
Application Vulnerability: Trend Analysis 
and Correlation of Coding Patterns 
Across Industries
Using our latest assessment, security architects and developers can 
determine which industries — as well as areas of source code and 
applications — are most vulnerable to attack, and mitigate the impact.

Executive Summary
Attacks on Web applications threaten nearly 
every organization with an online presence. 
Based on our experience, these unwelcome 
assaults cost companies millions of dollars and 
can cause serious damage in terms of brand 
integrity and customer turnover. Our Enterprise 
Risk and Security Solutions (ERSS) assessment 
team recently evaluated the state of Web appli-
cation vulnerability using automated vulnerability 
scanners and manual tests to analyze the state of 
security across nine industries. 

This white paper presents results identified 
during 2012 and 2013. It focuses on the general 
application functionalities and the correspond-
ing parameters that were developed, but failed, 
to secure code across verticals. The paper also 
details suitable recommendations for mitigating 
security vulnerabilities that arise within these 
scenarios.

Vulnerability Analysis
The security posture of each vertical analyzed 
during our 2013 assessment can be best 
understood by examining the concentration of 
vulnerability across these industries (see Figure 1,  

page 2). Vulnerabilities pertain to severity levels 
— high, medium and low. Applications within 
the insurance vertical comprise the highest 
percentage in total vulnerabilities across the 
verticals. These applications also contain the 
highest number of security coding flaws or static 
application vulnerabilities. Banking and Financial 
Services (BFS) and Information, Media and Enter-
tainment (IME) applications have nearly the 
same vulnerability levels, with IME applications 
being the most susceptible — showing the highest 
number of dynamic application vulnerabilities 
compared with other verticals.

Vulnerability Trends in 2012 and 2013
The security posture of Web-based applications is 
continuously changing, primarily due to the rise 
of new hacking methods, the spreading awareness 
among developers and regulatory compliance, for 
example.1 Figure 2 compares application vulner-
ability distribution across various verticals, based 
on the findings of SAST and DAST assessments 
conducted in 2012 and 2013. The number of appli-
cations tested is also shown.

In 2012, nearly 76% of the vulnerabilities we 
identified were found in healthcare applications, 
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14% were discovered in insurance industry appli-
cations, and about 3% were identified in BFS 
applications. Fewer vulnerabilities were seen in 
retail, IME and other domains such as travel and 
hospitality and consumer goods. In 2013, nearly 
37% of the vulnerabilities were detected in 
insurance industry applications, 27% were found 
in BFS, 26% in IME and 8% in retail.

The following sections describe our industry-
based vulnerability analysis. The study used 
automated vulnerability scanners and manual 
tests, and employed SAST- and DAST-specific 
interpretation of industry trends to zero in on the 
exact application threats and their causes. 

Static Application Security Testing
In static application security testing (SAST), the 
application code is examined for flaws that can 
lead to security threats. SAST uses tool-based 
scanning, as well as manual reviews. Tool-based 
scanning involves tests generated by pre-defined 
security rules. Manual review entails validating 
the tool output and identifying additional security 
flaws using manual expertise. 

Automated Tool for Vulnerability Detection 

Tools for automated security testing produce 
results with false-positives (identified as applica-
tion vulnerabilities by the tool, but not actually 
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vulnerabilities) and false negatives (existing vul-
nerabilities that were missed by the tool). 

Manual analysis techniques are employed to 
eliminate false-positives and identify false-neg-
atives. Figure 3 above illustrates the summary 
of the number of coding flaws identified by the 
automated security code scanning tools, false-
positives identified by manual analysis and the 
actual vulnerabilities reported to the client’s 
point of contact for the applications of different 
verticals. The major verticals assessed here were 
BFS, Insurance and IME. Other verticals, including 
retail, healthcare, T&H and mobility, were grouped 
into one category.

For this analysis, we employed a number of 
commercial scanners, open source tools and 
freeware. As shown by the data, automated 
security scanners have huge false-positive rates. 
For example, in the insurance and IME verticals, 
more than 90% of reported issues are false-posi-
tives. In general, applications in IME verticals rely 
more on Web 2.0 components, Flash and Action 
scripts, which can increase their complexity. 
Automated tools are very limited when it comes to 
understanding the business logic and functional 
flow of the applications, due to the high false-
positive counts found in this vertical. This makes 
the intervention of manual security expertise 
essential — not only for removing false-positives, 
but also for uncovering vulnerabilities in the 
application that automated tools fail to capture.

Vulnerability Trends in Verticals
Statistical information about the vulnerabili-
ties pertaining to SAST with respect to different 
verticals and vulnerability categories is depicted 
in Figure 4 (next page). Security standards such 
as OWASP2, WASC3 and CWE4/SANS5 were used to 
classify these vulnerabilities.

The various categories of secure coding flaws 
for different verticals are listed in Figure 5 (next 
page). The most prevalent of these falls under the 
“Best Practices Violation” category, due to the 
lack of awareness among developers concerning 
adherence to secure coding standards. Common 
poor coding practices include null pointer deref-
erence, missing checks against null, using weak 
XML schema, data in hidden fields and failure 
to remove debug code, comments and other 
sensitive leftover code. “Information Leakage, 
Error Handling and Input Validation” flaws are 
also rampant due to improper handling of applica-
tion input and output, which form the major entry 
points for application attacks. Of the total issues 
identified, insurance industry applications were 
found to contain the highest number of security 
coding flaws. In fact, 91% of coding flaws were 
found in “Best Practices Violation,” followed by 
5% in “Input Validation” and 3% in “Information 
Leakage and Error Handling” categories.

Dynamic Application Security Testing
Dynamic application security testing (DAST) 
or “black-box” testing evaluates applications 
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during their execution at runtime. This is useful 
in determining the risks the application faces 
in a production environment. Our ERSS team 
employs automated scanning tools and manual 
testing techniques to dynamically test an appli-
cation. The following sections of this white paper 
elucidate DAST vulnerability detection using 
automated tools and industry-based DAST vulner-
ability trends.

Automated Tool Vulnerability Detection 

Dynamic testing is performed using industry-
standard automated scanners. The performance 
of each scanner typically depends on the security 

rule sets defined for these tools. Cognizant’s ERSS 
group performs intensive manual testing, which 
helps assure comprehensive coverage. Some of 
the manual tests include detecting business logic 
bypass issues and session-related problems, such 
as session hijacking, session fixation and session 
replay, as well as authentication issues like 
insufficient logout mechanism, improper cache 
management, and security misconfiguration 
issues such as SSL renegotiation, click jacking 
and other such vulnerabilities. Figure 6 (next 
page) summarizes the number of application 
vulnerabilities identified by various automated 
dynamic security testing tools (commercial, open 
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source and freeware), false-positives identified by 
manual analysis, and the actual vulnerabilities of 
different verticals reported to the client. 

Vertical Vulnerabilities

The number of dynamic application vulnerabilities 
is showcased across verticals (see Figure 7). Most 
vulnerabilities were found in the IME vertical, 
with the highest count being in the “Insecure 
Direct Object Reference” category, followed by 
“Injection.” Next in line was the insurance vertical, 
with the highest count in “Security Misconfigura-
tion,” followed by “Insufficient Transport Layer 
Protection.” 

As Figure 8 (next page) shows, the most dominant 
vulnerability was in the “Insecure Direct Object 

Reference” category. When a developer exposes 
a reference to an internal object to the user, this 
type of vulnerability occurs. A large number of 
vulnerabilities were also found in “Injection” and 
“Cross-Site Scripting,” denoting that developers 
still show their trust in user input by failing to 
perform sufficient input validation and output 
encoding, and using secure defaults. “Security 
Misconfiguration” and “Insufficient Transport 
Layer Protection” were also very prevalent. This 
could result from testing environments that do 
not mirror the actual production environment, 
have weak server configurations, or have no or 
poor SSL configurations. Robust configurations 
are essential for maintaining high security for a 
live site compared with a test site.
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The overall vulnerability count in the DAST and 
SAST findings was highest in IME applications. The 
total count is comparable to those of insurance 
and BFS. In fact, nearly 60% of the applications 
tested belong to BFS, but only about 25% of 
the total vulnerabilities reported are present in 
those applications. Furthermore, these applica-
tions have fewer critical vulnerabilities related to 
issues such as injection. Hence, it can be inferred 
from the statistics that BFS applications are 
relatively more secure. This can be attributed to 
the fact that the banking and finance sector deals 
with highly sensitive data, for which security is 
paramount. While confidentiality and integrity 
of financial data are critical, the third parameter 
of the security triad — availability — is equally 
essential for this growing industry. Security 
awareness is progressively increasing within the 
developer community in BFS because of these 
requirements, thereby leading developers to 
emphasize application security. And because 
BFS applications are also subject to compliance 
mandates, security requirements are taken care 
of during development. This helps to keep these 
applications even more secure.

Security Trends in Application 
Development
Security threats in an application can be drilled 
down to the particular functionality that is 
affected by the security flaw and the parameter 
that provides an entry point to the attack vector. 

Typical application functionality could be 
anything from a login/logout function to a 
payment function. It can further be zeroed down 
on the query parameters, form parameters, 
cookies and page parameters that are created 
by the developers to accomplish the respective 
functionality. Figure 9 (next page) shows the dis-
tribution of vulnerable parameters and functions 
across verticals.

The most commonly affected parameters are the 
configuration parameters, which impact the con-
figuration function and make the application sus-
ceptible to security misconfiguration issues. This 
is due to failure to employ platform-specific secure 
configurations. Developers should also focus on 
add/modify/submit functions, which are largely 
vulnerable; submit parameters, for instance, are 
often targeted by attackers. As a result, applica-
tions become prone to cross-site request forgery, 
clickjacking and malicious content uploads. 

These parameters can be safeguarded during 
development by setting secure attributes and 
performing safety checks to ensure that the data 
or file that is submitted conforms to the accepted 
type, range and business logic. Other parameters 
that require attention include URL/links, profile 
parameters and IDs such as user IDs, session 
IDs and viewstate parameters. Failure to secure 
these can result in unsafe redirects and forwards, 
phishing, session hijacking and user imperson-
ation. 
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It is the responsibility of the developer to ensure 
that URL redirects are examined for authorization. 
Developers should also ensure that ID parameters 
are generated based on stringent industry-stan-
dard protocols, and that session IDs are correctly 
invalidated — not resused — and regenerated at 
frequent intervals. These session tokens and 
other sensitive data must be protected during 
transit by using proper SSL configuration, and 
also in cookies in order to prevent cookie theft. 
Payment parameters are often targeted too, as 
they can be exploited to execute payment frauds 
and cybercrimes. Therefore, the duty lies with 
developers to ascertain that these parameters 
are handled in a highly secure manner. The focus 

areas for the developer community should be to 
incorporate strong validation for input and output 
parameters, follow secure configurations, set safe 
attributes for the parameters in general, and 
preserve the confidentiality of the sensitive data 
carried by the parameters.

Looking Ahead
This white paper has presented statistics on 
application vulnerability trends across several 
verticals with respect to dynamic and static 
application security testing. The following recom-
mendations will help developers improve security 
across numerous parameters:
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• Ascertain the validity of input supplied by the 
user with respect to the data type, range, size 
and business logic allowed.

• Ensure that session management is robust by 
using industry-standard session-management 
and handling mechanisms.

• Protect sensitive data such as IDs, session 
tokens, user personal data, payment informa-
tion and the like in transmission and storage.

• Employ secure configurations for all applica-
tion components.

The developer community in general should 
closely adhere to security standards and 
implement secure practices throughout the 
software development lifecycle to create highly 
secure applications.

Analysis Methodology
Figure 10 describes the applications that were 
studied using dynamic (DAST) and static appli-
cation security testing (SAST) methodologies. 
It illustrates a statistical representation of the 
various applications for which security testing 
was conducted based on their type, the verticals 
to which they belong and the technology used.

SAST was performed on 214 applications and 
DAST on 105 applications. Of the total applica-

tions tested, 79% were Web applications, 5% were 
mobile applications and 16% were other types of 
applications such as IVR, mainframe, native appli-
cations, Web services and CS, for example. 

Approximately 60% of Web application assess-
ments were carried out in the BFS vertical, 
followed by 14% in IME and 10% in the insurance 
vertical. Mobile application security assess-
ments were performed for the insurance, retail, 
healthcare, travel and hospitality, IME and manu-
facturing/logistics verticals. 

SAST was carried out on applications that were 
built using technologies such as Java, Android, 
.Net, COBOL, Objective C and PHP. Nearly 63% 
of the applications were developed in Java, 
Java-based frameworks and Android. .Net 
projects made up 13% of the applications and 
COBOL comprised 21%. 

SAST was performed on the codebase of Web, 
native and mobile applications and Web services, 
for example. Cognizant, as well as third party-
developed code, was taken into account for this 
analysis. SAST for code developed over several 
frameworks — including mobile/Web frameworks 
such as Titanium Appecelerator and e-commerce 
frameworks such as ATG — were also considered. 
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Application code within the BFS domain consti-
tutes the largest portion of applications under 
security testing — nearly 72%. The application 
pool comprises 13% of IME applications and 

6% insurance, with the remaining being retail, 
healthcare, travel and hospitality, consumer 
goods, and manufacturing and logistics applica-
tions.
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Footnotes
1 Regulatory Compliance: Regulations a company must follow to meet specific requirements.
2 OWASP: Open Web Applications Security Project.  A worldwide, not-for-profit charitable organization 

focused on improving the security of software.
3 SANS: The SANS Institute was established in 1989 as a cooperative research and education organization.
4 WASC: The Web Application Security Consortium (WASC) is a 501c3 nonprofit comprising an international 

group of experts, industry practitioners and organizational representatives who produce open source and 
widely agreed upon best-practice security standards for the World Wide Web.

5 CWE: Common Weakness Enumeration provides a unified, measurable set of software weaknesses that is 
enabling more effective discussion, description, selection and use of software security tools and services 
that can find these weaknesses in source code and operational systems, and better understand and 
manage software weaknesses related to architecture and design.

Glossary
BFS: Banking and Financial Services

CWE: Common Weakness Enumeration

DAST: Dynamic Application Security Testing

ERSS: Enterprise Risk and Security Solutions

HIPAA: Health Insurance Portability and Account-
ability Act

IME: Information, Media and Entertainment 
Practice

OWASP: Open Web Application Security Project

PCI: Payment Card Industry

SANS: SysAdmin, Audit, Networking, and Security

SAST: Static Application Security Testing

T&H: Travel and Hospitality

WASC: Web Application Security Consortium
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