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Abstract: Thisstudy project deals with the application of the Variational Principle inQuantum 

Mechanics.In this study project, the Variational Principle has been applied to several scenarios, 

with the aim being to obtain an upper bound on the ground state energies of several quantum 

systems, for some of which, the Schrodinger equation cannot be easily solved. (Refer Section 3 - 

Applications of the Variational Principle). For those systems where the Schrodinger equation 

could be solved without much difficulty, the exact ground state energies were calculated to 

compare with the results obtained via the application of the Variational Principle. (Refer Section 

1 of Preface). 
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1) PREFACE 

 
Section I): The Infinite Square Well 

 

 

 
 

We shall be dealing with a system which consists of a single particle constrained to move inone 

dimension only (here, the x axis). 

Along the axis, there exists a time-independent potential field, 𝑉(𝑥), whose magnitude 

depends only on the position from the origin along the axis. The Infinite Square Well is a 

scenario where we have a potential field defined as follows: 

 𝑉(𝑥) = {
0, 0 ≤ 𝑥 ≤ 𝐿
∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

Thus, the particle is trapped inside the‘potential well’ aspace spanning a width ‘L’, with two 

barriers of infinite forcepreventing it from escaping. 

Thus wecan say with certainty that the wavefunction, ( )x ,has to be zero outside the well. 

 

So, we solve the time-independent Schrodinger equation for0 ≤ 𝑥 ≤ 𝐿, where𝑉(𝑥) = 0 : 
2

22
0

ћ

xm
E

 
  


  

This can be written as,  

 

2
2

2
k

x

 
   


,       where

2mE
k

ћ
  

This is the differential equation for the classical Simple Harmonic Oscillator and has the general 

solution: 
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( ) Asin(kx) Bcos(kx)x    

 

Applying the boundary conditions for ( )x  : 

1) ( )x  is always continuous. 

2) First derivative of ( )x  is continuous except at the points where the potential is infinite. 

 

Since the second condition is obviously not applicable to the Infinite Square Well, we apply the 

first condition only: 

 

(0) (L) 0     

Which gives us, respectively,  

 

B = 0,   hence ( ) Asin(kx)x   

 

And, 

 

Asin(kL) 0  

 

Therefore kL n                          (since A = 0 is an absurd solution) 

 

And inputting the value of k  
2mE

k
ћ

 ,we get,   

 
2 2 2

22
n

ћn
E

mL


  

 

These are the stationarystate energies of the particle in the infinite square well. The ground 

state energy of the system corresponds to n = 1. 

22

22
g

ћ
E

mL


  
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We can find the arbitrary constant ‘A’ by normalizing ( )x over the x axis: 

22

0

2( ) sin ( )| | 1

L

x dx kx dxA





     

 

Solving, we get, 

2
A

L
        (We choose the positive real root because the phase of A has no physical 

significance) 

 

Therefore, overall, we have,   

2
sin( )) (n x

n
x

L L


   

 
 

 

 

Therefore, thesolution(s) to the time-dependent Schrodingerequation i.e. the stationary states, 

are: 

 

2 2 2( /2 )2
sin( , () ) i n ћ mL t

n

n
x

L
x et

L

    
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And the general solution to the time-dependent Schrodinger equation is a linear combination of 

the stationary states: 

2 2 2( /2 )

1

2
sin() )( , i n ћ m t

n

n

Ln
C x e

L
x t

L






   

The arbitrary constants, nC , can be calculated by the following method, which takes advantage 

of the orthonormality of the wavefunction : 

1 1

2
sin( )( ,0) ( )n

n n

n nx C x
L L

x
n

C
 

 

     

Multiplying on both sides by ( )*m x  and integrating over the x axis, we get, 

1 1

( )* ( ,0) ( )* ( )m mn n mn

n n

n mx x dx x x dxC C C
 

 

          

where mn  is the Kronecker delta defined in the usual way: 

 

mn = {
1, 𝑚 = 𝑛
0, 𝑚 ≠ 𝑛

 

 

Hence, replacing the dummy index ‘m’ by ‘n’ for consistency, 

 

( )* ( ,0)nnC x x dx    

 

Or in Dirac’s bra-ket notation, this can be written as: 

( ) ( ,0)n nC x x    
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Section II):The Dirac Delta Function Well 

 

 
 

The Dirac Delta function is defined as: 

 (𝑡) = {
∞, 𝑡 = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Such that, 

) 1dt t





   

The delta function has the following properties:  

 

1) ( ) ) f(a) )f t t a t a        …. (This follows because the delta function is zero 

everywhere except at t=a. Therefore at all other points, it is the same as multiplying f(t) by zero)  

 

2) Integrating both sides of the above equation, we get, 

( ) ) f(a) ) ( )f t t a dt t a dt f a

 

 

       

The Delta Potential Well is a scenario wherein (again, we consider a system consisting of a 

single particle constrained to move in one dimension only) there exists a time-independent 

potential V(x) such that 

V(x) a )x    
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We will consider only the bound states i.e. where the total energy of the particle E < 0. 

 

Thus, the particle is bound/trapped inside a potential well that is like an infinitely deep, narrow 

spike. 

 

Therefore, the time-independent Schrodinger equation reads, 
2

2
a ) E

2

ћ
x

m x

 
    


 

 

In the region x < 0 we haveV(x) =0. So, 

2
2

2 2

2 Em

x ћ

 
     


, where 

2 E

ћ

m
   

Since E is negative,   is real and positive. 

 

Therefore the general solution is, 

( ) kx kxx Ae Be    

 

Since the second term blows up to infinity as x , it cannot be a realizable solution. 

Hence, we neglect it. Thus for x < 0, 

( ) kxx Ae   

 

In the region x > 0 also V(x) =0, and so the time-independent Schrodinger equation and its 

solution take the same form as above. So, 

( ) kx kxx Ce De    

 

Here, the first term blows up to infinity and therefore is neglected. So for x > 0, 

( ) kxx De   

Now, we apply the boundary conditions:  

 

1) ( )x  is always continuous. 

i.e. (0 ) (0 )     

 

That gives us A D . But this does not tell us anything about the stationary state energies. 
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2) The first derivative of ( )x  is continuous except at the points where the potential is infinite. 

 

The second condition does not apply here since the potential blows to negative infinity at x=0. 

Hence we use a different technique to derive the stationary state energies. 

 

We take the time independent Schrodinger equation and integrate it from -to , (where is 

a positive constant) and then set a limit for  to tend to zero. 

2

2

2 )
( ) ( ) )

2
(

x
dx V x x dx E x dx

ћ

xm

  

  

 
    

    

As 0 ,  

The first term becomes 02

2 2 2

0

2

| |
2

)

2

ћ ћ d d ћ A

m m dx dx m

x
dx

x
 





 
  

   







 

 , 

 

since ( ) kxx Ae   for x > 0, and ( ) kxx Ae  for x < 0, as proved above. 

( )E x dx





 becomes zero, because )x is finite everywhere. 

( ) ( )V x x dx





 would also have been zero, if V(x) had been finite, but since that is not so, 

we get ( ) ( ) ( ) ( ) ) ( )V x x dx a x x dx a x aA

  

  

              

 

Thus the equation becomes, 

2

0
ћ A

aA
m

 


 

So we get, 2ћ

ma
   

 

Inputting the value,
2 E

ћ

m
  , we end up with,

2

22

ma
E

ћ


  

Hence we see that the particle can only exist in a single stationary state inside the Dirac Delta 

Potential Well. 
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We can find the constant ‘A’ by normalizing )x : 

2 2

0 2
2 2 2

0

| |
| | | |( ) 1kx kx A
A Ax dx e e

 

 

   
    

Thus, 

ma
A

ћ
    

So, the one and only stationary bound state of the delta function well is: 

2

| |

( )

ma x

ћ
ma

x e
ћ



  ,

2

22

ma
E

ћ


  

 
 

And the wavefunction for this single stationary state is: 

2 3

2

2
| |

( , t) .
t

ћ

ma ima
x

ћ
ma

e e
ћ

x


   
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SectionIII): A Very Brief Introduction to Quantum Mechanics in Three Dimensions 

 

The time dependent Schrodinger equation is  

 

ˆћ H
t

i 



  

The Hamiltonian operator is obtained from the classical energy by replacing the positions and 

momenta in the three mutually independent directions by their corresponding operators. 

2 2 21
( )

2
x x xH p p p V

m
     

x

ћ
p

i x





,  y

ћ
p

i y





,   z

ћ
p

i z





            or              

ћ
p

i
   

Therefore , 
2 2 2 2 2

2

2 2 2
ˆ ( )

2 2

ћ ћ
H V V

m x y z m

  
        

  
 

Where   

2 2 2
2

2 2 2x y z

  
   

  
 

is the Laplacian in Cartesian coordinates. 

Now, the potential V and the wavefunction   are functions of ( , , )r x y z  and time ‘t’ 

The probability of finding a particle in a volume 
3d r dxdydz  is   

2 3(r, t) d r  

 

Note: In spherical coordinates we can write 3 2 2.sin . . (cos ).d r dxdydz r dr d d r dr d d      

. The change of variables is carried out using the Jacobian | |J 
3 | |d r dxdydz J drd d   .   

 

The transformation from spherical coordinates (r, θ, φ) to Cartesian coordinates (x, y, z), is 

given by: 

 

 

 

 

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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The Jacobian matrix for this coordinate change is 

 
 

The determinant is r2 sin θ. Thus, as dV = dx dy dz this determinant implies that the differential 

volume element dV = r2 sin θ dr dθ dφ. Nevertheless this determinant varies with coordinates. 

 

Integrals are to be performed one by one with respect to each variable, with   going from 0 to

2 ,  going from 0 to  and r going from 0 to . 

 

The condition for normalization then becomes, 

2 3r, t) 1( d r   

With the integral taken over all space. 

 

If the potential is independent of time, we can use the variables-separable method to solve the 

time dependent Schrodinger equation where we get a complete set of stationary states. Thus, 

we have, 

(r, t) (r)e
nE

ћ

i t

n n



    

Where the spatial wave function (r)n  satisfies the time-independent Schrodinger equation, 

 
2

2

2

ћ
V

m
      

And the general solution to the time-dependent Schrodinger equation is a linear combination of 

the particular solutions i.e. the stationary states 

1

(r, t) (r)e
niE t

n n n

n

ћC






    

 

https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Differential_volume_element
https://en.wikipedia.org/wiki/Differential_volume_element


12 
 

Where the constants nC  are determined in the same way there were in Chapter 1 - The Infinite 

Square Well: 

* 3(r) (r,0) (r) (r,0)n n nC d r       

If the potential admits continuum states, then the sum in the summation in the general solution 

of the Schrodinger equation becomes an integral and in that case, the constants nC can be 

determined using the Fourier transform of (r,0)  

 

Note: Typically, the potential is a function only of the distance from the origin and hence is 

centrosymmetric. In that case it is better to adopt spherical coordinates ( , ,r   ). The Laplacian 

in terms of the spherical coordinates can be obtained using transformation of variables 

(explained above): 

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin
r

r r r r r


    

        
        

         
 

The Hamiltonian becomes, 
 

2 2
2

2 2 2 2 2

1 1 1ˆ sin
2 sin sin

H r V
m r r r r r


    

          
         

          
 

And the time-independent Schrodinger equation reads: 

 

2 2
2

2 2 2 2 2

1 1 1
sin

2 sin sin
r V E

m r r r r r

  
  

    

          
         

          
 

This, along with the Jacobian for coordinate change, will be required later for calculating the 

Hamiltonian for the Hydrogen Atom and its expectation value, H , using a trial wavefunction 

(r) , which depends only on the distance from the origin. 
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Section IV):Multiple-Particle Systems 

 

Consider a two-particle system where the subscript ‘1’ corresponds to the first particle and ‘2’ 

corresponds to the second particle.  

 

The wavefunction for this system will depend, (apart from the time,‘t’) on the coordinates of 

both the particles - 1r  and 2r  : 

1 2(r , r , t)  

The time dependent Schrodinger Equation will then read: 

 

1 2
1 2

(r , r , t)
(r , r tˆ , )ћ H

t
i 




 

Where the Hamiltonian for the whole system is given by: 

 
2 2

2 2

1 2 1 2
ˆ ( )

2
t

2

ћ ћ
H V r r

m m
         

 

It is obtained, as usual, by replacing the positions and momenta by their corresponding 

operators in the classical energy expression of the system. The classical energy of the system is 

of course, the sum of the kinetic energies of all the particles plus the potential energy of the 

whole system. The subscript in the Laplacian indicates the particle with respect to whose 

coordinates the differentiation is being done. 

 

As an example, consider the Helium atom as shown in the diagram. Two electrons (particle 1 

and particle 2) are shown revolving the nucleus consisting of two protons and two neutrons. 1r

stands for the coordinates of electron no. 1 and 2r , for electron no. 2.  12r represents the 

position of electron 1 with respect to electron two. I.e. 12 1 2r | |r r   is the separation between 

the two electrons.  
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The classical energy of this system comprises of the kinetic energies of the two electrons, and 

the potential energies due to the electron-proton attractions and the electron-electron 

repulsions. Therefore the Hamiltonian for this system reads, 

2 2
2 2

1

2

0 1 2 1

2

2

ˆ
2 2

2 2 1

4

eћ ћ

m r rm r
H


      


    

Moving on, the statistical interpretation for a two particle system is: 

2 3 3

1 2 1 2(r , r , t) rd d r  

is the probability of finding particle 1 in volume 
3

1rd  and particle 2 in
3

2d r . 

And the normalization process reads: 
 

2 3 3

1 2 1 2(r , r , t r 1) rd d   

If the potential is independent of time, we can use separation of variables to achieve 

1 2 1 2(r , r , t) (r , r )e
ni

ћ

E t


    

Where the spatial wave function 1 2(r , r )  satisfies the time independent Schrodinger equation: 

2 2
2 2

1 2
2 2

ћ ћ
V

m m
         

Where 

2
2

1
2m

   represents the kinetic energy of the first particle, 

2
2

2
2m

   represents the 

kinetic energy of the second particle and V represents the potential energy due to the 

interaction between them. This is how the Hamiltonians of complicated systems like molecules, 

are obtained.  
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2) The Variational Principle 

 
The Variational Principle is a simple but powerful method to obtain upper bounds on ground 

and excited state energies of quantum systems which cannot be solved exactly. In many cases 

this method gives us bounds which are amazingly close to the true value of the ground state 

energy, obtained by more involved methods or numerical solutions of Schrodinger’s equation. 

It is a useful tool for situations where one is unable to solve the Schrodinger equation because 

of its mathematical complexity. 

 

In quantum mechanics, the variational method is one way of finding approximations to the 

lowest energy eigenstate or ground state. This allows for calculating approximate ground state 

energies for complicated quantum systems such as molecules. 

 

The method consists in choosing a "trial wavefunction" depending on one or more parameters, 

and finding the values of these parameters for which the expectation value of the Hamiltonian 

is the lowest possible. The wavefunction obtained by fixing the parameters to such values is 

then an approximation to the ground state wavefunction, and the expectation value of the 

energy in that state is an upper bound to the ground state energy.  

 

If the trial wavefunction so chosen, exactly coincides with the true ground state wavefunction 

of the system, then the upper bound obtained via the Variational Principle is exactly equal to 

the actual ground state energy of the system. Otherwise, it is just an approximation of the 

ground state energy. 

In simple language, the Variational Principle states that the expectation value of the 

Hamiltonian, H , of the system, in the trial state  ,will always be greater than or equal to 

the actual ground state energy, gE , of the system. Mathematically, 

|gE H H      

Proof: The general solution to any differential equation is a linear combination of its particular 

solutions. For the Schrodinger equation, this translates to the fact that (as we have seen in the 

previous sections),  can be expressed as a linear combination of its stationary states:  

1

n n

n

C




    

Where each presumably normalized n  satisfies the time independent Schrodinger equation, 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Approximation
https://en.wikipedia.org/wiki/Ground_state
https://en.wikipedia.org/wiki/Molecular_orbital
https://en.wikipedia.org/wiki/Wavefunction
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Expectation_value_(quantum_mechanics)
https://en.wikipedia.org/wiki/Upper_bound
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n n nH E    

The normalization of  gives us, 

* * 2| | 1m m n n m n m n m n

m n m n m n

mn n

n

C C C C C C C               

 Now, 

| ( )m m n n m m n n

m n m n

H H C H C C C H              

Since n  satisfies the time independent Schrodinger equation, n n nH E    . Thus, 

* 2* E(E ) E E | |m m n n n n m n mm n n m n n

m n m n n

n

m

n

n

H C C C C C CC           

 

We know that the ground state energy, gE , corresponds to n=1 in nE and is the lowest energy 

state. All other higher energy excited states have a greater value of E and only provide positive 

contributions to the expectation value of the Hamiltonian. 

Therefore, 

g nE E  

Multiplying both sides by 2| |nC  and carrying out a summation, we get, 

2 2 2| | | | | |g n g n n n

n n n

E C E C E C     

And we just proved above that 
2| | 1n

n

C  and
2| |n n

n

E C H . Hence the inequation 

reduces to the statement of the Variational Principle: 

 

|gE H H      

We can choose ( , , ...)a b c   , where ( , , ...a b c ) are parameters. We can now lower H w.r.t 

these parameters and obtain an upper bound on the ground state energy. Choosing multiple 

parameters allows us to gain a better approximation of the ground state. This is what physical 

chemists do while trying to calculate the ground state energy of a complicated molecule. 
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3) Applications of the Variational Principle 

 
Section I)Ground State of a Linear Potential Using a Gaussian Trial Function 

Consider a one particle system constrained to move in one dimension under a potential given 

by 

(x) a | x |V   

Now, it is possible to directly solve the Schrodinger equation for this potential. However, that is 

not the aim of this project. The aim is to apply the variational principle to this potential using a 

Gaussian trial function and get an approximate value of the ground state energy and the 

wavefunction. 

 

We specifically choose a Gaussian function because of the following reasons: 

1) It rapidly falls to zero with increasing distance and hence is a very good archetype of any 

bound state. 

2) It can be easily normalized. 

 

Hence, we assume that the ground statewave function is of the form: 
2

(x) Ae bx   

Where ‘b’ is the parameter which can be tweaked as per our requirement and ‘A’ is determined 

by normalizing (x) :
22 22A e A 1

2

bx dx
b







   

That gives us, 4
2

A
b


  

 

Now, 

 
2

2 2 2 2 2
2 2 2

2 22 2 2 2 2

2
(4

2 2

e
| A | e ( a | x | e )dx | A | e 2 e )dx a | | e

bx
bx bx bx bx bxћ ћ

H b x db x
m x m

x





 
    

 


  



 
    

 
 

 

 

In the above integral, for the last term, we can write
2 22 2

0

| | e 2 xebx bxx

 

 



  .  

Substituting the term in the exponent by a different variable, say, ‘u’ will simplify this integral. 

Upon solving, this term reduces to 
1

4b
. 
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For the middle term, we have the standard Gaussian integral: 

 

22

2

bxe dx
b








  

For solving the first term, we can use the following trick. It involves taking the standard 

Gaussian integral (the above equation) and differentiating both sides with respect to the 

parameter ‘b’.  

Applying that to the first term gives us: 

22 2 3/21

4 2

bxx e dx b




 



  

Thus, the equation reduces to: 
2

2 8

ћ b

m

a
H

b
   

 

Now, according to the variational principle, 

2

2 8
g

ћ b a
E H

m b
   

So if we take the tightest upper bound by selecting ‘b’ such that the RHS is minimum, we can 

approximate this minimum upper bound to be equal to the ground state energy.  Therefore, if 

we differentiate the RHS w.r.t ‘b’, and equate it to zero, we will get the value of ‘b’ for which 

the RHS is minimum. Solving and resubstituting this value of ‘b’ into the inequality gives us: 
1/

in

3

4

2 2

m
8 ћ

m a
b



 
 
 

  

 

2
3

min

2
1/

3

2 8
H

ћ

m

a



 
  

 
 

Hence,  

2 2
1/3

3

2 8
g

ћ a
E

m

 
 
 

 

 

We approximate this to be the ground state energy 
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Section II)Ground State of Dirac’s Delta Function Well Using a Gaussian Trial Function 
 

From Preface –Section II), we know that the Hamiltonian for the Delta Function Well is, 
2 2

2
ˆ ( )

2

ћ
H a x

m x



  


 

And we also know the exact ground state energy to compare the results with : 

2

22
g

ma
E

ћ


  

As in the previous chapter, we choose a  Gaussian Trial Function, 
2

(x) Ae bx  .We have 

already worked out the normalization constant in the previous chapter: 4
2

A
b


  

 

Thus, the expectation value of the Hamiltonian is, 

 
2 2

2 2 2 2
2 2 2 2

2 2 2

2 2

e e
| A | e ( e ) | A | ( e e )( ) ( )

2 2

bx bx
bx bx bx bxћ ћ

a x dx a x
m

H dx dx
x m x

 




  
   

 

 
   

   

 

 

Solving, we get, 

2

2

2ћ b
a

m

b
H


  

Minimizing RHS gives us, 

 
2

2

2
0

2

ћ a

m

d H

db b
   

Therefore, 
2

min 4

22m a
b

ћ
  

2

min 2

ma
H

ћ


  

Comparing min
H  with the actual ground state energy,

2

22
g

ma
E

ћ


  , we can conclude 

that the variational principle holds true since mingE H  
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Section III):Ground State of the Infinite Square Well Using a Triangular Trial Function 

 

 
 

We already know the exact value of the ground state energy of the Infinte Square Well: 
22

22
g

ћ
E

mL


  

For the Infinite Square Well, we shall use a triangular wave function as a trial wave function 

since it vaguely resembles the sinusoidal wavefunction of the ground state of the infinite 

square well: 

(x) =

{
 
 

 
 
   𝐴𝑥,                  0 ≤ 𝑥 < 𝐿/2
𝐴(𝐿 − 𝑥),        𝐿/2 ≤ 𝑥 < 𝐿
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We can determine ‘A’ by normalizing (x) : 

 
L/2 3

2 2 2 2

0 L/2

| | ( (L ) ) | | 1
12

L
L

A x dx x dx A      

3/22 3A L  

Now, we will require the second derivative of (x)  when calculating the Hamiltonian. But 

(x)  is a piecewise defined step-function and its first derivative is discontinuous. Hence, we 

employ an ingenious technique to represent the second derivative: 

(x)d

dx


=

{
 
 

 
 
   𝐴,                  0 ≤ 𝑥 < 𝐿/2
−𝐴,                  𝐿/2 ≤ 𝑥 < 𝐿
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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We see that the slope of 
(x)d

dx


 (which is nothing but

2

2

(x)d

dx


), becomes infinite at x = 0, a/2 

and a. but is zero everywhere else. It can be shown that
2

2

(x)d

dx


 can be written as a sum of 

Dirac Delta functions in the following way: 

 
2

2
( ) 2 ( / 2) (

(x)
)x A

d
A

dx
x L A x L  


     

And hence, 

2

0

2

2

2

0

(x)
(x).( ) ( ( ) 2 ( / 2) ( )[ (].

2
x) )

2

L L
d

H dx
ћ ћ A

x x L x L
m m

dx
dx

 


        

 

 
2 2 2 2

2
[ (0) (L/ 2) (L)

12
2 ]

2 2 2

ћ A ћ A L ћ

m m mL
         

We can see that the expectation value of the Hamiltonian, 

2

2

12

2
H

ћ

mL
 is greater than the 

actual ground state energy of the Infinite Square Well,

22

22
g

ћ
E

mL


 .  

Thus the Variational Principle holds true.  
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Section IV): An Approximation of Hydrogen Atom Ground State Using a Gaussian Trial Function 

 

 

 
 

We take the trial wave function 
2

( ) brr Ae   

 

Normalization over all space gives us the constant ‘A’: 

 

2 2

3/2

2 3 2 2 2 2 2 2

0

| ( ) | | | . (cos ). 4 | | | | 1
2

br brr d r A e r dr d d A r e dr A
b


   



   
    

 
  

 

 

The last integral can be calculated using the trick mentioned inSection I) Ground State of a Linear 

Potential Using a Gaussian Trial Function. 
3/4

2b
A



 
  
 

 

Now, the Hamiltonian for the Hydrogen Atom is: 
2 2

2

0

1ˆ
2 4

e
H

m r
   


 

Thus, 
2

2
2 2

2

0

ˆ ( )
2 4

br
br e e

H A e
m r





   


 

Where the Laplacian in terms of spherical coordinates is: 
2

2 22 2 2 2

2

1
( ) (4 6 )

br
br bre

e r b r b e
r r r


  

   
 

 

(The angular differential terms in the Laplacian become zero since ( )r  is independent of  and 

and hence they have been ignored.) 
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Hence, 
2 2

2 2
2 2 2 2 2 2

2 2 2 2 3 2 2 2 2 2

0 0

| | | | { (6 4 ) } | | { (6 4 ) } . (cos ).
2 4 2 4

br br
br bre e e e

H A b b r e d r A b b r e r dr d d
m r m r

   
 

 
      

    

2

2 2 2 2

3/22 2 2 2 2
2 2 2 2 2 2 2 2 4 2 2

0 00 0 0

2
4 | | (6 4 ) 4 . [6 4 dr]

2 4 2 4

br
br br br bre e b e

A b b r e r dr b r e dr b r e re dr
m r m

 
  

  
   

      
         

      
     

The integrals can be solved using the trick mentioned in chapter i), or using integration by 

substitution, or integration by parts. Solving, we get, 

2 2

0

3 2

2 2

b e b
H

m  
 


 

Minimizing the RHS gives us, 

 

2 2 2 4

min 3 4 2

0 0

3 2
0

2 4 18

d H e m e
b

db m b  
    

 
 

Plugging ‘b’ back into the equation gives us: 
4 3

3 2 2 3 2 2min
0 0

11.5
12 12

g

me me
E H J eV eV

 

 
   

 
 

We see that the Variational Principle still holds true, since the actual ground state energy of the 

Hydrogen atom is known to be -13.6 eV, whereas we have overestimated it in our approximation of 

-11.5eV, just like the Variational Principle states. But even so, the approximation is quite good since 

it is close to the actual ground state energy of the hydrogen atom. 
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Section V)The Exact Ground State of Hydrogen Atom Using an Exponentially Decaying Trial 

Funtion 

 

 

Instead of a Gaussian (as in the previous case), we assume the trial wavefunction to be of a linear 

exponential form: 

( ) brr Ae   

 

This type of function, like the Gaussian, is also a good candidate for bound states because of similar 

reasons: 

1) It rapidly falls to zero with increasing distance. 

2) It can be easily normalized. 

Normalization of ( )r over all space gives us the constant ‘A’: 

2 3 2 2 2 2 2 2

3

0

| ( ) | | | . (cos ). 4 | | | | 1br brr d r A e r dr d d A r e dr A
b


   



        

3b
A


  

Now, the Hamiltonian for the Hydrogen Atom is: 

 
2 2

2

0

1ˆ
2 4

e
H

m r
   


 

Hence, 

2 2
2

0

ˆ
2 4

br
br e e

H A e
m r





 

    
 

 

Where, the Laplacian is given by: 

 

2 2 2

2

1 2
( ) ( )

br
br bre b

e r b e
r r r r


  

   
 
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(The angular differential terms in the Laplacian become zero since ( )r  is independent of  and 

and hence,they have been ignored.) 

Therefore, the expectation value of the Hamiltonian is given by, 

 
2 2 2 2 2 2

2 2 2 3 2 2 2 2

0 0

2 2
| | | | ( ) | | ( ) . (cos ).

2 4 2 4

br br
br brb e e b e e

H A b e d r A b e r dr d d
m r r m r r

   
 

 
    

        
    

 

 

2 2 2 2 2
2 2 2 2 3 2 2 2 2 2

0 00 0 0

2
4 | | ( ) 4 [2 dr]

2 4 2 4

br
br br br brb e e e

A b e r dr b b re dr b r e re dr
m r r m


 

  
   

  
        

    
  

 

The integrals can be solved using integration by parts. Solving, we get, 

2 2 2

02 4

b e b
H

m 
 


 

Minimizing the RHS gives us, 
2 2 2

min 2

0 0

1
0

4 4

d H b e me
b

db m a 
     

 
 

Where, ‘a’ is the Bohr radius,   
100.529 10a m   

 

And therefore, plugging this value of ‘b’ back in the equation for the Hamiltonian gives us, 

2
2

12min

0

13.6
2 4

m e
H E eV



 
    

 
 

This time, we have 
min

H  exactly equal to the ground state energy of the Hydrogen atom, gE , 

which is 13.6 eV.  This means that our assumed trail function ( ) brr Ae   is the exact, actual 

ground state wavefunction of the Hydrogen atom. 

Substituting the values of ‘A’ and ‘b’ in ( )r  gives us the exact ground state of the Hydrogen atom: 

/

3

1
( ) r a

g r e
a





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4) CONCLUSION 

 
The Variational Principle is a powerful tool in Quantum Mechanics, and at the same time, it is 

very simple to use. It is especially useful for situations wherein one is unable to directly solve 

the Schrodinger equation due to its mathematical complexity.  
 
The only drawback of this technique is that we never know how close we are to the actual 

ground state energy of the system – we only have an upper bound. Moreover, the technique 

only finds a good use when it is applied to a quantum system in order to gain an upper bound 

on its ground state energy.  
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