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We present a discussion of' the appl:lcation of group theory to 

'the particular case of solid methane,ili all i.ts crystalline phases ... 

We also employ the quantunmechanica~ mean approximation to 

derive the meatL square a:ngle of devi.at:i.on. of the methane free molecule •. 

By means of group theory we derive the normal. modes,the symmetry coor-

dinates and the nuclear spin functions of methaue,which may be found 

usefu~ for many other purposes in the study of methane.Finall;y,usin.g 

, these results,v1e give a discussion of the infrared and Rame..n spectraJ 

based on group theory again,to explain the observed transitions of th~ 

methane molecule in ~ts condensed phases. We conclude that the)-type 

1 transi tiona are ca·used by changes in molecular orientation<tPhase I is 

probably disordered,while phase II has structure of s~mmetry D2d.Pl1e,se 

III (of CDL~) :Ls ordered .but of ~ower symmetry and unclear structure; 

A possible eA~lanation probably requires an arrangement hav-

'L~g more molecules per uxdt cell than 1n phases I and II. 
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INTR ODU CTIOii 

~t) ln I929 Clusius noted the existence of a~-type singularity in the spe 

~1£ic heat- of the solid cH4 at 20.4°K. In I939 ~X-ray study carried 

out by A..Schallamac~'-~evealed a f.c.c structure of the molecular lat

tice both above an.d below 20~4°K. This result. was also confirmed and 

extended to all phases o! cn4 in a recent measur:_~ent by Greer and He-
(!) • 

~er who working with more recent instruments did not notice the parasi-

tic lines which had been observed by Shallamach i~ the powder pattern 

of CH4 •-

The different theoretical and experimental studies on methane.whi

ch- w:U1 be reffered to below ,.have led to the important- and final conclu 

ision,,that the observed phase transitions correspond to changes in the 

orientational structure of solid methane. As the methane sructure could 

.:not be fully understood from experimental studies only,._theoretical pre

d.ict:i.ons have helped provide a basis for the discussion of the experime

ntal.. resul. ts • Among these the molecular field approm1ation used by Ja

mes and _Keena.J41which is fully developed in_ this work( Ch.e-II) has proven. 

the most succesful .. They discussed the three solid :phases of CD4,treat

ing the crystal as an r ... c ... c array of' spherical. rotators.where mo~ecular 

'and latti.ce· v:i.brationa were neglected. In the interaction potential. only 

~octopole-octopole terms between nearest neighbours are retained,lower 

!multipoles,disappearing by symmetry in. an undistorted meths.ne tetrahed-

ron. 

I 
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l5) 
On the other hand Nagamiya studied how the energy levels of the free ro-

tator are split by the crystal field due to the neighbouring molecules. 

Only little additional insight concerning the arrangement of the me 

thane tetrahedra can be gained from IR-absorption and Ram~ scattering, 

due to the lacl-t of one to one correspondence between. observed lines and 

the symmetry of the unit cell~ In. addition,it seems questionable whether 

the instrumental resolution available in these measurements was sufficie-

nt.; In a:ny ca.se \Ve discuss here the experimental results of Anderson e..nd 

S . ") th b . f h h 1 . avoJ.e on e asJ.s o group t eory and we come to t e same cone usJ.on as 

the! others by different procedures,concerning the structul._e of the phases 

of aolid ntethane. 
tr1 Recently another method was employed by W.Press for a better und-

erstanding of the orientational structure of methane,that o£ neutron dif

fraction. Here again,as all methods have shovm,it was found that Phase I 

is <lisordered.. The structure of phase II was found to agree with that pr

edicted by James and Keenan~>It was also found that Phase III seems to a

r~se by small distortions o! the orientational strttcture in phase II. 

In genera1,in discussions of the structures of the three solid 

phases of CH
4 

and cn
4

,everyone agrees,.that the carbon atoms occupy f.c.c 

lattice sites in_ phases I and II,and that this picture may be taken as a 

good' approximation for phase III.-

In our discussion we add the possil.1ility of a probable rearange-

ment of the u~t cell in phase III to one having more molecules,.as indic

ated by the experimental results of the infrared spectra of Anderson and 

• lG) 
Savo~e. 

Thus the phase changes may readily b.e understood a.s transitions 
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in the orientational order of the methane tetrahedra~ 

The above conclusion. constitutes the most valid explanation& 



CHAPTER I 

NORMAL HODES- OF VIBRATIOl\I OF THE FREE l·iOLECULE 

II:ITRODU CTI Oli 

The determinatio~ of the normal modes of a system and their frequency 
of- vibration is ve1 .. y often a tedious process .. Group theory can be used to en 

able some simplification. 
The def~tion qf normal coordinates means that the Lagrangian of the 

syst~em can be expressed in terms oi' squares of the normal coordinates and 

their derivati"tres onl.y. 

So the K.E and the P~E are \7riten. in_ terms of normal coordinates • 

. I 3N • 2 
( I ) T = ~ L ~i 

i:a1 
I )N 2. v- ~ !. ( Wi Qi) ( 2 ) -2 . 

~~~ 

whe~e ~ are the normal coordinates, forming a coordinate basis where T and 

V ~e diagonal in this particular representation •. 

In case or moleculess N ~s the no~ of atoms ( N~atom~c molecule >~ 

3N is the no. of degrees or freedom,j labels the jth atom executing small 
oscillations around equilibrium and Qj is the displacement from equilibrium. 

Introducing canonical mome~tum 

»· - (l.T 
J- oQi 

( I.-} ) 

eqns ( I.-I ) and ( I.2 ) can be used to construct the Quantum mecha.nj.J~cl. 
I 

Hamiltonianttwhich i.s writen in terms of normal coordinates 

I lN 2 a 2 
H = 2 !.. ( Pj + wlQj ) 

J•d 

4 
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~ 'dH 
and using f5 J" = - :s:- . 

. oQ~ 
vte get eqn..s of motion : 

( I..4 ) 

having solution 

...... c r. a:> 

where Wj = 2 n \)J is the frequency of the j_th normal. mode. 

If we now take a molecule and perform a symmetry operation on it~ 

then the physical state of the molecule ia.unaffected by this operation~ 

so that T., 'U' and L are invariant under transformation of the coordinates 

CQrresponding to this operation. 

The normal modes'of \dbration 

We shall set up now~ the general method which can be used for 

~ molecule whi.ch b.elongs to a symmetry group and then this general me

thod wi.ll be applied ill the case of the Tetrahedral ( Td ) symmetry group 

Whd.ch methane ( CH4 ) belongs to .. 

Let us consider a system (molecule) consisting of N particles 

('atoms) at theil .. sites._ If energy is imparted to the molecule (shaken),. 

t11:en each atom w.il:l execute a complex vi.bJ::·atory motion around its equili 

~ium position,in such a way that the motion or all the atoms is in phase. 

A basie requirement :Ls,of course, that the net; result of this 

mo"cion is such ·that, there is no tran.sla tion or rotation of the molecule 

(l~aturally 11 if it happens all the m.oleculGs at the SW:ll& i.nstant of time to 

m:ove in the same direction, the molecule w:tll tre.nslat:;~ along this d.i:rec-

t'ioJ.l s so ~~e se modes vdl.l be tr~sla tio:w.l ~) 



There. are s of course, three -translational and ·three rotational modes •. 

FQr linear-molecules therea.rroen.ly twu rotational. degrees of freedom,be 

cause · _ ·rota tiona Call. only take place around tv;o ax.es":So for polyato

mic molecules or ions_remain 3N- 6 vibr. degrees or freedom and for li 

ne.ar· molecules or ions 3N - 5 vibr.degrees o:r freedom. 

STEPS 

a..) Establish a set of Cartesian vectors x1 , y1 , ~ on each atom i at. 

its equilibrium position,representing the displacement of the atom from 

equilibrium .. 

b .. ) Det.ermine the dimensioa of configuration space 3N,where 1l i.s the 

no. of atoms of the molecule and deduce the vibratory degrees of free 

dom .. 

c .. ) Deduce the"symmetry groupn of the equil. positions(i.e to accomoda 

te the molecule t.o one o:r the known symmetry groups) .Write down the 

character table of the group. 

d.)_ Deduce from geometrical considerations the charactersJ((R) of the 

3N X 3N representation r3NX3I·T .To calculate the characters of f3:r:nc3N 

consider the ff. 

6 

i.) Only. those nuclei contribute to the characters.which transform into 

themselves; that is in the 3~I X 3N 11 Supermatrixn that corresponds to -

r3NX3N representation for the whole molecule ,observe that only these 

atoms contribute to the character ofthe particular operation R,which 

do not move when the system is subjected to this certain operation R~ 

In the 3N X 3U supermatrix representing R,all the 3X3 subma-'"r·ices cor 

responding to the parti.cles v1hich. change posi·tion are displaced from 

the diagonal(so they do not contribute to the character),on the oth~r 

hand for each undisplaced particle there is a 3X3 matrix whose diegon 
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-al coincides with the diagonal of the 3N X 3N supermatrix. 

ii • .J A_ C~- oper-ation (rotation ) contributes for each undisplaced atom

!.+- 2cos ~to the character of the supermatrix 
tl 

( I .. 6) 

where k,is the no.of units of rotation. 

A s! ,improper rotatiott,contributes for each undisplaced atom; 

~<sk) --I+2cosZnK 
~ n - n (1.7) 

A r:r operation( reflection on a plane) , ~(a) :+1,and Identity a1 

ways X(E) : 3N • (I.8) o. 

e .. ) From the characters X(R) of the I'3Nx
3

N represen-tationpsubtract the 

charac.tersXT(R) belonging "to translations andXR(R) belonging to rota

tions,which are known since translations transform. like x,y~z, and rota 

tiona like Rz,Ry,Rz and eXist in the character tables or the group. 

So the characters of the representation corresponding to vibrato 

ry degrees of freedom is; 

f.) Decompose the r3I-r.A3N ace .. to formula: 

\( 

r3NX3N =L. "1 ri 
i :t 

where r~ are representations of the Td group and: 

c:l :: f [t NkXi (R)):(R)] 
K 

where c:L,§peci.ftes the independent normal modes~ 

(I.9) 

(I.IO) 

(I. II) 



Application to methane 

Following- the prev.iously reffered steps,we define and decom.pose mo 

tion along three Cartesian axes x1 ,yi.,zi., .situated at the equilibrium 

position of every atomo (fig. I). Hethane has N..::: 5 a.toms,Hydrogen H(&) 

H(b},.ll(c) ,,H(d) and Carbon- (C) ,.so 3N= I5 degrees of freedom and 3U-6= 9vi 

br.degrees of freedom. 

The point group of CH4 is the full tetrahedral Td having character 

table(T •. I.I) .We dedu.ce the characters o:t the r3HX3N representatiol:t (of 

8 

the :r15x15 supermatrix),.the characters vdll b.eX{E) = I5,.,X<c2 ):·r· ... 2~os~ 
" 

~·~1· for each unmoved atom 5 since in these rotations c2x,c2y,c2z,all atcms 

mov~ about x,y,z, except the Carbon at the origin of xyz;so only the car

bon !contributes in the character(the rest are off diagonal). 

So x<c2): -I. 

SimilarlyJ((c3>= o for every unmoved atom,so)((C)):O for the super 

matl;'ix .. 

.:x.<a >= I for each ~w.moved. atom,every diagonal plane contains 2H at 

oms plus the carbon,ioe three atoms which naturally are unchanged as being 

on the plane.so for any one o! the reflection planes there are three unmo-

ved atoms and so three non zero diagon~1 elements in the supermatrix,there 

fore x< (f >= 3 .. 

)( ( s 4 ):: -I j since. only the carbon a tom l~emains unmoved in this opera 

tio!l. 

We tabulate the characters of the II5x15 representation in table 

(T.I.Z.). 



!z 

H(d) 

y 

The methane molecule with the Cartesie~ axes at the site 

of. each of the five atoms,.in.dica.ting the three components 

of the displacement from equilibrium. 

9 



T.Iei 

Td (43m) E 8c
3 3C2 6()d 6s

4 

2 2 2 
AI I I I I I Xi-Y'TZ 

A2 I I I -I -I 

2 2 
E 2 -I 2 0 0 X - y ' 

~ 2 2 2 'J3(2z -x -y ) 
R ,_R ,R 

X y Z 
T I 3 0 -I -I I 

x~y,z T2 3 0 -I I -I 
xy,yz,_zx 

T.I.2 

Representation 

r 
I5 X 15 j((R) I5 -I 0 3 -I 

IO 
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3 0 -I I -I 

Rotations tran.sform. ace"' to R%~RY 9Rz and from (T.,I.,I) ,we see that~ 

they transform. acc.to T.I.0' 

We then tabulate these in.(Toio-3) !}where Xv=X I5XI5 - <]:T+ AR ) ~
Representation r15XI5 is decomposed ace"'. to the formulae (I .. IO) !7 

(Ioii): 

Here 

::I 

and sim:llarly: 

So r15XI5 is decomposed as: 

These representations correspond to nine normal modes of the m.etha 

ne molecule. Any vibra·ting system that: possesses a set of symmet.ry oper 

ationstthe normal modes of that. system "belong ton orut.ransfor:m. accord= 

ing to19 one of the irred.,representations of the group of those symmetry 

opera -'cions" 

If the dimension of the representatioc is greater than unitygth~s 



TIII.3 

E 8C2 3c2 6o-d 654 

!'15 X I5 I5 0 -I 3 -I A1 +E+TI+3T2 

rT 3 0 -I I -I T2 

rR 3 0 -I -I I TI 

rT-rrR 6 0 -2 0 0 TI+T2 

rv 9 0 I 3 -I AI+E-t-2T2 

I2 



I3 

means that there is a set of normal modes ,. equa~ in number to the dimen 
I 

si.on of the representation,all of which have the same frequ.ency of vibra. 

tion. They are said ·to constitute a set. of "degenerate normal modes". 

The individuaJ. normal modes can be thought of as the components 

o'f a vector which forms a basis of t!Us irred. representation,that i.s ,.. 

the degeneracy of the no11mal modes equals the dimena~on of the irred.re 

P'resentation to which it belongs. 

In methane , we have ; one non degenerate,on.e two-fo~d degenerate 

and two three-fold degenerate normal mode frequencies. 

We draw these normal modes: 

~I mode simplest • . called "totally symmetrical" or nbreathing mode" 

(f'ig.3). In this all the II atoms have displacements along the directions 

ot the C-H bondstbeing equal in. magnitude and all directed outwards from 

the C atom,which· i.tself remain.a at rest. 

TAreefold T2 : To determine the nature of the threefold degen.normal 

modes,we use the fact that these normal modes form a basis of the degene 

~ate representation T2 of the point group of the molecule.There are two 

s'ets of ftmctions which transform ace. to T2 : the (j::,y,z) and the(xy, 

Y~z,zx); so the directions of normal modes w:i..ll be along x,y ,.z, in the 

one set(fig.4),and on the planes(along the diagonals) in_ the other set. 

~ fig.-5) .The fact , that v1e must no have translational motion, allows us 

t:o consider the motion_ of the carbon atom in opposite direction of the 

m1otion. of the n atoms .. 

T~of'old E : ( fig.6) shows how the 2-dim.n.o:rmal modes move. 



AI .1-'lODE TO'.rALLY SYI,1NETRICAL OR BREATHIHG I'10DE OF THE 

oc 

E (Twofold) UORHAL 1:·10DES OF J:BE X.JETHANE l-tOLECULE 

..!_ (1,-1,-Z) 
vi 

. ~ i 
.!... (-t,-l,l.) )!~- -----
"' / 

/ 
/ 

.!. (-l, t,-2..) 
v; 

.L (-• -I o) vi I I 

'\ 
I 
I 
-~ 

~~ -----
fi • I;' ' . 

~..!... ( 1 1 c) Yl I I 

/ 

\ 
~(.,1,2) 

.!. (1-IO)/ L 
/ 

/ .~ ..L t~t ·i.O) fi I I 



T2 (Three dimensional) liORHAL HODES OF THE Z.iETHANE l:1iOLECULE 
-r~~~~--~~--~~----~~~~~~~~~~~------= 
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Symmetry coordinates : 

Displacement pattern or atoms can be represented in terms of internal 

coordinates'' (such as spacing between atoma,s.ngles between bond directions) 

or .in terms of"external coordinates11 (such as Cartesian or Polar).' 

Introduce "Symr!letry coordinates" as linear combination of the inter 

nal coordinates~which transform irreducibly according to the representations 

of the symmetry group of the molecule. 

(I.I2) 

wh.ere according to the definition. S(I"g) is symmetry coordinate transforming 

acc.to irreducible representation rg,expresaed as linear combin.at:lon of the 

-internal coordinates RSI,where s1 is any internal coordinate,R :ls any sym-

metry operation o! the group ,Rs1 is the internal coordinate that results 

from applying operation R to SI• and N; is some normalization factor. 

Remark: As we see RSI consists of a set of all possible values that an in

ternal coordinate can take,for these values a table will be constructed. 

The internal coordinates in general,may differ from the normal co 

ordinates of the molecule. 

In ~olecules in general we take as interne~ coordinates,interato

mic distances and angles between the atomic bonda,so ~ our procedure,we 

use our internal coordinates as a basis for two representations r ; ·the g 

I'r Or I' (r) Of distances between. the atoms and rG or J: (e) of the angles 

between the different r 1 and rj•s and form the character table,applying 

the operations of the group and simply counting the number of unchanged 

coordinates. In constructing the character table,we have alwaysJ(~(E) equ 

a1 to the nofl. of symmetry co:>rdinates of type i (e.g: jlr(E) character of 

symmetry coordinate of type r ). 



I? 

Another fact which arises here~as we shall see is that among the 

number of i.rreducible representations we get such ones which do not appear 

when we calculat.e the normal modes,as we did befol~e. 

Because of: this tlwe get no&- of internal coordinates more than. the 

number of degrees of freedom(in the case of methane we obtain IO int~coo~ 

dina:tes 6eij~and L}ri.,t.hat is one tn..ore than the 9 degre-- of freedom)e-

This will cause a u redu.ndan.cyu 9 which is expressed. in the presence 

of the same representation( AI i11- CH4) in. both rr,reo 

Finally the redundant represen:tation will be excluded.., 
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Symmetry coordinates of the methane molecule: 

We choose the internal coordinates to be the distances r 1 between 

the atoms C and the H(i)~ and the angles e1 j betv1een the r 1 and r j' s. 

In fig.6 are shown r 1= r1 ,r2 ~r3 ,r4 and e13= e12,a13 ,e14,s23 ,e24 ,e34 

so Jtr(E):: 4 and):9 (E):; 6 (e1 j,1s unchanged when r 1 , and r j are interchan 

ged, so v.re do not coun-t distinctly 9 .. and 9J . .,.) I) 

l.J ~ 

We form now the character table (T.I.4) for the two representations 

r (r) and r (e); as a!l. illustration we give the derivation of the charac 

ter for the operation c3• Rotating about c
3 

axis,that is along some r 1 
the only one r:i which does not change is ·the one around which \Ve rotate 

so )(r(c
3
): I. 

We decompose now the representations ~ and r6 into the representa-

tions of the Td group using (I.IO),(~.II); so CA :CT =I a~d CE= CA = 
I 2 2 

= CT = O,therefore (IeiO) gives: 
I 

(I .. I3) 

for I (O) representation CA :: CE : CT :I and CA = CT : 0 ; so 
I 2 2 I 

r9 : I' ( 9) : AI+ E +T2 (I.I4) 

We see immediately that AI exists in both (Iei3) and (I.I4) so it is 

redundante-We derive the symmetry coordinates now by talciug the linear co-

mbination of the internal coordinates r 1 •a and e1 j 1 s. 

Choose SI: ri internal coordinate;the following table (T.Ia5) shows 

how r 1 transforms under the different operations of the group ; in this 

specific case r
1 

goes to itself tUlder E, it goes twice into itself under 



z 
l 

y 

f1'3.,6 - The internal coordinates r 1:ri,r
2
,r3 ,_rL,. and e1 j:e12 ,. 

t 

ei3 'ei4 ,e23 ,e24 ~e34 of the methane molecule. 

I9 
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T"I.4 

Td E c~ G2 54 (f"d 

r r(r) 4 I r 0 0 2 A1+_T2 

re JXe) 6 Q. 2 0 2 AI+ E+T2 

Hr1 T.I.5 

R ·r 
I r2. r~ r4 ;((AI) ... X<T2) 

E I 0 0 0 I 3 

8c
3 

2 2 2 2 I 0 

· 3C2 0 I· I I I -I 

6s4 0 2 2 2 I -I 

6o-
d 3 I I I I I 

Rr2 T&Ie5 a 

R ri :r2 r3 rL1 _A (AI) ),(T2) 

E 0 I 6 0 I 3 

8c3 
2 2 2 2 I 0 

3C2 I 0 I I I -I 

6s
4 

2 0 2 2 I -I 

6cr · d I 3 I I I . I 

Rr~ . T .I • .5b 

R ri r2 r; rL. ). (AI) ):(T2) 

E 0 0 I 0 I 3 

8C3 2 2 2 2 I 0 

3C2 I I 0 I I .... r 

6S 
4 2 2 0 2 I -I 

6o-d I I 3 I I I 
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rotat~on :!: 1
3
" around itself~:Lt goes twice into r 2 under rotation~~ ar 

ound r
4 

and -~~ around r
3 

respectively etc. 

We also include ~ the tables the characters of the representations 

of the Td group,which exist in the decomposition of the ~ ; similarly 

tables are constructed for the rest of the coordinates s2 = r 2 ,s3 = r 3 

etc. The tables for the rest coordinates are constructed using symL1etry 

considerations ... 

Usin.g (I.I2) ,(I.I3) and (Toi.5) ,we get 

and similarly 

= N~AI (E)ri+ J..AI (C3)2ri +]AI (C3)2r2 +)'AI (C3)2r3-tJ Ar_ (C3)2r4 

+)A (Cz)r2+x· ;·A (C2)r3+X.A (C2)r4 
I I / I 

+l .. AI (S4)2r2+ AAI (S4)2r3 + XAI (S4)2r4 

+lA Cud)3ri+XA {c-d>rz+ }~A (itd):r.3 -+:XA Ca-d)r4] 
Jl I I- · I · I -

:: 6N (rttr2+r3+r
4

) 

I = ~ Crr~r2+r3+r4) 

Since T2 is a three dimensional representation there are two other 

partners s2 (T2r) and s
3

(T2r) which have the same form as SI and are calcu 

lated using srumtett"Y considerations (simply we interchange cyclicly the 

internal coord.inates);these partners are tabulated, in table 7 (T.I .. 7)$ 



R9T2 T.I.6 

R 912 6I3 914 9-23 e24 e~u. ): (AI) )\(E) JCT2 ) 
.; . 

E I 0. 0 0 0 0 I. 2 3 

8C3 0 2 2 2 2 0 I -I 0 

3C2 I a 0 0 a 2 I 2 -I 

6S 
4 

0 I I I I 2 I 0 -I 

60"'ct 2 I I I I 0 I 0 I 

22 
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For the r6 representation, choose s1 = ei2 and us:Lng the same 

procedure as for (T.I.5) we construct (Toi.6). 

Using then (I~I2),(I.I4) and (T.I.~) we get 

S(Are> = N ~A A
1 

(R)Rei2 =~ <erz+ 6 I3+ 914..- 923+ 924+ 934> 

For the two-fold representation we calculate similarly the two 

partnel'S SI(E9) and s2 (E9 ) ,where the second partner is derived using 

coordinate s2 = ei3 and constructing table (T.I.6a) simply from(T.I~6) 

interchanging er2 ~a13 and e24 ,e34• 

Finally we derive the three partners SI(T2e>,s2 CT29) and s3CT2e> 

of the three dimensional representation which are tabulated in(T.I.?). 

In the Table 7 we have excluded the redtm-dant coordinate S(A19) 

( we must have one coordinate in the one dim. representation) .. 

The symm.etry coordinates are not to be confused vlith the normal 

coordinate_ a of ·the molecule ,but they ·transform according to irred.repre 

sentations of the group. They also do not diagonalize the secular equa-

tion that. gives the eigenfrequencies,but .. if K.E and P.E are expressed 

in terms of them,.the determinant appears in block form,each correspond 

ing to certain representation of dimension equal to the number of linear 

independent symmetry coordinates associated with that representation. 

The two modes T2(r) and T2 (e) are actually mixed in the sense 

that the molecule does not vibrate according to symmetry coordinates cor 

x·espo:nding to T2(r) and T2 (e) but ace. to a motion which is a linear 

combination of these two. The frequency of vibrations can be found by 

solving the eigenvalue problem for each block.-



T.I •. 7 

SYNl-lETRY COORDilfATES FOR lYlETHANE XI
4 

I 
AI(r)= S(Air)= Z (r1 ,. r 2 -r r 3 ...- rl.J_) 

'.:' 1 
2J3(3ri-r2-r3-r4) 

2~(3r3-ri-r2-r4) 

A(e) redundant 

24 



CHl\.PTER II 

MOLECULAR FIELD APPROXD•aTION ~ffiTHOD 

I NT ~opuc.TtON 
The purpose of this~is to develop and discuss a method known as 

"molecular field approximationu or "internal field approx:i.mationnwhicb. 

is elegant in describing the rotational states in molecular crystals 

of linear molecules. 

The ~~A is appropriate when one wants to find a first approxima 

tion to a fresh crys·tal statistical problem such a.s ours which has not 

been solved before. Tc do this,we must know the explicit form of the 

rotational wave functions of a freely rotating molecule. 

The results of this method applied to ortho-hydrogen(J= I) by-
C~> (tc) (11) 

James & RaichSI i.n Nitrogen by P.Dunmore and methane by Yamamoto. 

Through NFA method we shall try to compute all the thermodynami 

cal quantities of the system under consideration. 

Before we develop the method,we do the necessary approximations 

i) Since librational modes are studied,we consider the centers of mass 

of the molecules fixed at_ the lattice sites,so there is no translation 

al motion. ii) We ignore the electrons completely due to the fact that 

there are in their ground states; actually since at T./"20° K, KT""'Io-4x20 

~·002ev and for Hydrogen the energy which must be given from outside 

to exc:tte a.n electron from its ground state (n= I) to (n;2) is I6.33 x 
19 x IO- erge~Ioev,then we are excused to make this assQmption even at 

room .. cemperature KT "\) Io-4 x 300 ......... Q3 ev .. 

2..5 
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Description of the system : 

After all assumptions ,we finally consider a system of rigid rota 

tors representing the molecules of any crystal with their centers of mass 

fixed at the points of a rigid lattice (no \~brations). 

To describe the orientation of molecule i,at site i,since we are 

concerned vdth rotations ;the position of the molecules and their interac 

tion is going to be given. in terms of angular coordina·tes. 

The orien.tation of the i th molecule is given,_?Y its polar angle -

(ei.,cpi) =wi of the internuclear rods with the polar axis taken to the 

equilibrium direction e~: 0 (fig.7). The 1nteraction consequently of the 

ith and jth molecules,vdll be represen_ted by a potential function which 

will be a function_ of the ang~lar coordinates of their orientations •. 

The Hamiltonia~ therefore of the system will be writen as 

{II.I) 

.... h 
of the i" molecule,. vij the 

potential energy of the interaction. of the molecules :L and j dependlng on 

the direction. o_f the intermolecular axi.se. 

We shall employ here a quantum mechanical treatment of the prob 

lem~ 

Construction of ·the density matrix : Any quantum mechanical ensemble con 

sisting of rr systems is represented by a densi·ty ma·trix( or density fn_ in 

classical. mechanics) a-

Assume that each molecule i can occur in states 'f!(tLj_) where m 

!,2:-3S~e• are states of a single molecule which form an orthogonal set 

of functions wi.th probability of occurence of state m; pi for the ith mo 
m 



27 

lecule. 

This probability is independent of p~ for i ~ j ,.that :Ls,.the probabi

lity is independent of the state in which another molecule j may be in the 

crystal,so the one molecule density matrix is writen by definition: 

(II.2) 

where we sum all over the possible states available to. the molecule 1 and 

every state multiplied by the probability of its occurence. 
i . 

Since p i.s independent of pJ then the total wave f1 of the whole 
m .n. 

crystal can be writen in product form : 

N 

LL1 \m 1 = TI 111 .. 1 T l 1 • A T rn. 
1;-a 

(II.3) 

vthere ~ nt} denotes the set or the quantum numbers m.1 ,m2 ,. •.• that. specifies 

they 1 s for individual molecules. By the same argument 1ftmjdescribes the -

state of the crystal with probability: 

N 

plm.~~n 
t.: 1 

(II.3a) 

which is the probability that the crysta1 is in state. 47 
1 

• 
J ~ ft1 .'S 

The density matrix. of the crystal consisting of N molecules will 

be: 

f = 2. l m! m2 •• mN) Pt; m/mr m2 •• mN \ 
~m~ / ~ f'.. 

(II.4) 

The assumption of statistical independence (II.3a) allows us to 

factorize the density matrix of the crystal as a product of individuaL mo 

lecule density matrices(II.2): 
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(1! .. 5) 

where f1 =L.I ~') Pm.
1

( ~~ 
mi. ~ 

is the one molecule density matrix. 

Mean_ field potential: The total potential at the position of the ithmole 

cule due to all other molecules,_ or the. potential energy of the ith mole 

cule is 

uicwi> =2:. IZwi I vij\'f!) Pnj (II.6) 
j., n 

~} f i 
Energy calculation : The average energy of the system associated with 

~~m~when ith molecule is in state m1 and jth molecule in state mj whi 

ch or course axe orthogonal states is 

"':, 

L ~ \ [ I J 

\\1-.'Vl" v· + - V cHi Hlj .. ij z ~ t.) 

( JI. 1 ) 

where (II.8) 

is the rotational. energy of the ith molecule in state m~ and 

(II.9) 

is the interaction potential energy or the ith and jth molecules in sta 

tes m and n rl3spect:tvely (where we have rejected the subscripts of m1 , 

since II.8 and II.9 hold for any state of the set l m ~ ) ~ 

The internal energy of the crystal wi21 be a sv~ation over all 

the possible states multiplied by the p~obability of. their occurence in 



the sum: 

lows: 
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(II.IO) 

Use now the :rac·l; that ( H )=2'_ Wm pm .:;TrrH, the proof is as fol 

m 

is' the projection operator -the square of- which is the unity operator and 

its trace unity,therefore 

=I Rm [T~~ \h1) (n·d H \nl)(rn_t] :_2_ ~'Yl <:··n\H bv,)="[ Pm \V'lfJ Q.E(,D 
ill \Y) 011 

Combining (II.IO),(II.9) and (II.8) we get 

~ ( t ( t ) I "" t r. .1> . Li i ) E = _}' \-- (J. H ~ + - L ,... t \"' vi ' c. 0. L- r,, 2... Jlt!l 
1 ifJ 

(II.II) 

which is the total energy of the crystal"where tl'(i) is the trace over 

the Hilbert space of the ith molecule. 

Th t tal f th .th 1 1 . 1e o energy o e ~ mo ecu e 2s: 

(II&IIa) 

Thermodynamics : We can now define an operator wbich instead of being 

multiplicative is additive,namely lnpo This operator has the advantage 

of being extensive for a large ensemble( ioe proportional to the no& of 

constituent systems)o- For a w1iform thermodynamic ensemble,this implies 
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proportionality to the volumeo 

The average value of ln f 9 (ln p) =. tr p ln p aside from con.stD.nt 

it is called the Entropy S of the system : S .=:-k tr pln p (II.,I2) pWhere 

k is the Boltzman• s constant and since p::n fi then ln f =? ln f i. {IIci3) 

. (0) . i l (") 
d .• s i dd • t e • S = .1"' ~ • J.. 1• ' ,... kt J, 1 an S:t.nCe S a J.. J.Ve ~-=.,. ~ 'tr f i n yj,;;: ~ Si ~ Wuere Si.:""'- r f i !! Pi. e 

i I 

The most important density matrix in physics is the one describ 

ing a system in therma~ equilibrium with the surroundings at Te~perat~ To 

The entropy at equilibrium S ~ S and the free enel ... gy F·~,.F rn-i..,.. · max I.J.l,.'l."* 

so Fnrl.n: E= TSmax a·t equilibrium in temperature T0 

Hi.nimizing the above expression War&t p1 w~. ce.n. find the form of 

the density matrix which describes the system in equilibrium at temp T~ 

Solving the variational problempwe get the form of fi to be: 

and by (IIoi5) 

so (IIei6) becomes 

_- ~'E i e Pi = --Z.-i-~ 

(II.,I5) 

(IIei8) 
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and the internal energy (IIoii) is written 

EntropypFree energy: Using eqn (IIci2) 

64 (rr. r3) 

==- - k t r p ~ [- « E 1 - t \1 I i j 
l 

:::. '~ -t r p L . f i 111 \1 i n1 + k e Yl I. ~ "I '11 c e t r- p = 1 0- \, d z = 8 z i 
I "n11 1 

=- J_ ~ E.·· n1 ( \1; o1) + k Q V1 l ( I I . 2 U) 
T 1rn 

I 
and using ~ E. .1 rn = ~ E ·1 

'im 1 

- .............. . 

::: ~ ( H ·, t u~ )We get finally: 
I 

I """" """"' 
S:::l:== ( H"' .. ~- u1 )+·kln Z 

i. T .... 

in terms .of molecular fielde-

Free energy is defined as F=E = TS~ so using (II~I9) 

. I . (i) . " 
:-::. -ItT ln z = -- -cr f 1 U. 2 .l- J.. 



Hean deviation angle: By definition -the NDA matrix element is 

/ e ,<J> · · (J) 2 \ (J)' 
~<. k,m/ == (~) Jpn l e \~k,m / (II.23) 
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where k=. x$.y "z refers to space fixed axes (SFA) ~ m:: X,.Y ,z refers to mo 

lecule fixed axes (NFA) JJ· e, refers to angle bet\veen the components .,L'{;,m 

of SFA and MFA, \>k,m (J) are the eA-pllcit rotational wave functions of 

the freely rotating molecule and< ek~m~ denotes the mean square de

viation of the molecular ~dLs from its equilibriuc orientation which 

has taken to be Vlhen. the SFA and MFA coincide (f'ig.,e). 

Employing cosine functions~using trigonometric expansiontwe -
nd · 2 · 2 

get (rejecting higher than 2 order 'terms ) : (cos 9);::: I-( 0 )and 

(IIo23) becomes 

(II.24) 

Application. to methane (free molec~le): Since we know the explicit form 

o:f the rotatiQnal wave functions of a freely rotating molecule,. as has 

been calculated a11.d tabulated by Yamamoto and Kataoka ,we can. ca1culate 

the 1~IDA using eqn (II.24) .. 

We write dovat the explicit rotational wave functions taken from 
(11} 

Yamamoto: 

U' (J·>t_. 1 [. (2J+I)/ 8n2] .. ~ ~ D (J) + D (J)) 
1 k,m ~,., {Z L -k,m - k,m J 

·w o(J) -l~ (2J + I)/8n2J t no< J) (.:;\ '~ ~~) 
T ,m- 51 m 

(II.2.5) 

(II.26) 

special case when k::. 0, D(:J\ fc«, ~) e..re the rotational matric-es, whir;h are 

functions of the Euler's angles thru which the molecule has been rota 

ted from its standard orientatione 

To calculate the ~IDA,we can also use the relations given between 
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the rotational matrix elements and the spherical harmonics,,taJ.dng the 

phase convention into account. 

Using ROSE (Angular moment~ theory) we find the relation of 

rotational matrix to spherical harmonics, for the special case k· o. 

n <J>c~,,e,Y>= [ 4n 1t y* <~~~> 
o,m n 2J.-r I Jm. 

(II.27) 

For the case k= o, eqn(II.24) becomes 

where now e0 refers to the angle between the z and Z axes of the two ,m 
systems. Substituting (II.26),(IIo27) in·to (II.28) \Ve get 

(II.29) 

where we integrated over 0 v1hich contributes 2n to the in.t.egral and since 

(II.27) is independent of·~ ,we set 1~=0 arbitrarily& 

For the case k== 0, a practical method to verify our results is 

to sum for a specific J, all over ·the matrix elements for the 2J + I dif-

We calculate now the different HDA for J:: O,I,2 e 

J·:.o, m:;O 

./e 2 -, J:: O I -/ v \. C C"'
2 o lY ' I - 0-3~3:::::: 0 .. 667 ', o,o 1 "7- = '-.~.oo 0

L.J \;;II oo;"== - " ~ 



So .. .T=i 
(e:,c / ::0.4 rad" 

1 . f,;:.i 

<e;
1
±1) =.0.8 rad., 

j 

and 2-"~ ( Y1\Yl I <-o~2e I Y1n1) = 1 
n, ::-I 

.verifying our results .. _ 

J ::. 2 , m ::. t 2 , -±I , 0 

1 

)L 
vn=-1 
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'Pi .: 0 
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Molecule at equilibriumo 
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I 
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I 

Equilibrium orientation of CH
4 

molecule, whe:r.1 HFA and SFA a..~es 

coincide(il-
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35 

~z.. 

G; ~ 
•I 

y 

Holecule rotated at angles 

e and f from equilibriwnc 

1
:t. (.SFA) 

Holec.ule rotated 



CHAPTER III 

NUCLEAR SPIN WAVE FUNCTIONS FOR ~1ETHA1ffi 

Nuclear spin wave functions)C(IMI),where I is the total nuclear spin 

of; the molecule and f·ir is the component of the above vector on z• axis of -

the SFF,these al~e obtained. by Clebsch-Gordon method by decomposing the sys

t.em into constituents and then coupling the angu.lar momenta of the consti.tu 

ent parts. 

I,operator,obeys the eigenvalue equations 

I
2 1IHI)= I(I+i )l Il-1~ 

I z 1 i Il1r) =- 1'1! ) INI) 

The combined vibl .. ational and nuclear spin fUl.lctions J<g~, IHI)=:j(( Rsl 
~(IHI) ,where _x<6~) is the vibrational part,are obtained taking :i.nto consi

deration. how the nbrational modes transform( part I). Here~ denotes the 

set. o:r representa·tions of' the methane grou.p,according to which the differ 

ent vibrational modes S = x,y, z transform and we h_a.ve found them to be {S ::: A1 

T2 ,E (T.I.-3) • 

To construct the spin wave functions for m~than-e,we separate the 

system (molecule) into two Hydrogen molecules and then combine the wave fu 

nctions of these~acce-· to rules of addition of angular niomen.ta. 

There are three different ways of partitioning the four H atoms 

into two Hydrogen molecules; that is atoms lying on planes perpedicular to 

x axis (I,3) and (2"4) ,. on planes perpedicular to y axis (I,4) and (2,3) 

and perpedicular to z axis (I,2) and (3,4) having wave functions }I1 ~ 3 mr,3:> 
I I.~, 4 m2 , 4) and so on. 

Since I~ ·=I$0 for t:he Hydrogen molecules 11 then the ·total I sati.s 
~J 

fying the condition : 

I 1I,3- r2,4! <, 1 <( I ri,3 +I2,4l 
36 
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must have values I: 2 f>1 11 0o 

Detailed syn:._mtetry arguments show how the "tdbrational ftmctio:ns and 

nuclear spin functions must be combined ( as it was mentioned before) in 

order tc preserve the overall syn~etry of ~he wave fv~ction under the ope 

rations of the group Tdo The result is: 

.)CCT2xrr1 9 mi) v J((T2Ys1mi) ~ X(T2z~.j.mi) J 
jt(Ei.&G) 0 )((E2 0 00) \ 

and J:(Ar•2mi) .~ 
(IIIei) 

Denote with a~spin up state and with b~ spin down state of the ~di 

the four H atoms;. therefore the states ( IsJ1i) are the following,for I= 2 9 

J22) 9 121) ~ \20) v\2co1) ,l2-2),for !:1St Jt·l)~J10)9 J1~1) and for I=O the 

l·oo) 0· 

where 

'' 

The state 122) arises when all spins are up, so we choose 

.r., 

lzz).= n a.:;, aia2a'Za4 
i=d :L ;J 

(III.,2) 

Introduce the Operators 

(III.5) 

Starting from 1 22) we derive all the others,operating on (IIIo2) 

with t~he lcnuering operato:r;ll (IIIo4) and 'taking into con.sidera.tion(IIIc.3~5) 
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So: 

and we get 

121)=~ (b1a2a3a
4
+a1b2a

3
a
4
+ a1a2 b

3
a

4
+ a1a2a

3
b
4

) and lowering again we co

nstruct the rest four wave functions for I=-2 which are tabulated in table 

(T.III.I) and are properly normalized .. 

~~We calculate now the functions for I=i ,which will be orthogonal 

to functions f 2HI) ,.so :lt must be~2IJ II)=O.A function orthogonal to f2I) 
will be one derived simply by inspection,.haying the same form as I2I)but in 

which we have interchanged the signs of the terms; thus \11) = L. (bia2a3a4 -· . . 2 
-arb2a3a4 + a 1a2 b3a4-aia2a

3
b
4

) and using lowering opere.tors ag_ain. \Ve obta.in 

-the rest two functions, which are tabulated in(T .• III .. I) ,Vlhere in I I-I) we 

have changed the signa all over,-to bring it to the same form as the I II) 

·(only a, and h,having been. interchanged). 

Here since T2 representation is threefold we have three set of fu 

nctions (T2x,T2y,T2 z), that is •. another two· set of triplets;these sets can 

be obtai.ned by using symmetry considerations,interchan.ging the signs of the 

t.erm.s and finally tabulate in. (T.III.I) (In 111),.1 1-1) we interchange simply 

the roles of a~. and b ). 

By inspection we see that these are not.antisymmetric under an ar 

bitrary interchange of two nucl.ei; e.g 1 ~ 2. in the function A (b1a2b3a4-

-a1b2a
3

b
4

) gives k Ca
1

b2b
3

a
4 
-b1a2a

3
b
4

) which is one of the other II o) fun

ctions with interchanged sign. 

So we see that spin triplets are neither symmetric nor ~tisymmet 

ric under interchange of two protons. 

We form now the singlet wave functions for I= Otwe require two 
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sets of singlet states for theE representation,X(Ei,.OO) andX(E2sOO)e 

We collstruct -them again by inspection.usiug orthogonality conside= 

rations of 1 oo) and Ito) P12ra) ; we therefore choose l oo)to have exactly 

the same form with the I 20) w-l th ©oe ficien:ts which v!111 be ca1cula:ted 11 tt.s 

ing the fact that J oo) must be orthogonal to 11 o) and\ 20)functions~ 

So 

I oo)=k}c1 (a1a2b3b4 + b1b2a3a4)+ c2 (a1b2a3b4+ b1a2b3a4)+ c3( 

+ C3(aib2b3a4+ bia2a3b4) 1 
The conditions(oolzo)::.(o0\10)= o and(001'J0)=-1 give us t~e two 

singlet eigenfunctions which are found toget.har with the others in {T(IJIIIoi) 

These two singlet functions are mutually orthogonsle. 
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1 T 2 y 

0 

-·j 
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0 

-1 

0 E 1 
2 

J\ (~ s, Irvb:) 

aia2a3a4 

.f[bia2a3a4 + aib2a3aL~+ aia2b3a4;-aia2a3bJ 

J ~[b1b2a3a4 + bia2b3a4 + b1 a2a3b
4
+arb2b3a4+ arb2a 3b4 + a 1a2b3b4 

,r[brb2b3a4 + bib2a3b4 + bia2b3b4+arb2b3bJ 

bib2b3b4 

~ [< bia2a3a4 -taia2 b3a4) .. ( ai b2a3aLJfaia2a3 b4 ~ 
.}z<bia2b3a4--aib2a3b4) 

i ~ 

~ [Caib2b3b4+b1b2a3b4 ) - (b1a2b3b4+brb2b3a4~ 
~ ~bia2a3a~~taib2a3aL}) - (a.Ia2b3a.Lt_+aia2a3bL~~ 

Jl(b1b2a7a4-a1a~b~b4 ) ,rz ;,; - c. :J • 

k [<a1b2 b3b4+b1a2b3b4) - (bib2a3b4+bib2o3a4~ 
~ [<bia2a3a4+ aia2a3b~) - (aib2a3a41-ala2b3a.4)] 

~(bia2a3b4-aib2h3a4) 
1 . 
Z. [<arb2b3b4:tbib2b3aL._) - (bia2b3bLtbib2a3b4)] 

t [<aia2b3bL( bib2a3a4) - (aib2a3b4+ bia2b3a4)] 
·1 [ 1 1 '"if (a1b2 b3a4+bia2 a3b1:-)--r(a1a 2 b3b4+bib2 a3a4)- '- (aib2a3b4-t-bia ,..b..,a

1 
· 

t.:: ::> + 



CHAPTER IV 

INFRA RED AND Rhl.MAH SPECTRA AND STRUCTURES OF CRYSTALLINE 

PHASES OF NETHANE 

IHTRODUCTIOll{ 

Crystalline m.etha11e is kno'frA to ha\'"e -two lihase changes at 20o4 °K 

passing from phase I to phase II~and at 8°K passing to phase III :for CH4; 

the same happens for CDJ.t. a.t 27 ~I°K and 22()2°K respectively(> 

Specific-heat studies show these to be )=ty--_pe transitions and an 

ex:plan.ation is that_ they result from chan.ges in raolecula:t• orientation@-

This conclusion is also supported by detailed studies of the Infra 

red and Raman spectrao 

I'C is these latter st;udies which_ we shall d:Lscuss in the presertt 

chapter(!» 

4I 
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Spectra from crystalline phases of methane: 

It is kno~a that an EM wave(radiation) falling on a molecule or solid 

can induce transitions from one stationary state to another thru coupl-

ing with either the dipole moment ~(I~ transition), or the polarizabili 

ty ex (Raman induced transition) components. These effects are used to iii 

vestigate the vibrational energy levels of a molecule or solid and tell 

its structure •-

i.rhe selection rules impose the condition that a transition 

between energy levels (i.e transition from one normal mode ·to anot.her) is 

possible if the matrix elements <mlpin) differ from zero,where p:x,y,z, 

.x2 ,y2 ,z2 ,xy,yz,zx etc is an operator corresponding to the physical influ-

ence causing the transition from one state~) m to another V n depending 

upon the case. 

These integrals are different from zero if comparing the di 

rect products of 1p n and 1.p m with the symmetry species of p,have 

Transition 11j ---7liJ ,where n and. m represent a set of quantum numbers de 
-Tll. -rm 

scribing each normal mode ,is eJ.lowed if (n 1~\m)tfo,iQe rA C r. x rl-4x ~J 
I fn l m 

for infra red and <n 1«\m)~O,i.e !'A C.. ~J X I;, x rw for Raman induced tra 
I Tn Tm 

nsitions,where o< is the polarizability and \-A. the dipole moment •. 

All these selection rules are only valid for a molecule in 

field free space,that is,one in which no external EH forces are acting ex 

ce:pt the intera.ctiOil with the light beam., arhe effects of the exter11al for 
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ces are even noticeable in the gas phase when the pressure is increased B-L"1d 
(i;) 

normally forbidden. transitions become IR active. 

We have also great differencies between gas,solid and liquid spec 

t t • d b And r:r • (G) m• f · f vib ti 1 ra no 1ce y erson and ~avo~e. rae requenc~es o . ra on are a. so-

very dependent upon the solvent medium~0 

The normal modes of tetrahedral XY4,which were calculated in I.

transform as the following representations of Td: 

c("'" - o<tJ!d 

~~x~-z. -o(x>' -Of~~ 

f..l·J( i 1--t~J tAz. 
v1 (~y-'t\rn"Jr;c mtdz) V1 y3 c~tre.;.hln'-1 ~Je) v~ C be"d ~ nq 1J\ode J 

where the transformation properties of the components of the polarizability 

and of the dipole moment are given. 

In CH4 and cn4 a transition from ground level to level with QI si 

ngly excited yields: AI x. (T2 )p. x AI:::.(T2 )p. which is not IR active as not -

containing the AI,but it is Raman active ( AI xCA1 t,_ x A1=(A1)~ 
By similar calculations transitions from ground level to levels 

of the type (Q2 ,Q
3

) are not expected to be IR active 1 while transitions to -

( Q
4

, Q
5

, Q6) and ( ~~7 , Q~ , Q
9
) will be IR active. Lil:ewise it can be shown that 

all transitions from the ground state are expected to be Rrunan active. 

Anderson and Savoi:>measured the frequencies of the transitions 

for CH and CD 1 molecules in the crystal which are tabulated in Tables I,II 4 ~ 

of the paper~6)The results are in complete agreement vdth the predictions 

based on group theory. 

'l1he fact,as well as .the absence of IR spectral activity in the \/1 

and \ll regions,suggest that the symmetry of CH
4 

and cn
4 

molecules in the cry 



stal is substantially tetrahedral. As has been seen,the vibrational spectr 

um of' the free molecule in the gaseous state depends essentially on the sym 

metry propert~es of the free molecule. In the condensed state~that is in the 

crystal,similar hut not identical criteria apply ... 

The arra~gement of t~e molecules in the crystal lattice is given by 

certain "space symmetry groups" together with the knowledge of how many mole 

cu~es occur in the unit cell,characteristics determining the nature of the 

vibrational spectra of crystals;such a table is given by Savitsl~ and Horn 
(•sl 

ig for methane (table II) ,based on the X-ray.studies on crystalline methane 
(~.) 

done by A.Shallamacb~ These show the carbon lattice to be essentially face 

centered cubic above and below the critical point 20.4° K •. 

The necessity now to choose out of the possible space groups for the 

structure of phase II the ones whi.ch put. the carbon atoms on face centered 

positions (allowing three infrared active components fory4),led Savitsky 

and Hornig to hexagonal and tetragonal structures with two or four molecules 

per unit cell in which the c·arbon atoms lie on sites whose symrnetr:i.es are 

subgroups of Td and fit both their infrared data and the pacyJWng requiremen 
. 2 3 (l;j 

ts;but. i.s found that groups D2d and n2d (from ta.bleii) with two molecules 

per unit cell on sites of D2 and c2v symmetry respectivelly,are most favor 

-able. 

However,the group c2v is rejected since it predicts infrared activi 

t f ' 1 d ) d th t b d . t. hi f. , -· lE:) y or vI an \ 2 an ese were no o serve even J..n very n ~..LlLls .. 

Hence the space groups D2~ and n2~ represent the best pac~~ng and 

therefore the crystal ~ phase II has most probably this structure. 

In addition it is also consistent vdth the Raman results of Ander-

d S 
. {6) 

son an avo:~.e. 

For the problem of phase I,the fact that the position of the peaks 
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(iSJ 
does not change~as Savitsky and Hornig have noticed jon warming,but the 

bands broaden significantly (width at 32°K of CH4 is 9~Icm-I while at 22° 

is only 5cm-I) supports the evidence for disorder; since the structure is 

disordered it cannot characterized by a space group {except in an average 

sense) as phase IIc 

In phase III we notice that more peaks exist in the absorption spec 

tra~which means we have further splitting of some lines and consequently a 

space group of lower syn~etry9but this is not exactly the caseo-

On the one hand \) 
3 

is not fnrt.her split 51 while V 
4 

in the IR spectrum 

is split into se,ren compo:uentso--

Lowering the symmetry from Td to D2d splits the triply degenerate V4 
mode in:to a singly degenerate (type B2 ) and a doubly degenerate (type E)mo

dee Furthermore if the symmetry changes to n2 ~this mode splits into three 

singly degenerate modes (types BI~B2 ~B3)~ 
(1!JJ 

In either case table II shows that there are 2 molecules per unit 

eell,so that the maximum number of lines that can ocetl.!',taking into account 

the Davydov split·c::tng 9is 4 or 6 respectively\. So .a possible explanation is 

to require more molecules per prirait~ve cell~but ~ anyway the situation 

regarding phase III is unclear~since it is not even knovm whether the face 

centered structure is retained in. this phasee 
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