
Application Vulnerability: Trend Analysis
and Correlation of Coding Patterns
Across Industries
Using our latest assessment, security architects and developers can
determine which industries — as well as areas of source code and
applications — are most vulnerable to attack, and mitigate the impact.

Executive Summary
Attacks on Web applications threaten nearly
every organization with an online presence.
Based on our experience, these unwelcome
assaults cost companies millions of dollars and
can cause serious damage in terms of brand
integrity and customer turnover. Our Enterprise
Risk and Security Solutions (ERSS) assessment
team recently evaluated the state of Web appli-
cation vulnerability using automated vulnerability
scanners and manual tests to analyze the state of
security across nine industries.

This white paper presents results identified
during 2012 and 2013. It focuses on the general
application functionalities and the correspond-
ing parameters that were developed, but failed,
to secure code across verticals. The paper also
details suitable recommendations for mitigating
security vulnerabilities that arise within these
scenarios.

Vulnerability Analysis
The security posture of each vertical analyzed
during our 2013 assessment can be best
understood by examining the concentration of
vulnerability across these industries (see Figure 1,

page 2). Vulnerabilities pertain to severity levels
— high, medium and low. Applications within
the insurance vertical comprise the highest
percentage in total vulnerabilities across the
verticals. These applications also contain the
highest number of security coding flaws or static
application vulnerabilities. Banking and Financial
Services (BFS) and Information, Media and Enter-
tainment (IME) applications have nearly the
same vulnerability levels, with IME applications
being the most susceptible — showing the highest
number of dynamic application vulnerabilities
compared with other verticals.

Vulnerability Trends in 2012 and 2013
The security posture of Web-based applications is
continuously changing, primarily due to the rise
of new hacking methods, the spreading awareness
among developers and regulatory compliance, for
example.1 Figure 2 compares application vulner-
ability distribution across various verticals, based
on the findings of SAST and DAST assessments
conducted in 2012 and 2013. The number of appli-
cations tested is also shown.

In 2012, nearly 76% of the vulnerabilities we
identified were found in healthcare applications,

• Cognizant 20-20 Insights

cognizant 20-20 insights | april 2014

2

14% were discovered in insurance industry appli-
cations, and about 3% were identified in BFS
applications. Fewer vulnerabilities were seen in
retail, IME and other domains such as travel and
hospitality and consumer goods. In 2013, nearly
37% of the vulnerabilities were detected in
insurance industry applications, 27% were found
in BFS, 26% in IME and 8% in retail.

The following sections describe our industry-
based vulnerability analysis. The study used
automated vulnerability scanners and manual
tests, and employed SAST- and DAST-specific
interpretation of industry trends to zero in on the
exact application threats and their causes.

Static Application Security Testing
In static application security testing (SAST), the
application code is examined for flaws that can
lead to security threats. SAST uses tool-based
scanning, as well as manual reviews. Tool-based
scanning involves tests generated by pre-defined
security rules. Manual review entails validating
the tool output and identifying additional security
flaws using manual expertise.

Automated Tool for Vulnerability Detection

Tools for automated security testing produce
results with false-positives (identified as applica-
tion vulnerabilities by the tool, but not actually

cognizant 20-20 insights

0

1000

2000

3000

4000

5000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

DA
ST

 V
uln

er
ab

ilit
y C

ou
nt

SAST Vulnerability Count

BFS
Insurance
IME
Others

Vulnerability Concentration Across Verticals

Figure 1

20,772

12,293
10,204

16,947

618

11,774

1140000 3831

55,493

261
2519

737
0

10,000

20,000

30,000

40,000

50,000

60,000

0

50

100

150

200

BFS Insurance IME Retail OthersHealthcare

Vu
lne

ra
bil

ity
 C

ou
nt Application Count

2012 Vulnerablility Count

2013 Vulnerablility Count

2012 Application Count

2013 Vulnerablility Count

,

293

261

0,2

Vulnerability Concentration Across Verticals

Figure 2

cognizant 20-20 insights 3

vulnerabilities) and false negatives (existing vul-
nerabilities that were missed by the tool).

Manual analysis techniques are employed to
eliminate false-positives and identify false-neg-
atives. Figure 3 above illustrates the summary
of the number of coding flaws identified by the
automated security code scanning tools, false-
positives identified by manual analysis and the
actual vulnerabilities reported to the client’s
point of contact for the applications of different
verticals. The major verticals assessed here were
BFS, Insurance and IME. Other verticals, including
retail, healthcare, T&H and mobility, were grouped
into one category.

For this analysis, we employed a number of
commercial scanners, open source tools and
freeware. As shown by the data, automated
security scanners have huge false-positive rates.
For example, in the insurance and IME verticals,
more than 90% of reported issues are false-posi-
tives. In general, applications in IME verticals rely
more on Web 2.0 components, Flash and Action
scripts, which can increase their complexity.
Automated tools are very limited when it comes to
understanding the business logic and functional
flow of the applications, due to the high false-
positive counts found in this vertical. This makes
the intervention of manual security expertise
essential — not only for removing false-positives,
but also for uncovering vulnerabilities in the
application that automated tools fail to capture.

Vulnerability Trends in Verticals
Statistical information about the vulnerabili-
ties pertaining to SAST with respect to different
verticals and vulnerability categories is depicted
in Figure 4 (next page). Security standards such
as OWASP2, WASC3 and CWE4/SANS5 were used to
classify these vulnerabilities.

The various categories of secure coding flaws
for different verticals are listed in Figure 5 (next
page). The most prevalent of these falls under the
“Best Practices Violation” category, due to the
lack of awareness among developers concerning
adherence to secure coding standards. Common
poor coding practices include null pointer deref-
erence, missing checks against null, using weak
XML schema, data in hidden fields and failure
to remove debug code, comments and other
sensitive leftover code. “Information Leakage,
Error Handling and Input Validation” flaws are
also rampant due to improper handling of applica-
tion input and output, which form the major entry
points for application attacks. Of the total issues
identified, insurance industry applications were
found to contain the highest number of security
coding flaws. In fact, 91% of coding flaws were
found in “Best Practices Violation,” followed by
5% in “Input Validation” and 3% in “Information
Leakage and Error Handling” categories.

Dynamic Application Security Testing
Dynamic application security testing (DAST)
or “black-box” testing evaluates applications

15

107
91

181 176

22
5

1811 15 7 4
0

20
40
60
80

100
120
140
160
180
200

BFS Insurance IME Others

Vu
lne

ra
bil

ity
 C

ou
nt

Vulnerabilities
detected by tool.
False positives identified
by manual analysis.
Vulnerabilities reported
to the client.

Vertical vulnerability
counts are represented as
multiples of 100.

Automatic SAST Tool for Vulnerability Detection

Figure 3

cognizant 20-20 insights 4

during their execution at runtime. This is useful
in determining the risks the application faces
in a production environment. Our ERSS team
employs automated scanning tools and manual
testing techniques to dynamically test an appli-
cation. The following sections of this white paper
elucidate DAST vulnerability detection using
automated tools and industry-based DAST vulner-
ability trends.

Automated Tool Vulnerability Detection

Dynamic testing is performed using industry-
standard automated scanners. The performance
of each scanner typically depends on the security

rule sets defined for these tools. Cognizant’s ERSS
group performs intensive manual testing, which
helps assure comprehensive coverage. Some of
the manual tests include detecting business logic
bypass issues and session-related problems, such
as session hijacking, session fixation and session
replay, as well as authentication issues like
insufficient logout mechanism, improper cache
management, and security misconfiguration
issues such as SSL renegotiation, click jacking
and other such vulnerabilities. Figure 6 (next
page) summarizes the number of application
vulnerabilities identified by various automated
dynamic security testing tools (commercial, open

Vu
lne

ra
bil

ity
 C

ou
nt

0 1 2 3 4 5

Verticals

BFS
Insurance
IME
Others

11225

15410

7262

4019

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

SAST Vulnerability Distribution

Figure 4

BFS
Insurance

IME
Others

0
2000
4000
6000
8000

10000
12000
14000
16000

Vu
lne

ra
bil

ity
 C

ou
nt

Vulnerability Category

Input
Validation

Source
Code
Design

Information
Leakage
and Error-
Handling

Direct
Object

Reference

Resource
Usage

API
Usage

Best
Practices
Violation

Weak
Session

Using
HTTP GET

Query

Others

Vulnerability Count Based on SAST

Figure 5

source and freeware), false-positives identified by
manual analysis, and the actual vulnerabilities of
different verticals reported to the client.

Vertical Vulnerabilities

The number of dynamic application vulnerabilities
is showcased across verticals (see Figure 7). Most
vulnerabilities were found in the IME vertical,
with the highest count being in the “Insecure
Direct Object Reference” category, followed by
“Injection.” Next in line was the insurance vertical,
with the highest count in “Security Misconfigura-
tion,” followed by “Insufficient Transport Layer
Protection.”

As Figure 8 (next page) shows, the most dominant
vulnerability was in the “Insecure Direct Object

Reference” category. When a developer exposes
a reference to an internal object to the user, this
type of vulnerability occurs. A large number of
vulnerabilities were also found in “Injection” and
“Cross-Site Scripting,” denoting that developers
still show their trust in user input by failing to
perform sufficient input validation and output
encoding, and using secure defaults. “Security
Misconfiguration” and “Insufficient Transport
Layer Protection” were also very prevalent. This
could result from testing environments that do
not mirror the actual production environment,
have weak server configurations, or have no or
poor SSL configurations. Robust configurations
are essential for maintaining high security for a
live site compared with a test site.

5cognizant 20-20 insights

BFS Insurance IME Others

Vu
lne

ra
bil

ity
 C

ou
nt

19 30

598

2711 16

554

2211 15 45
8

0

100

200

300

400

500

600

700

Vulnerabilities
detected by tool.
False positives identified
by manual analysis.
Vulnerabilities reported
to the client.

Vertical vulnerability
counts are represented as
multiples of 100.

Automatic DAST Tool Vulnerability Detection

Figure 6

Vu
lne

ra
bil

ity
 C

ou
nt

27 2245
8

1068
1537

4482

810

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

Verticals

BFS
Insurance
IME
Others

1

DAST Vulnerability Distribution

Figure 7

cognizant 20-20 insights 6

The overall vulnerability count in the DAST and
SAST findings was highest in IME applications. The
total count is comparable to those of insurance
and BFS. In fact, nearly 60% of the applications
tested belong to BFS, but only about 25% of
the total vulnerabilities reported are present in
those applications. Furthermore, these applica-
tions have fewer critical vulnerabilities related to
issues such as injection. Hence, it can be inferred
from the statistics that BFS applications are
relatively more secure. This can be attributed to
the fact that the banking and finance sector deals
with highly sensitive data, for which security is
paramount. While confidentiality and integrity
of financial data are critical, the third parameter
of the security triad — availability — is equally
essential for this growing industry. Security
awareness is progressively increasing within the
developer community in BFS because of these
requirements, thereby leading developers to
emphasize application security. And because
BFS applications are also subject to compliance
mandates, security requirements are taken care
of during development. This helps to keep these
applications even more secure.

Security Trends in Application
Development
Security threats in an application can be drilled
down to the particular functionality that is
affected by the security flaw and the parameter
that provides an entry point to the attack vector.

Typical application functionality could be
anything from a login/logout function to a
payment function. It can further be zeroed down
on the query parameters, form parameters,
cookies and page parameters that are created
by the developers to accomplish the respective
functionality. Figure 9 (next page) shows the dis-
tribution of vulnerable parameters and functions
across verticals.

The most commonly affected parameters are the
configuration parameters, which impact the con-
figuration function and make the application sus-
ceptible to security misconfiguration issues. This
is due to failure to employ platform-specific secure
configurations. Developers should also focus on
add/modify/submit functions, which are largely
vulnerable; submit parameters, for instance, are
often targeted by attackers. As a result, applica-
tions become prone to cross-site request forgery,
clickjacking and malicious content uploads.

These parameters can be safeguarded during
development by setting secure attributes and
performing safety checks to ensure that the data
or file that is submitted conforms to the accepted
type, range and business logic. Other parameters
that require attention include URL/links, profile
parameters and IDs such as user IDs, session
IDs and viewstate parameters. Failure to secure
these can result in unsafe redirects and forwards,
phishing, session hijacking and user imperson-
ation.

BFS
Insurance

IME
Others

Vu
lne

ra
bil

ity
 C

ou
nt

Vulnerability Category

0

500

1000

1500

2000

2500

Injection Cross-Site
Scripting

(XSS)

Broken
Authentication

Insecure
Direct Object
References

Cross-Site
Request
Forgery

Security
Misconfiguration

Insecure
Cryptographic

Storage

Failure
to Restrict

 URL Access

Insufficient
Transport

Layer

Unvalidated
Redirects

and Forwards

Other
Security
Issues

Vulnerability Count Based on DAST Category

Figure 8

cognizant 20-20 insights 7

It is the responsibility of the developer to ensure
that URL redirects are examined for authorization.
Developers should also ensure that ID parameters
are generated based on stringent industry-stan-
dard protocols, and that session IDs are correctly
invalidated — not resused — and regenerated at
frequent intervals. These session tokens and
other sensitive data must be protected during
transit by using proper SSL configuration, and
also in cookies in order to prevent cookie theft.
Payment parameters are often targeted too, as
they can be exploited to execute payment frauds
and cybercrimes. Therefore, the duty lies with
developers to ascertain that these parameters
are handled in a highly secure manner. The focus

areas for the developer community should be to
incorporate strong validation for input and output
parameters, follow secure configurations, set safe
attributes for the parameters in general, and
preserve the confidentiality of the sensitive data
carried by the parameters.

Looking Ahead
This white paper has presented statistics on
application vulnerability trends across several
verticals with respect to dynamic and static
application security testing. The following recom-
mendations will help developers improve security
across numerous parameters:

BFS
Insurance

IME
Others

Vu
lne

ra
bil

ity
 co

un
t

Vulnerability category

0

500

1000

1500

2000

2500

Injection Cross-Site
Scripting

(XSS)

Broken
Authentication

and

Insecure
Direct Object
References

Cross-Site
Request
Forgery

Security
Misconfiguration

Insecure
Cryptographic

Storage

Failure
to Restrict

 URL Access

Insufficient
Transport

Layer

Unvalidated
Redirects

and

Other
Security
Issues

0

200

400

600

800

1000

1200

BFS Insurance IME Others

Distribution of vulnerable parameters across di erent verticals

Cache control Configuration Cookie
Credit Card & Bank Account Date Dropdown
ID Link Password
Product Profile Search
Session ID Submit Username
Viewstate

Distribution of vulnerable parameters across dierent verticals

0

200

400

600

800

1000

1200

 Viewstate
 User Name
 Submit
 Session ID
 Search
 Profile
 Product
 Password
 Link
 ID
 Dropdown
 Date
 Credit Card &
 Bank Account
 Cookie
 Configuration
 Cache Control

OthersIMEInsuranceBFS

0

200

400

600

800

1000

1200

OthersIMEInsuranceBFS

 User Roles/
 Privilege
 Escalation
 Search
 Redirect
 Payment
 Password
 Logout
 Login
 File Upload/
 Download
 Configuration
 Add/Modify/
 Submit

0

200

400

600

800

1000

1200 User roles/ Privilege Escalation

Search

Redirect

Payment

Password

Logout

Login

File Upload/ Download

Con�guration

Add/Modify/ Submit

Vulnerable Parameters and Functions

Figure 9

Parameters Type BFS Insurance IME Others

Cache Control 5 0 0 2
Configuration 103 227 787 6
Cookie 34 0 0 10
Credit Card &
Bank Account 0 8 0 0

Date 2 0 0 7
Dropdown 28 0 0 1
ID 218 22 7 50
Link 204 9 16 33
Password 2 16 6 6
Product 25 0 2 9
Profile 158 0 0 43
Search 29 8 0 3
Session ID 0 14 0 6
Submit 275 11 31 16
User Name 0 3 0 2
Viewstate 30 1 0 0

Functionality Type BFS Insurance IME Others

Add/Modify/
Submit 736 18 27 122

Configuration 147 239 787 18
File Upload/
Download 13 1 23 17

Login 0 39 8 9
Logout 0 0 0 3
Password 0 0 0 2
Payment 170 12 2 5
Redirect 0 0 0 4
Search 0 8 0 14
User Roles/
Privilege
Escalation

47 2 2 0

cognizant 20-20 insights 8

• Ascertain the validity of input supplied by the
user with respect to the data type, range, size
and business logic allowed.

• Ensure that session management is robust by
using industry-standard session-management
and handling mechanisms.

• Protect sensitive data such as IDs, session
tokens, user personal data, payment informa-
tion and the like in transmission and storage.

• Employ secure configurations for all applica-
tion components.

The developer community in general should
closely adhere to security standards and
implement secure practices throughout the
software development lifecycle to create highly
secure applications.

Analysis Methodology
Figure 10 describes the applications that were
studied using dynamic (DAST) and static appli-
cation security testing (SAST) methodologies.
It illustrates a statistical representation of the
various applications for which security testing
was conducted based on their type, the verticals
to which they belong and the technology used.

SAST was performed on 214 applications and
DAST on 105 applications. Of the total applica-

tions tested, 79% were Web applications, 5% were
mobile applications and 16% were other types of
applications such as IVR, mainframe, native appli-
cations, Web services and CS, for example.

Approximately 60% of Web application assess-
ments were carried out in the BFS vertical,
followed by 14% in IME and 10% in the insurance
vertical. Mobile application security assess-
ments were performed for the insurance, retail,
healthcare, travel and hospitality, IME and manu-
facturing/logistics verticals.

SAST was carried out on applications that were
built using technologies such as Java, Android,
.Net, COBOL, Objective C and PHP. Nearly 63%
of the applications were developed in Java,
Java-based frameworks and Android. .Net
projects made up 13% of the applications and
COBOL comprised 21%.

SAST was performed on the codebase of Web,
native and mobile applications and Web services,
for example. Cognizant, as well as third party-
developed code, was taken into account for this
analysis. SAST for code developed over several
frameworks — including mobile/Web frameworks
such as Titanium Appecelerator and e-commerce
frameworks such as ATG — were also considered.

Application Count Based on Application Type Application Count Based on Verticals

SAST Application Count Based on Technology SAST/ DAST Application Count

0

30

60

90

Java .Net .COBOL Objective C PHP

120

150

252

 Web
 Mobile
 Others

 BFS
 Insurance
 IME
 Others

51
16

187

55

43

34

 SAST Application Count
 DAST Application Count

214

105
135

29
46

1 3

Application Distribution by Type, Vertical and Technology

Figure 10

cognizant 20-20 insights 9

Application code within the BFS domain consti-
tutes the largest portion of applications under
security testing — nearly 72%. The application
pool comprises 13% of IME applications and

6% insurance, with the remaining being retail,
healthcare, travel and hospitality, consumer
goods, and manufacturing and logistics applica-
tions.

Acknowledgments
The author would like to recognize the contribu-
tions of the following Cognizant associates to this
white paper:

Vimalaasree Anandhan, Security Architect

Mahalakshmi Ravi, Security Analyst

Kavitha Karunakaran, Security Specialist

Sandhana Joldrine Xavier, Security Analyst

Saravanan Sankaran, Security Specialist

A, Rajakumari, Security Analyst

K, Ratnadeepika, Security Analyst

The author would also like to thank the following
experts and analysts in application security
assessment:

A Ajantha

Anjum Afrin

Arul Sumithra

Balasunder Rakesh

Balu Chitra

Celine George

TK Chendhilkumar

Durga Surya Kumar Simma

U Gopinath

S Gowripriya

Jothi Prakash, Grace Catherine

K Subhashini

Deivendran Karthiga

Murugan Vignesh

Muthuramalingam Jose Arokia Mary

Muthuveeran Subash

Narayanan Droupathy Subhash

K Padma Prasoona

Jayaprakash Pavithra

Radhakrishnan Agashnarayani

Ramdass Karthikeyan

Karuppiah Nagamarimuthu

Kuruvilla Mathew

M Balaji Swaminathan

Mantraratnam Sweta

Marreddi Venkatesh

Footnotes
1 Regulatory Compliance: Regulations a company must follow to meet specific requirements.
2 OWASP: Open Web Applications Security Project. A worldwide, not-for-profit charitable organization

focused on improving the security of software.
3 SANS: The SANS Institute was established in 1989 as a cooperative research and education organization.
4 WASC: The Web Application Security Consortium (WASC) is a 501c3 nonprofit comprising an international

group of experts, industry practitioners and organizational representatives who produce open source and
widely agreed upon best-practice security standards for the World Wide Web.

5 CWE: Common Weakness Enumeration provides a unified, measurable set of software weaknesses that is
enabling more effective discussion, description, selection and use of software security tools and services
that can find these weaknesses in source code and operational systems, and better understand and
manage software weaknesses related to architecture and design.

Glossary
BFS: Banking and Financial Services

CWE: Common Weakness Enumeration

DAST: Dynamic Application Security Testing

ERSS: Enterprise Risk and Security Solutions

HIPAA: Health Insurance Portability and Account-
ability Act

IME: Information, Media and Entertainment
Practice

OWASP: Open Web Application Security Project

PCI: Payment Card Industry

SANS: SysAdmin, Audit, Networking, and Security

SAST: Static Application Security Testing

T&H: Travel and Hospitality

WASC: Web Application Security Consortium

About Cognizant
Cognizant (NASDAQ: CTSH) is a leading provider of information technology, consulting, and business process out-
sourcing services, dedicated to helping the world’s leading companies build stronger businesses. Headquartered in
Teaneck, New Jersey (U.S.), Cognizant combines a passion for client satisfaction, technology innovation, deep industry
and business process expertise, and a global, collaborative workforce that embodies the future of work. With over 50
delivery centers worldwide and approximately 171,400 employees as of December 31, 2013, Cognizant is a member of
the NASDAQ-100, the S&P 500, the Forbes Global 2000, and the Fortune 500 and is ranked among the top performing
and fastest growing companies in the world. Visit us online at www.cognizant.com or follow us on Twitter: Cognizant.

About Cognizant Enterprise Risk and Security Solutions
The Cognizant Enterprise Risk and Security Solutions (ERSS) group specializes in providing end-to-end information-
security solutions for various industry verticals, including retail, banking and financial services, logistics, telecom,
healthcare, manufacturing and travel and hospitality – having serviced over 400 customers across various geogra-
phies. Our team of experts provides information-security solutions and services based on best-of-breed products in
each category of enterprise security. Our services encompass:

• 600-plus security consultants specializing in Identify and Access Management (IAM), Governance, Risk and
Compliance (GRC), Data Security, Application Security Assessment (Secure SDLC) and Integrated Threat
Management.

• 300+ CISA, CISM, CISSP, CEH and vendor-certified associates.

• 250+ Infrastructure Security trained associates.

• Over 7000 combined years of information-security experience.

• A proven track record and experience in 400-plus client engagements for security services.

• Partnership with leading vendors such as IBM, CA, Oracle, SailPoint, Novell, Dell, RSA, HP, Symantec and McAfee.

World Headquarters
500 Frank W. Burr Blvd.
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277
Email: inquiry@cognizant.com

European Headquarters
1 Kingdom Street
Paddington Central
London W2 6BD
Phone: +44 (0) 20 7297 7600
Fax: +44 (0) 20 7121 0102
Email: infouk@cognizant.com

India Operations Headquarters
#5/535, Old Mahabalipuram Road
Okkiyam Pettai, Thoraipakkam
Chennai, 600 096 India
Phone: +91 (0) 44 4209 6000
Fax: +91 (0) 44 4209 6060
Email: inquiryindia@cognizant.com

 © Copyright 2014, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the express written permission from Cognizant. The information contained herein is
subject to change without notice. All other trademarks mentioned herein are the property of their respective owners.

About the Author
Dr. Sivakumar Kathiresan, M.E., PhD., is a Principal Architect, Technology, within Cognizant’s Enterprise
Risk and Security Solutions group. In this role, he leads the Application Security Assessment team, and
has managed 120-plus security assessment projects across different verticals over the last three years.
Sivakumar has 20 years of experience, including in industry, research and academia, and has delivered
more than 100 knowledge-sharing sessions on various fields of enterprise security at different forums.
His current areas of interest are advanced log analysis, vulnerability management, advanced persistent
threats and management, and security analytics. Sivakumar received his PhD from the Indian Institute
of Technology, Roorkee. He continues to research the area of Web security. His certificates include CEH,
Sourcefire, Qualysguard, Envision, LanDesk and Big Data Associate. He can be reached at Sivakumar.
Kathiresan@cognizant.com.

K Rega

S Nisha

Sambasivam Suganiya

Selvaraj Nithya

S Sivapradha

Srinivasan Amith

Sundaram Kalicharan

Sundaramurthy Subhashini

Thomas, Lijo

V Satheesh Kumar

Varadarajan Pradeep

Vedeshwar Raghavendra

GK Yashwanth

Haja Mohideen T Mohaideen Natchiya Sharmeela

Jain Dinesh

Jemmi Angelin

www.cognizant.com
mailto:Sivakumar.Kathiresan%40cognizant.com?subject=
mailto:Sivakumar.Kathiresan%40cognizant.com?subject=

