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1. Heat equation on the line.

ut = kuxx, u(x, 0) = f(x). (1)

Let us assume that f and x 7→ u(x, t) tend to 0 for x→ ±∞ sufficiently fast
so that we can take Fourier transforms in the variable x. Then we obtain

ût = −ks2û, û(s, 0) = f̂(s).

(Differentiation with respect to t can be performed under the integral sign).
This is the initial value problem for a first order linear ODE whose solution
is

u(s, t) = f̂(s)e−ks
2t.

Since the inverse Fourier transform of a product is a convolution, we obtain
the solution in the form

u(x, t) = K(x, t) ? f(x),

where K(x, t) is the inverse Fourier transform of e−ks
2t. Using Example

2 (formula (5)) from the previous lecture “Fourier Transform” with a =
1/(2kt), we obtain

K(x, t) =
1

2
√
πkt

e−
x2

4kt . (2)

This is called the heat kernel. So the solution of our problem is

u(x, t) =
1

2
√
πkt

∫ ∞
−∞

e−
(x−y)2

4kt f(y)dy =
1

2
√
πkt

∫ ∞
−∞

e−
y2

4ktf(x− y)dy.
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Notice that this solution makes sense under a very mild restrictions on f :
because of the factor e−y

2
, the integral will be convergent for functions of

sufficiently slow growth, even if Fourier transform is not defined for them.
On the other hand, once this formula is written, it is easy to verify that it
indeed solves our problem.

Indeed, the heat kernel itself does satisfy the heat equation, which is
verified by differentiation (do this!), so its convolution with any function also
satisfies heat equation.

Now the heat kernel has these three properties:

(i) K(x, t) > 0

(ii)
∫∞
−∞K(x, t)dx = 1 for all t > 0, (check this!)

(iii) For every ε > 0 we have K(x, t) → 0 as t → 0, uniformly for |x| ≥ ε.
Check this!

Any function K(x, t) with these properties is called a positive kernel, and
it is easy to see that for every continuous f ∈ L1 we have

(K(., t) ? f)(x)→ f(x), t→ 0.

So we obtained a solution of the initial value problem for the heat equation
on the line for a large class of initial conditions.

Actually this solution is unique under a mild restriction of the growth at
infinity, namely that u(x, t) as a function of x has slower growth than ex

2
.

2. Heat equation on half-line with zero boundary condition.

Problem. Solve the heat equation (1) on the half-line x > 0 with the
boundary condition

u(0, t) = 0, t > 0, (3)

and constant initial condition

u(x, 0) = f(x). (4)

Then f(x) = const, this is problem occurs as the flat Earth approximation of
the problem of cooling the Earth, solved by Kelvin: x is the depth, and the
temperature is supposed to depend on depth and time only. The surface tem-
perature is constant and we may take it as zero. (The constant temperature
is a crude approximation, of course).
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The question is how to reduce this problem to a problem on the whole
line which we just solved. The answer is consider the odd extension of the
initial condition!.

The heat kernel K(x, .) is even (as a function of x), and a convolution of
an even function and odd function is odd: if we suppose that K is even and
f is odd, then the convolution

u(x) :=

∫
K(x− y)f(y)dy

will be odd. Indeed

u(−x) =

∫
K(−x− y)f(y)dy =

∫
K(x+ y)f(y)dy

=

∫
K(x− u)f(−u)du = −

∫
K(x− u)f(u)du = −u(x).

Since every odd function is zero at zero, we can replace the boundary con-
dition by u(x, 0) = f̃(x) where f̃ is the odd extension of f , and apply the
solution for the whole real line obtained in the previous section. For example,
when f is constant, say f(x) = T , then u + T will have boundary values 0
for negative x and 2T for positive x, and the formula from section 1 gives:

u(x, t) =
T√
πkt

∫ ∞
0

e−
(x−y)2

4kt dy − T. (5)

So we obtained a solution.
To determine the age of Earth, we compute the gradient ux(0, t), and since

this gradient can be measured, we can determine the age t. Differentiating
and substituting x = 0, we obtain

ux(0, t) =
T√
πkt

.

See the handout “Age of the Earth” for a further discussion.

3. Heat equation on a half-line with arbitrary boundary condition.

In the previous section we solved heat equation on the half-line x > 0 with
initial condition u(x, 0) = 1, x > 0 and the boundary condition u(0, t) =
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0, t > 0. It is given by formula (5) which we write as

u(x, t) = 2

∫ ∞
0

K(x− y, t)dy − 1,

where K(x, t) is the heat kernel given by formula (2).
Now it is easy to obtain a solution of the heat equation with initial and

boundary conditions v(x, 0) = 0, x > 0; v(0, t) = 1. it is simply

v(x, t) = 1− u(x, t) = 2− 2

∫ ∞
0

K(x− y, t)dt.

Now we make an important remark: for every x 6= 0, the function t 7→ K(x, t)
has limit 0 as t → 0, and moreover, all partial derivatives with respect to t
have limit 0, when t → 0. See the discussion of such functions in “Fourier
transform”, in the Example in section 3. This means that we can extend the
function K(x, t) to t < 0 by defining K(x, t) = 0 for t < 0, and the extended
function will satisfy the heat equation for all x > 0 and all t. So our function
v(x, t) also satisfies heat equation for x > 0 and all t, and it equals 0 for
t ≤ 0.

Let us denote by Hs(t) the Heaviside function,

H(t) =

{
1, t ≥ 0,
0, t < 0.

We can solve now the heat equation for x > 0, −∞ < t < ∞ with the
boundary condition u(0, t) = H(t− s) :

vs(x, t) = 2− 2

∫ ∞
0

K(x− y, t− s)dy, vs(0, t) = H(t− s), (6)

where we use the convention that K(x, t) = 0 for t < 0. Once we can
solve the problem whose boundary condition is Heaviside function, we can
also solve it with any linear combination of Heaviside functions. And every
reasonable function of t can be approximated by a linear combination of
Heaviside functions: suppose for example that f(t) is continuous and has
bounded support which is contained in the positive ray. Then the linear
combinations

n∑
j=0

(f(sj+1)− f(sj))H(t− sj)
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approximate f uniformly when the partition s0 < s1 < . . . < sn+1 of the
support of f is fine enough, and f(s0) = f(sn+1) = 0. We can write this as

n∑
j=0

f(sj+1)− f(sj)

sj+1 − sj
H(t− sj)(sj+1 − sj),

which is the integral sum of an integral, and we obtain the representation

f(s) =

∫ ∞
0

H(t− s)f ′(s)ds,

in the form of convolution with the Heaviside function.
Since we solved the heat equation with boundary condition in the form of

a Heaviside function, we can now use the superposition principle, and solve
it with arbitrary boundary function:

u(x, t) =

∫ ∞
0

vs(x, t)f
′(s)ds,

where vs is the solution (6). Integrating this by parts, we obtain a convolution
formula representing the solution in terms of boundary condition f(t):

u(x, t) = −
∫ ∞
0

f(s)
d

ds
vs(x, t)ds.

It remains to compute the derivative of the explicit function vs. The com-
putation is simplified by the fact that it satisfies the heat equation. By
differentiating (6) and using the heat equation Kt = kKxx we obtain:

d

ds
vs(x, t) = −2

d

ds

∫ ∞
0

K(x− y, t− s)dy = 2

∫ ∞
0

Kt(x− y, t− s)dy

= 2k

∫ ∞
0

Kxx(x− y, t− s)dy = 2kKx(x, t− s),

and simple explicit differentiation of the heat kernel shows that

L(x, t) := 2kKx(x, t) = − x

2
√
πk
t−3/2e−

x2

4kt ,

and we obtain the final result

u(x, t) = (L ? f)(x, t) =
x

2
√
πk

∫ t

0

(t− s)−3/2 exp

(
− x2

4k(t− s)

)
f(s)ds. (7)
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Notice that integral from 0 to∞ is actually from 0 to t since K(x, t− s) = 0
for s > t. Function L(x, t) is called the lateral heat kernel.

Once the formula for a solution is found, one can prove it without any
mentioning of its derivation:

Exercise 1. Show that:

a) The kernel

L(x, t) =
x

2
√
πk
t−3/2e−

x2

2kt ,

as a function of t is a positive kernel in the sense defined in Section 1, and

b) It satisfies the heat equation Lt = kLxx for x > 0, t > 0 and is infinitely
differentiable when extended by 0 for t < 0.

c) Conclude that (7) is a solution of the heat equation with the boundary
function u(x, t) = f(t) and initial condition u(x, 0) = 0.

See the handout “Transatlantic Cable” for a discussion of this solution.

4. Laplace equation in a half-plane.

Consider the Dirichlet problem

uxx + uyy = 0, −∞ < x <∞, y > 0,

with the boundary condition

u(x, 0) = f(x),

and some condition at ∞, for example that u tends to zero sufficiently fast
so that Fourier transform can be applied.

Then Fourier transform with respect to x gives

−s2û(s, y) + ûyy = 0, û(s, 0) = f̂(s).

This is an second order linear ODE whose general solution is

C1(s)e
sy + C2(s)e

−sy.

One boundary condition C1(s) + C2(s) = f̂(s) is not sufficient, but the sim-
plest way to satisfy it1 is to take C1(s) = 0 for s > 0 and C2(s) = 0 for s < 0,

1Of course, this is not rigorous. But once this correct formula is guessed, it can be
proved without any reference to Fourier transform. Uniqueness of solution is a separate
problem. In fact it has unique bounded solution, but we do not prove this result here.
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This gives
û(s, y) = f̂(s)e−y|s|.

Since this is a product, the original u must be a convolution of f with the
inverse transform of e−y|s|. The last transform we know from Example 3 of
the previous lecture. It is

P (x, y) =
y

π(x2 + y2)
.

This is called the Poisson kernel for the upper half-plane. So we obtain

u(x, y) = (P ? f)(x, y) =
y

π

∫ ∞
−∞

f(t)

(x− t)2 + y2
dt,

which is called the Poisson formula for the upper half-plane.
This formula has an appealing geometric interpretation. Let us set first

f(x) = 1, x < 0 and f(x) = 0, x > 0. Then the Poisson integral can be
evaluated:

y

π

∫ 0

−∞

dt

(x− t)2 + y2
=

1

π
arctan

y

x
,

in other words, u(x, y) in this case is just the polar angle of the point (x, y),
divided by π. Check that the boundary values for y = 0 are correct!

More generally, if f(x) = 1, x ∈ (a, b) and 0 otherwise, we conclude that
u(x, y) is the angle under which the interval (a, b) is seen from the point
(x, y), divided by π.

5. Wave equation on the whole line.

utt = c2uxx,

and let us take the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x <∞.

Applying Fourier’s transform, we obtain

ûtt = −c2s2û, û(s, 0) = f̂(s), ût(s, 0) = ĝ(s).

The general solution is

C1(s) cos(cst) + C2(s) sin(cst),
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and the first initial conditions imply C1(s) = f̂ s, C2(s) = ĝ(s)/(cs). So we
solved the problem in the sense that we found the Fourier transform of the
solution

û(s, t) = f̂(s) cos(cst) + ĝ(s)
sin(cst)

cs
. (8)

To obtain an explicit formula of convolution type, we would like to know
inverse transforms of cos(cst) and sin(cst)/(cs). There is no problem with
the second one, this is essentially Example 1 in “Fourier Transform”, and it
is

tχct(x) =

{
(2c)−1, |x| < ct,
0 otherwise.

So we obtain the solution

u(x, t) =
1

2c

∫ x+ct

x−ct
g(u)du,

which coincides with the sccond part of d’Alembert’s formula for zero initial
position.

Now what about the boundary condition where the shape of the srting
is prescribed? In following previous steps we run into a trouble that the
inversion formula cannot be applied to cos(cst), since the integral diverges.
So one needs a slightly different argument.

The solution with zero initial velocity g = 0 can be written as the inverse
Fourier transform

u(x, t) =
1

2π

∫ ∞
−∞

f̂(s) cos(cst)eisxds, (9)

and the integral is convergent if for example f ∈ S , the Schwartz space;
since in this case also f̂ ∈ S . Now we write

cos(cst) =
1

2

(
eicst + e−icst

)
.

Plugging this to (9) we obtain one half of the sum of two integrals, the
first one is the inverse transform of f̂(s)eicst and the second in the inverse
transform of f̂(s)e−icst. Using Property 2 of Fourier transform (multiplication
of transform corresponds to the shift of the original), we recover the first part
of d’Alambert’s formula:

u(x, t) = (f(x− ct) + f(x+ ct)) /2.
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Notice that this is not a convolution of f with any function, though it ‘looks
like one”.

This suggest the idea that perhaps all notions of Fourier transform and
convolution must be generalized. Indeed this is so, but to do this one needs
to generalize the notion of function itself! So that in particular such formulas
as the first part of d’Alembert formula can be written as convolutions with
“something”.

6. Signal processing.

The most conspicuous thing in the real world which is modeled by the
real line is time. In engineering, especially electric engineering, one considers
“signals” which can be thought as functions of time. Many functions of time
can be represented by Fourier inversion formula

f(t) =
1

2π

∫ ∞
−∞

f̂(s)eisxdx.

This means that f is a superposition, or a linear combination of simple
harmonic oscillations x 7→ eisx of angular frequency s. The set of frequencies
which are involved in the representation of f , in other words the support
of f̂ is called the spectrum of f . (Some authors prefer to call f̂ itself the
spectrum, but we will not do this.) It is important that f and f̂ completely
determine each other, so engineers are talking about “time representation”
f(t) and “frequency representation” f̂ of the same “signal”.

A “system” is a device which transforms signals: g = A(f), where g
and f are functions of time, and A is an operator, some device which trans-
forms signals f (inputs) into signals g (outputs). Common properties of the
operator A are:

a) linearity, and
b) time invariance, that is if f = A(g) then f(t− a) = A(g(t− a)). This

means that is if input is shifted in time, then the output is shifted in time
by the same amount.

Under some mild restrictions on the space of functions, every linear time
stationary transformation is performed by convolution with some function h
which characterizes the device, that is

g = A(f) = h ? f.
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Applying the Fourier transform we obtain

ĝ = Hf̂,

where H = ĥ is called the transfer function, so in the “frequency domain”
our device works by just multiplying the input on H.

Of many mathematical problems arising with this model, we address only
one: how can a signal be discretized. Since digital processing works with
discrete signals (sequences) this is an important question for communication
technology.

It turns out that signals with bounded spectrum can be sampled at certain
sequences of time, and this sampling does not lead to the loss of information:
the signal can be recovered from these samplings. The precise statement is
the following:

Sampling Theorem. Let f be a function in L2(R), whose Fourier trans-
form is supported on an interval |s| ≤ ω. Then the sequence (f(πn/ω))∞n=−∞
completely determines f , and in fact f can be recovered by the formula

f(t) =
∞∑
−∞

f
(πn
ω

) sin(ωt− nπ)

ωt− nπ
. (10)

The series converges in L2.

Proof. Since f̂ is supported on [−ω, ω], we can expand it into a Fourier
series

f̂(s) =
∞∑
−∞

cne
iπns/ω, |s| ≤ ω, (11)

where the Fourier coefficients are

cn =
1

2ω

∫ ω

−ω
f̂(s)e−iπns/ωds =

1

2ω

∫ ∞
−∞

f̂(s)e−iπns/ω =
π

ω
f(−πn/ω), (12)

by the Fourier inversion formula. On the other hand, again by the inversion
formula, and using (11), (12):

f(t) =
1

2π

∫ ∞
−∞

f̂(s)eistdt =
1

2ω

∫ ω

−ω

∞∑
−∞

f(−πn/ω)e−iπns/ωeist/ωds

=
∞∑
−∞

f(−πn/ω)
1

2ω

∫ ω

−ω
eis(ωt+πn)/ωds,
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and it remains to evaluate the elementary integral

1

2ω

∫ ω

−ω
eis(ωt+πn)/ωds =

sin(ωt+ πn)

ωt+ πn
.

To obtain (10) one switches n 7→ −n.

7. Probability.

This is one of the main applications of Fourier transform. I will not discuss
modern rigorous foundations of probability, which are actually irrelevant for
our purposes.

A random variable is a numerical quantity X which “depends on chance”.
For example, the number of deaths in the US on a given day. Or the number
of moleculas in a volume of a gas whose speed belongs to a given interval.

A real random variable is completely characterized by its distribution
function

FX(t) = P(X ≤ t), −∞ < t <∞.
Here P(.) is the probability of an event related to X. Probability is a number
in [0, 1]. So

P(a < X ≤ b) = FX(b)− FX(a).

The distribution function is increasing,

lim
t→−∞

FX(t) = 0 and lim
t→+∞

FX(t) = 1.

It is also continuous from the right,

lim
t→t0+

FX(t) = FX(t0).

These three properties characterize distribution functions. If F ′(t) = fX(t)
exists and is integrable, then fX is called the density of the distribution. In
this case the probabilities of events related to X are given by the formula

P(a < X < b) =

∫ b

a

fX(t)dt, (13)

and in particular P(X = t) = 0 for every t. A random variable whose
distribution has a density is called continuous. The density must satisfy

fX(t) ≥ 0 and

∫ ∞
−∞

fX(t)dt = 1,
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and any function with these properties is a density of some continuous ran-
dom variable.

On the other hand, if p0 = P(X = t0) > 0, then FX has a jump at t0 of
magnitude p0. So if X takes only a discrete sequence of values . . . < tk <
tk+1 < . . . with probabilities pk, then

FX(t) =
∑
k:tk≤t

pk. (14)

Such distributions are called discrete. It is convenient to unite these two
cases and write

P(a < X ≤ b) =

∫ b

a

dFX(t),

which gives (13) in the continuous case, and (14) in the discrete case. This
is called the Stieltjes integral. In general, if g is a continuous function, and
F is increasing and continuous from the right, then the integral∫

g(x)dF (x)

is defined as the limit of integral sums∑
g(xk)(F (xk+1)− F (xk)),

when partitions . . . < xk < xk+1 < . . . become finer and finer. So if F is
continuously differentiable, we obtain in the limit∫

g(x)F ′(x)dx,

and if F is discrete, we obtain the sum∑
g(xk)(F (xk + 0)− F (xk − 0)).

This permits a uniform treatement of discrete and continuous case, and per-
mits to consider mixed cases when the distribution is neither continuous nor
discrete.

The quantity

EX :=

∫ ∞
−∞

t dFX(t) =

∫ ∞
−∞

tfX(t)dt
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is called the expectation or the average of the random variable X. You may
think of it in terms of a gain in a game of chance: suppose your gain is X.
In the discrete case, you gain tk with probability pk. Then in a long series of
games you expect the average gain given by the formula∑

k

tkpk =

∫ ∞
−∞

t dFX(t).

Expectation of a sum of two random variables is the sum of their expecta-
tions:

E(X + Y ) = E(X) + E(Y ).

If g is a continuous function, and X is a random variable, we can consider
the new random variable g(X) and its expectation will be

E(g(X)) =

∫ ∞
−∞

g(t)dFX(t).

Suppose now that we have two random variables X and Y . They are called
independent2 if the joint probabilities of events are products:

P (X ≤ x, Y ≤ y) = P(X ≤ y)P(Y ≤ Y ) = FX(x)FY (y),

for all x, y. Let us find the distribution function of the sum of two independent
random variables. The event X + Y ≤ t occurs when X ≤ t− y and Y ≤ y
for some y, so

FX+Y (t) = P(X+Y ≤ t) =

∫ ∞
−∞

P(X ≤ t−y)P(Y ≤ y)dy =

∫ ∞
−∞

FX(t−y) dFY (y),

and this is called the “convolution of distribution functions”. So the distri-
bution function of a sum of independent random variables is the convolution
of their distribution functions. If the densities exist, we have a similar rule
for the densities:

fX+Y = fX ? fY ,

the density of the sum of independent random variables is the convolution of
their densities. Fourier transform of the distribution function

φX(s) = E(e−isX) =

∫ ∞
−∞

e−isxdFX(x) =

∫ ∞
−∞

e−isxfX(x)dx

2This is just a mathematical definition. We skip the complicated discussion about real
world phenomena which this definition reflects.
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is called the characteristic function of the random variable X; it always
exists (why?) and completely characterizes the random variable. From the
fact that Fourier transform sends convolutions to products, we conclude that
the characteristic function of the sum of two independent random variables
is the product of their characteristic functions.

Example 1. Improper random variable: P(X = a) = 1 for some real a.
Then E(X) = a and φX(s) = e−ias.

Example 2. Bernoulli’s random variable: P(X = −1) = p and P(X = 1) =
q where p, q > 0, p+q = 1. This describes the simplest game of chance: coin
tossing; it is falls head you win 1, if it falls tail you loose 1. (The coin may by
unfair: the probabilities are not necessarily equal). We have E(X) = q − p,
φX(s) = peis + qe−is. When p = q = 1/2 (fair coin) we have φX(s) = cos s.

Example 3. Normal distribution with parameters a and σ > 0 is a contin-
uous distribution with density

fX(t) =
1

σ
√

2π
exp

(
−(x− a)2

2σ2

)
.

Exercises 2. a) Check that this is indeed a density, that is a positive function
whose integral is 1. b) Show that E(X) = a. c) Check that it coincides with
the heat kernel when a = 0 and σ =

√
2kt. When (a, σ) = (0, 1) it is called

the standard normal distribution, or the Gauss distribution.

An improper random variable can be thought as a non-random variable:
it takes a definite value with probability 1. All other random variables have
some spread about their average. A convenient measure of this spread is
called variance. It is defined by the formula

σ2
X = E(X − E(X))2 = E(X2)− (E(X))2.

The positive square root σ of the variance σ2 is called the standard deviation.

Exercise 3. Check that the standard deviation of the normal distribution
is σ.

Exercise 4. Check that for every random variable φX(0) = 1,

E(X) = −iφ′X(0) and E(X2) = −φ′′(0).

14



Exercise 5. Let X be a random variable, a > 0 and b is real. Derive from
the scaling properties of Fourier transform the property

φaX+b(s) = e−isbφX(as). (15)

Now we state and prove a special case of the fundamental result of Prob-
ability theory:

Central Limit Theorem. Let X1, X2, . . . be a sequence of independent ran-
dom variables with the same distribution function FX for which expectation
a = E(Xj) and variance σ = σXj

. Then the distribution function of∑n
n=1Xn − na
σ
√
n

(16)

tends to the standard normal distribution with density

1√
2π
e−x

2/2.

This theorem explains why normal distribution is ubiquotous. In popular
literature it is sometimes called a “bell curve” because of the shape of the
graph of its density.

Proof. Random variables Yn = (Xn−a)/σ have zero average and variance
1, and the same characteristic function, φ, with

φ(0) = 1, φ′(0) = 0, φ′′(0) = −1, (17)

in view of Exercises 4 and 5. So the characteristic function of (16) is

φn(s/
√
n) (18)

since the characteristic function of the sum of independent random variables
is he product of their characteristic fuunctions, and by the scaling property
in Exercise 5. Let g = log φ. Then

g′ =
φ′

φ
and g′′ =

φ′′φ− (φ′)2

φ2
.
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Now we take logarithm of (18) and apply Taylor’s formula at 0:

n log φ(s/
√
n) = n

(
log φ(0) +

φ′(0)

φ(0)

s√
n

+
1

2

φ′′(0)φ(0)− (φ′(0))2

φ2(0)

s2

n
+ . . .

)
.

Using the values (17) we obtain

n log φ(s/
√
n) = −s2/2 + . . . ,

where the omitted terms tend to zero as n → ∞. Thus the limit is −s2/2,
so the characteristic function of (16) tends to the characteristic function of
the stardard normal distribution. To conclude the proof, one needs a conti-
nuity property of characteristic functions: that convergence of characteristic
functions corresponds to the convergence of distributions. This part of the
proof is not difficult, but is not discussed here.

I finish this section with a citation of Henri Poincaré:

“There must be something mysterious about the normal law since mathemati-
cians think that this is a law of nature whereas physicists are convinced that
this is a mathematical theorem.”

This observation applies to many theorems of probability theory.
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