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Abstract 

The challenge of this work is to use topology optimization software to propose a design for a tertiary 
structure of a satellite. Topology optimization is a computational material distribution method for 
synthesizing structures without any preconceived shape, allowing for the introduction of holes or cavities 
in structures. This capability usually results in great savings in weight or improvement of structural 
performance such as stiffness or strength. The additive manufacturing processes provide a geometrical 
freedom for the design, making a perfect combination with topology optimization. 
The ANSYS Wb v17 - Topology Optimization ACT is successfully verified and compared with the results 
from literature for MatLab codes. 
The topology optimization analysis, with minimum compliance objective, here applied in a satellite 
tertiary structure. This optimization is divided into two analysis, a 2D and 3D optimization, in order to 
save computational time on the 3D optimization. 
The optimized structure, compared to the initial tertiary structure, shows considerable stress reductions 
of 91.79% and a first natural frequencies increases of 504.96% at the expense of a small of 10.43% 
increase in the structure’s weight. This mass increase is obtained due to an increase of 191.3% in the 
mass for the 2D optimization followed by a reduction of 62.1% in the mass with the 3D optimization. 
 
Keywords: Topology Optimization, Tertiary Structures, ANSYS, Minimum Compliance, Additive 
Manufacturing 

 
1. Introduction 
The aerospace industry is looking for new 
developments and some of the most important 
concerns are to obtain lighter structure in order to 
save on fuel consumption, while improving the 
structural efficiency of the structures. Both these 
goals can be achieved by combining a structural 
topology optimization with an additive 
manufacture process. 
Topology Optimization (TO) was introduced by 
the pioneer work of Bendsøe and Kikuchi [1] on 
homogenization method, and since then several 
authors have developed the concept, including 
Bendsøe and Sigmund [2] a density based 
approach. 
Additive Manufacturing (AM) is a growing 
process for the manufacturing of objects and is 
define by a process of joining materials to make 
objects from 3D model data, usually layer upon 
layer, as opposed to subtractive manufacturing 
technologies [3]. 

Brackett, Ashcroft and Hague [4] describe 
opportunities for the application of TO methods 
for AM, presenting a workflow approach. 
The challenge of this work is to use TO software 
to propose a design for a tertiary structure of a 
satellite. To achieve this goal a TO with minimum 
compliance objective was divided in a two stage 
optimization methodology is applied, with a 2D 
and 3D analysis, using a combination of a 
Computer Aid Design (CAD) software, Solid 
Edge, and a TO software, ANSYS Wb v17 with 
Topology Optimization ACT. 

2. Fundamentals 
2.1. Finite Element Method 
The Finite Element Method (FEM) is a numerical 
method to solve differential equations. In FEM a 
given domain is discretized in subdomains, the 
finite elements, creating the finite element mesh. 
In this work, using ANSYS [5], two types of 
elements are used: shell elements (SHELL181) 
and 3D solid elements (SOLID185). 
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Over each subdomain the governing equations 
are approximated determining the element 
equations (of each finite element). After that 
discretization, the global system of equations can 
be found by assembling the equations of all the 
finite elements of the mesh [6]. 
2.1.1. Static Analysis 
The static structural finite element analysis for 3D 
static elasticity problems is derived from Cauchy 
law, using a residual method and imposing 
boundary conditions thus generating a linear 
system of equations, represented by 

 [𝐾𝐾]{𝑢𝑢} = {𝐹𝐹}. (2.1) 

where {𝐹𝐹} is the nodal forces vector, {𝑢𝑢} is the 
nodal displacement vector and [𝐾𝐾] is the stiffness 
matrix. 
2.1.2. Modal Analysis 
To get the undamped natural frequencies of a 
structure in free vibration, the modal structural 
finite element analysis is reduced, from the 
Lagrange’s equation and the assumption of a 
harmonic response, to the following eigenvalues 
problem 

 ([𝐾𝐾] − 𝜔𝜔𝑖𝑖
2[𝑀𝑀]){Φ}𝑖𝑖 = {0}, (2.2) 

where eigenvalues correspond to the natural 
frequencies (𝜔𝜔𝑖𝑖) and the eigenvectors to the 
corresponding mode shapes ({Φ}𝑖𝑖). 
2.2. Topology Optimization 
The following section is based on the works from 
Sigmund [7]-[8]; Andreassen et al. [9]; Liu and 
Tovar [10]; Bendsøe and Sigmund [2]; 
Fernandes [11] and Neves et al. [12]. 
Topology Optimization is a computational 
material distribution method for synthesizing 
structures without any preconceived topology 
and shape [10]. 
In this work, the adopted method for the TO 
problems is a density based approach, known as 
Solid Isotropic Material with Penalization (SIMP). 
This method consists on using constant material 
properties in each element used to discretize the 
design domain. The SIMP method is based on a 
relation between relative element density (𝑥𝑥𝑒𝑒) 
and the element Young’s modulus (𝐸𝐸𝑒𝑒), and is 
given by, 

𝐸𝐸𝑒𝑒(𝑥𝑥𝑒𝑒) = 𝑥𝑥𝑒𝑒
𝑝𝑝𝐸𝐸0, 0 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥𝑒𝑒 ≤ 1, (2.3) 

where 𝑝𝑝 is a penalization power  (𝑝𝑝 ≥ 1), 𝐸𝐸0 is the 
Young’s modulus of the solid material and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is 
the relative element density of the “void” material. 

A modified SIMP approach given by (2.4) can be 
used, where 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 is the Young’s modulus of the 
“void” material. 

𝐸𝐸𝑒𝑒(𝑥𝑥𝑒𝑒) = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑒𝑒
𝑝𝑝(𝐸𝐸0 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚),

𝑥𝑥𝑒𝑒 ∈ [0,1] 
(2.4) 

Using the finite element analysis theory, global 
stiffness matrix (𝐾𝐾) is defined by equation (2.5) 
and the element stiffness matrix (𝐾𝐾𝑒𝑒) defined by 
equation (2.6). 

 𝐾𝐾(𝑥𝑥) = �𝐾𝐾𝑒𝑒(𝑥𝑥𝑒𝑒)
𝑁𝑁

𝑒𝑒=1

 (2.5) 

 𝐾𝐾𝑒𝑒(𝑥𝑥𝑒𝑒) = 𝐸𝐸𝑒𝑒(𝑥𝑥𝑒𝑒)𝑘𝑘𝑒𝑒0 (2.6) 

𝑘𝑘𝑒𝑒0 is the element stiffness matrix for an element 
with a unitary Young’s modulus, depending on 
the element type and the Poisson’s ratio (𝜈𝜈). 
The TO problem that is studied in this work is the 
minimum compliance problem, in which the 
objective is to find the design variables, i.e. the 
density distribution (𝑥𝑥), that minimizes the 
structure’s deformation under the prescribed 
support and loading conditions. The compliance 
(𝐶𝐶) for punctual forces can be defined as in 
equation (2.7). 

 𝐶𝐶(𝑥𝑥) = 𝐹𝐹𝑇𝑇𝑈𝑈(𝑥𝑥), (2.7) 

where 𝐹𝐹 is the vector of nodal force and 𝑈𝑈 is the 
vector of nodal displacement. In (2.8) the 
minimum compliance optimization problem is 
formulated as 

 

min
𝑥𝑥

:𝐶𝐶(𝑥𝑥) = 𝐹𝐹𝑇𝑇𝑈𝑈(𝑥𝑥) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡: �

𝑉𝑉(𝑥𝑥)
𝑉𝑉0

= 𝑓𝑓

𝐹𝐹 = 𝐾𝐾𝐾𝐾
0 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥 ≤ 1

 
(2.8) 

where 𝑉𝑉(𝑥𝑥) and 𝑉𝑉0 are the available material 
volume and the volume of the design domain, 
respectively, and 𝑓𝑓 is the prescribed volume 
fraction, or volume constraint. 
So the problem has an equality constraint in the 
volume, 𝑉𝑉(𝑥𝑥)

𝑉𝑉0
= 𝑓𝑓. This fraction (or percentage) 

defines the initial distribution of material, as a 
uniform density of 𝑓𝑓 in all the domain. 
𝐹𝐹 = 𝐾𝐾𝐾𝐾 is the state equation, but numerically can 
be more efficient to use 𝐶𝐶 = 𝐹𝐹𝑇𝑇𝑈𝑈. 0 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥 ≤
1 impose the lateral constraints in the design 
variables. 
Equation (2.9) is obtained by developing the 
compliance with the definition of the nodal force 
and decomposing in the sum of the element 
compliance (𝑐𝑐𝑒𝑒), where 𝑁𝑁 is the number of 
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elements used to discretize the design domain 
and 𝑢𝑢𝑒𝑒 is the element displacement vector. 

 𝐶𝐶(𝑥𝑥) = �𝑐𝑐𝑒𝑒

𝑁𝑁

𝑒𝑒=1

= �𝑢𝑢𝑒𝑒𝑇𝑇𝐾𝐾𝑒𝑒𝑢𝑢𝑒𝑒

𝑁𝑁

𝑒𝑒=1

 (2.9) 

The sensitivity of the objective function is 
obtained by derivation of compliance with respect 
to the design variable. Knowing that the nodal 
force vector is independent of the design variable 
and decomposing the sensitivity the following 
sensitivity equation is obtained. 
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑒𝑒

= �−𝑢𝑢𝑒𝑒𝑇𝑇�𝑝𝑝𝑥𝑥𝑒𝑒
𝑝𝑝−1(𝐸𝐸0 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚)𝑘𝑘𝑒𝑒0�𝑢𝑢𝑒𝑒

𝑁𝑁

𝑒𝑒=1

 (2.10) 

Optimality Criteria (OC) methods are one of the 
approaches to solve non-linear programming 
problems, such as minimum compliance. The 
OC-method uses the KKT conditions to find a 
solution for the optimization problem. For the 
problem formulation described in equation (2.8), 
with the application of the stationarity of the 
Lagrangian function with respect to the design 
variable (𝑥𝑥𝑒𝑒), the optimality criteria is expressed 
when 𝐵𝐵𝑒𝑒 = 1 and is given by [2] 

 𝐵𝐵𝑒𝑒 =
− 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑒𝑒

𝜆𝜆 𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑒𝑒

 (2.11) 

where 𝜆𝜆 is a Lagrangian multiplier. 
The OC uses a heuristic updating scheme for the 
design variables that can be expressed in 
𝑥𝑥𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛 =

= �
max(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑒𝑒 − 𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑥𝑥𝑒𝑒𝐵𝐵𝑒𝑒

𝜂𝜂 ≤ max(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑒𝑒 − 𝑚𝑚)  
𝑥𝑥𝑒𝑒𝐵𝐵𝑒𝑒

𝜂𝜂 , 𝑖𝑖𝑖𝑖 max(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑒𝑒 − 𝑚𝑚) < 𝑥𝑥𝑒𝑒𝐵𝐵𝑒𝑒
𝜂𝜂 < min(1,𝑥𝑥𝑒𝑒 + 𝑚𝑚)

min(1, 𝑥𝑥𝑒𝑒 + 𝑚𝑚) , 𝑖𝑖𝑖𝑖 min(1, 𝑥𝑥𝑒𝑒 + 𝑚𝑚) ≤ 𝑥𝑥𝑒𝑒𝐵𝐵𝑒𝑒
𝜂𝜂

 
(2.12) 

where 𝑚𝑚 is a positive move-limit and 𝜂𝜂 is a 
numerical damping coefficient, for minimum 
compliance problems 𝑚𝑚 = 0.2 and 𝜂𝜂 = 0.5 are 
recommended for minimum compliance 
problems by Bendsoe [13] and Sigmund [8]. 
The termination criteria in ANSYS optimization is 
defined when the maximum number of 
iterations (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) is reached, without ensuring 
of optimal criteria, or when a convergence 
termination criteria (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑅𝑅𝑅𝑅𝑅𝑅) value is 
obtained. This work has two different 
convergence termination criteria. The first, used 
in MatLab optimizations, is defined by the 
difference between the new design 
variable (𝑥𝑥𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛) and the old design 
variable (𝑥𝑥𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜), expressed in equation (2.13). 

 ‖𝑥𝑥𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜‖∞ ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐴𝐴𝐴𝐴𝐴𝐴 (2.13) 

The second convergence termination criteria, 
used in ANSYS, is defined by a relative 

difference between the compliance values of the 
new design (𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛) and the compliance value of 
the old design (𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜) for the TO results, 
represented in (2.14). 

 |𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜|
𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑅𝑅𝑅𝑅𝑅𝑅 (2.14) 

One of the problems of the TO is the 
checkerboard effects. This effect is defined as 
regions with alternating void and solid elements 
ordered in a checkerboard-like fashion [7], [12]. 
A way to avoid numerical instabilities, such as 
checkerboards effects, and ensure existence of 
solutions on TO is the insertion of filter 
techniques, such as sensitivity filter. 
The sensitivity filter is imposed on the sensitivity 
function (2.10), being defined by 

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑒𝑒

=
∑ 𝐻𝐻𝑒𝑒𝑒𝑒𝑥𝑥𝑓𝑓

𝜕𝜕𝑐𝑐𝑓𝑓
𝜕𝜕𝑥𝑥𝑓𝑓

𝑁𝑁𝑒𝑒
𝑓𝑓=1

𝑥𝑥𝑒𝑒 ∑ 𝐻𝐻𝑒𝑒𝑒𝑒
𝑁𝑁𝑒𝑒
𝑓𝑓=1

,

0 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥𝑒𝑒 ≤ 1 

(2.15) 

where 𝑁𝑁𝑒𝑒 is the neighborhood of the element 𝑥𝑥𝑒𝑒 

and can be defined in equation (2.16), 𝑥𝑥𝑓𝑓 and 𝜕𝜕𝑐𝑐𝑓𝑓
𝜕𝜕𝑥𝑥𝑓𝑓

 

are the relative density and the sensitivity of 
those elements. 

 𝑁𝑁𝑒𝑒 = {𝑓𝑓:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑒𝑒, 𝑓𝑓) ≤ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚} (2.16) 

The operator 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑒𝑒, 𝑓𝑓) is the distance between 
the element 𝑥𝑥𝑒𝑒 and the element 𝑥𝑥𝑓𝑓. 
𝐻𝐻𝑒𝑒𝑒𝑒 is the height factor and is a function of rmin 
and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑒𝑒, 𝑓𝑓), obtained by 

𝐻𝐻𝑒𝑒𝑒𝑒 = rmin − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑒𝑒, 𝑓𝑓), 𝑓𝑓 ∈ 𝑁𝑁𝑒𝑒 (2.17) 

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 is the filter size, given as input data in 
MatLab, and imposes a minimum length scale 
of rmin, in a way that, with the increase of the filter 
size, the results are less detailed, i.e., a design 
more compact and with less holes (but holes with 
higher area). 
In the case of ANSYS a filter size isn’t imposed, 
obtaining a more detailed solutions. The ANSYS 
software uses a post processing tool 
(smoothing), based on the average relative 
density on nodes, to display lower relative 
densities to avoid the checkerboard effect, as 
shown in Figure 2.1. 
After the TO, a post processing of the TO results 
is performed in ANSYS, where is defined a 
relative density for which all the densities with a 
higher value are displayed. 
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a) b) 
Figure 2.1 MBB-Beam Half TO solutions 
obtained from ANSYS Wb with a mesh of 

60x20, 𝐸𝐸 = 1𝑃𝑃𝑃𝑃, 𝜈𝜈 = 0.3, 𝑝𝑝 = 3, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 0,001, 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑅𝑅𝑅𝑅𝑅𝑅 = 0,01%, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 500, 𝑓𝑓 = 50% 
and a TO post processing with relative density 

higher than 0.4 a) without smoothing and b) with 
smoothing 

3. Methodology 
In this section the methodology developed in the 
work to answer to the challenger is explained. 
3.1. Academic Problems for Verifications 
Before performing the TO analysis of the tertiary 
structure it was considered necessary to test and 
verify the procedures implemented to use the 
optimization softwares with academic problems. 
The academic problems chosen here consist on 
classic cases of a MBB-Beam and a Cantilever-
Beam in 2D and 3D. 
The adopted approach for each academic case 
is an optimization study comparing the literature 
and MatLab optimization, using TopOpt2D [8] 
and TopOpt3D [10], solutions with the ANSYS 
Wb v17 - Topology Optimization ACT results. 
For that purpose, a design domain, defined by 
the mesh size since each element represents the 
units of measurement (1x1x1). 
All the boundary conditions, material properties 
and optimization parameter are defined on 
MatLab and ANSYS software, similarly to the 
literature. 
3.2. Tertiary Structure Analysis 
The method of analysis of the tertiary structure 
uses a traditional FEM analysis methodology, 
represented in Figure 3.1. 

 
Figure 3.1 Traditional FEM optimization 

analysis, based on [14] 

Firstly the structure is defined in CAD and the 
design and material of the tertiary structure are 
imposed. 
After structure definition in CAD, the design is 
converted to a neutral format, STEP file (.stp), 
and imported for the FEM pre-processing stage, 
in ANSYS Wb v17, where the loads and 
boundary conditions are applied, and the 
elements and mesh are chosen, defining the 

mesh model. In this stage a finite element 
convergence study is performed in order to 
prevent errors associated with mesh 
discretization. 
After FEM pre-processing, the static or modal 
analysis are executed and the results are verified 
if are or aren’t compliant with the structural 
requirements. If the static and modal results don’t 
satisfy the requirements, the design is changed 
and the FEM model remade until the results are 
compliant with the requirements. 
In this work the analysis of the tertiary structure 
is performed only to have a relative idea of the 
results for further comparison with the optimized 
structure’s data. 
3.3. Tertiary Structure Topology 

Optimization Analysis 
In this work an alternative approach is proposed 
in order to optimize the tertiary structure of the 
satellite, depicted in Figure 3.2. 

 
Figure 3.2 TO Analysis: 2D and 3D TO Analysis 

The difference in this approach is that a 2D and 
3D TO analysis are performed, instead of a single 
3D optimization. 
The first step of this method is to define a 2D 
initial design for the tertiary structure. This design 
is defined by a 2D representation of the tertiary 
structure geometric boundaries that delimitate 
the problem, respecting the domain restrictions, 
such as the position of constrains, and 
overdesigning the rest of the domain. 
After the 2D design is defined in CAD, the design 
is imported, in STEP format, to the ANSYS Wb 
v17, where the TO is going to be performed. In 
ANSYS, the loads and boundary conditions, the 
material properties, the elements and mesh and 
the optimization parameters are defined. 
One of TO parameters is the design domain, 
which consists on the portion of the model where 
the TO is going to be made. Other parameter is 
the design exclusions, which are the elements of 
the design domain that aren’t optimized. 
After the 2D TO is performed, a post processing 
of the TO results in ANSYS is performed. This 
post processing should produce a viable design, 
in terms of structural integrity, and a STL file is 
exported to the CAD software for further 
processing. 

4 
 



The 2D optimization design is interpreted, by 
extrapolating the design on the third dimension, 
perpendicular to the 2D plane, to a 3D design. 
The result of this interpretation is the initial design 
for the 3D TO analysis, and can be exported in a 
STEP format for the ANSYS software. 
After the 3D initial design is defined, the 
parameter for TO are defined (mesh model, loads 
and boundary conditions and TO parameters), as 
in the 2D analysis. 
After the 3D TO is performed, a post processing 
of the TO results in ANSYS is performed, as in 
the 2D optimization, creating a STL file that is 
interpreted in the CAD software to obtain a new 
tertiary structure design. 
After redesigning the structure, a similar method 
of the section 3.2 is adopted, where the FEM 
model is prepared (elements, mesh and loads 
and boundary conditions), and a static and modal 
analysis is performed on the model. 
The final step is the requirements verification, 
which compares the static and modal results with 
the structural requirements, as in section 3.2 but 
with the new tertiary structure design. 

4. Verifications with Academic Problems 
In this section, classical TO problems are 
simulated in 2D and 3D. 
4.1. 2D Problem (MBB-Beam) 
The MBB beam is composed of a beam with a 
fixed and pinned constrain on the lower corners 
and a force (F) of 1 Newton in the upper-middle 
section of the beam. Due to symmetry properties 
in static case this model can be decomposed in 
the middle, with a pinned constrain, as depicted 
in Figure 4.1. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�������� 

 
Figure 4.1 MBB-Beam Model and MBB-Beam 

Model simplification domain and boundary 
conditions for the static case 

In order to simulate these 2D academic 
problems, the thickness is unitary (t=1), and in 
ANSYS the mesh is defined with shell elements 
of the type SHELL181. 
The results are depicted in Figure 4.2, and the 
graphics of the objective function history can be 
seen in Figure 4.3, with compliances of 
203.30Nm for MatLab and 206.11Nm for 
ANSYS. 

a) b) c) 
Figure 4.2 MBB-Beam Half TO solutions with a 
mesh of 60x20, 𝐸𝐸 = 1𝑃𝑃𝑃𝑃, 𝜈𝜈 = 0.3, 𝑝𝑝 = 3, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =

0,001 and 𝑓𝑓 = 50% obtained: a) from the 
literature [8], b) from MatLab Optimization 

with 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐴𝐴𝐴𝐴𝐴𝐴 = 0,01 and 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 1,5; and c) 
from ANSYS Wb with 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑅𝑅𝑅𝑅𝑅𝑅 = 0,01%, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 500 and a TO post processing with 

relative density higher than 0.4 

 

 
Figure 4.3 MBB-Beam Half TO objective 

function convergence (compliance) obtained 
from MatLab Optimization (Top) and from 

ANSYS Wb (Bottom) with a mesh of 60x20 
and 𝑓𝑓 = 50% 

4.2. 3D Problem (Cantilever-Beam) 
The Cantilever-Beam is composed of a beam 
with a clamped constrain on one side and a force 
(F) of 5N, 1N for each node, in the other side 
bottom edge of the beam, as depicted in Figure 
4.4. 

 
Figure 4.4 Cantilever-Beam Model domain and 

boundary conditions 

In ANSYS the mesh model is defined with 
SOLID185 element type. The results are 
depicted in Figure 4.5 and the graphics of the 
objective function history can be seen in Figure 
4.6, with compliance results of 2417.7Nm for 
MatLab and 2486.6Nm for ANSYS. 
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a) 

 
b) 

 
c) 

Figure 4.5 Cantilever TO 3D solutions with a 
mesh of 60x20x4, 𝐸𝐸 = 1𝑃𝑃𝑃𝑃, 𝜈𝜈 = 0.3, 𝑝𝑝 = 3 and 
𝑓𝑓 = 30% obtained a) from literature [10]; b) from 

MatLab Optimization with 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐴𝐴𝐴𝐴𝐴𝐴 =
0,01, 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 1 × 10−9𝑃𝑃𝑃𝑃 and 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 1,5; and c) 
from ANSYS Wb with 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑅𝑅𝑅𝑅𝑅𝑅 = 0,01%, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 500, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 0,001 and a TO post 

processing with relative density higher than 0.5 

 

 
Figure 4.6 Cantilever TO objective function 
convergence (compliance) obtained from 

MatLab Optimization (Top) and from ANSYS 
Wb (Bottom) with a mesh of 60x20x4 and 

Volume constraint of 30% 

4.3. Discussion 
The first critical point is in the different 
convergence termination criteria. In the studied 
cases, the compliance termination of the MatLab 
optimizations is obtained for a higher number of 
iterations when compared to the ANSYS 
optimization. Despite this, the compliance results 
converge to a similar value for both cases. 
Other critical point is the filter size, where in the 
case of the ANSYS software isn’t imposed, as 
already explained in section 2.2. The major 
disadvantages in this approach is the necessity 
of a post processing to avoid a checkerboard 
effect. On other hand, the lack of the filter size 
gives more detailed results, open to 
interpretation in the post processing. 

One of the major advantages in the ANSYS 
software is the post processing of the TO results, 
allowing the engineer to adjust the minimum 
relative density displayed in order to interpret and 
obtain the most favored design. 

5. Tertiary Structure Analysis 
The tertiary structures of a satellite include 
component housing, mounting brackets, cable-
support brackets, and connector panels [15]. 
The initial tertiary structure of the satellite is a 
support of a Radio Occultation (RO) instrument 
with 3.48 Kg, given in Figure 5.1 where the initial 
CAD design with overall dimensions (mm) and 
the global coordinates reference are shown. 

 
Figure 5.1 Tertiary Structure initial CAD design 

with overall dimensions (mm) 

For the material of the tertiary structure this study 
choose the Aluminum Alloy from the material 
database of ANSYS [5], with mechanical 
properties shown in Table 5.1. 

𝝆𝝆 
[𝑲𝑲𝑲𝑲/𝒎𝒎𝟑𝟑] 

𝑬𝑬 
[𝑮𝑮𝑮𝑮𝑮𝑮] 𝝂𝝂 𝝈𝝈𝒀𝒀 

[𝑴𝑴𝑴𝑴𝑴𝑴] 
𝝈𝝈𝑼𝑼𝑼𝑼𝑼𝑼 

[𝑴𝑴𝑴𝑴𝑴𝑴] 
2770 71 0.33 280 310 

Table 5.1 Mechanical properties for Aluminum 
Alloy from ANSYS [5] 

The static requirements for the project of the 
tertiary structures are an acceleration of 20G in 
all directions, having into account symmetrical 
properties, represented in Table 5.2. 

Load 
Case 

Accel. x-
axis 

Accel. y-
axis 

Accel- z-
axis 

1 -20G 0 0 
2 0 -20G 0 
3 0 0 -20G 

Table 5.2 Load Cases inputs for Static Analysis 
of the Tertiary Structure 

The Factors of Safety (𝐹𝐹𝐹𝐹𝐹𝐹) for the Yield 
strength (𝜎𝜎𝑌𝑌) and Ultimate tensile strength (𝜎𝜎𝑈𝑈𝑈𝑈𝑈𝑈) 
are 1.25 and 2.0, respectively. The requirements 
state that the Margin of Safety (MoS) should be 
positive when calculated with equation (5.1) 
where the 𝐹𝐹𝐹𝐹𝐹𝐹 are applicable to the allowable 
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load/stress (𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜎𝜎𝑌𝑌 𝑜𝑜𝑜𝑜 𝜎𝜎𝑈𝑈𝑈𝑈𝑈𝑈) and 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
is the computed load/stress results. 

 MoS =
𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐹𝐹𝐹𝐹𝐹𝐹
− 1 (5.1) 

5.1. Tertiary Structure Initial Analysis 
For the first analysis of the tertiary structure the 
CAD design is approximated to a surface model 
with a thickness of all areas of 10mm as 
illustrated at Figure 5.1. 
The boundary conditions of the tertiary structure 
include a distributed mass, representing the RO, 
and a fixed support on the connection to the 
satellite, as depicted in Figure 5.2. The 
acceleration inputs are represented in Table 5.2.  

 
Figure 5.2 Initial Tertiary Structure Boundary 
Conditions with fixed support (blue) and the 

distributed mass representing RO (red) 

The structure is modelled as a surface structure 
where SHELL184 mesh is performed. This 
approximation is valid due to the lower thickness 
dimension in reference to the other two 
dimensions. Having into account a finite 
elements convergence study, a mesh with 36641 
elements is chosen and represented in Figure 
5.3. 

 
Figure 5.3 Initial Tertiary Structure Mesh with 

36641 SHELL181 elements. 

The maximum Von Mises Stresses (𝜎𝜎𝑉𝑉𝑉𝑉) results 
for the static analysis of this initial tertiary 
structure are depicted in Table 5.3. 

Load Case Max. 𝝈𝝈𝑽𝑽𝑽𝑽 [MPa] 𝑴𝑴𝑴𝑴𝑴𝑴𝒀𝒀 𝑴𝑴𝑴𝑴𝑴𝑴𝑼𝑼𝑼𝑼𝑼𝑼 
1 40,19 4,57 2,86 

2 621,68 -0,64 -0,75 

3 57,56 2,89 1,69 
Table 5.3 Initial Tertiary Structure Static 

Analysis Solution from ANSYS Wb. 

In Figure 5.4 the stress results are analyzed for 
the load case 2, being the case with worst results.  

 
Figure 5.4 Initial Tertiary Structure Static 

Analysis Solution obtained from ANSYS Wb, the 
𝜎𝜎𝑉𝑉𝑉𝑉 (Pa) for the 2nd load case 

It’s seen that the maximum stress results are in 
the fixed region with the satellite, due to a 
singularity in the solution. The stress in the 
vicinity of the points is calculated, approximately 
400 MPa, but still represents a negative MoS. 
The first natural frequencies, depicted in Figure 
5.5, is of 11.9Hz. This frequency isn’t admissible 
for a tertiary structure, making necessary a 
drastically change in design to increase it. 
 

 
Figure 5.5 Initial Tertiary Structure Modal 

solution obtained from ANSYS Wb, representing 
the Total Eigenvector Deformation (m) for the 1st 

Natural Frequency of 11.9Hz 

6. Tertiary Structure Topology 
Optimization Analysis 

In this section is applied the TO methodology in 
the tertiary structure. 
6.1. 2D Tertiary Structure Topology 

Optimization 
An expansion of the design is considered to 
obtain a more efficient design region, for that 
purpose a 2D design of the structure is 
considered, as depicted in Figure 6.1. This 2D 
design is a surface model representative of the 
section plane x-z of the tertiary structure. 

 
Figure 6.1 2D TO Tertiary Structure Model 

The boundary conditions are shown in Figure 6.2. 
The exceptions regions for the TO correspond to 
the fixed and mass distributed areas. 

7 
 



 
Figure 6.2 2D TO Tertiary Structure Boundary 
Conditions with fixed support (blue) and the 

distributed mass representing RO (red) 

The load case for this optimization is the load 
cases 1 and 3 from Table 5.2. 
The structure is modelled with shell elements 
(SHELL184) in a total of 6189 elements, as 
depicted in Figure 6.3. 

 
Figure 6.3 2D Tertiary Structure Initial Mesh for 

2D TO with 6189 SHELL181 elements 

The TO parameters are defined in the Table 6.1, 
with the TO result and post processed solution 
shown in Figure 6.4. 
𝒑𝒑 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑹𝑹𝑹𝑹𝑹𝑹 [%] 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 𝒇𝒇 [%] 
3 500 0.01 0.001 35 

Table 6.1 TO Parameters for 2D Tertiary 
Structure analysis 

  
Figure 6.4 Tertiary Structure 2D TO solution 

with the total length of relative density (left) and 
a relative density higher than 0.6 (right) 

Graphics of the TO objective function history can 
be seen in Figure 6.5. The compliance result, for 
a volume of 35%, is 1.16Nm. 
 

 
Figure 6.5 2D Tertiary Structure TO objective 

function history obtained from ANSYS Wb 

6.2. Tertiary Structure Topology 
Optimization 

A new tertiary structure design domain is defined, 
taking into account the results of the 2D TO of the 
section 6.1. This new 3D design is represented in 
Figure 6.6, shaped as a surface model with a 
10mm thickness. 

 

𝐶𝐶𝐶𝐶𝐶𝐶
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
����������� 

 
Figure 6.6 Tertiary Structure Model Design with 
Surfaces of 10mm thickness based on the 2D 

TO Analysis 

The boundary conditions are seen in Figure 6.7. 
The exceptions regions for the TO correspond to 
the fixed and mass distributed areas. 

 
Figure 6.7 Tertiary Structure Boundary 

Conditions based on the 2D TO Analysis with 
fixed support (blue) and the distributed mass 

representing RO (red) 

The load case for the optimization is 20G in all 
directions, as in the Table 5.2. 
The structure is modelled with shell elements 
(SHELL184), in order to reduce the 
computational time cost, in a total of 17117 
elements, as depicted in Figure 6.8. 

 
Figure 6.8 Tertiary Structure Initial Mesh for TO 

with 17117 SHELL181 elements 

The TO parameters are defined in the Table 6.2  
𝒑𝒑 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑹𝑹𝑹𝑹𝑹𝑹 [%] 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 𝒇𝒇 [%] 
3 500 0.01 0.001 40 
Table 6.2 TO Parameters for Tertiary Structure 

The result of TO and the post processed solution 
are shown in Figure 6.9. 
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Figure 6.9 Tertiary Structure TO solution with 
the total length of relative density (top) and a 

relative density higher than 0.4 (bottom) 

Graphics of the objective function history can be 
seen in Figure 6.10. A convergence can be 
observed with a compliance result of 39.63Nm. 

 
Figure 6.10 Tertiary Structure TO objective 
function history obtained from ANSYS Wb 

6.3. Optimized Tertiary Structure Analysis 
and Validation 

A new tertiary structure design is defined, taking 
into account the results of Figure 6.9. The 
boundary conditions of this structure are depicted 
in Figure 6.11. 

 
Figure 6.11 Optimized Tertiary Structure 

Boundary Conditions with fixed support (blue) 
and the distributed mass representing RO (red) 

The structure is model as a solid structure where 
a SOLID185 mesh is applied. Having into 
account a finite elements convergence study, a 
mesh with 146935 elements is chosen and 
represented in Figure 6.12. 

 
Figure 6.12 Initial Tertiary Structure Mesh with 

146935 SOLID185 elements 

The maximum stress results for the static 
analysis of this optimized tertiary structure are 
depicted in Table 6.3. 

Load Case Max. 𝝈𝝈𝑽𝑽𝑽𝑽 [MPa] 𝑴𝑴𝑴𝑴𝑴𝑴𝒀𝒀 𝑴𝑴𝑴𝑴𝑴𝑴𝑼𝑼𝑼𝑼𝑼𝑼 
1 19,61 10,42 6,90 

2 51,06 3,39 2,04 

3 21,17 9,58 6,32 

Table 6.3 Optimized Tertiary Structure Static 
Analysis Solution from ANSYS Wb 

In Figure 6.13 the stress results are analyzed for 
the load case 2, being the case with worst results. 

 
Figure 6.13 Optimized Tertiary Structure Static 

Analysis Solution obtained from ANSYS Wb, the 
𝜎𝜎𝑉𝑉𝑉𝑉 (Pa) for the 2nd load case 

Analyzing the vicinity of the maximum stress 
locations (fixed region and bottom region with the 
satellite) the stress is 25MPa, approximately, 
corresponding to a 𝑀𝑀𝑀𝑀𝑀𝑀𝑌𝑌 = 7.96 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑌𝑌 = 5.2. 
The first natural frequency, depicted in Figure 
6.14 is of 71.85 Hz.  

 
Figure 6.14 Optimized Tertiary Structure Modal 

solution obtained from ANSYS Wb, representing 
the Total Eigenvector Deformation (m) for the 1st 

Natural Frequency of 71.9Hz 

6.4. Comparison between Initial and 
Optimized Tertiary Structure 

In this section is presented a comparison 
between the initial (section 5.1) and optimized 
(section 6.3) tertiary structure. The results of the 
static and modal analysis reveal a decrease of 
91.79% in the maximum Von Mises stress for 
load case 2 and an increase of 505.0% in the 1st 
natural frequency of the structure. 
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Also a comparison between the initial, the design 
based on the 2D TO (Figure 6.6) and the 
optimized tertiary structures masses is made and 
shown in Table 6.4. 

Structure Mass [Kg] Diff. [%] 
Initial 15,93 

+10,43 Based in 2D TO 46,40 
Final 17,59 

Table 6.4 Comparison of Mass between Tertiary 
Structures stages 

The difference between initial and final design is 
+10.43%, but the expansion of the initial design 
to a design based on the 2D TO have an increase 
of 191.3% on the mass. After that expansion, a 
decrease of 62.1% in the mass occurs with the 
TO for the final design. This reduction is near to 
the expected reduction, 𝑓𝑓 = 40%, corresponding 
to an error in the equality constrain of 5.2%. 

7. Conclusions 
The achievements of the presented work are 
divided in the following conclusions: 
• A successful TO comparison was conducted 

with the result in literature for MatLab codes 
[8], [10] and the ANSYS TO module. 

• A methodology for the TO analysis was 
introduced. A distinguish characteristic is the 
introduction of a two steps TO, 2D and 3D, 
requiring also two post processing of the 
results to obtain the design. This approach 
gives a preconceived initial design for the 3D 
optimization, but is an initial design based on 
a 2D TO and represents a computational 
time saving in the 3D TO. 

• Finally, using the proposed methodology, the 
design of the satellite tertiary structure was 
optimized. 

In terms of further development there are some 
relevant subjects: 
• Study the use of other objective functions, 

such as natural frequencies and buckling 
strength as objective functions, or even a 
multi-objective function analysis. 

• Study other types of optimization analysis or 
algorithms, such as shape optimization 
analysis or BESO-algorithm, in the design of 
tertiary structures. 
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