(I)
    AMKE(I*4-2)=RMASS(I)
        ENEROC40
164
    ENERCC10
        ENEROO20
    ENEROC30
    ENEROC5
    ENEROC50
    ENERO060
    ENERCC70
    ENEROO80
    ENERO100
    ENERO110
    ENERO120
    ENER 0130
        ENERO160
    ENER 0170
    ENERO180
    ENER0190
(I * \()=\) RMX(I)
RWORK \(=0.0\)
DO \(5 \mathrm{I}=1\), NF
FUV=DFCGU(I)/DELTAT
FWV= DFCGW(I)/DELTAT
\(F A V=D A L F A(I) / D E L T A T\)
CINETF (I) =FMASS(I)/2.0* (FUV**2+FWV**2)+FMOI(1)/2.0*(FAV**2),
RWORK=RWORK + (FK (I)-CINETF (I))
WRITE (MWRITE, 6)IT, I, CINETF(I)
FORNAT (10X, \(15,15 \mathrm{X}, 15,9 \mathrm{X}, 015.6)\)
CONTINUE
WRITE (MWRITE, 8)IT, RWDRK
FORMAT(/, WORK INPUT INTO RINE TO TIME STEP \({ }^{\prime}, I 5,1=1\), D15.6)
DO \(9 \mathrm{~K}=1\),NI
\(C I N E Y(K)=\quad \operatorname{AMKE}(K) * \operatorname{DELD}(K)\)
CINETO \(=0.0\)
กO \(10 K=1\),NI
CINETO=CINETO + DELD(K)*CINEY(K)
CINETO=CINETO/2.0/DELTAT**2
WRITE (NWRITE, LI)IT,CINETO
FORMAT( RING KINETIC ENERGY AT TIME STEP', I5, \(=1,015.6\) )
IF (EXANG.NE.360.)GO TO 13
DO \(12 \mathrm{~K}=1,4\)
DISP(IK*4+K)=DISP(K)
DELD (IK* \(4+K)=\) DELD \((K)\)
AMKE (I*4-1)=RMX (I)
AMKE (INX*4-3)=RMASS (1)
ASS (1)
AMKE (IMX*4-1) \(=\) RMX (1
GO TO 3
DO \(4 \mathrm{I}=1\), IMX
AMKE(I*4-3)=RMASS(I)
AMKE (I*4-2)=RMASS(I)
AMKE (I*4-1)=RMX(I)

群

ENER 0370
ENER0380
ENER0390
ENERO400
ENER0410
ENERO420
ENER0430
ENER 0440
ENER 0450
ENERO460
ENER 0470
ENER 0480
ENER 0490
ENERC500
ENER 0.510
ENER0520
ENER 0530
ENER 0540
ENER0550
ENER0560
ENER 0570
ENER0580
ENER0590
ENER 0600
ENER 0610
ENERO620
ENER 0630
ENER 0640
ENER0650
ENER 0660
ENER 0670
ENER0680
ENER0690
ENER 0700
ENER0710
ENER0720
ENER0740
ENER0750
ENERO760
ENER0770
ENER0780
ENER0790
ENER08CO
ENER0810
ENER0820
ENER0830
ENER0840
ENERO850
ENER0860
ENER0870
ENER0880
ENERC890
ENER0900
ENER0910
ENER0920
ENER0930
ENERO940
```

```
```

 13 ELLAST=C.0 ENERO730
    ```
```

 13 ELLAST=C.0 ENERO730
 DO 15 IR=1,IK ENERO740
 DO 15 IR=1,IK ENERO740
 DO 16 J=1,NOGA
 DO 16 J=1,NOGA
 SUM=0.0
 SUM=0.0
 DO }17\textrm{K}=1,\textrm{NFL
 DO }17\textrm{K}=1,\textrm{NFL
 DO 17 L=1,NSFL
 DO 17 L=1,NSFL
 SUM=SUN+SNS(IR,J,K,L)**2*ASFL(IR,J,K,L)
 SUM=SUN+SNS(IR,J,K,L)**2*ASFL(IR,J,K,L)
 ELAST=ELAST+SUN*AWG(J)+AL(IR)
 ELAST=ELAST+SUN*AWG(J)+AL(IR)
 CONTINUE
 CONTINUE
 SPDEN=0.0
 SPDEN=0.0
 IF(NQR.EQ.0)GC TO 18
 IF(NQR.EQ.0)GC TO 18
 DO 19 I=1,NI
 DO 19 I=1,NI
 FQREF(I)=0.0
 FQREF(I)=0.0
 CALL OMULT(SPRIN,DISP,ICOL,NI,FQREF,KROW,NCEX,NIRREG)
 CALL OMULT(SPRIN,DISP,ICOL,NI,FQREF,KROW,NCEX,NIRREG)
 DO 20 [=1,NI
 DO 20 [=1,NI
 SPDEN=SPDEN+DISP(I)*FQREF(I)
 SPDEN=SPDEN+DISP(I)*FQREF(I)
 SPDEN=SPDEN/2.0
 SPDEN=SPDEN/2.0
 CELAS=ELAST/YOUNG/2.0
 CELAS=ELAST/YOUNG/2.0
 WRITE(MWRITE, 21)IT,CELAS
 WRITE(MWRITE, 21)IT,CELAS
 FORMAT(' RING ELASTIC ENERGY TO TIME STEP',I5,' = ',D15.6)
 FORMAT(' RING ELASTIC ENERGY TO TIME STEP',I5,' = ',D15.6)
 PLAST=RWCRK-CINETO-CELASS-S PDEN
 PLAST=RWCRK-CINETO-CELASS-S PDEN
 WRITEIMWRITE,22IIT,PLAST
 WRITEIMWRITE,22IIT,PLAST
 FORMAT(: RING PLASTIC WORK TO TIME STEP',I5,' = ',D15.6)
 FORMAT(: RING PLASTIC WORK TO TIME STEP',I5,' = ',D15.6)
 WRITE(MWRITE,23ISPDEN
 WRITE(MWRITE,23ISPDEN
 FORMAT(' ENERGY STORED IN ELASTIC RESTRAINTS =',015.6)
 FORMAT(' ENERGY STORED IN ELASTIC RESTRAINTS =',015.6)
 RETURN
 RETURN
 END
 END
    ```
17 K=1,NSFL
```

17 K=1,NSFL
ENERO950
ENER0960
ENER0960
ENER0980
ENERO990

```
```

 SUBROUTINE ERC(II,STIFM,NI,ICOL)
 IMPLICIT REAL*&(A-H,O-Z)
 C IMPLICIT REAL*&(A-H,O-Z)
 DIMENSION STIFN(1),ICCL(1)
 IC=ICOL(II)
 DO 101 J=IC,II
 CALL FICOL(II,J,L,ICOL)
 1C1 STIFM(L)=0.
 DO 102 I= II,NI
 ICl=ICCL(I)
 IF(II-IC1)102,103;103
 103 CALL FICOL(I,II,L,ICOL)
 STIFM(L)=0.
 CONTINUE
 CALL FICOL(II,II,L,ICOL)
 STIFM(L)=1.
 RETURN
 END

```
ERC CO10
ERC 0020
    ERC 0030
ERC CC40
\(\begin{array}{ll}\text { ERC } & \text { CC40 } \\ \text { ERC } & 0050\end{array}\)
ERC 0050
ERC 0060
ERC 0070
ERC CC80
ERC 0 C80
ERC 0090
ERC 0090
ERC 0100
ERC 0110
ERC 0120
ERC 0130
ERC 0140
ERC 0150
ERC 0160
ERC 0170
ERC 0180
```

SUBROUTINE FICOL(I,J,L,ICOL)
IMPLICIT REAL*\&(A-H,O-Z)
C USING FORMULA L=J+SUM(K-ICOL(K)),K=1;I TC RELATE I,J,TC L
DIMENSION ICOL(1)
IF(J-ICCL(I): 200,300,300
300
SUM=0
DO 305 K=1,I
ISUM=K-ICOL(K)+ISUM
CONTINUE
L=J+ISUM
RETURN
2CO WRITE(6,4)I,J
4 FORMAT(31H. ELEMENT IS NOT IN BAND REGION,3H I=,I5,3H J=,I5)
RETURN
END.

```
        FICLOOIO
FICLCC20
FICLOO30
FICLOO40
FIClCC50
FICLCO60
FICL0070
FICLO080
FICLCO90
FICLO100
FICLOIIO
FICLO120
FICLO130
FICLO140
FICLOI50
```

 SUBRCUTINE IDEAT (NGR,DENS) IDNTCC10
 IMPLICIT REAL*8(A-H,O-Z) ILNTOC20
 COMMON /TAPE/ MREAD,MWRITE,MPUNCH
 CONMON /HM/, YCUNG,DS,C5,C6,ASFL(50,3,6,5),GZETA(50,3,6),SNO(5)
 CONMON/SC/CRITS,BIG,BTIME,NCRIT,IBIG,ISURF
 COMMON /VQ/ FLVA(205),DISP(205),DELD(205),SNS(5C,3,6,5),
 *BINP(50,3), BIMP(50,3),TDISP(205),TU(205),TW(205),
 *COIY(205),COIZ(205), DELTAT
 CONMON/FG/V(51),Z(51),ANG(51),H(51),B,EXANG,NS,IK,NOGA,NFL,NSFL,
 *NI,ICOL(205),NBCOND,NBC(4),NODEB(4)
 IONTOIOO
 CONMCN/FRAG/FH(6),FCG(6),FMASS(6),FMOI(6),FCGU(6),FCGW(6), ALFA(6),IDNTO1,10
 *UDOT(6),WDOT(6),ADOT(6),TPRIM(6),CR(6),FCGX(6),UNK(6),NF ICNTO120
 CONNON/ENERG/FK(6), CINETO,CUMW,DELKE,CELAS,ELAS,PLASTC ICNTO130
 CONMCN/LEFT/P,EPS(5),SIG(5),RMASS(51) IDNTOI40
 SIN(Q)=DSIN(Q)
 I CNTO150
 Cos(Q)=DCOS(Q)
 ATAN(Q)=DATAN(G)
 ABS(Q)=DABS(Q)
 SQRT(Q)=OSQRT(Q)
 IFIEXANG.EQ.360.)GO TO 81.
 WRITE(NWRITE,2.) EXANG
 GO TO 80
 WRITE(MWRITE,I)EXANG
 FORNAT(" CCNPLETE RING**JET** CONTAINMENT ANALYSIS',/%, IDNTO24O
 * 10X,'RING PROPERTIES',/,12X,'SUBTENCEG ANGLE CF RING.',25X,'=',D15.IDNTO250
 *6,1)
IDNTO260
FORMAT(' PARTIAL RING **JET** CEFLECTION ANALYSIS',//, 1OX,'RINIDNTO270
*G PROPERTIES',1,12X, "SUBTENDED ANGLE CF RINE', 25X,' = , C15.6,/) IDNT0280
WRITE(MWRITE,3IB,DENS,IK,NOGA,NFL,NSFL IDNTO290
FORMAT(12X,'WIDTH CF RING(IN)',30X,'=',G15.6;/,12X, "DENSITY OF RINIDNTO 300
*G',33X,'=',D15.6,/,12X,'NUNBER OF ELEMENTS',30X,'=', I5,/, 12X, 'NUMBIDNTO310
*ER OF SPANWISE GAUSSIAN PTS.', 16X,'=',I5,/,12X,'NUMBER CF EEPTHWISIDNTO320
*E GAUSSIAN PTS.',15X,'=',I5,/,12X,'NUMBER OF MECHANICAL SUBLAYERS'IDNTO330
*,18X,'=',15,/)
I DNT0340
WRITE(MWRITE,4)(L,EPS(L),L,SIG(L),L=1,NSFL) ICNT0350
FORNAT (15X,'STRAIN (',I1,')=',D15.6,'STRESS (',I1,') =',D15.6,1) IDNT0360

```
```

 M,
 1 2
 14
 15
 1 6
 1 7
 28
13
18
20

```
```

 * BY INPUT ')
    ```

I DNT0730
GO TO 23 IONTOT40
19
21
23
WRITE(MWRITE,21)
FORMAT (/;" THERE ARE NC ELASTIC SPRING CONSTANTS') RETURN

IDNTO750
IDNTÓ 760
I DNT 0770
END
IONT0780
```

```
    ŞURROUTINÉ IMPACT(IT,NIRREG,DENS) IMPTOOIO
```

```
    ŞURROUTINÉ IMPACT(IT,NIRREG,DENS) IMPTOOIO
    IMPLICIT REAL*&(A-H,O-Z) IMPTOO2O
    IMPLICIT REAL*&(A-H,O-Z) IMPTOO2O
    DIMENSION CELU(6),CELW(6). IMPTCO3O
    DIMENSION CELU(6),CELW(6). IMPTCO3O
    DIMENSION CELU(6),CELW(6). IMPTCO30
    DIMENSION CELU(6),CELW(6). IMPTCO30
    DIMENSION BNG(51), PND(51,6)
    DIMENSION BNG(51), PND(51,6)
    IMPTOC4O
    IMPTOC4O
    DIMENSION FACT3(6),ABC(51) IMPTOO50
    DIMENSION FACT3(6),ABC(51) IMPTOO50
    DINENSION TFCGU(6),TFCGW(6), TALFA(6),FAU(6),FAW(6),RL(51),RSIN(51)INPTOO60
    DINENSION TFCGU(6),TFCGW(6), TALFA(6),FAU(6),FAW(6),RL(51),RSIN(51)INPTOO60
    *,RCOS(51),DELU(6),DELW(6),PAX(51,6),HT(51),PN(51,6),PD(51,6) IMPTCO7O
    *,RCOS(51),DELU(6),DELW(6),PAX(51,6),HT(51),PN(51,6),PD(51,6) IMPTCO7O
    DIMENSION TAP(51)
    DIMENSION TAP(51)
        COMMON /RA/ BEP(50,3,3,8),AL(50),AXG(3),AWG(3)
        COMMON /RA/ BEP(50,3,3,8),AL(50),AXG(3),AWG(3)
        CONMON /TAPE/ NREAD,MWRITE,MPUNCH
        CONMON /TAPE/ NREAD,MWRITE,MPUNCH
    COMMON TVME FLVA(205),DISP(205).DELD(205) SNS(50,3,6,5)% IMPTO110
    COMMON TVME FLVA(205),DISP(205).DELD(205) SNS(50,3,6,5)% IMPTO110
    COMMON /VQ/ FLVA(205),DISP(205),DELD(2C5),SNS(5C,3,6,5), IMPTO110
    COMMON /VQ/ FLVA(205),DISP(205),DELD(2C5),SNS(5C,3,6,5), IMPTO110
*BINP(50,3),BIMP(50,3),TDISP(205),TU(205),TW(205), INPT0120
*BINP(50,3),BIMP(50,3),TDISP(205),TU(205),TW(205), INPT0120
*COIY(205),COIZ(205),DELTAT
*COIY(205),COIZ(205),DELTAT
    IMPT0130
    IMPT0130
    CONMON/FG/Y(51),Z(51),ANG(51),H(51),B,EXANG,NS,IK,NOGA,NFL,NSFL, IMPTO140
    CONMON/FG/Y(51),Z(51),ANG(51),H(51),B,EXANG,NS,IK,NOGA,NFL,NSFL, IMPTO140
    *NI, ICOL(205),NBCOND,NBC(4),NODEB(4)
    *NI, ICOL(205),NBCOND,NBC(4),NODEB(4)
    COMMON/HM/ YOUNG,DS,C5,C6,ASFL(50,3,6,5),GZETA(50,3,6),SNO(5) IMPT0160
    COMMON/HM/ YOUNG,DS,C5,C6,ASFL(50,3,6,5),GZETA(50,3,6),SNO(5) IMPT0160
    COMMON/FRAG/FH(6),FCG(6),FMASS(6),FMOI(6),FCGU(6),FCGW(6),ALFA(6), IMPTO170
    COMMON/FRAG/FH(6),FCG(6),FMASS(6),FMOI(6),FCGU(6),FCGW(6),ALFA(6), IMPTO170
*UDOT(6),WDOT(6),ADOT(6),TPRIM(6),CR(6),FCGX(6),UNK(G),NF ALTFA(6), IMPTOI80
*UDOT(6),WDOT(6),ADOT(6),TPRIM(6),CR(6),FCGX(6),UNK(G),NF ALTFA(6), IMPTOI80
CONMON /DFRAG/OFCGU(6),DFCGW(6),DALFA(6) IMPTO190
CONMON /DFRAG/OFCGU(6),DFCGW(6),DALFA(6) IMPTO190
    COMMON/ENERG/FK(6),CINETO,CUMW,DELKE,CELAS,ELAS;PLASTC IMPT0200
    COMMON/ENERG/FK(6),CINETO,CUMW,DELKE,CELAS,ELAS;PLASTC IMPT0200
    COMMON/LEFT/P,EPS(5),SIG(5),RMASS(51) INPTO210
    COMMON/LEFT/P,EPS(5),SIG(5),RMASS(51) INPTO210
    ICHECK=0
    ICHECK=0
    DO 88 I=1,NS
    DO 88 I=1,NS
    MPTO220
    MPTO220
    I MPTO230
    I MPTO230
    IF(ANG(1)189,87,87
    IF(ANG(1)189,87,87
    87 BNG(I)=6.28318530-ANG(I)
    87 BNG(I)=6.28318530-ANG(I)
    GO TO 88
    GO TO 88
    BNG(I)=DABS(ANG(I))
    BNG(I)=DABS(ANG(I))
    continue
    continue
    DO 2 I =1,NS
    DO 2 I =1,NS
    DO 2 J=1,NF
    DO 2 J=1,NF
    PAX(I,J)=0.0
    PAX(I,J)=0.0
    PN(I,J)=0.0
    PN(I,J)=0.0
    PND (I,J)=0.0
    PND (I,J)=0.0
    PD(I;J)=0.0
    PD(I;J)=0.0
    IF(EXANG.NE.360.)GO TO 92
    IF(EXANG.NE.360.)GO TO 92
    IM=IK+1*IMPTO360
    IM=IK+1*IMPTO360
INPT0240
```

INPT0240

```
```

 IMPTOC80
    ```
    IMPTOC80
    IMPT0090
    IMPT0090
    IMPT0100
    IMPT0100
172
    CONMON /DFRAG/OFCGU(6),DFCGW(6),DALFA(6)
    CONMON /DFRAG/OFCGU(6),DFCGW(6),DALFA(6)
    COMMONMENERG/FK(6),CINETO,CUMN,DELKE,CELAS,ELAS,PLASTC IMPYO2OD
    COMMONMENERG/FK(6),CINETO,CUMN,DELKE,CELAS,ELAS,PLASTC IMPYO2OD
    IMPTO250
    IMPTO250
    IMPT0260
    IMPT0260
    INPT0270
    INPT0270
I MPT0280
I MPT0280
IMPT0290
IMPT0290
    IMPT0300
    IMPT0300
    INPT0310
    INPT0310
    IMPTO320
    IMPTO320
    IMPT0330
```

 IMPT0330
    ```
```

 DISP(IM*4-3)=DISP(1) IMPT0370
 DISP(IN*4-2)=0ISP(2) IMPTO380
 DISP(IN*4-1)=0ISP(3) IMPTC390
 DISP(IN*4)=DISP(4.)
 IMPT0400
 DELD(IM*4-3)= DELD(1)
 DELD(IN*4-2)=DELC(2)
 I MPT0410
 IMPTC420
 DELD(IN*4-1)=DELD(3)
IMPT0430
DELD(IM*4)=DELD(4)
INPTO440
COIY(IN)=COIY(1)
MPT0450
COIZ(IM)=COIZ(1)
IMPTO460
DO }11\textrm{I}=1,\textrm{NS
IMPTO470
TDISP(I*4-3)=DISP(I*4-3)+DELD(I*4-3)
IMPT0480
TDISP(I*4-2)=DISP(I*4-2)+DELD(I*4-2)
IMPT 0490
TU(I)=COIY(I)+TDISP(I*4-3)*DCOS(BNG(I))+TDISP(I*4-2)*DSIN(BNE(I)) IMPT0500
1 1
~
TW(I)=COIZ(I)-TDISP(I*4-3)*DSIN(BNG(I))+TDISP(I*4-2)*DCOS(BNG(I)
IF(EXANG.NE.360.)GE TO 12
IMPT0510
IMPTC520
TDISP((NS+1)*4-3)=TDISP(1)
IMPT OS530
TDISP((NS+1)*4-2)=TOISP(2)
TU(NS+1)=TU(1)
TW(NS+1)=TW(1)
DO 13 I=1,NF
TFCGU(I)=FCGU(I)+DFCGU(I)
TFCGW(I)=FCGW(I)+DFCGW(I)
INPT0540
IMPTC550
IMPT0560
+DALFA(I)
IMPT0570
FAU(I)=TFCGU(I)
FAW(I)=TFCGW(I)
DO 15 I=1,IK
IR=I+1 ,
RL(I)=CSGRT((TU(IR-1)-TU(IR))**2+(TW(IR-1)-TW(IR))**2)
RSIN(I)=(TW(IR)-TW(IR-1)%/RL(I)
RCOS(I)=(TU(IR)-TU(IR-1))/RL(I)
DO 14 J=1,NF
DELU(J)=TU(IR)-FAU(J)
DELW(J)=TW(IR)-FAW(J)
DIST=OSQRT(DELU(J)**2*DELW(J)**2) . IMPT0710
IMPT0580
IMPTO590
INPT0600
INPT0600
IMPT0620
I MPT 0630
INPT0640
I MPTO650
MPT0660
IMPT0670
MPT0680
IMPT0700
TIPC=(H(IR)+FH(J))/2.0 IMPTO720
IMPT0710

```
```

```
    PND(I,J)=TIPC-DIST IMPTO730
```

```
    PND(I,J)=TIPC-DIST IMPTO730
    PAX(T,J)=RCOS(I)*DELU(J)+RSIN(I)*DELW(J) INPTO740
    PAX(T,J)=RCOS(I)*DELU(J)+RSIN(I)*DELW(J) INPTO740
    IF(PAX(1, 1)114;16,16
    IF(PAX(1, 1)114;16,16
    IF(RL(I)-PAX(I;J))14,17,17
    IF(RL(I)-PAX(I;J))14,17,17
    HT(I)=H(IR-1)+(H(IR)-H(IR-i))*PAX(I,J)/RLII)
    HT(I)=H(IR-1)+(H(IR)-H(IR-i))*PAX(I,J)/RLII)
    TIPD=HT(I)/2.0+FH(J)/2.0
    TIPD=HT(I)/2.0+FH(J)/2.0
    PN(I,J)=RCOS(I)*DELW(J)-RSIN(I)*DELU(J)
    PN(I,J)=RCOS(I)*DELW(J)-RSIN(I)*DELU(J)
    IF(PN(I,J).GT.TIPDIGO TO 14
    IF(PN(I,J).GT.TIPDIGO TO 14
    PD(I,J)=TIPO-PN(I,J)
    PD(I,J)=TIPO-PN(I,J)
    Continue
    Continue
    CONTINUE
    CONTINUE
    PNDBIG=0.0
    PNDBIG=0.0
    PDBIG=0.0
    PDBIG=0.0
    DO 23 I=1,IK
    DO 23 I=1,IK
    DO 23 J=1,NF
    DO 23 J=1,NF
    IF(PD(I,J).LE.PDBIG.OR.PD(I,J).EQ.PDBIG) GO TO 19
    IF(PD(I,J).LE.PDBIG.OR.PD(I,J).EQ.PDBIG) GO TO 19
    PDBIG=PD(I,J)
    PDBIG=PD(I,J)
    IBIG=I
    IBIG=I
    JBIG=J
    JBIG=J
    IF(PND(I,J).LE.PNDBIG.OR.PND(I,J).EQ.PNDBIG)GO T0 23
    IF(PND(I,J).LE.PNDBIG.OR.PND(I,J).EQ.PNDBIG)GO T0 23
    PNDBIG=PNC(I,J)
    PNDBIG=PNC(I,J)
    INBIG=I
    INBIG=I
    NNBIG=I+I
    NNBIG=I+I
    JNBIG=
    JNBIG=
    CONTINUE
    CONTINUE
    IF(PDBIG.EQ.O.O.AND.PNDBIG.EQ.O.0)GO TO 31
    IF(PDBIG.EQ.O.O.AND.PNDBIG.EQ.O.0)GO TO 31
    IF(PNDBIG.GT.PDBIG.OR.PNDBIG.EQ.PDEIG)GO TO 77
    IF(PNDBIG.GT.PDBIG.OR.PNDBIG.EQ.PDEIG)GO TO 77
IPLUS=IBIG+1
IPLUS=IBIG+1
POP=RCOS(IRIG)
POP=RCOS(IRIG)
TOP=RSIN(IBIG)
TOP=RSIN(IBIG)
POM=DCES(BNG(IRIG))
POM=DCES(BNG(IRIG))
POX=DCOS(ANG(IPLUS))
POX=DCOS(ANG(IPLUS))
TOM=DSIN(BNG(IBIG))
TOM=DSIN(BNG(IBIG))
TOX=DSIN(BNG(IPLUS))
TOX=DSIN(BNG(IPLUS))
BAT=H(IBIG)-H(IPLUS)
BAT=H(IBIG)-H(IPLUS)
CAT=2.C*RL(IBIG)
```

CAT=2.C*RL(IBIG)

```
```

I MPTO750

```
I MPTO750
IMPT0760
IMPT0760
IN\mp@code{NT0770}
IN\mp@code{NT0770}
IMPT0780
IMPT0780
IMPT0790
IMPT0790
INPT0800
INPT0800
IMPT0810
IMPT0810
IMPTO&20
IMPTO&20
IMPT0830
IMPT0830
IMPT0840
IMPT0840
IMPT0850
IMPT0850
IMPT0860
IMPT0860
IMPT0870
IMPT0870
INPT0880
INPT0880
IMPT0890
IMPT0890
IMPTO9CO
IMPTO9CO
INPT0910
INPT0910
IMPT0920
IMPT0920
IMPTOS30
IMPTOS30
IMPT0940
IMPT0940
I MPT0950
I MPT0950
IMPTC960
IMPTC960
IMPT 0970
IMPT 0970
IMPT0980
IMPT0980
I MPT0990
I MPT0990
IMPT 1COO
IMPT 1COO
IMPT1010
IMPT1010
IMPT1020
IMPT1020
IMPTIC30
IMPTIC30
IMPT1C40
IMPT1C40
IMPT1050
IMPT1050
IMPT1C60
IMPT1C60
IMPTIC70
IMPTIC70
IMPT1080
```

IMPT1080

```
```

 TAP(IBIG)=DATAN2(BAT,CAT) INPT1090
 BETA=PAX(IBIG,JEIG)/RL(IBIG) IMPT11CO
 GAMA=1.0-RETA . IMPT1110
 VFN=DFCGW(JBIG)*PQP-DFCGU(JBIG)*T0P
 VFT=OFCGW(JBIG)*TCP+DFCGU(JBIG)*POP IMPT1130
 VFN=VFN/DELTAI
 IMPT1140
 VFT=VFT/DELTAT
 VFA=DALFA(JBIG)/DELTAT IMPT1160
 INPT1150
 VNIBIG=DELD(IBIG*4-2)*(POP*POM-TOP*TOM)-CELE(IBIG*4-3)*(TOP*POM+ IMPT117C
 *POP*TOM) IMPT1180
VTIBIG=DELD(IBIG*4-2)*(TOP*POM+POP*TOM)+DELD(IBIG*4-3)*(PCP*POM- IMPT1190
\#OP*TON) . * IMPTI2CO
VNIPLS=DELD(IPLUS*4-2)*(POP*POX-TOP*TOX)-DELD(IPLUS*4-3)*(TOP*POX +IMPT 1210
*POP*TOX) INPT1220
VTIPLS=DELD(IPLUS*4-2)*(TOP*POX+POP*TOX) +DELD(IPLUS*4-3)*(POCP*POX-IMPT1230
*TOP*TOX) .. IMPT1240
VNIBIG=VNIBIG/DELTAT INPT1250
VTIBIG=VTIBIG/DELTAT I IMPT1260
VNIPLS=VNIPLS/DELTAT IMPT1270
VTIPLS=VTIPLS/OELTAT . . IMPT1280
AINT=VFN-(BETA*VNIBIG+GAMA*VNIPLS) IMPT1290
SINT=(VFT-VFA*FH(JEIG)/2.0)-((BETA*VTIBIG+GAMA*VTIPLS)+(HT(IBIG)/ IMPT13CO
2.0(VNIPLS-VNIBIG)/RL(IBIG)))
IMPT13C0
B1=1.0/FMASS(JBIG)+(FH(JBIG)/2.0)**2/FMOI(JBIG)+BETA**2/RNASS(IEIGINPTI 320
*) +GAMA**2/RMASS(IPLUS)+(HT(IBIG)/2.0/RL(IBIG))**2*(1.0/RMASS(IBIG)IMPTI330
*+1.0/RMASS(IPLUS))
IMPT1340
B2=1.0/FMASS(JBIG)+BETA**2/RMASS(IBIG)+GAMA**2/RNASS(IPLUS) IMPT1350
B3=(HT(IBIG)/2.0/RL(IBIG))*(GAMA/RMASS(IPLUS)-BETA/RMASS(IBIG)) IMPT1360
DELTP=PD(IBIG,JBIG)/AINT
IF(UNK(JBIG).EQ.O.0)GO TO 702
IF(UNK(JBIG).EQ.10.0)GO TO 703.
BAT1=B2*SINT-B3*AINT
BAT2=B1*AINT-B3*SINT
ANX=CATAN2(BAT1,BAT2)
TANX=BAT1/BAT2 IMPT1430
AXY=1.0
IMPT1370
IMPT1370
INPT1380
INPT1390
IMPT 1400
INPT1410
I MPT1420
IMPT1440

```
```

 BNX=DATAN2(UNK(JBIG),AXY) IMPT1450
 CNX=DATAN2(B3,E1) IMPT1460
 IF(B3.LE.O.O) GC TO 705
 IF(UNK(JBIG).GT.TANXIGO TO 707
 PNE=AINT/(B2+UNK(JBIG)*B3)
 A}\mp@subsup{A}{}{\prime}PN=(1,0+CR(JBIG))*PN
 APT=UNK(JBIG)*APN
 GO TO 760
 7C7 IF(CNX.LE.BNX)GO TÓ 708
7C7 IF(CNX.LE.BNX)GO TO 708
PN4=(AINT-2.0*UNK(JBIG)*B3*PN2)/(B2-UNK(JBIG)*B3).
APN=(1.0+CR(JBIG))*PN4
APT=UNK(JBIG)*(2.0*PN2-(1.0+CR(JBIG))*PN4)
GO T0 }76
7C8 PN3=(B1*AINT-B3*SINT)/(B1*B2-83**2)
APN=(1.0+CR(JBIG))*PN3
APT='(SINT-(B3*(1:0+CR(JBIG))*PN3))/B1
GO TO 760
Н゙ 705 .. IF(UNK(JBIG).LE.TANX)GO.TO 706
Н゙ 705 .' IF(UNK(JBIG).LE.TANX)GO.TO 706
PN3=(B1*AINT-B3*SINT)/(B1*B2-B3**2)
APN=(1.0+CR(JBIG))*PN3
APT=(SINT-B3*APN)/B1
GO TO }76
706 PNI=AINT/(B2+UNK(JBIG)*B3)
APN=(1.0+CR(JBIG))*PN1
APT=UNK(JBIG)*APN
GO TO 760
702 APN=(I.0+CR(JBIG))*AINT/B2
APT=0.0
GO TO }76
703 ETPL=SINT/81
ETP2=AINT/B3
IF(ETP1.LE.ETP2.OR.ETP2.LE.C.OIGO TC 704
APN=0.0
- APT=ETP1
GO 10 760
IMPT 1460
IMPT 1470
INPT1480
IMPT 1490
I MPT 1500
I MPT 1510
IMPT1520
IMPT 1530
IMPT1530
I MPT 1550
IMPT1560
IMPT1570
IN.PT1580
IMP T1590
I MPT 1600
I MPT1610
IMPT 1630
I MPT 1640
IMPT1650
IMP T }166
IMPT1670
IMPT1680
I MPT 1690.
I MPT 1700
INPT1710
IMPT1720
IMPT 1730
INPT1740
IMPT1750
IMPT1750
IMPT 1760
IMPT1770
MMPT1780
IMPTI790
IMPT 1800

```
```

 7 0 4
 INPT1810
 PN3=(B1*AINT-B3*SINT)/(Bl*B2-B3**2)
 APT=(SINT-(B3*(1.O+CR(JBIG))*PN3))/B1. IMPT1830
    ```
```

 FACT1N=(BETA*RL(IBIG)*APN-(HT(IBIG)/2.0*APT))/(RMASS(IBIG)*RL(IBIGINPT1850
 *))
 IMPT 1860
 FACTIT=(BETA*APT)/RMASS(IBIG) IMPT1870
 FACT2N=(GAMA*RL(IBIG)*APN+(HT(IBIG)/2.0*APT))/(RNASS(IPLUS)*RL(IBIINPT1880
 *G))
 IMPT1890
 IMPT 1900
 FACTFN=-1.0*APN/FMASS(JBIG)
 INPT1910
 INPT1920
 FACTFO=APT#FH(JBIG)/FNGI(JBIG)/2.0.
 DFCGU(JBIG)=DFCGU(JBIG)-DELTP*(FACTFN*TCP-FACTFT*POP) INPT1940
 IMPT1930
 DFCGW(JBIG)=DFCGW(JEIG)-DELTP*(-1.0*FACTFN*POP-FACTFT*TOP) IMPT1950
 DALFA(JBIG)=DALFA(JBIG)+DELTP*FACTFO
 IMPT1960
 DELD(IBIG*4-3)=DELD(IBIG*4-3)+DELTP*(-1.0*FACT1N*(TCM*PCP*POM*TCP)IMPT1970
 +FACT1T(POM*POP-TOM*TOP))
 I NPT1980
 DELD(IBIG*4-2)=DELD(IBIG*4-2)+DELTP*(FACT1N*(POM*POP-TOM*TOP) IMPT1990
 +FACT1T(TOM*POP+POM*TOP))
 IMPT 2000
 DELD(IEIG*4-3)=DELD(IBIG*4-3)*DCOS(TAP(IBIG))-DELD(IBIG*4-2)*DSIN(IMPT2010
 *TAP(IBIG))
 IMPT2C20
 DELD(IBIG*4-2)=DELD(IBIG*4-3)*DSIN(TAP(IEIG))+DELD(IBIG*4-2)* IMPT2030
 *DCOS(TAP(IBIG))
 IMPT 2040
 DELD(IPLUS*4-3)= DELC(IPLUS*4-3)+DELTP*(-1.0*FACT2N*(TOX*POP*POX* INPT2C50
 TOP)+FACT2T(POX*POP-TOX*TCP))
 MPT 2C60
 DELD(IPLUS*4-2)=DELD(IPLUS*4-2)+DELTP*(FACT2N*(PCX*POP-TOX*TOP) IMPT2070
 +FACT2T(TOX*.PCP +POX*TCP))
 INPT2080
 DELD(IPLUS*4-3)=0ELD(IPLUS*4-3)*DCOS(TAP(IBIG))-CELC(IPLUS*4-2) IMPT2090
 *DSIN(TAP(IBIG))
 INPT 2100
 DELD(IPLUS*4-2)=0ELD(IPLUS*4-3)*DSIN(TAP(IBIG))+DELD(IPLUS*4-2)* IMPT2110
 *OCOS(TAP(IBIG))
 IMPT2120
 WRITE(MWRITE,25)IT,IBIG,JBIG,PAX(IBIG,JBIG),PD(IBIG;JBIE) IMPT.2130
 FORMAT (10X,'IMPACT IT = ', I5,3X,'ELEMENT NO. =',I5,3X,'FRAGNENT NC. INPT 2140
 *=',I5,/,10X,'LCCATION CN ELEMENT =',D15.6,3X,'PENETRATION DIST =', IMPT2150
 *D15.6.1)
 IMPT 2160
    ```
```

 50
 .77
    ```

178
    7 3 5
    7 3 6
    740 CONTINUE
1 7 9
```

```
    APT=SINT/B1 IMPT2530
```

```
    APT=SINT/B1 IMPT2530
    GO TO 740 IMPT2540
    GO TO 740 IMPT2540
    APN=(1.0+CR(JNBIG))*AINT/B2 IMPT2550
    APN=(1.0+CR(JNBIG))*AINT/B2 IMPT2550
    APT=0.0
    APT=0.0
    GO TC }74
    GO TC }74
    PN3=B1*AINT/B1/E2
    PN3=B1*AINT/B1/E2
    APN=(1.0+CR(JNBIG))*PN3
    APN=(1.0+CR(JNBIG))*PN3
    APT=SINT/BI
    APT=SINT/BI
    FACTNN=APN/RMASS(NNBIG)
    FACTNN=APN/RMASS(NNBIG)
    FACTNT=APT/RMASS(NNBIG)
    FACTNT=APT/RMASS(NNBIG)
    FACTFN=APN/FMASS(JNBIG)
    FACTFN=APN/FMASS(JNBIG)
    FACTFT=APT/FMASS(JNEIG)
    FACTFT=APT/FMASS(JNEIG)
    FACTFO=APT*FH(JNBIG)/2.0/FNOI(JNBIG)
    FACTFO=APT*FH(JNBIG)/2.0/FNOI(JNBIG)
    DELTP=PND(INBIG,JNBIG)/AINT
    DELTP=PND(INBIG,JNBIG)/AINT
    DFCGU(JNBIG)=DFCGU(JNBIG)+DELTP*(-1.0*FACTFN*COSA+FACTFT*SINA)
    DFCGU(JNBIG)=DFCGU(JNBIG)+DELTP*(-1.0*FACTFN*COSA+FACTFT*SINA)
    DFCGW(JNBIG)=DFCGW(JNBIG)+CELTP*(-1.0*FACTFN*SINA-FACTFT*COSA)
    DFCGW(JNBIG)=DFCGW(JNBIG)+CELTP*(-1.0*FACTFN*SINA-FACTFT*COSA)
    DALFA(JNBIG)=DALFA(JNBIG)+DELTP*FACTFD
    DALFA(JNBIG)=DALFA(JNBIG)+DELTP*FACTFD
    DELC(NNBIG*4-3)=DELD(NNBIG*4-3)+DELTP*(F,ACTNN*(AND-ANC)+FACTNT*
    DELC(NNBIG*4-3)=DELD(NNBIG*4-3)+DELTP*(F,ACTNN*(AND-ANC)+FACTNT*
    *(ANB+ANA))
    *(ANB+ANA))
    DELD(NNBIG*4-2)=DELD(NNBIG*4-2)+DELTP*(FACTNN* (ANB+ANA)-FACTNT*
    DELD(NNBIG*4-2)=DELD(NNBIG*4-2)+DELTP*(FACTNN* (ANB+ANA)-FACTNT*
    *(AND-ANC))
    *(AND-ANC))
    WRITE(NWRITE,201)IT,NNEIG,JNBIG,PNC(INBIG,JNBIG)
    WRITE(NWRITE,201)IT,NNEIG,JNBIG,PNC(INBIG,JNBIG)
    FORMAT(/,' IMPACT IT = ',15,' NODE NC. =',15, FRAG NO = IMPTT760
    FORMAT(/,' IMPACT IT = ',15,' NODE NC. =',15, FRAG NO = IMPTT760
    *,I5,' PD =',015.6)
    *,I5,' PD =',015.6)
    PNDBIG=0.0
    PNDBIG=0.0
    PND(INBIG,JNBIG)=0.C
    PND(INBIG,JNBIG)=0.C
    GD TO 30
    GD TO 30
    RETURN
    RETURN
    END
```

 END
    ```
```

 INPT2560
    ```
    INPT2560
    IMPT2570
    IMPT2570
    I MPT2570
    I MPT2570
    IMPT2580
    IMPT2580
    IMPT 2590
    IMPT 2590
    INPT2600
    INPT2600
I MP T }261
I MP T }261
IMPT 2620
IMPT 2620
INPT2630
INPT2630
I MPT2640
I MPT2640
IMPT2650
IMPT2650
IMPT2660
IMPT2660
IMPT2670
IMPT2670
IMPT2680
IMPT2680
IMPT 2690
IMPT 2690
INPT2700
INPT2700
IMPT2710
IMPT2710
IMPT2720
IMPT2720
IMPT2720
IMPT2720
IMPT2730
IMPT2730
IMPT2740
IMPT2740
    INPT2770
    INPT2770
    IMPT 2780
    IMPT 2780
    IMPT 2790
    IMPT 2790
    MPT 2800
    MPT 2800
I MPT 2810
I MPT 2810
31
IMPT 2820
```

IMPT 2820

```
```

 SUBRQULTINE MINV(A,N,DET,L,M)
 IMPLICIT REAL*&(A-H,O-Z).
 C
 SEARCH FOR LARGEST ,ELEMENT
 C
 DIMENSION A(1),L(1),M(1)
 DET=1.0
 NK=-N
 DO 80 K=1,N
 NK=NK+N
 L(K)=K
 M(K)=K
 KK=NK+K
 BIGA=A(KK).
 D(20 J=K,N
 IZ=N*(J-1)
 DO.20 I=K,N
 IJ=1 I + I
 \bullet
10
15 BIGA=A(IJ
L(K)=I
M(K)=J
20 CONTINUE
C
C INTERCHANGE RCWS
C
j=L(K)
IF(J-K) 35,35,25
25 KI=K-N
DO 30 I=1;N
KI=KI+N
HOLD=-A(KI)
JI=KI-K+J
A'(KI)=A(JI)
30 A(JI) =HOLD
INTERCHANGE COLUMNS

```
        MINVCC10
        MINVOC20
MINVOO30
MINVCC4O
MINVOC50
MINV0060
MINV0070
MINVOC80
MINVOO90
MINV0100
MINVO110
MINVO120
MINVO 130
MINVO140
MINVO150
MINV0160
MINV0170
MINVO180
MINVO190
MINVO200
MINVO210
MINVC220
MINV0230
MINVO240
MINVO250
MINVO260
MINVO270
MINVO280
MINVC290
MINV0300
MINV0310
MINV0320
MINV0330
MINV0340
MINVO350
MINV0360
```

 C
 35I=M(K)
 IF(I-K) 45,45,38
 38 JP =N*(I-1)
 DO 40 J=1,N
 JK=NK+J
 JI=JP+J
 HOLD=-A(SK)
 A(JK)=A(JI)
 40 A(JI) =HCLD
 C
 C divide column by minus pivot (value df pivot elenent is
 C
 45 IF(BIGA) 48,46,48
 46 DET=0.0
 RETURN
 48 DO 55 I=1,N
 IF(I-K) 50,55,50
 50 IK=NK+I
 -A(IK)=A(IK)/(-BIGA)
 55 CONTINUE
 REDUCE MATRIX
 DO 65 I=1,N
 IK=NK+I
 HOLD=A(IK)
 IJ=I-N
 DO 65 J=1,N
 I J=I J+A
 IF(I-K) 60,65,6C
 60 IF(J-K) 62,65,62
62 KJ=IJ-I + K
A(IJ)=HOLD*A(KJ)+A(IJ)
6 5 CCNTINUE

```

MINV0370
MINV038.0
MINVO390
MINVO400
MINV0410
MINVO420
MINVO430
MINV0440
MINV0450
MINVO460
MINV0470
MINVO480
MINVC490
MINVO500
MINVO510
MINV0520
MINVC530
MINV 0540
MINVO550
MINVO560
MINV 0570
MINV0580
MINVC590
MINV0600
NINV0610
MINV0620
MINVC630
MINV0640
MINV0650
MINV0660
MINV0670
MINV0680
MINV0690
MINVOTCO
MINV0710
MINV 0720
```

 C
 C DIVIDE ROW BY PIVOT
 C
 KJ=K-N
 DO 75 J=1,N
 KJ=KJ+N
 IF(J-K) 70,75,70
 70 A(KJ)=A(KJ)/BIGA
 75 CONTINUE
 C
 C
DET=DET*BIGA
C
C
~
A(KK)=1.0/B IGA
80 CONTINUE
FINAL ROW AND COLUMN INTERCHANGE
K=N
1C0 K=(K-1)
IF(K) 150,150,105
105 I=L(K)
IF(I-K) 120,120,108
1C8 JQ=N*(K-1)
JR=N*(I-1)
DO 110 J=1,N
JK=JQ+J
HOLD=A(JK)
JI=JR+J
A(JK)=-A(JI)
110 A(JI) =HOLD
120 J=M(K)
IF(J-K) 100,100,125

```

MINVO730
MINV0740
MINV0750
MINV0760
MINV077C
MINV0780
MINV0790
MINVC8CO
MINV0810
MINV0820
MINV0830
MINV0840
MINV 0850
MINV0860
MINV0870
MINV0880
MINV0890
MINVO900
MINVO910
MINVO920
MINV0930
MINVO940
MINVOS50
M INV0960
MINV0970
MINV0980
MINV0990
MINV 1000
MINVIC10
MINVIC20
MINV 1030
MINV1C40
MINVIC50
MINV 1 C60
NINV1070
MINVIC8C

MINV1090
DO \(130 \mathrm{I}=1, \mathrm{~N}\). MNVI100 \(K I=K I+N\)

MINVI120
MINV 1130
MINV 1140
MINV1150
MINV 1160
MINV 1170
MINV1180
```

 SUBRQUTINE OMULT(SQVCT,RWVCT,NCOL,NROWS,ACC,KROW,NDEX,NIRREG) OMLTOC10
 IMPLICIT REAL*&(A-H,O-Z)
 OMLTOO20
 TO FIND ACC OF (SQVCT)*(RWVCT)=(ACC)
 DIMENSION SQVCT(1),RWVCT(1),NCOL(1),ACC(1),KROW(1),NOEX(1)
 I NDEX=0
 NROWM=NROWS-1
 IF (NIRREG .GT. O) GO TO 200
 C HIGH SPEED PRODUCT FOR.REGULAR MATRICES
 DO 1OC NN=1,NROWM
 SUM=0.0
 IPI=NN+1
 KST=NCOL(NN)
 INDEX=INDEX+NN-KST
 DO }101\textrm{KPL}=\textrm{KST,NN
 I J=INDEX+KPL
 101 SUM=SUM+SQVCT(IJ)*RWVCT(KPL)
 C NOW FOR THE GOLUMN ELEMENTS
 \&
JNDEX=I J
DO 102 KPL=IP1,NROWS
IF(NN.LT.NCOL(KPL))GO TO ICO
JNDEXX = JNDEX +KPL-NCCL (KPL)
102 SUM=SUM+SQVCT(JNDEX)*RWVCT(KPL)
100 ACC(NN)=ACC(NN)+SUM
C NOW FOR THE LAST ROW
104 KADD=NCCL(NRCWS)
SUM=0.0
INDEX=INDEX.+NROWS-KADD
DO 103 KPL=KADD,NROWS
I J=INDEX+KPL
103 SUM=SUM+SQVCT(IJ)*RWVCT(KPL)
ACC(NRCWS)=ACC(NROWS)+SUM
RETURN
C MEDIUN SPEED PRODUCT FOR NIRREG .LE. NRCWS/2
200 IF (NIRREG .GT. NROWS/2) GO TO 201
DO 105 NN=1,NROWN
IP1=NN+1
ONLT0030
OMLTCC40
OMLTOC50
OMLT0060
ONLTOO70
OMLTCC80
OMLTOO90
ONLTO100
OMLTC110
OMLTO120
OMLTO130
OMLTO140
OMLTO150
OMLTO160
OMLTO.170
OMLT0180
OMLTO190
ONLTO200
OMLT0210
OMLTO220
ONLTO230
OMLTO240
OMLTO240
OMLT0250
OMLTO260
OMLT0270
OMLTO280
OMLTC290
OMLT0300
ONLTO310
OMLT0320
OMLT0330
OMLTO340
ONLTO350
OMLT0360

```
```

 KST=NCOL(NN) . ONLTOB70
 INDEX=INDEX+NN-KST OMLTOS80
 SUN=0.0
 DO 106 KPL=KST,NN
 IJ=INDEX+KPL
 1C6 SUN=SUN+SQVCT(IJ)*RWVCT(KPL)
 NCK=0
 JNDEX=IJ
 107 DO 108 KPL=IP1,NROWS
 IF(NN .LT..NCCL(KPL)) GO TO 109
 JNDEX=JNDEX+KPL-NCOL(KPL)
 108 SUM=SUM+SQVCT(JNDEX)*RWVCT(KPL)
 GO TO 105
 109 NCK=NCK+1
 IF (NCK .GT.NIRREG) GO TO 105
 IF (KPL .GE. KREW(NCK)) GO TO 109
 IPI=KROW(NCK)
 JNDEX=NDEX(NCK)+NN
 GO TO 107
 105 ACC(NN)=ACC(NN)+SUM
 GO TO 104
 OMLT0390
 OMLT0400
 ONLT0410
 OMLTO420
 OMLT0430
 OMLTO440
 OMLT0450
 OMLT0460
 OMLT0470
 OMLT0480
 OMLT0490
 OMLT0500
 ONLT0510
 ONLTOS2O
 OMLT0530
 OMLT0540
 ONLT0550
 OMLTO560
 OMLT0570
 ONLT0580
OMLTCSSO
OMLT06C0
ONLT0610
OMLT0620
OMLT0630
OMLT0640
OMLTO650
ONLT0660
OMLTO670
OMLT0680
OMLT0690
OMLTO7CO
OMLTO710
OMLT0720

```
\(A C C(N N)=A C C(N N)+S U N\)
OMLT0730
GO TO. 104
OMLTO740
END
OMLTO750
```

```
    SUBROUTINE PRINT(IT,TIME,HHALF) PRINOO10
```

```
    SUBROUTINE PRINT(IT,TIME,HHALF) PRINOO10
    IMPLICIT REAL*&(A-H,D-Z)
    IMPLICIT REAL*&(A-H,D-Z)
    DIMENSION HHALF(50)
    DIMENSION HHALF(50)
DIMENSION COPY(51),COPZ(51),FAILI(51),FAILG(51)
DIMENSION COPY(51),COPZ(51),FAILI(51),FAILG(51)
    COMMON /VQ/ FLVA(205),DISP(205),DELC(205),SNS(50,3,6,5), PRINO050
    COMMON /VQ/ FLVA(205),DISP(205),DELC(205),SNS(50,3,6,5), PRINO050
*BINP(50,3),BIMP(50,3),TDISP(205),TU(205),TW(205), PRINO060
*BINP(50,3),BIMP(50,3),TDISP(205),TU(205),TW(205), PRINO060
#COIY(205),COIZ(205),DELTAT
#COIY(205),COIZ(205),DELTAT
    COMMON/FG/Y(51),Z(51)
    COMMON/FG/Y(51),Z(51)
KXANG,NS,IK,NOGA,NFL,NSFL,
KXANG,NS,IK,NOGA,NFL,NSFL,
*NI, ICOL (205),NBCONO,NBC(4),NODEB(4)
*NI, ICOL (205),NBCONO,NBC(4),NODEB(4)
            COMMON /HM/ YCUNG,DS,C5,C6,ASFL(50,3,6,5),GZETA(50;3,6),SNC(5)
            COMMON /HM/ YCUNG,DS,C5,C6,ASFL(50,3,6,5),GZETA(50;3,6),SNC(5)
            COMMON /BA/ BEP(50,3,3,8),AL(50),AXG(3),AWG(3)
            COMMON /BA/ BEP(50,3,3,8),AL(50),AXG(3),AWG(3)
    CCMMON/SC/CRITS,EIG,BTIME,MCRIT,IBIG,ISURF
    CCMMON/SC/CRITS,EIG,BTIME,MCRIT,IBIG,ISURF
    CCMMON/FRAG/FH(6),FCG(6),FMASS(6),FMOI (6),FCCU(6),FCGW(6),ALFA(6),PRINO130
    CCMMON/FRAG/FH(6),FCG(6),FMASS(6),FMOI (6),FCCU(6),FCGW(6),ALFA(6),PRINO130
CCMM(G)/, (GACFFHG),FCG(6),FMASS(6),FMOI(G),FCCU(6),FCGN(G),AL,FA(G),PRINOI3O
CCMM(G)/, (GACFFHG),FCG(6),FMASS(6),FMOI(G),FCCU(6),FCGN(G),AL,FA(G),PRINOI3O
*UDOT(6),WDOT (6),ADOT(6),TPRIM (6),CR(6),FCGX(6),UNK(6),NF PRINO140
*UDOT(6),WDOT (6),ADOT(6),TPRIM (6),CR(6),FCGX(6),UNK(6),NF PRINO140
    COMMON /DFRAG/CFCGU(6),DFCGW(6),DALFA(G)
    COMMON /DFRAG/CFCGU(6),DFCGW(6),DALFA(G)
    COMMON /TAPE/ MREAD,MWRITE,MPUNCH
    COMMON /TAPE/ MREAD,MWRITE,MPUNCH
CCMMON /EP/ EPSI(50),EPSO(50)
CCMMON /EP/ EPSI(50),EPSO(50)
    DATA ASTER/'*'/,EIANK/: "/
    DATA ASTER/'*'/,EIANK/: "/
SIN(Q)=DSIN(Q)
SIN(Q)=DSIN(Q)
COS(Q)=DCOS(Q)
COS(Q)=DCOS(Q)
ATAN(Q)=DATAN(Q)
ATAN(Q)=DATAN(Q)
AES(Q)=DABS(Q)
AES(Q)=DABS(Q)
SQRT(Q)=DSQRT(Q)
SQRT(Q)=DSQRT(Q)
DO 11 I=1,NS
DO 11 I=1,NS
    COPY(I)=Y(I)+CISP(I*4-3)*CCS(ANG(I))-CISP(I*4-2)*SIN(ANG(I))
    COPY(I)=Y(I)+CISP(I*4-3)*CCS(ANG(I))-CISP(I*4-2)*SIN(ANG(I))
    COPZ(I)=Z(I)+0ISP(I*4-3)*SIN(ANG(I))+0ISP(I*4-2)*COS(ANG(I))
    COPZ(I)=Z(I)+0ISP(I*4-3)*SIN(ANG(I))+0ISP(I*4-2)*COS(ANG(I))
WRITE(MWRITE,1)IT,TIME
WRITE(MWRITE,1)IT,TIME
FCRMAT(///,', J=',I5,' TIME=',012.5)
FCRMAT(///,', J=',I5,' TIME=',012.5)
    WRITE(MWRITE,2)
    WRITE(MWRITE,2)
    FORMAT(/** I ',5X,'V',11X,'W',9X,'PSI*,9X, 'CHI*,10X,'COPY**
    FORMAT(/** I ',5X,'V',11X,'W',9X,'PSI*,9X, 'CHI*,10X,'COPY**
*8X,''COPZ', 9X,'L', 11X,'M',7X,'STRAIN(IN)', 4X,'STRAIN(OUT)')
*8X,''COPZ', 9X,'L', 11X,'M',7X,'STRAIN(IN)', 4X,'STRAIN(OUT)')
    IF(MCRIT .GT. O) GO TO 50
    IF(MCRIT .GT. O) GO TO 50
    CO 51 I=1,IK
    CO 51 I=1,IK
    FAILI(I)=BLANK
    FAILI(I)=BLANK
    FAILO(I)=BLAAK
    FAILO(I)=BLAAK
    IF(EPSI(I) &T. CRITS) GG TO 52
    IF(EPSI(I) &T. CRITS) GG TO 52
PR INOO30
PR INOO30
PR I NOO40
PR I NOO40
PRIN0070
PRIN0070
PRINOO8O
PRINOO8O
PRINOO90
PRINOO90
PRINO100
PRINO100
PRINO110
PRINO110
PRINO120
PRINO120
PRINO130
PRINO130
PRINO142
PRINO142
PRINO150
PRINO150
PRINO155
PRINO155
PR INO }16
PR INO }16
PRINO170
PRINO170
PRINO180
PRINO180
PRINO190
PRINO190
PRINO200
PRINO200
PRINO210
PRINO210
PRINO220
PRINO220
PRIN0.230
PRIN0.230
PR INO240
```

PR INO240

```
```

PRINO250

```
PRINO250
PRINO260
PRINO260
PRIN0500
PRIN0500
PRINO510
PRINO510
PR INO520
PR INO520
PRINO530
PRINO530
PRIN0540
PRIN0540
PRIN0550
PRIN0550
PRINO560
PRINO560
PR INO570
```

PR INO570

```
```

 FAILI\I)=ASTER PRINO580
 IF(MCRIT >. O) GO TO 52 PRINO590
 IF(MCRIT >• 0) GO TO 52 PRINO590
 IF(EPSO(I) <.CRITS) GO TO 51
 FAILO(II=ASTER
 IF(MCRIT >. O) GG TC 51
 MCRIT=1
 CONTINUE
 IF(MCRIT .LE. O) GO TC 50
 OO 53 I= 1,IK
 I*DISP(I*4-3),DISP(I*4-2) DISP(I*4-1),DISP(I*4)
 *COPY(I),COPZ(I),BINP(I,2),BIMP(I,2),EPSI(I),FAILI(I), PRINO690
 *EPSO(I),FAILO(I)
 IF(EXANG.EQ.360.)GO T0 932
 IKP1=IK+1 PRINO720
 WRITE(MWRITE,22)IKP1,DISP(IKP1*4-3),DISP(IKP1*4-2),DISP(IKP1*4-1),PRINO730
 *DISP(IK*4),COPY(IKP1),COPZ(IKP1) PRINO740
 932
54 FORMAT(I5,9012.4,A2,D12.4,A2)
WRITE(MWRITE,55) A.STER
FORMAT (/ SX, A2; STRAIN EXCEEDS THE CRIT.ICAL VALUE:)
, SX,D2, SRAIN EXCEEOS THE CRITICAL VALUE)
GO TO 189
CO 21 I=1,IK
RITEIMWRITE
*COPY(I),COPZ(I),BINP(I,2), BIMP(I,2),EPSI(I),EFSO(I)
IF{EXANG.EQ.360.)GC TO 189
FORMAT (I 5,'SD12.4,2X,D12.4)
IKPI=IK+1
*, DISP(IKP1*4), COPY(IKP1),COPZ(IKP1) PRINO870
189 WRITE(MWRITE,35) PRIN0880
35 FORMAT(10X,'FRAG NC. = ',5X,'FGGU =', 9X, 'FCGW = ',9X,'ALFA = ', 9X, PRINO890
'FRUV = ',9X, 'FRWV =,9X, 'FRAY = ',/1 PRINO892
DO 36 I=1,NF
FRUV= DFCGU(I)/DELTAT PRINO902
FRWV= DFCGW(I)/DELTAT PRINO904
PRIN0610
PRINO620

```
WRITE(MWRITE,55IASTER
```

WRITE(MWRITE,55IASTER
PRINO760
PRINOT70
PRINO780
PRINO790
PRINO800
PRINO\&10
PRINO820
PRINO820
PRINO840
PRINO850
PRINO860
PRIN0900

```

FRAV = DALFA(I)/DELTAT
PRINO906
36 WRITE(MWRITE, 37) I, FCGU(I), FCGW(I), ALFA(I), FRUV,FRWV,FRAV
37 FORMAT(10X,15,3X,6015.6,1)
PRINO910
PRIN0920
RETURN
PRINO930
END
PRIN0940
```

 SUBROUTINE QREN(AA,AL,AXG,AWG)
 QREMOCIU
IMPLICIT REAL*8(A-H,O-Z)
TO FIND EFFECTIVE STIFFNESS MATRIX DUE TO ELASTIC RESTRAINTS
DIMENSION AA $50,8,8), A L(1), A X G(1), A W G(1), B N G(51)$
*, $\operatorname{ELR}(8,8), \operatorname{ELRR}(8,8), \operatorname{ELRP}(8,8)$
CONNON/FG/Y(51), Z (51), ANG(51), H(51), B, EXANG,NS,IK,NOGA,NFL,NSFL, *NI, ICOL(205), NBCOND,NBC(4),NODEB(4)
COMMON/ELFU/SPRIN(2C60), FQREF(205), REX(4), NGR,NORP, NORU,NREL(4), *NRST (4), NREU(4)
CONNOA /TAPE/ MREAD,NWRITE,MPUNCF
$\operatorname{SIN}(Q)=0 S I N(Q)$
$\operatorname{COS}(Q)=\operatorname{Cos}(Q)$
$\operatorname{ATAN}(Q)=$ DATAN(C)
$\operatorname{ABS}(Q)=\operatorname{DABS}(Q)$
SQRT(Q)=DSQRT(Q)
IF (NCRP EQ. O) EC TC 1
, SCRP, (NREL(I),REX(I),I=1,NORP)
FORMAT (3015.6/(4(15,015.6)))
WRITE (NWRITE,777)SCTP, SCTY, SCRP
DO 10 IQ=1, NORP
$S L=R E X(I Q)$
NE=NREL (IN)
$P 5=Z(\mathrm{NE}+1)-Z(\mathrm{NE})$
$P 6=Y(N E+1)-Y(N E)$
$P 7=A N G(N E+1)-A N G(N E)$
$A P H A=A T A N(P 5 / P 6)$
IF (PG.LT. O.O .AND. P5.LT. O. O) APHA $=A P H A-3.14159265$
IF (P6.LT.0.0.AND. P5.GE.O.0) APHA =APHA+3.14159265
$\operatorname{BNG}(N E+1)=\operatorname{ANG}(N E+1)$
BNG (NE) =ANG(NE)
$I F(P 7 . G T .(4.7124)$. AND. APHA.LT. 0.0) BNG $(N E+1)=A N G(N E+1)-6.2831853$
IF (P7.GT. (4.7124). AND. APHA.GT.0.0) BNG(NE)=ANG(NE)+6. 2831853
$I F(P 7 . L T .(-4.7124)$. AND. APHA.GT. O.0) BNG $(N E+1)=A N G(N E+1)+6.2831853$
IF (P7.LT. (-4.7124). AND.APHA.LT.0.0) BNG (NE) $=$ ANG $(N E)-6.2831853$
$B Z E R=B N G(N E)-A P H A$
$\mathrm{Bl}=(-2 . * \mathrm{BNG}(\mathrm{NE}+1)-4 . * \mathrm{BNG}(\mathrm{NE})+6 . * \triangle \mathrm{PFA}) / \mathrm{AL}(\mathrm{NE})$ QREMOC20

```

QREMCC30
QREMOC40
QREMOO50
QREMOC60
QREM0070
QREM0080
QREMC090
QREMO1CO
QREMO110
QREMO120
QREMO130
QREMO140
QREMO150
QREM0160
QREMO170
QREMO180
QREMOISO
QREMO200
QREMO210
QREM0220
QREMO230
QREM0240
QREM0250
QREMC260
QREM0270
QREM0280
QREMC29C
QREM0300
QREMO310
QREM0320
QREMC 330
QREM0340
QREM0350
QREMC360

C
```

 B2=(3.*BNG(NE+1)+3.*BNG(NE)-6.*APHA)/AL(NE)**2
 PHI=BZER+B1*SL+B2*SL**2
 PHIP=B1+2.*B2*SL
 YZET=0.0
 ZZET=0.0
 DO 104 JJ=1,NOGA
 P2=BZER+B1*SL*AXG(JJ)+B2*(SL*AXG(JJ))**2+APHA
 YZET=YZET+COS(P2)*SL*AWG(jJ)
 ZZET=ZZET+SIN(P2)*SL*AWG(JJ)
 P3=YZET*SIN(PHI+APHA)-ZZET*COS(PFI+APHA)
 P4=YZET*COS(PHI+APHA)+ZZET*SIN(PHI+APHA)
 ELR(1,1)=SCTP*COS(PHI)**2+SCTY*SIN(PHI)**2
 ELR(2,1)= (SCTP-SCTY)*COS(PHI)*SIN(PHI)
 ELR(3,1)=P3*COS(PHI)*SCTP-P4*SIN(PHI)*SCTY
 ELR(4,1)=SL*COS(PHI)*SCTP
 ELR(5,1)=-SL**2*SIN(PHI)*SCTY
 ELR(6,1)=-SL**3*SIN(PHI)*SCTY
 ELR(7,1)=SL**2*COS(PHI)*SCTP
 ELR(8,1)=SL**3*COS(PH1)*SCTP
 ELR(2,2)=SCTP*SIN(PHI)**2+SCTY*COS(PHI)**2
ELR(3,2)=P3*SIN(PHI)*SCTP+P4*COS(PHI)*SCTY
ELR(4,2)=SL*SIN(PHI)*SCTP
ELR(5,2)=SL**2*COS(PHI)*SCTY
ELR(6,2)=SL**3*COS(PHI)*SCTY
ELR(7,2)=SL**2*SIN(PHI)*SCTP
ELR(8,2)=SL**3*SIN(PHI)*SCTP
ELR(3,3)=P3**2*SCTP+P4**2*SCTY+SCRP
ELR(4,3)=P3*SL*SCTP+SL*PHIP*SCRP
ELR(5,3)=P4*SL**2*SCTY+2.*SL*SCRP
ELR(6,3)=P4*SL**3*SCTY+3.*SL**2*SCRP
ELR(7,3)=(P3*SCTP+PHIP*SCRP)*SL**2
ELR(8,3)=(P3*SCTP+PHIP*SCRP)*SL**3
ELR(4,4)=(SCTP+PHIP**2*SCRP)*SL**2
ELR(5,4)=2.*SL**2*PHIP*SCRP
ELR(6,4)=3.*SL**3*PHIP*SCRP
ELR(7,4)=(SCTP+PHIP**2*SCRP)*SL**3

```

QREM0370 QREMO380 QREMC390 QREM0400 QREM0410 QREM0420 QREMO430 QREM0440 QREMO450 QREMC460 QREMC470 QREM0480 QREMC490 QREM0500 QREM0510 QREMC520 QREM0530 QREM0540 QREM0550 QREM0560 QREM0570 QREM0580 QREMC590 QREM0600 QREM0610 QREMC620 QREM0630 QREM0640 QREM0650 QREM0660 QREM0670 QREM0680 QREM0690 QREM0700 QREM0710 QREMC720
```

 ELR(8,4)=(SCTP+PHIP**2*SCRP)*SL***4
 QREM0730
ELR(5,5)=SL**4*SCTY*4.*SL**2*SCRP
ELR(6,5)=SL**5*SCTY+6.*SL**3*SCRP
ELR(7;5)=2.*SL**3*PHIP*SCRP QREMO760
ELR(8,5)=2.*SL**4*PHIP*SCRP
ELR (6,6)=SL**6*SCTY+9.*SL**4*SCRP
ELR (7,6)=3.*SL***4*PHIP*SCRP
ELR (8,6)=3.*SL**5*PHIP*SCRP
ELR (7,7)=(SCTP+PHIP**2*SCRP)*SL***4
ELR (8,7)=(SCTP+PHIP**2*SCRP)*SL**5
ELR(8,8)=(SCTP+PHIP**2*SCRP)*SL***
DO 12.I=1,7
IP 1=I +1
DO 12 J=IP 1,8
ELR(I,J)=ELR(J,I)
DO 13 I=1,8
DO 13 J=1,8
ELRR(I,J)=0.0
DO 13 K=1,8
13 ELRR(I,J)=ELRR(I,J)+ELR(I,K)*AA(NE,K,J)
DO 14 I= 1,8
DO 14 J=1,8
ELRP(I;,J)=0.0
DO 14 K=1,8
ELRP(I,J)=ELRP(I,J)+AA(NE,K,I)*ELRR(K,J)
CALL ASSEM(NE,ELRP,SPRIN)
10. CONTINUE
1 IF(NORU.EQ.O) GO TO 4
READ(MREAD,3) SCTU,SCRU,(NRST(I),NREU(I),I=1,NORU)
FORMAT(2E15.6,815)
READ(MREAD,83)SCTW,(NRSTII),NREU(I),I=1,NORU)
83 FORMAT(D15.6,815)
WRITE(NWRITE,777)SCTU,SCTW,SCRU
QREMO740
QREMO75C
QREMO770
QREMO780
QR
QREMO790
QREM0800
QREMO810
GREMO820
QREM0830
QREM0840
QREMO850
QREMO860
QREM0870
QREMO88C
QREMO890
QREMO900
QREMO910
QREM0920
QREM0930
QREM0930
QREMO940
QRÉMOS50
QREMOS60
QREM0970
QREMCG80
QREMO990
QREM1000
QREM1010
QREM1020
QREM1030
WRITE(NWRITE,777ISCTU,SCTW,SCRU QRMM1C40
777 FORMAT(/,10X, 'THE VALUE OF THE TANGENTIAL SPRING CONSTANT IS =',DIQREM1060
*5.6.1,10X,'THE VALUE OF THE RADIAL SPRING CONSTANT IS = ',015.6.1, QREMIC7O
*10X,'THE VALUE OF THE TORSIONAL SPRING.CONSTANT IS = ',015.6.1) QREM1C80

```
```

 DO 15 IQ=1,NORU QREM1OSO
 NSTAT=NRST(IQ) QREMI100
 NENO=NREU(IO)
 QREM1110
 DO 16 IR=1,NEND
 QREM1120
 NE=(NSTAT-1)+IR
 QREM1130
 IF(NE -GT. IK) NE=NE-IK
 P5=Z(NE+1)-Z(NE)
 QREM1140
 QREM1150
 P6=Y(NE+1)-Y(NE)
 P7=ANG(NE+1)-ANG (NE)
 APHA=ATAN(P5/P6)
 IF(P6.LT.0.0 .AND. P5.LT.0.0) APHA=APHA-3.14159265
 IF(PG.LT.0.0 .AND. P5.GE.C.0).APHA=APHA+3.14159265
 BNG(NE+1)=ANG(NE+1)
 BNG(NE)=ANG(NE)
 IF(P7.GT.(4.7124).AND.APHA.LT.0.0) BNG(NE+1)=ANG(NE+1)-6.2831853
IF(P7.GT.(4.7124).AND.APHA.GT.0.0) ENG(NE)=ANG(NE)+E.2831853
IF(P7.LT.(-4.7124).AND.APHA.GT.0.0) BNG(NE+1)=ANG(NE+1)+6.2831853
IF(P7.LT.(-4.7124).AND.APHA:LT.0.0) BNG(NE)=ANG(NE)-6.2831853
BZER=BNG(NE)-APHA
B1=(-2.*RNG(NE+1)-4.*BNG(NE)+6.*APHA)/AL(NE)
B2=(3.*RNG(NE+1)+3.*BNG(NE)-6.*APHA)/AL(NE)**2
DO 102 I=1,8
DO l02 J=1,8
ELR(I,J)=0.0
DO 103 J=1,NOGA
ZET=AL(NE)*AXG(J)
PHIP=B1+2.* * 2*ZET
PHI=RZER+B1*ZET+B2*ZET**2
WET=AL(NE)*AWG(J)
YZET=0.0
ZZET=0.0
DO 105 JJ=1,NCGA
P2=BZER+B1*ZET*AXG(JJ)+B2*(ZET*AXG(JJ))**2+APFA
YZET=YZET+COS(P2)*ZET*AWG(JJ)
ZZET=ZZET+SIN(P2)*ZET*AWG(JJ)
P3=YZET*SIN(PHI+APHA)-ZZET*COS(PHI+APHA) OREM1440

```

P4=YZET*COS(PHI +APHA) +ZZET*SIN(PHI+APHA)
\(\operatorname{ELR}(1,1)=\operatorname{ELR}(1,1)+(\operatorname{SCTU} * \operatorname{COS}(P H I) * * 2+\operatorname{SCTW} * \operatorname{SIN}(P H I) * * 2) * W E T\) \(\operatorname{ELR}(2,1)=\operatorname{ELR}(2,1)+((S C T U-S C T W) * S I N(P H I) * C O S(P H I)) * W E T\) \(\operatorname{ELR}(3,1)=\operatorname{ELR}(3,1)+(P 3 * \operatorname{SCTU*COS}(P H I)-P 4 * S C T W * S I N(P H I)) * W E T\) \(\operatorname{ELR}(5,1)=\operatorname{ELR}(5,1)-(Z E T * * 2 * \operatorname{SCTW} * \operatorname{SIN}(\operatorname{PHI})) * W E T\) \(\operatorname{ELR}(6,1)=\operatorname{ELR}(6,1)-(2 E T * * 3 * S C T W * S I N(P H I)) * W E T\) \(\operatorname{ELR}(2,2)=\operatorname{ELR}(2,2)+(\operatorname{SCTU} * \operatorname{SIN}(\) PHI \() * * 2+\operatorname{SCTW} * \operatorname{CES}(\) PHI \() * * 2) * W E T\) \(\operatorname{ELR}(3,2)=E L R(3,2)+(P 3 * \operatorname{SCTU} * S I N(P H I)+P 4 * S C T W * C O S(P H I)) * W E T\) \(\operatorname{ELR}(5,2)=\operatorname{ELR}(5,2)+(2 E T * * 2 * S C T W * \operatorname{COS}(\operatorname{PH} 1)) * W E T\) \(\operatorname{ELR}(6,2)=\operatorname{ELR}(6,2)+(2 E T * * 3 * S C T W * \operatorname{COS}(\operatorname{PHI})) * W E T\) \(\operatorname{ELR}(3,3)=\operatorname{ELR}(3,3)+(P 3 * * 2 * S C T U+P 4 * * 2 * S C T W+\operatorname{SCRU}) * W E T\) \(\operatorname{ELR}(5,3)=E L R(5,3)+(P 4 * S C T W * Z E T * * 2+2.0 * S C R U * Z E T) * W E T\) \(\operatorname{ELR}(6,3)=E L R(6,3)+(P 4 * S C T W * Z E T * * 3+3.0 * S C R U * Z E T * * 2) * W E T\) \(\operatorname{ELR}(5,5)=\operatorname{ELR}(5,5)+(2 E T * * 4 * S C T W+4.0 * Z E T * * 2 * \operatorname{SCRU}) *\) WET \(\operatorname{ELR}(6,5)=\operatorname{ELR}(6,5)+(Z E T * * 5 * S C T W+6.0 * Z E T * * 3 * \operatorname{SCRU}) * W E T\) \(\operatorname{ELR}(6,6)=\operatorname{ELR}(6,6)+(2 E T * * 6 * S C T W+9.0 * Z E T * * 4 * \operatorname{SCRU}) * W E T\) \(\operatorname{ELR}(4,1)=\operatorname{ELR}(4,1)+2 E T * \operatorname{COS}(P H I) * S C T U * W E T\) \(\operatorname{ELR}(7,1)=\operatorname{ELR}(7,1)+Z E T * * 2 * \operatorname{COS}(P H I) * S C T U * h E T\)
\(\operatorname{ELR}(8,1)=\operatorname{ELR}(8,1)+2 E T * * 3 * \operatorname{CCS}(P H I) * S C T U * W E T\) \(\operatorname{ELR}(4,2)=\operatorname{ELR}(4,2)+Z E T * S I N(P H I) * S C T U * W E T\) \(\operatorname{ELR}(7,2)=E L R(7,2)+2 E T * * 2 * S I N(P H I) * S C T U * W E T\) \(\operatorname{ELR}(8,2)=E \operatorname{LR}(8,2)+2 E T * * 3 * S I N(P H I) * S C T U * W E T\) \(\operatorname{ELR}(4,3)=\operatorname{ELR}(4,3)+(P 3 * \operatorname{SCTU}+P H I P * S C R U) * Z E T * W E T\) \(\operatorname{ELR}(7,3)=\operatorname{ELR}(7,3)+(P 3 * \operatorname{SCTU}+P H I P * S C R U) * Z E T * * 2 * W E T\) \(\operatorname{ELR}(8,3)=\operatorname{ELR}(8,3)+(P 3 * S C T U+P H I P * S C R U) * Z E T * * 3 * W E T\) \(\operatorname{ELR}(4,4)=\operatorname{ELR}(4,4)+(S C T U+P H I P * * 2 * S C R U) * Z E T * * 2 * W E T\) \(\operatorname{ELR}(5,4)=\operatorname{ELR}(5,4)+2 . * \operatorname{ZET} * * 2 * \operatorname{PHIP} * \operatorname{SCRU*WET}\) \(\operatorname{ELR}(6,4)=\operatorname{ELR}(6,4)+3 * * Z E T * 3 * P H I P * S C R U * W E T\) \(\operatorname{ELR}(7,4)=\operatorname{ELR}(7,4)+(S C T U+P H I P * * 2 * S C R U) * Z E T * * 3 * W E T\) \(\operatorname{ELR}(8,4)=\operatorname{ELR}(8,4)+(\operatorname{SCTU}+\mathrm{PHIP} * * 2 * \operatorname{SCRU}) * Z E T * * 4 * W E T\) \(\operatorname{ELR}(7,5)=\operatorname{ELR}(7,5)+2 . * Z E T * * 3 * P H \operatorname{IP} * \operatorname{SCRU*WET}\) \(\operatorname{ELR}(8,5)=\operatorname{ELR}(8,5)+2 . * 2 E T * * 4 * P H I P * S C R U * W E T\) \(\operatorname{ELR}(7,6)=\operatorname{ELR}(7,6)+3 . * Z E T * * 4 * P H I P * S C R U * W E T\) \(\operatorname{ELR}(8,6)=\operatorname{ELR}(8,6)+3 . * 2 E T * * 5 * P H I P * S C R U * W E T\) \(\operatorname{ELR}(7,7)=\operatorname{ELR}(7,7)+(S C T U+P F I P * * 2 * S C R U) * Z E T * * 4 * W E T\) \(\operatorname{ELR}(8,7)=\operatorname{ELR}(8,7)+(S C T U+P H I P * * 2 * S C R U) * Z E T * * 5 * W E T\)

QREM 1450
QREM1460 QREM 1470 QREM 1480 QREM 1490 QREM 15C0 QREM 1510 QREM 1520 QREM 1530 QREM 1540 QREM1550 QREM 1560 QREM 1570 QREM 1580 QREM1590 QREM16CO QREM 1610 QREM1620 QREM 1630 QREM 1640 QREM 1650 QREM 1660 QREM 1670 QREM1680 QREM 1690 QREM 1700 QREM1710 QREM1720 QREM 1730 QREM 1740 QREM1750 QREM 1760 QREM 1770 QREM 1780 QREM1790 QREM 1800
```

 ELR(8,8)=ELR(8,8)+(SCTU+PHIP**2*SCRU)*ZET**6*WET QREM1810
 CONTINUE
 DO 5 I= 1,7
 IP I= I + I
 DO 5 J=IP1,8
 ELR(I,J)=ELR(J,I)
 DO 6 I=1,8
 DO 6 J=1,8
 ELRR(I,J)=0.0
 DO 6 K=1,8
 ELRR(I,J)=ELRR(I,J)+ELR(I,K)*AA(NE,K,J)
 DO 7 I = 1,8
 DO 7 J=1,8
 ELRP{I,J)=0.0
 DO 7 K=1,8
 ELRP(I,J)=ELRP(I,J)+A\Delta(NE,K,I)*ELRR(K,J)
 16 CALL ASSEM(*NE,ELRP,SPRIN)
 CONTINUE
 IF(NBCCND .EG. O) RETURN
 OO 91 I=1,NBCOND
 JT4=NODER(I)*4
 JT4M3=JT4-3
 JT4M2=JT4-2
 JT4M1=JT4-1
 CALL ERC(JT4M3,SPRIN,NI,ICOL)
 IF(NBC(I).EQ.1 .OR.NBC(I).EQ.2) CALL ERC(JT4MI,SPRIN,NI,ICOL)
 IF(NBC(I).EQ.2 ORR.NBC(I).EQ.3) CALL ERC(JT4N2,SPRIN,NI,ICOL)
 CONTINUE
 RETURN
 END

```

QREM1810
QREM1E20
QREM 1830
QREM 1840
QREM1850
QREM 1860
QREM 1870
QREM1880
QREM1890
QREM1900
QREM1910
QREM 1920
QREM1930
QREM1940
QREM1950
QREM 1960
QREM 1970
QREM 1980
QREM 1990
QREM2C00
QREM2010
QREM 2020
QREM2C30
QREM2040
QREM 2050
QREM2C60
QREM2070
QREM2080
QREM2C90
QREM 2100
```

 SUBRQUTINE STRESS
 STRSCC10
 IMPLICIT REAL*8(A-H,O-Z)
 STRS0020
 C
 TO EVALUATE GENERALIZED NODAL LOAD VECTOR DUE TO LARGE DEFLECTIONSTRSCO3O
 C
 AND ELASTIC-PLASTIC STRAIN
 STRSCC40
 DIMENSION ELFP(B), BEPS(3),CEPS(3,3), EINPW(3), BINPW(3),FWP(3,3), STRSOC50
 *PN(8),PM(8),HNL(8)
 CONMON/FG/Y(51),Z(51),ANG(51),H(51),B,EXANG,NS,IK,NOGA,NFL,NSFL, STRSOC70
 *NI,ICOL(205),NBCOND,NBC(4),NODEB(4)
 COMMON /VQ/ FLVA(205),DISP(205), DELD(205), SNS(50,3,6,5),
 * BINP(50,3), BIMP(50,3),TDISP(205),TU(205),TW(205),
 *COIY(205), COIZ(205),DELTAT
 COMMON /HM/ YOUNG,DS,C5,C6;ASFL(50,3,6;5);GZETA(50,3,6),SNC(5)
 CONMON/BA/ BEP(50,3,3,8),AL(50),AXG(3),AWG(3)
 SIN(Q)=OSIN(Q)
 COS(Q)=DCOS(Q)
 ATAN(Q)=DATAN(Q)
 ABS (Q)=DABS(Q)
 SQRT(Q)=DSQRT(G)
 DO 502 IR=1,IK
 *DO 503 J=l,NOGA
 BINP{IR,J)=0.
 BIMP(IR,J)=0.
 DO 402 I=1,3
 BEPS(I)=0
 DO 402 K=1,8
 INDEX=(IR-1)*4+K
 4 0 2 ~ B E P S (I) = B E P S (I) + B E P (I R , J , I , K) * D E L D (I N D E X)
CEPS(J,2)=0.0
DD 403 K=1,8
INDEX=(IR-1)*4+K
403 CEPS}(J,2)=CEPS (j,2)+BEP(IR,J,2,K)*RISP(INDEX
205 FARE=BEPS(1)+CEPS(J,2)*BEPS(2)-BEPS(2)*\&2/2.
FCUR=REPS(3)
OG 151 K=1,NFL
BFNP=0.
BEPX=FARE+GZETA(IR,J,K)*FCUR
BEPX=FARE+GZETA(IR,J,K)*FCUR

```
```

 IF(OS.GT. 0.0) RFACTR=1.+(C6*ABS(EEPX))**C5 STRSC37C
 DO 35 L=1,NSFL STRS0380
 SNS(IR,J,K,L)=SNS(IR,J,K,L)+YOUNG*BEPX STRS0390
 IF(DS.EQ. 0.0) GC TO 255 STRSO4OO
 IF(SNS(IR,J,K,L)-SNO(L))30,301.91
 91. SNY=SNO(L)*RFACTR
 IF(SNS(IR,J,K,L)-SNY) 301,301,20
 20 SNS(IR,J,K,L)=SNY
 GO TO 301
 IF(SNS(IR,J,K,L)+SNO(L))92,301,301
 SNY=SNO(L)*RFACTR
 IF(SNS(IR,J,K,L)+SNY)40,301,301
 40 SNS(IR,J,K,L)=-SNY
 GO TO 301
 255 IF(SNS(IR,J,K,L)-SNO(L)) 18,301,17
 17 SNS(IR,J,K,L)=SNO(L)
 GO TO 301
 IF(SNS(IR,J,K,L)+SNO(L)) 19, 301,301*
 SNS(IR,J,K,L)=-SNO(L)
 BFNP=BFNP+SNS(IR,J,K,L)*ASFL(IR,J,K,L)
 CONTINUE
 BINP(IR,J)=BINP(IR,J)+BFNP
 BINP(IR,J)=BIMP(IR,J)+BFNP*GZETA(IR,J;K)
 CONTINUE
 CONTINUE
 DO 101 J=1,NOGA
 HWB(J,2)=CEPS}(J,2)*AWG(J)*EINP(IR,J)*AL(IR
 BINPW(J)=BINP(IR,J)*AWG(J)*AL(IR)
 BIMPW(J)=BIMP(IR;J)*AWG(J)*AL(IR)
 CONTINUF
 DO . }102\textrm{I}=1,
PN(1)=0.
PM(I)=0.
HNL(I)=0.0
DO 102 J=1,NOGA
PN(I)=PN(I)+BEP(IR,J,I,I)*BINPW(J)

```

STRSC370 STRS 0380 STRS0390 STRS0400 STRS 0410 STRS 0420
STRSC430 STRS0440 STRS0450 STRS0460 STRS0470 STRS0480
STRS0490
STRSC5CO
STRS0510
STRS0520
STRS0530
STRS 0540
STRS 0550
STRS0560
STRS0570
STRS0580
STRS0590
STRS06C0
STRS 0610
STRS0620
STRS0630
STRS 0640
STRS0650
STRSCE60
STRS0670
STRS0680
STRS0690
STRS0700
STRS0710
STRS0720
DO \(105 \mathrm{I}=1,8\)
\(\operatorname{ELFP}(I)=P N(I)+P M(I)+H N L(I)\)
STRS0750

STRSO 0760
CALL A SSEF(IR,IK, ELFP, FLVA, EXANG) STRS0770 RETURN STRS0780 END

STRS0790

\section*{A. 6 Illustrative Examples}

\section*{A.6.1 Free Circular Uniform-Thickness Containment Ring Subjected to Single-Fragment Attack}

In this example a free, initially-circular ring: 7.70-in midsurface radius, 0.40 -in thick, and 1.25 -in long.is subjected to attack by a circulardisk fragment with radius \(r_{f}=3.37\) in, mass \(4.60 \times 10^{-3}\left(1 b-\sec ^{2}\right) / i n\), mass moment of inertia \(2.61 \times 10^{\frac{\mathrm{f}_{2}}{}} 1 \mathrm{~b}-\sec ^{2}-\mathrm{in}\), initial translational velocity \(6,400 \mathrm{in} / \mathrm{sec}\), rotational velocity \(20,000 \mathrm{rpm}(2100 \mathrm{rad} / \mathrm{sec})\), and \(r_{\mathrm{CG}}=3.63 \mathrm{in}\). (see Fig. A.5).

The stress-strain curve is approximated by straight-line segments having the following stress-strain coordinates: \((\sigma, \varepsilon)=(0 \mathrm{psi}, 0 \mathrm{in} / \mathrm{in})\); ( \(80,950 \mathrm{psi}\), \(.00279 \mathrm{in} / \mathrm{in}\) ); (105,300 psi, . \(0225 \mathrm{in} / \mathrm{in}\) ) ; and ( \(121,000 \mathrm{psi}, .200 \mathrm{in} / \mathrm{in}\) ). Strain-rate effects are neglected. The mass density of the material is taken to be \(0.732 \times 10^{-3}\left(1 \mathrm{b-sec}{ }^{2}\right) / \mathrm{in}^{4}\).

The number of equal-length finite elements to be used to describe the compleze ring is 40.

Let the CIVM-JET-4A program calculate the transient response of the ring. The time increment \(\Delta t \equiv 1 \mu s e c\) is chosen, which has been shown (by numerical experimentation) to be suitable to provide a converged solution for this case. By consideration of the ring and fragment geometry and the velocity components of the fragment, a calculation has determined that there is no possibility of initial impact before approximately 303 psec after fragment release which is assumed to occur at the condition (instant) shown in Fig. A.5. To expedite the calculation and to eliminate the possibility of accumulation of error in the calculation of fragment position (while not significant in this example, a major consideration in calculation involving obliquely-oriented translational velocity vectors), the fragment is advanced to its position at 300 usec after release through the use of the TPRIM value specified in the input data.

Six hundred and fifty computational cycles (650 \(\mu \mathrm{sec}\) ) of structural response and the associated impact interactions are to be computed. These computational cycles, it should be noted, start at TPRIM \(=300 \mu s e c\). Printout is desired at 5 cycles after TPRIM and every 40 cycles thereafter. An energy accountin calculation for the system is desired.

\section*{A.6.1.1 Input Data}

The values to be punched on the data cards are as follows:

Card 1 3D15.6
\begin{tabular}{ll}
B & \(=0.125000 \mathrm{D}+01\) \\
DENS & \(=0.732000 \mathrm{D}-03\) \\
EXANG & \(=0.360000 \mathrm{D}+03\) (complete ring \(=360 \mathrm{deg}\) )
\end{tabular}

Card 2
815
IK \(\quad \doteq 40\)
NOGA \(=3\)
NFL \(=4\)
NSFL \(=3\)
MM \(\quad=650\)
M1 \(\quad=5\)
M2 \(=40^{\circ}\)
NF \(\quad=1\)
Card 2a
\(\begin{array}{ll}\mathrm{Y}(\mathrm{I}) & =0.000000 \mathrm{D}+00\end{array}\)
ANG (1) \(\quad=0.000000 \mathrm{D}+00\)
\(\mathrm{H}(\mathrm{I}) \quad=0.400000 \mathrm{D}+00\) -

Additional 2a cards are provided in the same format until all 40 nodal points are described.
\(\mathrm{Y}(40) \quad=0.120454 \mathrm{D}+01\)
\(Z(40) \quad=0.760520 \mathrm{D}+01\)
ANG (40) \(\quad=0.900000 \mathrm{D}+01\)
\(\mathrm{H}(40) \quad=0.400000 \mathrm{D}+00\)

\section*{Card 3}

4D15.6
\begin{tabular}{lll} 
DELTAT & \(=0.100000 \mathrm{D}-05\) \\
CRITS & \(=0.200000 \mathrm{D}+00\) \\
DS & \(=0.000000 \mathrm{D}+00\) & \begin{tabular}{c} 
(strain-rate effects are \\
neglected)
\end{tabular}
\end{tabular}

Card 4
\(\begin{array}{ll}\text { EPS (1) } & =0.279000 \mathrm{D}-02 \\ \text { SIG(1) } & =0.809500 \mathrm{D}+05\end{array}\)
\(\operatorname{EPS}(2) \quad=0.225000 \mathrm{D}-01\)
SIG(2) \(\quad=0.105300 \mathrm{D}+06\)
Cara 4a
\(\operatorname{EPS}(3) \quad=0.200000 \mathrm{D}+00\)
\(\operatorname{SIG}(3) \quad=0.121000 \mathrm{D}+06\)
Card 5
\(=0.674000 \mathrm{D}+01\)
\(\square=0.674000\)
FCG(1) \(\quad=0.363000 \mathrm{D}+01\)
FCGX (I) \(\quad=0.000000 \mathrm{D}+00\)
FMASS \((1) \quad=0.460000 \mathrm{D}-02\)
FMOI (1)
\(=0.261000 \mathrm{D}-01\)
Card 6
\(=0.000000 \mathrm{D}+00\)
Card 7
\(\begin{array}{ll}\operatorname{UDOT}(1) & =0.640000 \mathrm{D}+04 \\ \text { WDOT (1) } & =0.000000 \mathrm{D}+00\end{array}\)
\(\operatorname{ADOT}(1) \quad=-0.210000 \mathrm{D}+04\)
TPRIM (1)
\(=0.300000 \mathrm{D}-03\) ( \(300 \mu \mathrm{sec}\) after
CR(1)
Card 8
\(=0.100000 \mathrm{D}+01\) release \()\)

AXG(1) \(\quad=0.1127016654\)
\(\operatorname{AXG}(2) \quad=0.5\)
\(\operatorname{AXG}(3) \quad=0.8872983346\)

3F15.10
4D15.6

5D15.6

D15.6

5D15.6
```

Card 9
3F15.10
AWG(I) = 0.2777777778
AWG(2) = 0.44444444444
AWG(3) = 0.2777777778
Card 10
= -0.8611363115
TXG(1)
=-0.3399810435
TXG(2)
= 0.3399810435
TXG(4) = 0.8611363115
Card }1
=0.3478548451
TWG(2) = 0.6521451548
TWG(3) =0.6521.451548
TWG (4) = 0.3478548451
Card }1
I5
NBCOND =0 (no prescribed displacement
conditions)
Card 13 : 3I5
NQR =0 (no prescribed elastic
restraints)
Card 14
I5
ICONT = 0 (no initial conditions)
The total input deck for this example should appear as follows:

```
\begin{tabular}{|c|c|c|c|}
\hline O0D 01 & 03 & & \\
\hline 40 & 650 & 40 & \\
\hline 0.0000000000 & 0.770000001 & c. Ccooocc 00 & \\
\hline 0.120455001 & 00.760520001 & -C. S000000 01 & 00.4000000 \\
\hline 0.237943001 & 00.732314001 & -6.1800000 02 & 00.4000000 \\
\hline 00.349573001 & 00.686075 C Cl & -0.270000c 02 & 00.4000000000 \\
\hline 0.452595001 & 00.622543001 & -0.3600000 C 2 & 00.400000000 \\
\hline 0U.5444720 Cl & 00.544472001 & -C.45000ct C2 & CC. 4000000 \\
\hline 00.622943001 & 00.452555001 & -0.54C0000 02 & 00.4000000 \\
\hline 00.686075001 & 00.3495730 Cl & -0.6200000 02 & 00.4000000 \\
\hline 00.732314 D Cl & 00.237943001 & -0.7200000 02 & OD \\
\hline 00.760520001 & C0. 120454001 & -0.810000D 02 & \(0 C .400000000\) \\
\hline 00.770000001 & -0.125449D-05 & -C.9C00000 02 & 00.400000000 \\
\hline 00.760520 D 01 & -0.120455D Cl & -0.5900000 02 & 00.4000000 \\
\hline 00.732314001 & -0.2379430 01 & -0.108000 & CC. 400000000 \\
\hline 00.686075001 & -0.3495730 C1 & -0.1170000 03 & 00.400000000 \\
\hline 6229430 01 & -0.4525550 01 & -0.126000C 03 & 00.4000000 00 \\
\hline 01 & -0.5444720 C1 & -C.1350000 03 & 0C.4000000 00 \\
\hline 00.452594001 & -0.6229430 01 & -0.1440000 03 & 00 \\
\hline 00.349572001 & -0.6860750 C1 & -0.1530000 03 & 00.40000000 \\
\hline 00.237943001 & -0.732314D 01 & -0.1620000 03 & 0 \\
\hline 00.120454001 & -C.7605200 01 & . 17 & 0 \\
\hline -0.250898D-05 & -0.7700000 01 & 00.1800 & CC.4CCOOOD 00 \\
\hline -0.1204550 01 & -0.7605200 01 & CC. 171000003 & C0.4000000 00 \\
\hline -0.2379430 01 & -0.7323130 01 & OC. 162000003 & 00.400000000 \\
\hline -0.349573D C1 & -0.686C750 01 & 00.153000[ 03 & 00.4000000 00 \\
\hline -0.4525950 01 & -0.622S430 Cl & 00.144000003 & 00.400000000 \\
\hline -0.5444720 01 & -0.544472D 01 & 00.135000003 & OC.4CCOCOD 00 \\
\hline -0.6229430 01 & -0.4525940 01 & 00.126000003 & 00.400000000 \\
\hline -0.6860750 01 & -0.349572D CI & 00.117000003 & 4000000 00 \\
\hline -0.7323140 01 & -0.2379430 01 & 0.1080000 03 & 000000 00 \\
\hline -0.760520D 01 & -0.120454D C1 & OC.9500000 02 & 000000 00 \\
\hline -0.7700000 01 & \(00.376347 \mathrm{C}-\mathrm{C5}\) & OC. 900000002 & CC.4C00000 00 \\
\hline -0.7605200 Cl & 00.1204550.01 & OC. 810000002 & 00.400000000 \\
\hline 0.7323130 Cl & 00.2379430 Cl & OC. 720000002 & C0.4C00000 00 \\
\hline D & 00.349573001 & 00.630000002 & 00.4000000. 00 \\
\hline
\end{tabular}
```

 OC.540000D 02 00:400000D 00
 -0.544472D O1 00.5444730' O1 OC.450000D O2 00.400000D 00
 -0.452594D 01 00.622943D 01 00.360000D C2 00.4000000.00
 -0.34.95720 01 00.6860750 01 .00.2700000 C2 00.400C000 00
 -0.237943D 01 00.732314D Cl 00.180000D 02
 -0.120454D O1 00.76052OD 01 CC.900000D 01
 00.1000000-
 00.2790000-02
 00.200000D C0
 00.6740000 01
 00.0000000D 00
 00.640000D 04
 0.1127016654
 0.2777777778
 -0.8611363115
 0.3478548451
 0
 0
 N

```

\section*{A.6.1.2 Solition Output Data}

The following output for example 1 was obtained through the use of a CIVM-JET-4A analysis. In the interest of conciseness, only the output obtained at time cycles 5, 45, 325, 405, 605, and 645 after TPRIM is presented to enable a user to check the proper adaptation of CIVM-JET-4A to his computing facilitẏ.

The ring material and geometric properties, and prescribed displacements or restraints, the initial nodal coordinates, and the fragment geometric and initial velocity and energy properties are output to provide an input-dataconsistency check.

The initial impact is detected at 3 cycles after TPRIM at a position' along the length of. element 4. During the subsequent computational cycles, impact positions are detected indicating that the fragment is traveling in a clockwise direction along the surface of the ring.

The maximum circumferential strain response of the ring reaches 9.84 per cent at \(382 \mu \mathrm{sec}\) after TPRIM at the outer surface midspan of element 7. \({ }^{+}\)

The energy "breakdown" at a given time cycle is presented immediately before the structural response data for that time cycle.

\footnotetext{
+ In the present example, the strain responses were computed only at the midspan station of each ring finite element.
}
'CCHPLETF RING **JET** CONTAINMENT ANALYSIS
RING PROPERTIE
SUBTENDFC ANGLE OF RING
\(=0.360000 i 1+03\)
WIOTH OF RTNG(IN)
DENSITY OF RING
OENSITY OF RING
NUMAFR OF SPANWISE GAUSSIAN PTS.
NUNEER OF EEPTHWISE GAUSSIAN PTS
NUMBFR OF NECHANICAL SUBLAYERS
\(0.1250000+01\)
\(=0.73200 \mathrm{CD}-03\)
\(\begin{aligned}= & 4 \\ & =3\end{aligned}\)
STRAIN (1) \(=0.2790000-02\) STRESS \((1)=0.8095000+05\)
STRAIN (2) \(=0.2250000-01\) STRESS \((2)=0.1053000+06\)
STRAIN (2) \(=c .20 C 0000+00 S T R E S S(3)=0.1210000+06\)




``` currfnt time cycle fragment kinetic energy
45
\(0.141390 \mathrm{D}+06\)
```

WORK	input inte ring to time step	45	$0.1036840+05$
RING	kinetic energy at tine step	45	$0.448911 \mathrm{D}+04$
RING	flastic enfrgy to time step	45	$0.4462450+03$
RING	Plastic work to time step	45	$0.543302 \mathrm{D}+04$

$\mathrm{J}=45$ TIME $=\mathbf{C . 4 5 0 0 0 D - C 4}$

1	0.59900	681	c.32600-02	0.8004D~03	0.5980D-02	$0.76970+01$	$0.18550+05$	19800+03	0.14840-02	2
2	0.81530	-0.5926	-0.20200-02	0.14200-02	$0.12120+01$	$0.75990+01$	$0.2405 \mathrm{D}+05$	-0.3093D+04	$0.16610-01$	0.55470-02
3	0.15450-01	0.20340-01	c. 64960 -01	0.1337D-01	$0.24000+01$	$0.73380+01$	$0.2664 \mathrm{D}+05$	0.211	$0.13840-$	0.10780-01
4	0.4421D-02	$0.15180+00$	0.26980-01	0.21310-01	$0.35690+01$	$0.69940+01$	$0.32660+05$	0.26290+0	1548-02	. 2
	-0.E2日BD-C2	$0.90210-01$	-0.74200-01	0.21880-02	$0.45740+01$	$0.63060+01$	$0.30300+05$	-0.20460+0	$0.1150 \mathrm{D}-01$	0.2102
	-0.1042D-01	992	-0.33080-01	0.44060-02	$0.54440+01$	$0.54590+01$	$0.1686 \mathrm{D}+05$	-0.31740+0	0.82380-02	$0.33550-02$
	-0.71300-02	-0.55640-02	0.19930-02	0.12270-02	$0.62210+01$	$0.45280+0$	$0.18210+0$	$-0.15800+0$	0.14180-02	G.10920-02
	-0.50450-02	-0.19460-02	0.29860-02	0.11090-02	.6857D+01	$0.34990+a$	$0.17140+0$	$0.35660+03$	0.8127D-03	$15500-02$
	-0.35210-02	$\div 0.84340-03$	c. 7657D-03	0.80450	.73210+01	0.2383	0.1418	$0.39270+0$	0.93680-03	-10180-02
	-c.22700-02	-0.46C30-03	0.5243D-03	0.98820-03	$0.76040+01$	$0.12070+0$	$0.1304 \mathrm{D}+05$	$0.4703 \mathrm{D}+0$	0.8502D-03	150-03
11	-0.1134D-02	-0.17940-03	c. 22990-03	0.81430-03	$0.77000+01$	$0.1134 \mathrm{D}-02$	$0.85180+04$	$0.2482 \mathrm{D}+0$	0.56150-03	-03
	-0.40260-03	-0.53210-04	0.74060-04	0.38090-03	0.76050 0.01	-0.1204D+0	$0.35220+04$	$0.89790+01$	0.23350-03	.25210-03
13	-0.1c230-03	-0.1194D-0.4	0.17660-04	0.11360-03	0.73230	-0.23790+0	0.97790 +03	$0.23040+0$	0.65020-04	
14	-0.1927p-04	-0.20610-05	0.31850	0.23650-04	0.68610	-0.34980+0	$0.19450+03$	0.43590+00	0.12950-04	.13850-04
15	-0.27800-05	-0.27940-06	0.44590	0.36510-05	0.622	.45260+	0.2909D+02	0.63030-0.	0.19400-05	
	-0.31t2D-C6	-0.3034D-07	0.4963	0.435	0.544	544	$0.33930+01$	$0.71810-02$	$0.22650-06$	.24130-06
17	-0.29020-07	0.268	0.44	0.41	0.452	0.6229	$0.31710+00$	0.65940-03	0.21180-07	. 222
18	-0.21890-08	- 1973 D-09	.33380	$0.32070-0$	0.349	886	$0.24240-0$	0.49	$0.16200-08$	. 17
	-0.13760-C9	12140-10	0.20780-10	0.26590	-	+al	$0.15410-$	0.3	0.1	
20	-c.73050-11	$0.6333 \mathrm{D}-12$	0.10950-11	0.11110-10	$0.12050+0$	.7605p+01	0.82460-04	0.1661	0.55120-11	. 5
21	-0.33050-12	-.28250-13	0.49210	0.50940	0.3305	.77000+al	0.3756 D	0.7516	$0.25110-12$	. 26
22	-0.12850-13	-0.10850-14	C. 1904	0.20020	-0.12050	-0.76050+0	0.14680-06	0.29230-09	$0.98200-14$	0.10420-13
23	-0.4324D-15	0.36160-16	0.63771	0.67990	-0.237	.732304	0.49710	$0.9849 \mathrm{D}-11$	$0.33240-15$	0.35280-15
	.11950-16	1107D-17	1756D-17	0.211		686104	0.46140	$0.91050-12$	$0.3086 \mathrm{D}-16$	. $3274 \mathrm{D}-16$
25		0.22990-17	-0.39770-17	0.43	45	-0.6229D+	0.10660-07	0.21120-10	0.71310-15	0.75680-15
26	92880-15	$0.77710-1$	13700-15	0.146	5445D	54450+0	$0.3127 \mathrm{D}-06$	0.62230-09	0.20910-13	
27	380-13	$0.2314 \mathrm{D}-14$	4C54D-14	0.42630	0.62290	45260+	$0.79240-05$	$0.15860-07$	0.52980-12	$0.5626 \mathrm{D}-12$
28	0.69760-12	$0.59670-13$	.10390-12	0.1074	.68610	$34960+0$	0.17220-03	$0.34680-0$	0.1151D-10	
29	$0.15260-10$	. 1325	0.2287D-11	0.23180	-0.73230+01	-0.23790+al	0.3179D-02	0.64590-05	0.21250-09	. 22
30	0.2842D-09	$-0.25110-10$	-.42930-10	0.4246	$0.76050+$	$\sim 0.1205 \mathrm{D}+0$	$0.49380-01$	0.1014D-03	0.32990-08	. 35
31	$0.44620-08$	$0.4030 \mathrm{D}-09$	-68870-09	0.E5270-08	$-0.77000+01$	0.44620-0	$0.6365 \mathrm{D}+00$	$0.23250-02$	0.42500-07	. 452
32	0.58330-07	-0.54170-08	c.90120-08	0.83030-07	$-0.76050+01$	$0.12050+0$	$0.66970+01$	$0.14190 \sim 01$	. 44700 -06	. 476
33	0.62530-06	0.6020D-07	0.98240-07	0.65870-06	-0.73230+01	$0.23790+01$	$0.56310+02$	$0.12230+00$	0.3755D-05	.40080-05
34	0.53950-05	0.54460-06	86690-06	0.7054	-0.6861D+01	$0.34960+01$	$0.36780+03$	$0.82710+00$	0.24500-04	. 26
35	36590-04	0.39400-05	60650-05	0.44620	-0.62290+01	$0.45260+01$	$0.17970+0$	$0.42600+01$	0.11950-03	. 12830-03
36	1893D-03	-0.22310-04	0.32830	0.2078	-0.54450+01	$0.5445 \mathrm{D}+0$	$0.62180+04$	$0.1603 D+02$		. 44520 -03
37	71980-03	-0.56700-04	0.13350-03	0.6654	-0.45250+01	$0.62300+01$	$0.14040+05$	0.4202D+02	0.92440 -03	0.10110-02
38	1928D-02	.3143D-03	39730-03	0.130	-0.34940+01	0.68610+01	$0.1836 D+05$	$0.71510+02$		
39	35380-02	0.76250-03	84460-03	0.12240-02	$-0.23760+01$	$0.73240+01$	$0.13330+05$	$0.61530+02$	0.8554D-03	$0.98270-03$
40	7600-02	-0.13450-02		$0.36100-03$	-0:12000	. $76050+01$	$0.12600+05$	10+03		$0.12090-02$
	G	F6u			A					
		0.21935	0.							


CURRENT TIME CYCLE	fragment	KINETIC ENERGY
325	1	$0.9050140+05$

```
HORK INPUT INTO RING TO TIME STEP 325 = 0.611771DD+05
```



```
RING ELASTIC ENERGYTO TIME STEP
```

Jロ 325 TIME $=0.325000-03$




RING KINEITC ENERGY AT TIME STEP
RIAC ELASIIC ENERGY TO TIME STEP RIAG PLASIIC HORK TO TIME STEP
ENERCY STORED IN ELASTIC RESTRAINTS
$.668263 \mathrm{D}+05$
$.353492 \mathrm{D}+05$ $\begin{array}{ll}405= & 0.3534920+05 \\ 405 & 0.181970+04 \\ 405= & 0.2965790+05\end{array}$
0.0



KINETIC ENERGY
$0.7013410+05$

| HORK INPUT INTO RING TO TIMF STEP | $605=0.8162440+05$ |
| :--- | :--- | :--- | :--- |
| RING KINETIC ENFRGY AT TIME STEP | $605 \approx 0$ |
| $0.4091190+05$ |  | $\begin{array}{lll}\text { RING KINETIC ENFRGY AT TIME STEP } & 605 \approx & 0.4091190+05 \\ \text { RING ELASTIC ENERGY TO TIME STEP } & 605=0 & 0.2076330+04\end{array}$ $\begin{array}{lll}\text { RING PLASTIC WORK TG TIME STEP } & 605=0.2363610+05 \\ \text { ENERYY STCREC IN ELASTIC RESTRAINTS } & =0.0\end{array}$


	605 rim	$M E=0.605000$								
1	$\checkmark$	H	PSI	CHI	PY	COPZ		H	Strainins	straintout)
1	$0.89780+00$	$-0.6013 \mathrm{D}+00$	0.34050-01	0.30270-02	$0.89780+00$	$0.7099 \mathrm{D}+01$	$0.52280+04$	-0.42670+04	0.24160-01	-0.13980-01
2	$0.97450+00$	-C. $34400+00$	$0.14960+00$	-0.50000-02	$0.21130+01$	$0.7113 \mathrm{D}+01$	$0.46510+04$	-0.3752D+04	$0.3033 \mathrm{D}-01$	-0.13370-01
3	$0.98110+00$	0.67490-01	$0.28200+00$	-0.2'581D-01	$0.33330+01$	$0.7084 \mathrm{D}+01$	$0.53730+04$	-0.35800 +04	0.25510-01	-0.56320-02
4	c. $86060+00$	$0.65520+00^{\circ}$	$0.37470+00$	-0.41840-01	$0.45600+01$	$0.7054 \mathrm{D}+01$	0.8619D+04	-0.45810+04	0.22950-01	$0.45240-01$
5	$0.67720+60$	c. $12090+01$	$0.30670+00$	-0.25630-02	$0.57850+01$	$0.68100+01$	$0.6575 \mathrm{D}+04$	$-0.41860+04$	0.24220-01	$0.58590-61$
6	$0.45210+00$	$0.16510+01$	$0.20130+00$	0.38660-01	$0.6932 \mathrm{D}+01$	$0.62930+01$	$0.61840+04$	$-0.15330+04$	0.59520-02	0.73910-01
7	c.21980+00	$0.1851 \mathrm{D}+01$	-0.55490-02	0:67160-01	$0.78560+01$	$0.54360+01$	$0.69760+04$	$0.78380{ }^{\text {d }} 03$	-0.99210-02	$0.93270-01$
	-0.27720-61	$0.16920+01$	-0.31810+00	0.73020-02	$0.8358 \mathrm{D}+01$	$0.42840+01$	$0.8789 \mathrm{D}+04$	$-0.30290+01$	-0.17160-02	$0.8220 \mathrm{D-C1}$
	-0.30870+00	$0.1162 \mathrm{D}+01$	-0.57120+00	-0.1249D+00	$0.83330+01$	c. $30320+01$	$0.8992 \mathrm{D}+04$	$0.49620+04$	0.17810-01	0.6303n-01
	-c.61550+00	$0.34140+00$	$-0.70660+00$	-0.22060+00	$0.7846 \mathrm{D}+01$	$0.18660+01$	$0.7369 n+04$	$0.33780+04$	0.69960-01	-0.27550-01
11	.78280+00	47530+00	$1200+$	6692D-01	$0.77250+01$	$0.78280+00$	$0.6266 \mathrm{D}+04$	6D+04	0.91540-01	0.52060-c1
	-0.56190+00	$0.7710 \mathrm{D}+00$	$0.1900 \mathrm{D}+00$	0.17960-01	$0.67640+01$	-16070+01	$0.31710+04$	$0.18040+04$	0.55910-03	0.10450 -02
	-0.47440+00	-0.61850+00	$0.1885 \mathrm{D}+00$	-0.17360-01	$0.65250+01$	-0.27920+01	$0.4529 D+03$	$0.22210+04$	-0.50450-02	0.63010-02
	-0.40600+00	-0.4773D+00	$0.1541 \mathrm{D}+00$	-0.96630-02	0.60820+01	-0.39170+01	$0.24780+04$	$0.30470+04$	-0.63870-02	0.89340 -02
	-0.34800+00	-0.3796D+00	$0.10800+00$	-0.52300-02	$0.5422 \mathrm{D}+01$	-0.49300+01	0.9940D+03	$0.38610+04$	-0.60420-02	$0.62480 \sim 02$
	-0.29770+00	-0.32420+00	0.70850~01	-0.23260-02	0.4576D+01	-0.57920+01	$0.1312 \mathrm{D}+04$	$0.27420+04$	-0.27450-02	$0.29260-02$
	-0.25150+00	-0.29350+00	$0.5368 \mathrm{D}-01$	-0.11310-02	$0.35870+01$	-0.6485D+01	$0.23000+04$	$0.10750+04$	-0.9526D-03	$0.12700-02$
	-0.20850+00	-0.26970+00	0.46950-01	-0.86800-03	$0.24940+01$	-0.70020+01	0.22290+04	$0.75070+03$	-0.6226D-03	$0.9299 \mathrm{D}-03$
	-c.1691D+00	-0.2453D+00	0.42260-01	-0.98730-03	0.13330+01	-0.73360+01	$0.25060+04$	$0.12910+04$	-0.11620-02	$0.15070-02$
	$-0.13310+00$	$-0.22280+00$	c.34190-01	-0.37850-03	0.13310+00	-0.74770+01	0.43990+04	$0.45630+03$	-0.1686D-03	$0.77510-\mathrm{C3}$
$22$	-c.10010+00	-0.20130+00	0.31330-01	-0.14110-03	$-0.1074 \mathrm{D}+01$	-0.74220+01	$0.47500+04$	$0.9114 \mathrm{D}+03$	$-0.61500-03$	0.12700-02
	-c.70290-01	-0.17990+00	0.25630-01	-0.51900-04	-0.2257D+01	-0.71740+01	$0.57040+04$	$0.16210+04$	-0.12830-02	$0.20690-02$
	-C.4324D-01	-0.16340+00	0.15490-01	0. 29410-03	$-0.3383 \mathrm{D}+01$	-0.67350+01	$0.55650+04$	0.2327 d 04	-0.2022D-02	$0.2799 \mathrm{D}-02$
	-c.17690-01	-0.1584D+00	0.91670-03	$0.5374 \mathrm{D}-03$	-0.44190+01	-0.61120+01	0.42690+04	$0.16600+04$	-0.1422D-02	0.20100-02
	.0.0032D-02	-0.16520+00	-c: 9483D-02	0.46020-03	$-0.53340+01$	-0.53220+01	$0.4931 \mathrm{D}+04$	$0.91510+03$	-0.6062D-03	$0.12960-\mathrm{c} 2$
27	$0.35250-01$	-0.1773D+00	-0.15220-01	0.2889D-03	-0.61070+01	-0.4393D+01	$0.73850+04$	$0.96200+02$	$0.4096 \mathrm{D}-03$	$0.60850-03$
29	c.64440-01	-0.18760+00	-0.1582D-01	$0.5056 \mathrm{D}-03$	-0.6723D+01	-0.3353D+01	$0.80940+04$	$0.56510+03$	-0.26310-04	C.11420-02
29	C.9510D-01	-0.19670+00	-0.19350-01	0.2492D-03	$-0.71650+01$	-0.22280+01	$0.67770+04$	$0.47400+03$	-0.2294D-04	$0.95720-03$
30	C. $1269 \mathrm{D}+00$	-0.2042D*00	-0.22310-01	-0.52080-04	-0.7423D+01	-0.10470+01	$0.52370+04$	$0.12800+04$	-0.9625D-03	$0.16850-02$
31	$0.15950+00$	-0.21280+00	-0.3032D-01	-0.26390-03	-0.74870+01	$0.1595 \mathrm{D}+00$	$0.44880+04$	$0.26280+04$	-0.2407D-02	$0.3026 \mathrm{D}-02$
32	$0.19360+00$	-0.2311D+00	-0.4675 D-01	-0.90120-03	-0.73470+01	$0.13600+01$	$0.44320+04$	0.34420+04	-0.45010-02	$0.52900-02$
33	$0.23 \mathrm{c90}+00$	-0.27070+00	-0.76380-01	-0.24030-02	$-0.69940+01$	$0.25150+01$	$0.32470+04$	$0.30840+04$	-0.43580-02	0.47170-02
34	$0.27390+00$	-0.34100+00	$-0.10400+00$	-0.51710-02	-0.6433D+01	$0.35650+01$	0.25620+04	$0.21270+04$	-0.32360-02	c. $36850-02$
35	$0.32670+00$	-0.43270+00	$-0.1250 \mathrm{D}+00$	-0.76060-02	-0.56870+01	0.4536 - 01	0.16170404	$0.13020+04$	-0.16610-02	0.21360-02
36	C. $39240+00$	-0.53550+00	-0.13650+00	$-0.9340 \mathrm{D}-02$	-0.47890401	$0.53440+01$	0.79120+03	$-0.66260+03$	0.60430-03.	-0.32410-03
- 37	$0.47330+00$	-0.6324D+00	$-0.13370+00$	-0.88970-02	-0.37710+01	0.5996 dr01	$0.14700+04$	-0.20720.04	0.20670-02	-0.16400-02
38	c. $5690 \mathrm{C}+00$	-0.70640+00	$-0.12250+00$	-0.72270-02	-0.2668D+01	0.64900 +01	$0.3534 \mathrm{D}+04$	-0.32840+04	0.44450-02	-0.38000-02
39	$0.67630+00$	$-0.7438 \mathrm{D}+00$	-C.97510-01	-0.45010-02	$-0.15060+01$	$0.60250+01$	$0.23020+04$	-0.380800+04	$0.85510-02$	-0.7134D-02
40	$0.7897 \mathrm{D}+00$	-0.72120+00	-0.50050-01	0.61500-03	$-0.31170+00$	$0.7016 \mathrm{D}+01$	$0.20000+04$	-0.43730+04	0.16350-01	-0.11420-01
	frag no.	. FCGU		GH =	ALFA	FRU				
	1	0.423686	+01 0.274	9000+01-0.1	900500+01	$0.1909290+04$	-0.1351210	+04 -0.2100	0000+04	



Largest computed strain $=0.984228 \mathrm{~d}-01$ occurs at the outer surface midspan of element $=7$ at time (séc.) $=0.382000 \mathrm{D}-03$ do cards punched during this run for continuation.

## A.6.2 Elastic Foundation-Supported Variable-Thickness Partial Ring (Deflector) Subjected to Single- <br> Fragment Attack

The geometry of the structure, as shown in Fig. A.6, is a 90-deg partial ring of constant midsurface radius 8.733 in. and width 1.5 in. The thickness of the ring varies linearly from 0.3 in. at the ideally hinged-fixed end to 0.1 in. at the free end. A portion of the ring consisting of a sector of 27 degrees from the free end is supported by a uniform elastic foundation. This foundation consists of arbitrarily chosen normal $k_{N}$ and tangential $k_{T}$ stiffnesses equal to 1500 psi and 3000 psi , respectively.

The ring materiai is considered to be elastic, perfectly-plastic (EL-PP) with an elastic modulus of $29 \times 10^{6} \mathrm{psi}$ and a yield stress of 80,950 psi. For purposes of illustration, the strain-rate constants of the ring material are chosen to be those of mild steel: $D=40.4$ and $P=5$. The mass density of the material is $0.732 \times 10^{-3}\left(1 b-\sec ^{2}\right) /$ in $^{4}$. The "critical strain" is assumed to be 20 per cent.

Ten equal-length finite elements are to be used to model the partial ring.

The attacking fragment is identical to that considered in subsection A.6.1. The presence of fragment-ring surface friction is considered by the use of a value of 0.5 (arbitrarily) for the coefficient of friction $\mu$.

The CIVM-JET-4A program will be used to calculate the structural response of the ring and the motion of the fragment, using a time step of 1 microsecond. It has been calculated from the geometry of the ring structure and the fragment geometric and initial velocity properties that no impact will occur before 593 usec after fragment release (which is assumed to occur at the condition (instant) shown in Fig. A.6). To expedite the calculation, the fragment is advanced to its position at $575 \mu \mathrm{sec}$ after release by the use of the appropriate input value for TPRIM. Printout of structural response and fragment position data is desired starting at 5 cycles after TPRIM at intervals of 40 cycles thereafter until 600 computational cycles have been completed.

The energy accounting option will not be used for this example.

## A.6.2.1 Input Data

The values to be punched on the data cards are as follows:
Format
Card 1
3D15.6

B	$=0.150000 \mathrm{D}+01$
DENS	$=0.732000 \mathrm{D}-03$
EXANG	$=0.900000 \mathrm{D}+02$

Card 2
IK $=10$

NOGA $=3$
NFL $=4$
NSFL $=1$
$\mathrm{MM} \quad=600$
M1 . $=5$
M2 $={ }^{-} 40$
$\mathrm{NF} \quad=1$
Card 2a
$Y(1) \quad=0.000000 \mathrm{D}+00$
$Z(1) \quad=0.873300 \mathrm{D}+0 \mathrm{I}$
$\operatorname{ANG}(1) \quad=0.000000 . \mathrm{D}+00$
$\mathrm{H}(1) \quad=0.300000 \mathrm{D}+00$

Additional cards in same format until all 11 nodal points are described.

$\mathrm{Y}(11)$	$=0.873300 \mathrm{D}+01$
$\mathrm{Z}(11)$	$=0.000000 \mathrm{D}+00$
$\mathrm{ANG}(11)$	$=0.900000 \mathrm{D}+02$
$\mathrm{H}(11)$	$=0.100000 \mathrm{D}+00$

## Card 3

4D15.6
DELTAT $\quad=0.100000 \mathrm{D}-05$
CRITS $\quad=0.200000 \mathrm{D}+00$
DS $\quad=0.404000 \mathrm{D}+02$
$\mathrm{P} \quad=0.500000 \mathrm{D} \div 01$
Card 4
$\operatorname{EPS}(1) \quad=0.279138 \mathrm{D} \sim 02$
$\operatorname{SIG}(1) \quad=0.809500 \mathrm{D}+05$
Card 5 . . . 5D15.6
$\mathrm{FH}(\mathrm{I}) \quad=0.674000^{\circ} \mathrm{D}+0 \mathrm{I}$
FCG (I) $\quad=0.363000 \mathrm{D}+01$
FCGX(I) $\quad=0.000000 \mathrm{D}+00$
FMASS (I) $\quad=0.460000 \mathrm{D}-02$
FMOI (I) $\quad=0.261000 \mathrm{D}-01$
4D15.6

Card 6
UNK (I) $\quad=0.500000 \mathrm{D}+00$
Card 7
UDOT (I) $\quad=0.640000 \mathrm{D}+04$
WDOT (I) $\quad=0.000000 \mathrm{D}+00$
$\mathrm{ADOT}(\mathrm{I}) \quad=-0.210000 \mathrm{D}+04$
TPRIM (I) $\quad=0.575000 \mathrm{D}-03$
$\mathrm{CR}(\mathrm{I})=0.100000 \mathrm{D}+01$
D15.6

5D15.6

Card 8
$\mathrm{AXG}(1) \quad=0.1127016654$
$\operatorname{AXG}(2) \quad-=0.5$
$\operatorname{AXG}(3)=0.8872983346$
Card 9
AWG (1) $\quad=0.2777777778$
AWG (2) $\quad=0.4444444444$
AWG (3) $\quad=0.2777777778$

```
 Format
 4F15.10
 =-0.8611363115
 = -0.3399810435
 =0.3399810435
 = 0.8611363115
 4F15.10
 = 0.3478548451
 = 0.6521451548
 = 0.6521451548
 =0.347854845I
 I5
 = l (one prescribed displacement condition)
 2I5
 (Hinged-fixed support located at node l)
l
 = l (one elastic restraint)
 = 0 (no point elastic springs)
 = 1 (one uniform elastic foundation)
 2D15.6,8I5
 =0.300000 D+04 (tangential stiffness)
 =0.000000 D+00
 = 8 (Uniform elastic foundation over
 = 3 elements 8, 9, 10)
 D15.6,8I5
 = 0.150000 D+04 (radial stiffness)
 - = 8
 = 3
 • I5
 =0
1 input deck for this example should appear as follows:
```

```
 00.1500000001
00.7220000-
 OC.50000000 02
 10 3 4
 00.0000000 00
 00.1366140 01
 00.265864D 01
 00.39647CD 01
 00.513313D 01
 00.617516D }0
 00.7065140 01
 00.7791160 01
 00.830558D U1
 00.862548D Cl
 00.873300D O1
 00.100000D-05
 00.2791380-02
 00.67400000 01
 00.500000CD 00
22n
00.640000D 04
 0.1127016654
-0.8611363115
 0.3478548451
 l
 3 1
 1 0. 1
00.30000000 04
00.150000D 04
 O
```


## A.6.2.2 Solution Output Data

The following is the output obtained as a result of the CIVM-JET-4A analysis of this partial ring example.

The ring geometric and material properties, prescribed displacement conditions, and applied elastic restraint constants are output as well as the fragment geometric, initial velocity, and energy parameters, in order to provide a means of conducting an input-data check.

The initial impact is observed to have occurred at is $\mu$ sec after TPRIM along the length of element 6, approximately 55 degrees from the support $\left(\theta_{I} \doteq 55 \mathrm{deg}\right)$.

The strain exceeds the specified "critical" strain magnitude for the first time at cycle 245 in the location denoted by the asterisk (*).

The maximum strain of 8.44 percent occurs on the inner surface at the midspan of Element 5 at 600 Hsec after TPRIM. In this example, the strain responses were computed only at the midspan station of each finite element..

hinced displacemfnt condition at node $=1$
constfaints (elastic foundation/spring) as cescribeo below
size ff asserbleo mass or stiffness matrix $=270$
THE VALUF OF THE TANGENTIAL. SPRING CCNSTANT IS $=0.3000000+04$
THF VALUF OF THE RADIAL SPRING CONSTANT IS $=-150.3000004$
THE VALUE OF THE TGRSTONAL SPRING CCNSTANT IS
current timf cycle fragment kinetic energy

〔
$0.1517580+06$


ENERCY STOREO IN ELASTIC RFSTRAINTS $=0.0$





Current time cycle	fragment	Kinetic energy
405	1	$0.4356500+05$

WORK INPUT INTO RING TO TINE STEP $\quad 405 \approx 0.1081940+06$
$\begin{array}{lll}\text { RIAG KINETIC ENERGY AT TIME STEP } & 405= \\ \text { RING ELASTIC ENERGY YO TIME STEP } & 405= & 0.1026100+05 \\ 0.108262 D+04\end{array}$
$\begin{array}{lll}\text { RING PLASTIC HORK TO TIME STEP } \\ \text { FNFRCY STCREC IA ELASTIC RESTRAINTS } & 405=0 & =0.15123060+C 5 \\ & =0.581914 D+04\end{array}$

1	$v$	H	PSI	Chi	COPY	CDP2	L.	M	Stra	stra
1	c. ${ }^{\text {c }}$	0.0	-0.34680 +00	-0.42220-01	0.0	$0.87330+01$	$0.7992 \mathrm{D}+05$	-0.63550+03	0.33480-01	$0.93790-02$
2	c. 47030-03	-0.41890+00	-6.23300+00	-0.33100-03	$0.13010+01$	$0.82120+01$	0.76210405	$0.65310+02$	0.53370-01	$0.1443 \mathrm{D}-02$
3	$0.1072 \mathrm{n}+00$	$-0.54900+00$	0.46070-01	0.29290-01	$0.26310+01$	0.77500+01	$0.62630+05$	$-0.31730+03$	$0.39830-01$	0.30650-02
4	$0.19350+00$	-0.31490+00	$0.24780+00$	-0.23970-02	$0.39940+01$	$0.7413 \mathrm{D}+01$	$0.50510+05$	-0.36420+03	0.41130-01	C. $15830-01$
5	C. $16760+00$	$0.15940+00$	$0.39690+00$	-0.35740-02	$0.53860+01$	$0.71280+01$	$0.34420+05$	-0.1563D+03	$0.77050-01$	$0.78950-01$
6	-c.13490-01	0.94340+00	$0.37030+00$	0.28090-01	0.6833D+01	c. $68520+01$	$0.32310+05$	$-0.14390+03$	0.49230-01	0.69340-01
	.1883D+C0	. $13920+0$	0.23110+00	$0.37 \mathrm{C9D}-01$	$0.80810+01$	$0.6104 \mathrm{D}+0$	$0.1809 \mathrm{D}+05$	7254	. 2196	



	input into ring to tive ste	445	$0.1092210+06$
	KINETIC ENERGY AT TIMF STEP	$445=$	$0.8261220+04$
	ELASTIC ENERGY TO TIME STEP	445	$0.292276 \mathrm{D}+03$
	castic hork to tine step	445	0.

$J=445 \quad$ TIME $=0.445000-03$

	$v$	H	PSI	CHI	copy	COP2	L	$\mu$	Straintin)	ainiouti
		0.0	-0.35830+00	.48080-01	0.0	$0.87330+01$	$0.29630+05$	-0.61690403	0.35710-01	0.69780-02
	2-c.88C90-04	$-0.41930+00$	$-0.22200+00$	$0.17680-02$	$0.13000+01$	$0.82110+01$	$0.25540+05$	$0.9484 \mathrm{D}+03$	0.49620-01	$0.16860-02$
	$3 \quad 0.10630+00$	$-0.5540 \mathrm{D}+00$	c.22000-01	0.28750-01	$0.26290+01$	$0.7746 \mathrm{D}+01$	$0.19870+05$	-0.87070+03	$0.40690-01$	-0.1122D-02
	$40 \cdot 19680+00$	$-0.343300+00$	$0.25160+00$	-0.32640-02	$0.3984 \mathrm{D}+01$	$0.73860+01$	$0.17870+05$	-0.44050+03	$0.40140-01$	$0.12330-01$
	50.16210400	c. $195000+00$	$0.4154 \mathrm{D}+00$	-0.12800-01	$0.5379 \mathrm{D}+01$	0.71280401	$0.13180+05$	-0.44820+03	$0.75640-01$	0.75710-01
	$6-0.28830-01$	$0.95230+00$	$0.40910+00$	0.14100-01	$0.68280+01$	$0.6869 \mathrm{D}+01$	$0.19190+05$	-0.6817D+03	0.49700-01	$0.65700-01$
	$7-\mathrm{C} .23400+00$	$0.14590+01$	$0.2914 \mathrm{D}+00$	$0.18710-01$	$0.81080+01$	$0.61800+01$	$0.13110+05$	$0.55370+03$	$0.10990-01$	$0.5433 \mathrm{D}-01$
	$8-0.44180+60$	$0.16270+01$	0.48670-02	$0.66140-01$	$0.90300+01$	$0.50970+01$	$0.90760+04$	-0.41030+03	0.16930-01	0.55020-01
	$9-0.64620+00$	$0.13300+01$	-0.3439D+00	-0.15790-01	$0.93710+01$	$0.3724 D+01$	$0.54650+04$	$0.96260+03$	-0.19370-01	-0.4944D-02
	$0-0.97100+00$	$0.507 \mathrm{CD}+00$	$-0.50170+00$	-0.10480+00	$0.89740+01$	$0.24040+01$	$0.55560+04$	$0.16260+02$	.15860-01	01
	$\begin{gathered} -10670+01 \\ \text { FRAG NO. } \end{gathered}$	$\begin{gathered} -\mathrm{c} \cdot 11490+00 \\ =\quad \mathrm{FCGU} \end{gathered}$	$=-0.16310+00$	$\mathrm{GH}_{\mathrm{E}}^{0.10320-01}$	$0.86180+01$	$\begin{aligned} & \text { C. } 10670+01 \\ & \text { FRUV }=0 \end{aligned}$				
	1	0.5702330	+01 0.3536	$560+C 1-0.1$	919160+0t	$0.3289030+04$	-0.249769	0+03 -0.11	$40+04$	
	impact location	$\begin{aligned} & 1 \mathrm{~T}=\mathrm{ASB}_{\mathrm{El}}^{\mathrm{El}} \\ & \mathrm{~N} \text { ON ELEMENT } \end{aligned}$	$\begin{aligned} & \text { LENENT NO. }= \\ & =\quad 0.85801 \end{aligned}$	$\begin{aligned} & 6 \text { FRAGY } \\ & 6 D+\mathrm{C}^{\mathrm{C}} \\ & \text { PENET } \end{aligned}$	NT NO. = AIION dist	$=10.358018$				




Current time cycle	fragment	Kinetic energy
565	1	$0.3809700+05$

HORK INPUT INTO RING TO TIME STEP $565=0.1136610+06$
$\begin{array}{llll}\text { RIAG KINFTIC ENERGY AT TINE STEP } & 565= & 0.3812200+0 \\ \text { RIAG ELASTIC ENERGY TO TINE STEP } & 565= & 0.3301690+03\end{array}$
$\begin{array}{lll}\text { RING ELASTIC ENERGY TO TINE STEP } & 565= & 0.3301690+0 \\ \text { RIAG PLASTIC WORK TO TMME STEP } & 565 \text { a } & 0.974103 D+05\end{array}$
ENERGY STCRFL IA ELASTIC FESTRAINTS $=0.1210890+05$

Ja 565 TIME $=0.565000-03$

lakgfst computeo strain =, 0.8442110-01 occurs at the inner surface midspan of element = 5 at time (sec.) a $0.6000000-03$ nc cards puncheo during this run for continuation.


FIG. A. 1 GEOMETRICAL SHAPES OF STRUCTURAL RINGS ANALYZED BY THE CIVM-JET-4A PROGRAM


FIG. A. 2 NOMENCLATURE FOR GEOMETRY, COORDINATES, AND DISPLACEMENTS OF ARBITRARILY-CURVED VARIABLE-THICKNESS RING ELEMENTS


FIG. A. 3 SCHEMATICS FOR THE SUPPORT CONDITIONS OF THE STRUCTURE

(c) Dis̈tributed Elastic Foundation Provisions

FIG. A. 3 CONCLUDED


FIG. A. 4 SCHEMATIC OF POSSIBLE PIECEWISE LINEAR REPRESENTATION OF UNIAXIAL STATIC STRESS-STRAIN MATERIAL BEHAVIOR
4130 CAST STEEL $r_{c}=7.70 \mathrm{IN}$.
$\mathrm{L}=1.25 \mathrm{IN}$.
$\mathrm{h}=0.40 \mathrm{IN}$.
$\rho=0.283$ LB/CU.IN.
40 FINITE. ELEMENTS USED

$$
\begin{aligned}
r_{f} & =3.37 \text { INRAGMENT } \\
\mathrm{m}_{\mathrm{f}} & =4.6 \times 10^{-3} \mathrm{IB}-\mathrm{SEC}^{2} / \mathrm{IN}
\end{aligned}
$$


STRESS-STRAIN REPRESENTATION

$$
\begin{array}{ll}
\sigma_{1}=80,950 \mathrm{PSI} & \varepsilon_{1}=2.79 \times 10^{-3} \\
\sigma_{2}=105,300 \mathrm{PSI} & \varepsilon_{2}=2.25 \times 10^{-2} \\
\sigma_{1}=121.000 \text { PST } & \varepsilon_{1}=2.00 \times 10^{-1}
\end{array}
$$

FIG. A. $5^{\text { }}$ EXAMPLE PROBLEM: UNIFORM THICKNESS CONTAINMENT RING


FIG. A. 6 EXAMPLE PROBLEM: VARIABLE-THICKNESS 90-DEG PARTIAL.RING (DEFLECTOR) WITH UNIFORM ELASTIC FOUNDATION APPLIED TO A PORTION OF THE RING

## APPENDIX B

SUMMARY OF THE CAPABILITIES OF THE COMPUTER CODES JET 1, JET 2, AND JET 3 FOR PREDICTING TWO-DIMENSIONAL TRANSIENT RESPONSES OF RING STRUCTURES

This appendix is intended to provide for the reader a convenient tabular summary of the principal features and capabilities of the two-dimensional transient large-deflection elastic-plastic structural response ring codes JET I (Ref. 15), JET 2 (Ref. 16), and JET 3A-3D (Ref. 24) developed under NASA NGR'22-009-339. The present code CIVM-JET-4A has been developed by combining the CIVM procedure with a modified version of the JET 3C two-dimensional structural response code.

The JET 1 code of Ref. 15 pertains to single-layer complete, uniformthickness, initially-circular rings of either temperature-independent or temperature dependent material properties. These rings may be subjected to prescribed: (a) initial velocities, (b) transient mechanical loading, and/or (c) steady nonuniform temperatures. The finite-difference method employed in this code had been shown previously (Ref. 12) to provide reliable predictions for the case of temperature-independent material properties.

The JET 2 code was written in order to extend this finite-difference analysis capability to treat multilayer rings -- cases anticipated to be of future concern. In the interests of efficiency and the minimization of computer storage requirements, temperature-dependent material properties and thermal loading features were omitted from JET 2; if these omitted features should turn out to be needed urgently (but this, thus far, has not been the case), they could be added later.

Since the JET 1 and JET 2 codes pertained to initially-circular, complete rings of uniform thickness whereas there was interest also in variable-thickness; arbitrarily curved, partial as well as complete rings, the JET 3 series of codes was developed. To accommodate these latter features as well as a variety of types of (1) boundary conditions, (2) elastic-foundation supports, and (3) point elastic supports, the more versatile finite-element analysis procedure was developed and, employed. For efficiency and user convenience, four versions of the JET 3 program were developed; each version accommodates both complete
rings and partial rings. JET $3 A$ and JET $3 B$ pertain to uniform-thickness, initially-circular rings, and employ, respectively, the central-difference and the Houbolt finite-difference time operator; for certain cases, the latter finite-difference time operator may permit more economic converged transient response predictions than the former. •The codes JET 3C and JET 3D are corresponding codes which accommodate variable-thickness, arbitrarily curved rings.

In all of these codes (JET 1 through JET 3D), the stimulii: (1) initial velocity or impulse conditions andor (2) transient mechanical loading must be prescribed by the user or analyst. The externally-applied forces experienced by a complete or a partial ring from fragment impact are not provided within these codes. The user must supply his own estimate of the distribution and time histories of these forces. However, in the CIVM-JET-4A code, fragment/ ring interaction and response effects are handled internally automatically, for the idealized single-fragment and n-fragment cases provided and discussed in Appendix A.

In convenient tabular form, the principal features and capabilities of the codes JET 1, JET2, and JET 3A-3D are given in ths following:

Feature	$\begin{gathered} \text { JET } 1 \\ \text { (Ref. } 15 \text { ) } \end{gathered}$	JET 2   (Ref.16)	$\begin{gathered} \text { JET 3A } \\ \text { (Ref. 24) } \end{gathered}$	JET 3B   (Ref.24)	$\begin{gathered} \text { JET 3C } \\ \text { (Ref. } 2 \dot{4} \text { ) } \end{gathered}$	$\begin{gathered} \text { JET } \\ \text { (Ref. } 24 \text { ) } \end{gathered}$
Type of Spatial   Analysis Formulation Finite Difference Finite Element	x	x	$\overline{\text { x }}$	$\bar{x}$	$\overline{\mathrm{x}}$	x
Type of Finite-Difference Time Operator Central Difference Houbolt (Backward Difference)	x	x	x	- x	$\mathrm{x}$	x
Ring Geometry						
Complete Ring	x	x	x	x	x	x
Partial Ring Initial Configuration	-	-	x	x	x	x
Circular	x	x	x	x	x	x
Arb. Curved	-	-	-	-	x	x
Constant Thickness	x	x	x	x .	x	x
Variable Thickness	-	-	-	-	x	- $\mathbf{x}$
Single Layer	x	x	x	x	x	x
Multilayer HardBonded (1 to 3 layers)	-	x	- -		-	-
Boundary Conditions						
Ideally Clamped	-	-	x	x	x	x
Hinged Fixed	-	-	x	x	x	x
Symmetry	-	-	x	x	x	x
Free	-	-	x	$\times$	x	x
Other Support Conditions						
Distributed Elastic			-			
Foundation	-	-	x	x	x	x
Point Elastic Springs	-	-	x	x	x	x .





[^0]:    *It is to circumvent this tenuous extrapolation problem and to eliminate the necessity for making detailed transient response measurements now required in the TEJ concept that effort has been devoted to developing alternate methods of analysis (see the next approach in item 2).

[^1]:    ${ }^{*}{ }_{A}$ concise summary of the capabilities of the computer codes JET 1 , JET 2 , and JET 3 is given in Appendix B.

[^2]:    *Whle the present (inltial) analysis has been restricted to idealized containment/deflection structures undergoing two-dimensional behavior for convenience and simplicity, more comprehensive structural modeling and analysis could be employed later if found to be necessary.

[^3]:    *A similar procedure could be employed if one were to model the containment/ deflection structure in a more comprehensive and realistic way by using shell finite elements or the spatial finite difference method.

[^4]:    *Such forces are termed "internal forces" as distinguished from the "external impact-point forces".

[^5]:    *Transverse shear deformation is excluded.

[^6]:    It should be noted that in this approximate calculation, only the coordinate increments of the fragment and of the impacted ring segment are corrected. Those for all other ring segments are regarded as already being correct. The time increment $\Delta t$ is regarded as being sufficiently small to make these approximations acceptable.

[^7]:    *Two dimensional containment/deflection "rings" which are arbitrarily curved and/or of vaxiable thickness can be analyzed by the CIVM-JET program; such cases, however, introduce many more variables than time and funds permitted studying in the present investigation.

[^8]:    *It has been shown in Ref. 14 that about 9 or more finate elements per 90-degree sector of a ring produce converged transient response results.

[^9]:    *Note that the "critical time increment criterion" $\Delta t \bumpeq 0.8\left(2 / \omega_{\text {max }}\right)$ which amounts to about 4.5 microseconds and is sufficiently small to provide converged transient response predictions of an impulsively-loaded ring is, however, too large to provide converged results for the fragment/ring impact interaction and response cases. Hence, numerical experiments were conducted with various $\Delta t$ values, and it was determined that a $\Delta t$ of $1 \mu \mathrm{sec}$ was adequate for these cases.

[^10]:    ${ }^{*}$ The response time studied ranged to about 1400 microseconds after initial impact.

[^11]:    At time prior to fragment escape, the "fragment diversion quantitues" are denoted by $z_{d}, \alpha_{d}$, and $\beta$ (i.e., without the asterisk).

[^12]:    + This same restriction applies for any other "fixed" type of support such as ideally clamped, etc.

[^13]:    ${ }^{+}$Otherwise, many more dimensionless variables would be present.

[^14]:    *For present purposes, one is interested primarily in the effect of various sets of support stiffnesses ( $k_{N}, k_{T}$ ) -- not in $h_{c}$ values themselves; thus, one should pay no attention to the $h_{c}$ values themselves.

[^15]:    ${ }^{*}$ Including varyıng also at least $\theta_{I}, \mu, k_{T} / E$ and $k_{N} / E$.

[^16]:    The advisability of effecting these improvements will be to an extent dependent upon the outcome of the recommended additional cheoretical-experimental correlation studies.

[^17]:    *Ibid, page 59.

[^18]:    *see Figs. A. 1 through A. 4.

[^19]:    * Note that here $\psi$ has the meaning specified in Fig. 14.

[^20]:    *The plastic work done on the ring is estimated by subtracting the sum of the elastic and kinetic energies present in the ring. from the total input energy (due to the externally-applied load and the initialiy-imprted kinetic energy); i.e., RWORK $=$ CINETO + CELAS + PLAST+SPDEN. It should be mentioned that the approximate nature of this numerical calculation will sometimes yield impossible results such as negative values of plastic work or values greater than zero when the ring has not yet reached a plastic condition; thus, the value of plastic work should be considered only approximate, and spurious results as noted above should be ignored. This term may also be considered to contain, in addition, the energy dissipated by friction.

