
Application
Performance
Management for
Microservice Applications
on Kubernetes

The Ultimate Guide to Managing
Performance of Business Applications
on Kubernetes

Application Performance Management for Microservice Applications on Kubernetes

Table of
Contents
P. 4
Kubernetes Basics
(or the A-B-C’s of K-8-S)

P. 6
Kubernetes Application
Monitoring Challenges

P. 17
Kubernetes Monitoring
Tools and Strategies

P. 12
Seeing Through
the Complexity

P. 22
Conclusion

P. 16
Should You Use
Prometheus?

There’s a reason everyone is talking about Kubernetes these days. It has become the go-to

container orchestration solution for organizations of all sizes as they migrate to microservice

application stacks running in managed container environments.

Kubernetes is certainly worthy of the recent excitement it has garnered, but it doesn’t solve every management

problem, especially around performance. It’s important to understand what Kubernetes does, and what it doesn’t do;

and what specific capabilities DevOps teams require from their tooling to fully manage orchestrated microservice

applications and achieve operational excellence.

This eBook examines Kuberenetes, the operational issues it addresses, and those that it does not. Additional

examination of modern DevOps process is included, with a discussion on management tooling needed to achieve

continuous delivery of business services leading to excellent operational performance. The eBook concludes with a

detailed analysis of the capabilities needed from your tooling to successfully operate and manage the performance of

microservice applications running on Kubernetes.

Application Performance Management for Microservice Applications on Kubernetes

4

Kubernetes Basics
(or the A-B-C’s of K-8-S)

Kubernetes (sometimes abbreviated K8s) is a container

orchestration tool for microservice application deployment.

It originated as an infrastructure orchestration tool built by

Google to help manage container deployment in their

hyper-scale environment. Google ultimately released K8s

as an open source solution through CNCF (the Cloud-Native

Computing Foundation).

Orchestration is just a fancy word that summarizes the basic Kubernetes features:

•	 Container deployment automation, relieving admins of the need to manually start them

•	 Instance management - balancing the number of instances of a given container running 	

	 concurrently to meet application demand

•	 DNS management regarding microservice / container load balancing and clustering to 		

	 help manage scaling due to increased request load

•	 Container distribution management across host servers to spread application load 		

	 evenly across the host infrastructure (which can help maximize application availability)

Notice there is a critical

aspect of operational

management

missing - application

performance management.

The whole discipline

of application performance

visibility and management

is not part of the

Kubernetes platform.

Application Performance Management for Microservice Applications on Kubernetes

5

Why Kubernetes is
Important

Remember, the goal of DevOps

is speed!! Orchestration is all

about enabling fast and easy

changes to production

environments so that business

applications can rapidly evolve.

The message is clear:

speeding up your

application delivery

cycles adds huge value

to your business.

Automating container

orchestration is a great

complement to agile

development methods and the

microservice architecture.

Modern CI/CD is automating

the testing and delivery stages

of development - containers

and Kubernetes make it much

easier to get your code into

production and manage

resources.

Kubernetes
distributions

Many cloud providers have their

own versions of Kubernetes

(called a “Distribution”) that

have unique enterprise

capabilities added to the open

source Kubernetes version,

which provide a few distinct

advantages:

•	 Organizations concerned 		

	 about enterprise readiness 		

	 get a fully tested and 		

	 supported version of k8s

•	 Additional enterprise 		

	 functionality is included 		

	 - for example, Red Hat’s 		

	 OpenShift K8s distribution 		

	 adds security features and 		

	 build automation to the mix

For most enterprise use cases,

it‘s much faster and easier to

use a cloud provider’s

Kubernetes distribution than to

set up the open source version.

A wide variety of Kubernetes

distributions are available,

designed to run either on local

infrastructure or as a hosted

service in the cloud.

You can get an

updated list of

distribution providers

in Kubernetes

online docs.

Kubernetes Application
Monitoring Challenges

Container Management is NOT
Application Performance Management

More Moving Parts - and Complexity

Decoupling of Microservices from
Physical Infrastructure

Service Mapping - A New Layer
of Abstraction

Root-Cause Ambiguity

Application Performance Management for Microservice Applications on Kubernetes

7

Container Management
is NOT Application
Performance
Management

Now that we’ve discussed what

Kubernetes does, let’s explain

what it does not do. Remember,

Kubernetes orchestrates

containers that are part of an

application. It does not manage

application performance or the

availability of highly distributed

applications. Similar to

applications, Kubernetes doesn’t

consider performance when

managing infrastructure.

Kubernetes effectively adds a

layer of abstraction between the

running application (containers)

and the actual compute

infrastructure. On its own,

Kubernetes makes decisions

about where containers run, and

can move them around abruptly.

Visibility of exactly how your

technical stack is deployed,

and how service requests are

flowing across the microservices

is not easily available via

Kubernetes, nor is performance

data (request rate, errors and

duration or latency) of services a

native part of Kubernetes.

Operational

production monitoring

of application

performance and

health is absolutely

not available via

Kubernetes.

Let’s look at other aspects of

orchestrated containerized

application environments that

further complicate monitoring.

Application Performance Management for Microservice Applications on Kubernetes

8

More Moving Parts - and Complexity

Any microservice application creates a trio of issues:

With the addition of containers

- and then orchestration with

Kubernetes - each of these

management challenges

becomes even more difficult.

Every time there is a decoupling

of physical deployment from

the application functionality,

it becomes more difficult to

monitor application performance

and solve problems. Instead of

host servers connected with a

physical network, Kubernetes

utilizes a cluster of nodes and

virtualizes the network, which

can be distributed across a

mixture of on-premise and

cloud-based infrastructure,

or even multiple clouds.

With so many different pieces of

infrastructure and middleware,

as well as the polyglot of

application languages used to

create the microservices, it’s

difficult for monitoring tools to

distinguish the different needs

and behaviors of all these critical

components in the application

stack. For example, collecting

and interpreting monitoring

data from any one platform

is different from all other

platforms. What do you do when

you have Python, Java, PHP, .NET,

Application Proxies, 4 different

databases and a multitude of

middleware?

•	 Exponentially more individual components

•	 Constant change in the infrastructure and applications (the application stack)

•	 Dynamic application components, In a Kubernetes environment, there are many

	 more moving parts than there would be in a traditional application stack.

Application Performance Management for Microservice Applications on Kubernetes

9

Decoupling of
Microservices from
Physical Infrastructure

Kubernetes takes control

of running the containers

that make up the

microservices of your

application, completely

automating their lifecycle

management and

abstracting the hardware.

Kubernetes will run the requested

workloads on any available host/node

and using software-defined networks

to ensure that those workloads

are reachable and load balanced.

Compute resources (memory and

CPU) are also abstracted with each

workload having a configured limit for

those resources. Because containers

are ephemeral, any long term storage

is provisioned by Persistent Volume

Claims provided by various

storage drivers.

The already deep level of abstraction

may be further compounded by

the Kubernetes nodes running on

external cloud computing services

such as EC2, GCE or Azure.

The high level of disconnect from

the application code to the hardware

it’s running on makes traditional

infrastructure monitoring less critical.

It is considerably more important to

understand how the microservices

and overarching applications are

performing and if they are meeting

their desired SLAs. An understanding

of the overall health of the

Kubernetes backplane is also essential

to ensure the highest levels of service

for your application.

Application Performance Management for Microservice Applications on Kubernetes

10

Service Mapping - A New Layer
of Abstraction

As noted earlier in this eBook, one of the main reasons for

using an orchestrator like Kubernetes is that it automates

most of the work required to deploy containers and establish

communications between them. However, Kubernetes on its

own can’t guarantee that microservices can communicate

and integrate with each other effectively. To do that, you

need to directly monitor the services and their interactions.

That is challenging because Kubernetes doesn’t offer a way

to automatically map or visualize relationships between

microservices.

Admins must manually determine which

microservices are actually running, where

within the cluster they exist, which services

depend on other ones and how requests are

flowing between services.

They must also be able to quickly determine quickly how a

service failure or performance regression could impact other

services, while also looking for opportunities to optimize

the performance of individual services and communications

between services.

Application Performance Management for Microservice Applications on Kubernetes

11

Root-Cause Ambiguity

APM tools exist because

middleware-based business

applications - first using Java and

.NET, then using SOA principles,

and even microservices and

containers - make it difficult to

monitor performance, trace user

requests, then identify and solve

problems.

The more complex

the application

environment, the

harder it becomes

for DevOps

teams to get the

performance visibility

and component

dependencies

needed to effectively

manage application

performance.

In a Kubernetes environment,

determining the root cause of a

problem based on surface-level

symptoms is even more difficult,

because the relationships

between different components

of the environment are much

harder to map and continuously

change. For example, a problem

in a Kubernetes application

might be caused by an issue

with physical infrastructure,

but it could also result from a

configuration mistake or coding

problem. Or perhaps the problem

lies within the virtual network

that allows microservices to

communicate with each other.

Of course, when the problem

lies within the application code,

it’s important to have the deep

visibility required to debug actual

code issues, even understanding

when bad parameters or other

inputs are causing application

problems. Ultimately, there

could be a myriad number of

root causes for the issue, ranging

from configuration problems in

Kubernetes, to an issue with data

flows between containers, to a

physical hardware failure.

To put it simply, tracing problems

in a Kubernetes environment

back to their root cause is not

feasible in many cases without

the help of tools that can

automatically parse through

the complex web of data and

dependencies that compose your

cluster and your microservice

application’s structure.

Application Performance Management for Microservice Applications on Kubernetes

12

Seeing Through the Complexity

By now, it should be clear that managing the performance and availability of Kubernetes

applications is challenging and scary! It’s not hopeless, though. With the right APM (Application

Performance Management) tool, you can manage your Kubernetes environment in a way that

maximizes uptime and optimizes performance, combining the benefits that K8s offers with

the goal of achieving DevOps excellence.

Let’s look at key types of visibility that your monitoring should support for applications running in a Kubernetes environment.

Application Service Identification and Mapping

As discussed earlier, Kubernetes injects a new level of application

abstraction, making it difficult to know how well individual services

are running, or the interdependencies between all the deployed

services. Your APM tool must be able to see past Kuberenetes and

the container system to identify the application services - and how

they are related to each other.

$ kubectl get svc

Lists out Kubernetes service definitions but not

their relationships.

Kubernetes services are NOT the same as application services.

The K8s documentation states:

There can be multiple application services within a Pod.

“A Kubernetes Service is an abstraction
which defines a logical set of Pods and
a policy by which to access them”

Application Performance Management for Microservice Applications on Kubernetes

13

Microservice
Relationships

You also need to know how

your Kubernetes services map

to application services, the

microservices they are built upon

and their physical infrastructure

in order to determine how

the infrastructure impacts

the services’ availability and

performance. Kubernetes

doesn’t easily reveal all of this

information; you need to run

multiple kubectl commands

to manually build a mapping at

a single point in time.

Good luck doing that when there

is a production issue that needs

to be fixed immediately.

Application Request
Mapping and Tracing

The microservices that comprise

an application constantly send

and receive requests from each

other. Effective microservice

application monitoring requires

your APM tool to detect all

the services, as well as the

interdependencies between

them - and visualize the dynamic

relationships (i.e., map them) in

real time.

Additionally, to solve

problems, you will need

exact traces from each

individual application

request across all

the microservices it

touches.

There is no kubectl

command to provide this

information.

Application Performance Management for Microservice Applications on Kubernetes

14

Deployment Failures

If Kubernetes fails to deploy a pod as expected, you want to know why and how

it happened. However, it’s more important to understand if your application

functionality has been negatively impacted by this deployment failure. Is your

application slower and handling less workload or is it throwing errors because a

critical service is unavailable?

$ kubectl get events --field-selector involvedObject.name=my-deployment

The event stream will show where the deployment

failed.

Since you cannot see the performance

of your application using kubectl

commands, the only way to answer the

question above is with an APM tool that

understands Kubernetes.

Performance Regressions

If your application is responding slowly, it’s important to identify the issue and

trace it to its root cause quickly. Since Kubernetes was not designed to help

with this use case, there are no kubectl commands you can run to understand

microservice or application performance.

Troubleshooting microservice applications running on

Kubernetes requires your APM tool to have the ability to

correlate metrics up and down the full application stack:

infrastructure, application code, kubernetes system

information, and the trace data between the services.

Infrastructure metrics like CPU, memory, disk I/O,

network I/O, etc are good KPIs to reference while

troubleshooting performance issues but they are only

a part of the information required to fully ascertain

root cause. There might also be issues with the

application code or Kubernetes configuration issues

that are causing resource contention. It’s quite

common to over-allocate CPU and memory resources

on Kubernetes nodes with improper configuration.

Application Performance Management for Microservice Applications on Kubernetes

15

Performance Optimization
Opportunities

In Agile development environments,

developers often push new code

into production on a daily basis.

How do they know that their code is

delivering good response time and

not consuming too many resources?

To help with this, the APM solution must work

at the speed of DevOps, automatically and

immediately recognizing when new code has been

deployed - or any changes to the structure of the

environment (including infrastructure). It must

also make it easy for developers to analyze the

efficiency of their code.

This use case calls for granular visibility into

user requests, host resources (K8s nodes), and

workload patterns. It’s also critical that you

have a robust analytics mechanism for all of this

data. You cannot accomplish this use case with

Kubernetes alone.

Application Performance Management for Microservice Applications on Kubernetes

16

Should You Use Prometheus?

Prometheus has become the go-to monitoring tool for Kubernetes but it’s missing some

important functionality. Let’s begin our Prometheus exploration by discussing what

Prometheus does well.

Prometheus is an open-source time series metrics monitoring and alerting tool.

It is typically used to monitor KPIs, such as rates, counters, and gauges from

infrastructure and application services. You can use Prometheus to monitor request

response times but this often requires that you modify your source code to add the

Prometheus API calls. This can be useful to understand overall response times and

request rates but this approach lacks the detail required to troubleshoot or optimize

application performance.

The Kubernetes distribution natively supports Prometheus, and when the

Prometheus Helm package is installed, you’ll find several dashboards pre-configured

for the purpose of basic health checks. You’ll also find a few predefined alerts

configured on your cluster.

Ultimately, Prometheus is a good stand-alone metrics tool that

cannot meet the challenges associated with running business

critical microservice workloads on Kubernetes.

Prometheus is a good stand-alone tool

for collecting time series metrics but it is

not capable of meeting the majority of use

cases presented in this document. Here

are the drawbacks of using Prometheus as

your monitoring tool:

•• No distributed tracing capability

•• No correlation between service infrastructure and

host

•• No correlation between Kubernetes resources, request

response times, and infrastructure metrics

•• No analytics interface, roll-ups, or aggregates

•• No automatic root cause analysis

•• No automated alerting

•• Management and Administrative costs

Time series metrics | Flexible API | High cardinality | Monitoring and Alerting

Kubernetes Monitoring
Tools and Strategies

Achieving the elements described above in a

Kubernetes application requires an APM tool

that includes special features absent within

traditional monitoring tools.

For Kubernetes, you can not just collect monitoring data and detect

anomalies that could signal problems. Let’s look at key capabilities you

need in an APM tool to help you with microservice applications running

on Kubernetes.

Application Performance Management for Microservice Applications on Kubernetes

18

Root-Cause Analysis
Within the Application,
Containers and
Orchestration

One is the ability to identify

the root-cause of performance

issues automatically. It’s not

good enough to just be aware of

problems within your Kubernetes

environment.

You must be able to

trace those problems

to their exact root

cause and fix them in

minutes.

Given the extreme complexity of

a Kubernetes-based application

and the lack of visibility into

the environment, identifying

the root causes of availability

or performance problems is

exceptionally challenging to do

manually.

When your APM tool understands the relationships between Kubernetes,
application services, and infrastructure, it can automatically identify the
root cause of issues anywhere within the system.

19

Application Performance Management for Microservice Applications on Kubernetes

Integrated Service /
Infrastructure Mapping

Given that Kubernetes

doesn’t offer full

visibility into how

services interact

with each other, your

monitoring tool must

be able to map services

automatically.

Equally important, it must

have the ability to interpret the

relationships and dependencies

between those services in

order to identify problems and

understand how one service’s

performance will impact that

of others.

Dependencies between all services are continuously
mapped and monitored to understand the performance
of the system as a whole.

Application Performance Management for Microservice Applications on Kubernetes

20

Upstream and downstream dependencies of individual
services are automatically identified. Every application
service is correlated to its Kubernetes service so that you
can seamlessly navigate between data sets.

Kubernetes cluster data is collected and analyzed
with the correlated application performance data to
create a holistic understanding of the system.

21

Application Performance Management for Microservice Applications on Kubernetes

Dynamic Baselining

With environment architectures and

configurations changing constantly,

your APM tool must make sense of

highly dynamic monitoring data

and distinguish true anomalies from

normal changes.

Remediation guidance

When something goes wrong in your

enormously complex Kubernetes

environment, you want to be able

to resolve the problem quickly. That

is difficult for human admins to do

without the help or guidance from

their APM tool. There’s just too much

data, and too many fast-changing

variables, for humans to wade

through to formulate an incident

response plan on their own.

Identification of application performance issues requires anomaly
detection based upon machine learning. Alerts are raised when
performance indicators deviate too far away from normal behavior.

Application Performance Management for Microservice Applications on Kubernetes

22

Conclusion

Kubernetes is rapidly becoming the standard orchestration

platform in enterprises to augment and even complete the

transition to DevOps, but does not include application

performance visibility or management. Furthermore, Kubernetes

introduces a new layer of abstraction into the datacenter creating

observability challenges making it more difficult to manage

application availability and deliver the needed performance SLAs

demanded by your business.

To properly manage business critical applications on Kubernetes,

Instana recommends an APM tool with these key capabilities:

•	 Full-stack visibility (including infrastructure, code, microservices, request traces, middleware,

	 containers and Kubernetes) of all technology layers

•	 Continuous discovery of the full application stack to automatically adjust to changes

	 in the environment

•	 Dependency mapping and correlation between the layers of technology

•	 Automatic root cause determination and assistance for the DevOps teams to troubleshoot

	 application issues.

Application Performance Management for Microservice Applications on Kubernetes

About
Instana
Instana is the only APM tool

specifically built for microservice

applications running on Kubernetes.

The solution automatically discovers

the full containerized application

stack, automatically understands

the performance of your

microservices, and includes

automatic determination of the root

cause of performance issues.

The solution is
designed to
empower the full
DevOps team.

Stan
Your Intelligent
DevOps Assistant

Start a Free Trial Today

https://www.instana.com/trial?last_program_channel=Website&last_program=eBook: APM for Microservices&last_program_detail=Self-Service Trial Request

