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We present a discussion of the application of group theory teo
the particular case of solid methane,in all its crystalline phases.

Ve also employ the quantum mechanical mean approximatioa to
derive the mean square angle of deviation of the methane free molecule.
By means of group theory we derive the normal modes,the symmeiry coor=
?dinates and the nuclear spin furctions of methame,which may be found
‘useful for many other purposes in the study of methane.,Finally,using
;these results,we give a discussion of the infrared and Raman specira,
based on group theory again,to explaim the observed transiiions of the
methane molecule in its condensed phases, Ve conclude that the jA-type
‘transitions are caused by changes in molecular orientation.Phase I is
probably disordered,while phase II has structure of symmetry Dad.Pbase
III (of GD#) is Qrdered‘but of ;ower symmetry and unclear strﬁcture=

A possible explanation probably requires an arrangement hav=

ing more molecules per unmit cell than in phases I and II.
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INTRODUCTION

In I929 Clusiuéjﬁoted the exisience of auh-type singularity in the spe
cific heat of the solid CH, at 20.4°K. In I939 an X-ray study carried
out by A.Schallamacﬁléevealed a f.c.¢ structure of the molecular lat-
£ice both above and bhelow 2094°K. This result was also confirmed and
extended to all phases of GDq in a recent measurfgent by Greer znd Me=
&eg}%ho working with more recent instruments did not notice the parasi-
tic lines which had been observed by Shallamach in the powder pattern
of CH, . '

The different theoretical and experimental studies on methane,whi-
ch will be reffered to below,have led to the important and final comclu
Eion,that the observed phase tramnsitions correspond to changes in the
brientational structure of solid methane. As the methane sructure could
.pot be fully understood from ekperimental studies only,theoretical pre=-
dictions have helped provide a basis for the discussion of the experime-
ntal results . Among these the molecular field approximation used by Ja-
mes and_Keenaﬁ%@hich is fully developed in this work(Ch.II) has proven
the most succesful. They discussed the three solid phases of CDh,treatn
ing the crystal as an f.c.c array of spherical rotators,where molecular
;and lattice vibrations were neglected. In the interaction potential only
octopole~cctopole terms hetween nearest neighbours are retained,lower

multipoles,disappearing by symmetry in an undistorted methene tetrahed-

I'OR,



On the other hand NagamiyéEétudied how the energy levels of the free ro-
tator are split by thé crystal field due to the neighbouring molecules,

Only little additional insight concerning the arrangement of the me
thane tetrahedra can be gaiﬁed from IR-absorption and Raman scattering,
due to the lack of one to one correspondence between observed lines and
the symmetry of the unit cell, In addition,it seems quesiionable whether
the instrumental resolution available in these measurements was sufficie-
nt. In any case we discuss here the experimental results of Andersoa and
Savoiéﬁ%n the basis of group theory and we come to the same conclusion as
the(bthers by different procedures,concerning the sitructure of the phases
of golid.methane.

Recently another method.was employed by W.Pressuéor a betier und-
erstanding of the orientational structure of methane,that of neutron dif=-
fraétion. Here again,as all methods have shown,it was found that Phase I
is disordered. The structure of phase II was found to agree with that pre
edidted by James and Keenangolt was also found that Phase III seems to a=
risé by small distortions of the orientational structure in phase II.

| In general,in discussions of the structures of the three solid
phases of CH4 and CDL,everyone agrees,that the carbon atoums occupy f.c.c
lattlce sites in phases I and II,and that this plicture may be taken as a
good approx;mation for phase III.

In our discussion we add the possibility of a probable rearange-
ment of the unit cell in phase III to one having more molecules,as indice
ated by the experimental results of the infrared spcetra of Anderson and
Savoieﬁ) |

Thus the phase changes may readily be understood as transitions



in the orientational oxder of the methane tetrahedra..

The above conclusion comstitutes the most valld explanation.



CHAPTER I o

NORMAL MODES OF VIBRATION OF THE FREE MOLECULE

INTRODUCTION

The determination of the normal modes of a system and their frequency
of vibration is very ofien a tedious process, Group theory can be used to en
able some simplification.

The definition of normal coordinates means that the Lagrangian of the
system can be expressed in terms oi squares of the normal coordinates and
their derivatives only.

80 the XK.E and the P.E are writen in terms of normal coordinates,
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where Qg are the normal coordinates, forming a coordinate bhasis where T and
¥V are diagonal in this particular representation,.

In case of molecules; N is the no. of atoms ( Heatomic molecule ),
3N is the no. of degrees of freedom,j labels the j'* atom executing small
oscillations around equilibrium and Qj is the displacement from equilibrium,.

Introducing canonical momentum

Pj"'ra:r ( Ie.?J )

equs ( I,I ) and (I.2 ) can be used to construct the Quantum mechamical
Hamiltonian,which is writen in terms of normal coordinates
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we get eqns of motionm :

and using ﬁj -

L
{
0
+
+

having solution
Qj,f: Qg cos (@t + Q) (I.8)

where Wj=2nV; is the frequency of the jth'normal mode.

If we now take a molecule and perform a symmetry operation on it
then the physical state of the molecule is‘unaffected by this operation
so that T,V and L are invariant under transformation of the coordinates

cérresponding to this operatione

The normal modes of vibration @

Ve shall set up now, the general method which can be used for
any molecule which.belongs to a symuetry group and then this general me-

thbd will be applied in the case of the Tetrahedral ( Td ) symmetyry group
which methane ( CHL} ) belongs to.

Let us consider a system (molecule) consisting of N particles
(atoms)at their sites. If energy is imparted to the molecule (shakenj,
then each atom will execute a complex vibratory motion around its equili
brium position,in such a way that the motion of all the atoms is in phase.

& baeic requirement is,¢f course, that the net result of this
mdtion is such that, there iz rnec tramslation or rotation of the molecule
(ﬁaturallyﬁif it happens all the moleculcs at the same instant of time to
move in the same direction,the molecule will tramslats along this direc-

tion,;so these mcdes will be translational.)



There are , of course, three translational and three rotational modes.
For linear molecules thereareonly twe rotational degrees of freedom,be
cause . rotations can only take place around two axesggo for polyato=-
mic molecules or ions remain 3N- 6 vibr., degrees of freedom and for 1i

near molecules or icns 3N = 5 vibr.degrees of freedom.

STEPS

pess.

é.) Establish a set of Cartesian vectors Xis Jyis %5 OR each atom i at
its equilibrium position,representing the displacement of the atom from
equilibrium. o

B.) Determine the dimension of configuration space 3N,where N is the
no. of atoms of the molecule and deduce the vibratory degrees of free
dom,

¢,) Deduce the"symmetry group" of the equil, positions{i.e to accomoda
te the molecule to ome of the known symmetry groups).Write down the
character table of the group.

d.) Deduce from geometrical considerations the characters{(R) of the

3N X 3N representationIBNXBN .To calculate the characters of IBHX3ﬁ

consider the £f,

i,) Omly. those nuclei contribute to the characters,which transform into
themselves;that is in the 3N X 3F "supermatrix" that corresponds to =
Igmxsmrepresentatioﬁ for the whole molecule ,observe that only those
atoms contribute to the character ofthe particular coperation R,wvhich

do not move when the system is subjected to this certain operation Re
In the 3N X 3 supermatrix represeating R,all the 3X3 submatirices cor
#esponding to the particles which chapge position are displaced froi
the diagonal{sc they do not contribute to ths character),on the other

kand for each undisplaced particle there is & 3X3 matrix vhose diagon



-al coincides with the diagonal of the 3N X 3l supermatrix.

4

ii.) A C,

operation (rotation ) contributes for each undisplaced atome=

I+ 2cosg="5_'-‘-‘to the character of the supermatrlix
X( Cl,ég,-:l-l-acosg—%g ( I.6)

where k,is the no.of units of rotation.

A sz slmproper rotation,contributes for each undisplaced atom;

k any
X(5, ) ==I« 2cos S8 .(Io?)

A g operation(reflection on a plane) , X(6 ) =+%,and Identity al
ways X(E) = 3K o (1.8).

e.) From the characters X(R) of the representation,subtract the

I}HX}N
chai'ac,tersXT(R) belonging to translations and_xR(R) belonging to rota=
tions,which are known since translations tramsform like x,y,z, and rota
tions like R}:,,Ry,,laz and exist in the character tables oi the group.

So the characters of the i*epresentation corresponding to vibrato

ry degrees of freedom isj

Xy B Y (R) = Xp® = Xp® (1.9)

f,) Decompose the I‘}NXBN acc, to formula:

14
Toew =9 C4 Ty (I.10)

izt

where I‘i are representations of the Td group and:

Cy :%[% Hkxi(R)I(R)] (I.1I)

where C; gpecifies the indepencent normal modes,



Application to methame :

Followlng the previously reffered steps,we define and decompose mo
tion along three Cartesian axes E;0¥y5%90 gituated at the equilibrium

position of every atom. (fig. I). Methane has N-— 5 atoms,Hydrogen H(&)

H(b),H(c),H(d) and Carbon (C),so 3N= =2 degreé? of freedom ,;4 3-g= 9vi
br.degrees of freedom,.

The point group of CHQ is the full tetrahedral Td having character
table(T.I.I).We dedupe the characters of the IBNXBN representatiog (of

the Tysyis supermatrix) ,the characters will be X (E) :‘15,)((03)2‘54'2¢05%§

::ii'for each unmoved atomg;since in these rotations cax’cay’caz9all atons
move about x,y,z, except the Carbon at the origin of xyz;so only the car-
bon?contributes in the character{the rest are off diagonal).

Similarly):(GB): 0 for every unmoved atom,so x(cj):o for the super

\

natriz,

| X(¢ )= I for each unmoved atom,every diagonal plane contains 2H at
oms plus the carbon;i.e three atoms which naturally are unchanged as being
on the plane,so for any one of the reflectlon planes there are three unmo=-
ved atoms and so three non zero diagonal elements in the supermatrix,there
foréX( G )= 3.

‘ ]((54): -I,since only the carbon atom remains unmoved in this opera
tion,

Ve tabulate the characters of the I}5X15 representation in table

(T.I.a),



Fle.1

The methane molecule with the Cartesian axes at the site
of each of the five atoms,indicating the threec components

of the displacement from eguilibrium.



T.I.1

T =
x2+' J 2'1' 2 At 1 T 1 T .

AZ I I I =] -1
- y°, E 2 I 2 0 )
4
/Jg( Zzzmxa—ya)
f
RerRooR, I 3 0 =I =I I
Xo¥s2 T2 3 0 L I -1
XY, ¥Z2s2X

T [ 3 I .-2

Representation E- 3C, &c. 6o‘d 65 4
I}5 x 15 j((R) 5 -1 0 3 -I

I0
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Translations tramsform like x,y,z, and from (T.I.I);we see that ,they
transform acce. to T, :
So Yp(R) 3 0 =I I I

Rotations transform acc. to R_,R_,R_ and from (T.I.I) ,we see that,

27y a
they transform ace.to Tie
We then tabulate these in(ToI&B)gwherejfﬁzj:15xx5 u QX&¢{ER lo
Representatiom,fi5xz5 is decomposed acc. to the formulae(i.IO),
(I.I1):
Here

I .
€, =2 [IT.1548.T.043.16T)46:T034 6,11 )]
I

=1
and similarliys

¢ 0, G gcTIgigchB

So IEBXIS is decomposed as:

13:51415 g AI«so E 4 'II + 3T,

and since IT, IR5 are Ty, Tlg respectively we have finally:

Tom Tisxys = (Tpv TR ) S Ap+E+2Tp

These representations correspond o nine normal modes of the metha
ne molecule. Any vibrating system that possesses a set of symmetry oper
ations,the normel modes of that system “belong to" or'tramsform acecrde
ing to" one of the irrederepresentations of the group of those symmetry
operations,

If the dimension of the representation is greater than unity,this



T.1.3

B 80, 3¢, 6oy 65,
115 x 15 15 0 I 3  -I | A +E+Tp+30,
I, 3 0 I 1 -1 o,
I, 53 0 I I I |71
ot T 6 o0 =2 o o |m+m,
T, 9 o I 3 -1 |A+E+2D,

1z
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/means that there is a set of normal modes , equal in number to the dimen
sion of the representation,all of which have the same frequency of vibra
tion.kThey are sald to constitute a set of "degenerate normal modes™.

The individual normal modes can be thought of as the components
of a vector which forms a basis of this irred. representation,that is,
the degeneracy of the normal modes equals the dimension of the irred.re
Presentation to which it belongs.

In methane , we have § one non degenerate,one two-fold degenerate
and two three-~fold degenerate‘ﬁcrmal mode frequencies,

Ve draw these normal nodes:

Ai mode simplest : called "totally symmetrical' or "breathing mode®

(fig.B). In this all the H atoms have displacements along the directions
of the C-H bonds,being equal in magnitude and all directed outwards from
the C atom,which itself remains at rest.

Threefold T2 ¢t To determine the nature of the threefold degen.normal

mbdes,we use the fact that these normal modes form a basis of the degene
rate representation T2 of the point group of the molecule,There are tweo
Qets of functions which tramsform acc. te T, : the (x,y,2) and the(xy,
¥yz,2zx); s0 the directions of normal modes will be along X,¥,%, im the
one set(fig.4),and on the planes(along the diagonals) in the other sete
(£ig.5)The fact sthat we must no have translational motion,allows us

to consider the motion of the carbon atom in opposite direction of the
motion of the H atoms.

Twofold E :(fig.6) shows how the 2=dim.normal modes move,




AI MODE TOTALLY SYiETRICAL OR BREATHING MODE CF [HE

HUETHANE MOLECULE

14
-F;%EZ.

E (Twofold) NORMAL MODES OF 1HE METHANE MOLECULE
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Ta(Three dimensional) HORMAL MODES OF THE METHANE MOLECULE

Ry

raper plane
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Symmetry coordinates

Displacement pattern of atoms can be represented in terms of internal
coordinates® (such as spacing between atoms,angles between bond directlons)
or in terms of'external coordinates"(such as Cartesiam or Polar).

Introduce "Symmetry coordinates" as lineér combination of the inter
nal coordinates;which transform irreducibly‘according to the representatiosns

of the symmetry group of the molecule,

_ S’ 8)
5(Ty)= H"-Rf X g(RIRS; (1.12)

where according to the definition.&(l%) is symmetry ccordinate transforming
acc.to irreduclble representation T

g
internal coordinates RSI,where SI is any internal coordinate,R is any sym-

sexpressed as linear combination of the

metry operation of the group ,RSI is the internal coordinate that resulis
from applying operation R to SI’ and N is some normalization factor,
Remark: As we see RSI consists of a set of all possible values that an in-
ternal coordinate can take,for these walues a table wlll be comnstructed.

The internal coordinates in general,may differ from the normal co
ordinates of the molecule,

In molecules in general we take as internal coordinates,interato-
mic distances and angles between the atomic bonds,so in.ouf procedure,ve
use our intermal cocrdinates as a basis for two representations xé; the
I} or I' (r) of distances between the atoms and I% or T (e) of the angles
between the different rs and rj“s and form the character table,applying
the operations of the group and simply counting the number of unchanged
coordinates, In comstructing the character table,we have always;(i(E) eqgu

al to the no. of symmetry coordinates of type i (e,g:;ﬁr(E) character of

symmetry ccordinate of type r ),



I7

Another fact which arises here,as we shall see is that among the
v number of irreducible representations we get such omes which do not appear
when we calculate the normal nodes,as we did before,

Because of this ,we gebt no, of internal coordinates more than the
number of degrees of freedom(in the case of methane we obtain IO int.coor
dinates Geijﬁand 4risthat is one more than the 9 degr. of freedom)e.

This will cause a "redundancy",which is exXpresseé in the presence
of the same representatlon( Ay in CHE) in both I,,,T..

Finally tne redundant representation will be excluded.
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Symmetry coordivates of the methane molecule:

We choose the imternal coordinates to be the distances ry between
the atoms C and the H(il}®s and the angles &&j between the ry and rj's.

In fig.6 are shown Tyz PpsTpslzsly and @&j: 912,913,914,623,@24,934
so XX (B)= 4 and}ge(E):; 6 (@ij,is unchanged when r,, and ry are interchan

ged,so we do not count distinctly ei and gji)“

We form now the character tableJ(T.Iﬁu) for the two representations
D (r) and TP (8); as an iliustration we give the derivation of the charac
ter for the operation 03' Rotating about 03 gxis,that is along some‘ ry
the only one rirwhich does not change is the one around which we rotate
so XT(C5)= I ‘

We decompose now the representations I;:_ and ‘Ii."‘e into the representa-

tions of the T, group using (I.I10),(I.II); so C, =C, = I and C = C, =
d ' AI"‘ T2— E=e Aa—

= CT = O,therefore (I.I0) gives:

I
N T () =4+ T, (I.13)
for I (0) representation C;, = Cp = Cp =TI and Ch =Cp =03 so
I t2 2 I
Tg=T(e) = A+ E+T, (T.14)

We see immediately that AI exists in both (L.I3) ond (I.I4) so it is
redundant.Ve derive the symmetry coordinates now by taking the linear co=

mbinatlion of the internal coordinates ri's and eij’s'

Choose S = r; internal coordinate;the following table (T.I.5) shows

how Ty transforms under the different operations of the group ; in this

Specific case ry goes to itself under B, it goes twice into itself under



F|%°6 ~ The internal coordinates ;= rI,ra,rB,rL} and eijz-_ela,.

613’6149‘623’92#9934 of the methane molecule.

19
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Tl
?d E G3 Ga Sh GEL
I} (r) g I 0 0 2 AI*jTa
I‘e Ne) 6 0. 2 0 2 Apt E+T,
er TeIeS
R T r, ry z, XA (T,
B I 0 0 0 I 3
803 2 2 2 2 I 0
: 302 0 I I I I -1
65# 0 2 2 2 I =]
6°’d 3 I I I I I
er TeI5a
R r r, T r, | X4y X(T,)
E 0 I ) 0 I -3
803 2 2 2 2 I ¢
' 302 I 0 I I I -1
634 2 0O 2 2 I -1
Go‘d- I 3 I I I I
Rra . Tquﬁh
R Ty r, rs r, ;X(A;) }(TZ)
E ] (0] I 0 I 3
8(‘:3 2 2 2 2 I o}
302 I I 0 I I ]
6&4 2 2 O 2 I =]
6‘3}1 I I 3 I I I
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rotation % ?“:;-1 around itself,it goes twice into r, under rotation?% ar

ound :ﬁf,+ ané -2%- arcund r3 respectively etc,

Ve also include in the tables the characters of the representations
of the Td group,which exist in the decomposition of the I} ; similarly
tables are comstructed for the rest of the coordinates S, = r2,53~; Ty
etc, The tables for the rest coordinates are constructed using symmetry
considerations.

Using (I.I2),(I.I3) and (T.I.5),we get
Sp(47) = HER-IAI(R)RrI
- N@;AI(E)rI+ﬁAI(C3)2rI +}5A1(03)2r2 +IAI(03)21~3+1 AI(CB)ZPI;.
{};"AI(54)2r2+XAI(S4)2r3+XA1(S4)2%

B

3] (ri¢r2+r3+r4)
-1 (rarrrer, )
-2 Ittty
and similarly
1 |
SI(TZr) =BT (3ry urzuerrQ)

Since.T2 is a threé dimensional representation there are two other

Partners Sa(Tzr) and 35(T2r) which have the same form as 3, and are calcu

I
lated using symmetry considerations (simply we interchange cyelicly the

internal coordinates);these partners are tabulated in table 7 (T.Il.7).



X(ap) XE) X(T,)
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For the Ib representation,choose SI-:-eI2 and using the sanme
procedure as for (T.I.5) we comstruct (T.I.6).

Using then (I.I12),(I.I4) and (T.I1.6) we get

S(Agg) = XN é?i AI(R)Relz :J% (075" Opz+ Oy 055+ 0 4 05 )

For the two=fold representation we calculate similarly the two
partners SI(EQ) and 52(E9) ,where the second partmer is derived using
coordinate S, :,613 and constructing table (T.I.6a) simply from(T.I.6)
interchanging 6129913 and 624,934,

Finally we derive the three partmers S;(T,.),S,(T,,) and 53(T2@)
of the three dimensional representation which are tabulated in(T.I.7).

In the Table 7 we have execluded the redundant coordinate S(Aze)
( we must have one coordinate in the one dim. representation).

The symmetry coordinates are not to be confused with the normal
coordinates of the molecule,but they transform according to irred.repre
sentations of the group. They also do not diagonalize the secular equa=-
tion that gives the eigenfrequencies,but if X,E and P.E are expressed
in terms of them,the determinant appears in biock form,each correspond
ing to certain representation of dimension equal to the number of linear
independent symmetry coordinates assoclated with that representation.

The two modes Ta(r) and Ta(e) are actually mixed in the sense
that the molecule does not vibrate according to symmetry coordinates cor
responding to Ta(r) and Tz(e) but acc. to a motion which is a linear
combination of these two. The frequency of vibrations can be found by

solving the eigenvalue problem for each block,



T.I.7
SYMMETRY COCRDIHATES FOR METHANE XY i
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CHAPTER I1

MOLECULAR FIELD APPROXIMATION METHOD
INTRGCDUCTICN

The purpose of this,is to develop and discuss a method known as
"molecular field approximation" or Yinternal field approximation'which
is elegant in describing the rotational states in molecular crystals

of linear molecules,

The MFA is appropriate when one wants to find a first approxima
tion to a fresh crystal statisticel problem such as ours which has not
been solved before. Tc do this,we must know the egblicit form of the
rotational wave functions of a freely rotating molecule,

The results of this method applied to ortho-hydrogen(J= I} by-
James & Raicﬁ?)in Ritrogen Ly P.Dunmoréwgnd methane by Yamamoto?ﬂ

Through MFA method we shall try to compute all the thermodynami
cal quantities of the system under consideration. |

Before we develop the method,we do the mecessary approximations
i) Since librational modes are studied,we consider the centers of mass
of the molecules fixed at the lattice sites,so there is no translation
al motion., ii) We ignore the electrons completely due to the fact that
there are in their ground states; actually since at Tr20° X, KTA»IO'Q%ZO
~ #0028V and for Hydrogen the energy which must be given from outside
to excite an electron from its ground state (m= I) to (2=2) is I6.33 x
bid 10'19 ergs.~~1Cev,then we are excused to make this assumption even at

room temperature KT~ IO™F % 300..03 eve

25
Meriaster VIR DY CIERERY



26

Description of the system :

After all assumptions ,we finally consider a system of rigid rota
tors representing the molecules of any c¢rystal with their centers of mass
fixed at the points of a rigid lattice (no vibrations).

To describe the orientation of molecule i,at site i,since we are
concerned with rotations jthe position of the molecules and their interac
tion is goiung to be given in terms of angular coordinates.

th

The orientation of the 1™ molecule is given by its polar angle -

(e&}@i) —Ww; of the internuclear axis with the polar axis taken to the
equilibrium direction €

4
th and jth molecules,will be represented by a potential function which

= 0 (fig.7). The interaction consequently of the
i
will be a function of the angular coordinates of their orientations.

The Hamiltonian therefore of the system will be writen as :

I RN
iia
where Hi(uu ) is the rotational K.E operator of the i th molecule,v J

potential energy of the interaction of the molecules i and J depending on
the direction of the intermolecular axis..

We shall employ here a quantum mechanical treatment of the prob
lem,

Construction of the demsity matrix : Any quantum mechanical ensemble con

" s 2, 3 . n— >
sisting of K systems is represented by a density matrixz( or demnsity £ in
classical mechanics).

Assume that each molecule i can ocecur in states \F;Ggi) where m

= TI,2,3,c.. are states of a single molecule which form an orthogonal set

of functions with probability of occurecmce of state m; pg for the ith mo
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lecule.
This prohability is independent of pg for 1 # jsthat is,the probabi-
lity is independent of the state in which another molecule j may be in the

crystal,so the one molecule density matrix is writen by definition:

Py :%l m> pi(m‘ o (II.2)
where we sum all over the possible states available to the molecule 1 and
every state multiplied by the probability of its occurence.
Since p;; is independent of pl‘i1 then the total wavé f* of the whole

fr—

crystal can be writen in product form :
N

L}.J{m} :—!—E \Pm;; | (I1.5)

vhere zm} denotes the set of the quantum numbers m ,m,ye. that specifies

the/'s for individual molecules. By the same argument ’Qﬂ ;describes the =
m

state of the crystal with probability:

‘N
i
Pgm}?—'rr Py (I1.32)
iz4
which is the probability that the crystal is in state'\‘.];; ! -
' !

The density matrix of the crystal consisting of N molecules will
be:

[:':%n% ‘mi ma..mN> Pgméml ma..mﬂ.\ (I1.4)
The assumption of statistical independence (II.3a) allows us to

factorize the density matrix of the crystal as a product of individual mo

lecule density matrices(II.2):

=) |mpmpe mpyT] Pm;_Qz my. e |
m i
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»T"( lml P, < mg | )

"T:;T%'i

N R
where %i :zglimi> Pn l<§mii is the one molecule density matrix,

i, i
Hean field potentiai: The total potential at the position of the ithmole

th

cule due to all other molecules, or the potential energy of the i~ mole

cule 1ls

THw;) ZE; 24&;5 \ Vij‘\'i*’:g> Py (11.6)
n

RES
Energy calculation : The average energy of the system associated with

T&Ebﬂgwhea 5,58 molecule is in state m; and jth molecule in state my whi

Ch of course are orthogonal siates is

i

EH D = Ut 1T H ) 7 2 LY, Vo 1V 10 s
[ 1)

— N s :
= Z_. Wae + = 2_ W w; (11.7)
[ ) )
vhers w, = (g H; R (I1.8)
is the rotational energy of the ith molecule in state m, and
W 2 e at Vil n W (II.9)
th

is the interaction potential energy of the i and jth molecules in sta

tes m and n respectively (where we have rejected the subscripts of my oy
since II.8 and II.9 hold for any state of the set.gmg Je
The internal emnergy of the crystal will be a summation over all

the possible states multiplied by the probability of their occurence in
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the sum:

""’t}— <~H >§mz P §mi

gmi
Vo TS
- 2—- Wm P ¥ 5 Z mn Pm V1 (11.30)
%)) W Jﬁ

Use now the fact that £ If):.i W »p, =Tr¢H, the proof is as fol

m
lows:

W@ZWB%Wﬁ%Qﬂﬂ:#"Jrﬂ H  where {my{m|={T,
is the proejection operator the square of which is the unity coperator and

its trace unity,therefore

Tr p Fi P T' i H 2—- W (TY‘ ﬂh“i H rll‘h)

>3

m

2 P [T‘ ) <,mlH|m>v"ﬂ 2. P Lt imy Z P Wya Q.EcD
in [£2]

1

Combining (II.I0),(II.9) and (II.8) we get
' ’;) By i
E=y (te pH +~E€ %}‘Evt eV e e,) (II.II)
“l 3

which is the totel energy of the crystal,where tr(l) is the trace over
the Hilbert space of the ith molecule.

The total energy of the ith melecule is:
o \ S (j) "y
E; = LB+ eV ap 3 (II.11a)
J

Thermodynamics 3 We can now define an operator whlch instead of being

multiplicative is additive,namely 1np e This operator has the advantage
of being extensive for a large emsemble( i,e proporticnal to the no. of

constituent systems). For a uniform thermodynamic ensemble,this implies
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proportionality to the volume,

The average value of ln ¢, <1n P>;trf:1,n p aside from coastant
it 1s called the Entropy S8 of the system : S=-k trelap (II1,I2) ,where
k is the Boltzman's constant and since @;—;ﬂ Fs then 1ln f ::);_ 1:3,91 (I1.13)

. ; - A !
; - TR N ¢ S SRR &Y
a;:,d, since S is additive S= ké_’tr Fqln ?i—;z 8; sWhere s;z-kir ln{ 4°

§ []
The most important demsity matrix im physics is the one describ
ing a system in thermsl eciuilibrium with the surroundings at Tenperat. T

‘and the free energy F-TF

The entropy at equilibrium S-S min

max

50 Fmin;;-Em Tfsmax at equilibrium in temperature T.

Minimizing the above expression w.r.t Fi we can find the form of
the density matrix which describes the system im equilibrium at temp T.
Solving the variatiomal problem,we get the form of Fi to be:
_-GE; _ .
(I - (IT.34)
' i '

(l)eéEi and using (II.IIa) the eqn(II.I4) becomes

where Zi:’ tr

-QCH; +ka‘c3)\f;‘ .
e : > F1) (I1.15)

iz = = e
JC}"LU -t [H; a}-i PRy Vi £, "‘]

Equation (II.6) is written g+ (s ),.Z(V > by definition of the

mean value and since .'\ ,.> - tr(l)gj 13 theﬂ.

My (1)
T ) =% tr - (1I1.16)
i 3‘% F’,} ij
and by (II.I5)
B L Hs vy iDH 0
fqi=.8 SR ¢ 5 3570
£ g "“EH “«»] 3

so (II.T€) becomes

4
¢

<L‘§> ’Lr{‘)( )-QEH”U;] (II.18)
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and the internal emergy (IIL.II) is written

g

EZZ{:VU) Hi p; 'i’%' Z trm?; - (II.19)
f

~

in terms of moleculaxr field potential,

Entropy,free energy: Using eqn (II.I2)

s:A-K{rg:«%p:_k{rpz Qn P by (I1.13)
:—k'{’-i‘ﬁz [“@ET =(\ﬂz.} where E. :Ze.”ﬂ %
}

ivi

=kbtrp2 E thtrpl OnZy

——— T

= { 'trpz’eimnim 'é"(?'ﬂz $ince ‘thl):i ovd Z:r‘ L
[ !

L 'm
=t Z— €\n (\\’7'\m>"" k Cn L (II.?-Q}
T Rt
I 2 .5,
where tron, — /n. and /B, Y= and using Y
PRim =4 .lm> < im> W o o T2 !
_—.z(ﬁ-l+’f);)we get finally:
I ~ A (T o
S:g_m;w { Hisg, Ui)+‘l§ln /] (I1.21)

in terms of molecular field.
Free energy is defined as F=E - TS, so using (II.I9)

t ﬁ hov e~ o ;
F=;tF3HWH+§ZﬁN”ﬁLﬁuZH;-iu;-kTemZ
! [ b

- I L. i n ~
= okt 1n 7 -ty T, (11.22)
» .
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Mean deviation angle: By definition the MDA matrix element 1s

<ek,m>(i:), <1p },;m(J)l o° ‘ll,/ k,m(J)> (1I.23)

where k= %,¥,2 refers to space fixed axes (SFA), m=X,Y,Z refers to mo

lecule fixed axes (MFA) , ek,m refers to angle between the components
of SFA and MFA,\Q ,(J)are the expliciﬁ rotational wave functlions of
the freely rotating molecule and <: :> denotes the mean square de-
wiation of the molecular axis from its equlllbrium orientation which
has talen to be when the SFA and MFA coincide (fig.f).

Enploying cosine functions,using trigonomeiric expansicn,we =
get (rejecting higher thanm 22¢ order terms ) : < cosae>; I-{ 92>and
(II.23) becomes |

o2 ¢ v (J J
491&‘.,111 Z\“” I“<1+ },{Em)! cos e ‘L}’ k( ) (II,.24)

Application to methane (free molecule): Since we know the explicit form

of the rotational wave functions of a freely rotating molecule, as has
been calculated and tabulated by Yamamoto and Kataoka ,we can calcunlate
the MDA using egn (II.24).

We write down the explicit rotational wave functlons taken from

an
Yamamoto:

\" (")f‘ (23+1)/ 8 L Dep O (112
r[ } P-tom E P}

(J)_,L (23 + 1)/80 ] “p, <J’ (*,€,)) (II.26)

special case when k-0, D@xﬁg,é) are the rotational matrices,which are
functions of the Euler's angles thru which the molecnle has been rota
ted from its standard orientation.

To calculate the DA ,we can also use the relations given between
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the rotational matrix elements and the spherical harmonlcs,taking the
phase conventica into account.
Using ROSE (Angular momentum theory) we find the relation of

rotational matrix to spherical harmonics, for the special case k- O,

D e 0y [ &
p,J (3‘"@”)“[2‘:?3:]? Ty (b0 (1I.27)

For the case k= O, eqn(II.24) becones

sm>“— 1- Q}P o(J)l coSs @i\P O(J) (11.28)

where now @ refers to the angle between the z and Z axes of the two

O;m
systems, Substituting (II.26),(II.27) into (II.28) we get

<0,m (J) I - <Y ]COS GSY > (II.29)

where we integrated over 5 which contributes 211 to the integral and since
(I1.27) is independent of ¥ ,we set §=0 arbitrarily.

For the case k=0, a practical method to verify our resulis is
to sum for a specific J, all over the matrix elements for the 2J+ I dif=-

ferent values of mgS0

in 2n n 3
AL J 2
Z <wcm ‘Ose\wa_m gdb 3 J“S COsle.Sl\’)@d@(L ‘w:\h‘ )
m=-J o m=o-J !
' 1 rass

T5 g ”"é( o (11.30)
s {11y " 53.-}- 1 2 J y
sace T (WLl = e ¥ (e No2o540)  (53.34)

wz-J <! m=-3 -

J=0, m=0
g ::). J: O /,‘ . 2 . o _
'\eo,o> =TI =L ¥y Cos @‘YOO>: I = 0,333 = 0,667
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J=1I, m=*I,0

Matrix elements: < YIO’COSZG‘YIOB: 0.6

/‘II +7|Cos® oft , 1=

So 2 I=1
<e'c'c.> :‘_O.l{., lwade

<@i ijg:i,‘:‘;oeg rad&
and 2 \Y{H;I\OSC}YM) = Z. <@o m) = 2

\'H - ‘._
Averifying our results.. m=

J=2, m=12,4I,0

Matrix elements: <,Y2 + 2] cos O]Ya 4 ?>-_: 0, ILI
3
{¥p 41| 008 OiYa T 1) = 0,427

sz o |cos® 0|¥, o> 0,523
So 4@3‘ ‘52 0.477 rad,

<@’f; ,”)"i- 0,572 rad.

c ‘.,2>..0 858 rad,
&

, J=2
and 2 <Yamicowl\fm>=—9éé Y {el,y =3333

veruying our results. =-2
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X
Molecule at equilibrium, v Molecule rotated at angles

€@ and ¢ from equilibrium.
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— T —Y

Equilibrium orientation of GHQ

molecule,when MFA and SFA aXes

Holecule rotated

coincide.
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CHAPTER III

NUCLEAR SPIN WAVE FUNCTIONS FOR METHANE

Nuclear spin wave fumtions){(IMI),where I is the total nuclear spin

of. the molecule and M. is the component of the above vector on z' axis of =

I
the SFF, these are obtained by Clebsch-~Gordon method by decomposing the sys-
tem into constituenis and then coupling the angular momenta of the comstitun
ent parts.

Is;operator,ocbeys the eigenvalue equations

1|1, >= (1 +1)] 1>
I, Ty y=1,|TH>
The combined vibrational and nuclear spin functions I(@g, IMI):j(@g)

){(IMI),whex-e );(Gg) is the vibrational part,are obtained taking into consi-
cieratioa how the vibrational modes transform( part I.). Here { denotes the
set of representations of the methane group,according to which the differ
ent vibrational modes £ =%,¥,2 transform and we have found them to be (§ =
T,,E (T.I.3)e

To construct the spin wave functions for methane,we separate the
system (molecule) into itwo Hydrogen molecules and then combine the wave fu
nctions of thesejacc. to rules of addition of angular momenta.

There are three different ways of partitioning the four H atoms
inte two Hydrogen molecules; that is atoms lying on planes perpedicular to
x exis (I,3) and (2,4), on planes perpedicular to y axis (I,4) and (2,3)
and perpedicular to z awxis (I,2) sud (3,4) having wave functions !II,B m1,3>

12,4 m, >.and 50 on.
Siunce I.i;j: I,0 for the Hydrogen molecules,then the total 1 satis

fying the condition :

13" 12,4‘\/‘} r L,3%%
36 '
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must have values I=2,4,0,
Detalled symmetry arguments show how the vibrational functions and
auclear spin functions must be coubined ( as it was mentioned before) in

order to preserve the overall symmetiry of the wave function undexr the ope

rations of the group T ae The result is:

KTz, dom) 5 K(Tyodm) , _;xwgzgﬂmﬁz
A(EL,00)  , Y(E2,00)
and X (Ay,2mp)

(I1I.1)

- Denote with a,spin up state and with b, spin down state of the indi
vi@ual atoms,so aigbi where i=1,2,3,4 are the up and down spin states of

the four H atomsy therefore the states iI 'MI> are the following,for I=2,

1223 ;121> 120> ,|2-1> ,|2<2p,for I=1, |11> |10%}4-1) and for I=0 the
L ooy .

The state !aa} arises when all spins are up, so we choose
4 ; _
|22y = | iL a,=ay8,8:8, (111.2)
Introduce the Operators
It = Ip+Ipe I3+ I, (I1I.4)
obeying the knowr rules
Ie|Ti> W[I(IHMLI(M,M N jrgrd>  (arm

where 'El a;=b; and I, b;=0 (III.5)

Starting from | 22> we derive all the others,operating on (III.2)

with the lowering operator (IIT.4) and taking into consilderation(III.3,5)
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I '?-2>=[I(I+’i) -u(u-1)] ¥laDy=2)21)

+ I Y(a-a ),and using (III.5) we get

1%2%3%,

and |21 __.__I|22 "'-—-(I+I+I
21> = > >2 2t I3

| 21>¢=1; (b1a2a3a4+-a1b2a3a4+ aIa2b3a4+ a;a, 3b4) and iowering again we CO=
nstruct the rest four wave functions for I=2 which are tabulated in table
(T.III.I) and are properly normalized.

“%e calculate now the functions for I=1 ,which will be orthogonal
to functions [2M£> »50 it must bezi?I]II>x:0.A function orthogonal to laﬁ)
will be one derived simply by inspection,having the same form as |2f>but in
which we have interchanged the signs of the terms; thus‘ij\__.L(bIaza3 8=
~aI > 3 44.aI 5 5 4-aI Zaqu) and using 1ower1ng operators again we obtain
-the rest two functions,which are tabulated in(T.III.I),where in ]I—I>>we
have changed the signs all over,to bring it to the same form as the }If>

‘(only a, and b,having been interchanged).

Here since T2 répresentation,is threefold we have three set of fu
nctions (TZx’TZy’ Zz), that is, another two set of triplets;these sets can
be obtained by using symmetry considerations,interchanging the signs of the
terms and finally tabulate in (T.III.I) (In |i{)y|i-1) we interchange simply
the roles of a;.and b )e

By inspection we see that these are not antisymmetric under an ar
bitrary interchange of two nuclei; e.g 1< 2 in the function é-(b az 3 4

-ab.a 3 4) glvebj%;(al N 3 a,= brasa 3 4) which is one of the other |1 0> fun-
ctions with interchanged sign.

So we see that spin triplets are neither symmetric nor antisymmet
ric under interchange of two protons,

We form now the singlet wave functicns for I=0,we require two
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sets of singlet states for the E representation, Y (£1,00) and J(E2,00).

We comstruct them again by inspection using orthogonality conside-
rations of EOO} and H O> ﬁ,l 2@} : we therefore choose lOO\}to have exactly
the same form with the |20>= with coeficients which will be calculated us

ing the fact that | 00) must be orthogonal to |10 and| 20)functions,
So

_4 . |
i QO>ME§CI(aIa2b3bL}" bIbgaBa!{.Ha Cz(a1b233b4+ bzagbsa,_})'%- 03(

. 1
+ CB(aIbabSa’ﬁ- bIaZaBbig.) i
The conditions £00}20)=400l1 07 = 0 and {00{20} =1 give us the two

singlet eigenfunctions which are found together with the others in (T.III.I)

These two singlet functions are mutualiy orthogonal.
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) 8 1€ A (s, Ima)

214 arasaza, .

4 %[biaaa3a4+ arby8za, + aIE"ZbBaLf‘i'a'Iaz%blﬂ

Y %é[blbaa_;;aq-i— bpa bz, + bIaaa§bq+ arbybsa + arbyazh, + aIa‘abBbqj
<1 i [blb2b3a4+ byby8,b, + braybzb+ aIbe."J'bl;l

=2 bIb2b5b4

i
1 T, | % :,:[(bIaaa}a‘,ﬁaIaab a,) = (aIbaaEaL}-g-aIaEathj]

L(b1a;bsa, ~arbyasD, )

4 [(a"bzbﬁbq [boazh,) = (braybsb bbb, )]
11 %2 |7 “g[(bx p8za tarbyasga ) = (agasbaa +ap 23‘3"4)]
0 J‘E(b baaﬁaqmala,,b )

-1 7z [(agbobsb +biasbab ) = (bybyashbib,bsa, )
1] % | =zl ERRE b) = (agbazerara;bss, )|
0 | (bazagh,~arbybsa,)

-1 = [Casboby 50,4 D Db ) = (brasbsbybybyash )]

O{E |1 [(aI a,bs L+b1b2a3al+) - (a1b2a3b4+b aybza )]

d(a a b,b+b.b aza, )=

ar[ boPza,+byasash,; )= S (apas byl bobyag (azazbz;"bza




CHAPTER IV
INFRA RED AND RBAMAN SPECTRA AND STRUCTURES OF CRISTALLINE

PHASES OF METHANE

INTRODUCTION

Crystalline methane is kmowa to have two phase changes at ZOQADK
passing from phase I to phase Il and at 8%k @assing to phase III for CH4;

the same happens for CD_ at 27&I°K and 22.2°% respectively.

b
Specific=heat studies show these to he:%mtype transitions and an
explapation is that they result from changes in molecular orientation.
This conclusion iz also supported by detailed studies of the Inira
red and Rawai spectra.

It is these latter studies which we shall discuss in the present

chapter,

a1
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Spectra from crystalline phases of methane:

It is known that an EM wave(radiation) falling on a molecule or solid
can induce transitions from one statlionary state to anocther thru coupl-
ing with either the dipole moment Hﬂ(IB transition), or the polarizabili
ty & (Raman induced transition) components, These effects are used to im
vestigate the vibrational energy levels of a molecule or solid and tell
its structure.

The selection rules impose the condition that a transition
between energy levels (i.e transition from one normal mode to another) is
possible if the matrix elements {m|p|n) differ from zero,where p=X,y,2,
.xa,ya,za,xy,yz,zx etc is an operator corresponding to the physical influ-
ence causing the transitiom from one state‘%}m to another‘“)n depending
upon the case,.

These integrals are different from zero if comparing the di
rect products of‘%}n and'q)m with the symmetry species of p,have

T <R, x T

P™ Y Ya
Transition.q}n>._%tpm,where n and m represent a set of quantum numbers de
scribing each normal mode ,is allowed if {n|k|m)7#0,i.e Ihf: I@nx T.x Iﬁm

for infra red and {n|x|m}#0,i.e I, < I\‘i’ x I, x I'{P for Raman induced tra
1 n m

nsitions,where = is the polariiability and Phthe dipole moment.
All these selection rules are cnly valid for a molecule in
field free space,that is,one in which no external EM forces are acting ex

cept the intersction with the light beam. The effects of the external for
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ces are even noticeable in the gas phase when the pressure is increased and
normally forbidden transitions become IR active:)
. We have also great differencies between gas,solid and liguid spec
tra noticed by Anderson and Savoié%)The freguencies of vibration are also -

very dependent upon the solvent neding?

The normal modes of tetrahedral XY, ,wvhich were calculated in I.-

4
transform as the following representations of.Td:
Q QL @s Q, ,%:,Q )
I NG %2850 % %%
AI E TE TB
e R
— — . M, My, Kz ——
Vi (symmelric mede)  Vy Vs (sﬁedvm»; mode) Yy (bending ‘“Ode)

where the transformation properties of the components of the polarizability
and of the dipole moment are given.

In CH4 and CD4 a trensition from ground level to level with QI si
ngly excited ylelds: AI x,(Ta)p_x AI:;(TZ)H which is not IR active as not =
containing the A;,but it is Raman active ( Ap x(A;) % A=)y

By similar calculations transitions from ground level to levels
of the type (QE’QB) are not expected to be IR active,while transitions to -
(Qk’ 5’“6) and (Q7,Q8,Q9) will be IR active., Likewizse it can be shown that
all transltlons from the ground state are exnected to be Raman active,

Anderson and Sa\mie(6 )measured the frequencies of the tramsitions
for CHq and CD molecules in the crystal which are tabulated in Tables I,II

UThe results are in complete agreement'with.the predictions

of the paper
based on,group theory.
The fact,;as well as the absence of IR spectral activity in the Vﬁ

and Viregions,suggest that the symmetry cf CI:II+ and CDQ molecules in the cry
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stal is substantially tetrahedral, As has been seen,the vibrational spectr
um of the free molecule in the gaseous state depends essentially on the sym
netry properﬁies of the free molecule. In the condensed state,that is in the
crystal,similar but not identical criteria apply. |

The arrangement of the molecules in the crystal lattice is given by
certain "space symmetry groups" together with the knowledge of how many mole
cules occur in the unit cell,characteristics determining the nature of the
vibrational spectra of crystalsjsuch a table is given by Savitsky and Horan
iéﬁ%or methane (table II) ,based on the X-ray.studies on crystalliné methane
done by A.Shallamacﬁ?gThese show the carbon lattice to be essentially face
centered cublic above and below the critical point 20.4o K.

The necessity now toAchoose out of the possible space groups for the
strueture of phase II the ones which put the carbon atoms on face centered
positions (allowing three infrared active components for\ﬁg,led Savitsky
and Hornig to hexagonal and tetragonal structures with two or four molecules
per unit cell in which the carbon atoms lie on sites whose syﬁmetries are
subgroups of Td and fit both their infrared data and thg packing requiremen
ts;but is found that gfoups Dag and Dag (from tableIIYQQith two molecules
per unit cell on sites of DZ and CEv symmetry respectivelly,are most faver
=ahle.

However,the group C2v is rejected =ince it predicts infrared activi
ty for\)I and Va and these were not observed even in very thin.filmsﬁé)

Hence the space groups Daz and Daz represent the best packing and
therefore the crystal in phase II has most probably this structure.

In addition it is also consistent with the Raman results of Ander-
&)

son and Savole,

For the problem of phase I,the fact that the position of the peaks
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does not change,as Savitsky and Horniéﬁ%ave noticed ,on warming,but the
bands broaden significantly (width at 32°K of CH, is 9.Tem™* while at 22°
is only Sem™ L) supports the evidence for disorder; Since the structure is
disordered it canno® characterized by a space group (except in ap average
sense) as phase II.
In phase III we noticé that‘m@re»peaks exist in the absorption spec

tra,which means we have further splitting of some lines and comsequently a
spagce group of lower symﬁetrygbut this is not exactly the case.

On the one hand V. is not further splitswhile\)4 inm the IR spectrum

3

is split into seven componsunts.

Lowering the symmetry from T, to D,, splits the triply degenerate\!4

d
mode into a singly degenerate (type Ba) and a doubly degenerate (type E)mo=
de, Furthermore 1f the symmetry changes to Dagthis mode splits into three
singly degenerate modes (types BI,BEQBB)@

In elther ease table Ilmashaws that there are 2 molecules per unit
cell,so that the maximum pumber of lines that can oceur,taking into account
the Davydov splitting,is 4 or 6 respectively. So a possible explanation is
to require more molecules per primitive eelly,but in anyway the situation

regarding phase IIT is unclearg,since it is not even known whether the face

centered structure is retained in this phase.
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