
A. Herrero IAC XXIX WS 

XXIX IAC Winter School of Astrophysics 

     APPLICATIONS OF  

      RADIATIVE TRANSFER  
                                                       TO STELLAR AND PLANETARY ATMOSPHERES 

Artemio Herrero, November 13-14, 2017 

Fundamental physical aspects of radiative transfer 
I.- The Equation of Radiative Transfer 



A. Herrero IAC XXIX WS 

Bibliography 

D.F. Gray (2002): Observation and analysis of stellar photospheres 
I. Hubeny & D. Mihalas (2014): Theory of stellar atmospheres 
D. Mihalas (1978): Stellar Atmospheres 
R.J. Rutten: Radiative transfer in stellar atmospheres, web lectures notes 

Others: 
Aller (1952): The atmospheres of the Sun and stars 
Unsöld (1955): Physik der Sternatmosphären 
K.R. Lang (2006): Astrophysical Formulae 

Warning: Not much time for lectures. Fell free to ask questions during the WS  



A. Herrero IAC XXIX WS 

Outline 

I. The Radiative Transfer Equation 

•  Introduction 

•  Optical depth and source function 
•  Formal Solution of the RTE 
•  The bottom of the atmosphere: diffusion approximation 
•   The surface of the atmosphere: Eddington-Barbier 

approximation 
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The energy emitted by the stars has properties that we can register 
•  A smooth variation with the wavelength (that we call “the continuum”) 
•  Spectral features that vary rapidly with wavelength (“spectral lines”) and 

that reflect the physical conditions in the stellar (or planetary) 
atmosphere 

A general scheme: 

Energy is generated in the 
stellar interior by nuclear 

reactions mainly in form of 
photons 

Radiation interacts with 
matter and the properties 
of both of them change 

during interaction 

When radiation reaches the outermost 
layers it suffers a last interaction with 

matter and scapes 

The observed spectrum 
carries information on the 
physical conditions found 
by radiation in its way out 

Intro 
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Introduction 
We will assume the macroscopic view presented by Prof. L. Crivellari 

•  Equation of radiative transfer 

•  Specific Intensity 

-  Distance independent 

•  Emission and absorption coefficients 

•  Note that the inverse of the absorption coefficient is the mean free path, 
and that both coefficients may be anisotropic  

 
I !n,v, t, !r( ) = lim

ΔA,ΔΩ,Δt ,Δv→0

ΔEv

ΔA cosθΔΩΔvΔt
= dEv

dA cosθdΩdvdt

 

∂
∂t

Iv
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⎛
⎝⎜

⎞
⎠⎟ +∇

→ Iv
c
c!n⎛

⎝⎜
⎞
⎠⎟ = ηv − χv Iv

ηv = lim
ΔV ,ΔΩ,Δt ,Δv→0

ΔEv

ΔVΔΩΔvΔt
δ Iv
Iv

= −χvδs
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Introduction 

1.  Stationary atmosphere 

2.  Plane-parallel geometry 
The atmosphere is composed of parallel planes. The 
angle beteen the light ray propagation direction and 
the normal to the surface is constant 

3.  Plane-parallel and stationary atmosphere 

 

∂Iv
∂t

= 0

∇
→
Iv
!n( ) = ηv − χv Iv =

∂Iv
∂x
!nx ⋅
!n + ∂Iv

∂y
!ny ⋅
!n + ∂Iv

∂z
!nz ⋅
!n

 

∂Iv
∂z

= ∂Iv
∂y

= 0 y !nx ⋅
!n( ) = cosθ = µ

1
c
∂Iv
∂t

+ µ ∂Iv
∂x

= ηv − χv Iv

µ dIv
dx

= ηv − χv Iv

dx 

R 

  
!n

θ   
!x

ds 

Let’s consider some particular cases of the RTE 
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Introduction 

4.  Spherical geometry 
Now we are interested in the radial and angular coordinates (we assume 

azimutal simmetry 

1
c
∂Iv
∂t

+ µ ∂Iv
∂r

+
1− µ2( )
r

∂Iv
∂µ

= ηv − χv Iv

θ 
θ' 

r1 

r2 

Progation direction 

Normal to the 
surface in r1 

Normal to the 
surface in r2 

In spherical geometry the angle between the light ray propagation direction and the 
normal to surface changes when the ray propagates 
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Introduction 
Intensity moments in plane parallel geometry (Eddington formulation) 

•  Mean intensity 

•  Radiative flux 

•  Second moment 

u = 4π
c
J

 

Jv (
!r , t) = 1

4π
Iv"∫ (!n, !r , t)dΩ⇒ Jv =

1
2

Ivµ
0

−1

+1

∫ dµ

we speak of emergent intensity (I + ) when µ>0 and of incident intensity (I − ) when µ<0

  

!
Fv (
!r ,t) = 1

4π
Iv (
!n, !r ,t)"∫ !ndΩ⇒ Hv =

Fv

4π
= 1

2
Iv

−1

+1

∫ µdµ

Hv  is the Eddington flux. Sometimes, also the 

astrophysical flux is used: Fv =
Fv

π
= Hv

4

 
T v (
!r , t) = 1

c
Iv (
!n, !r , t)"∫ (!n!n)dΩ⇒ Kv =

1
2

Iv µ
2

−1

+1

∫ dµ PR =
1
3
u K = 1

3
J

Related to 
energy density 

Related to radiation 
pressure 

 

Fv
+ = πBv F+ =σTeff

4

L = 4πR2σTeff
4

Related to the total 
amount of energy 
crossing a surface  
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Introduction 

Some flux properties(1): 

  

Fv = Fv
+ − Fv

− = 2π Iv
0

+1

∫ µdµ − 2π Iv
−1

0

∫ µdµ⇒ Fv
+ = 2π Iv

0

+1

∫ µdµ

assuming an isotropic field

Fv
+ = 2π Iv µdµ

0

+1

∫ = 2π Iv
µ2

2
⎡
⎣⎢

⎤
⎦⎥0

+1

= π Iv = if Iv = Bv{ } = πBv
Fv = Fv

+ − Fv
− = 0

The total amount of energy flux scaping the star will be

F+ = Fv
+

0

∞

∫ dv = π Iv
+

0

∞

∫ dv =  assuming again Iv = Bv{ } = πB =σT 4

from where we can define the effective temperature of the star as
F+ =σTeff

4

and the total amount of energy leaving the star per unit time will be

L = F+!∫ dS = 4πR*
2σTeff

4
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Introduction 

Some flux properties(2): 

   

By energy conservation the flux reaching an external observer at Earth 
will decay with the square of the distance
4πR*

2F+ = 4πd 2 fobs

Thus

F+ =σTeff
4 = d

R
⎛
⎝⎜

⎞
⎠⎟

2

fobs

which can be used to determine any of the magnitudes, assuming we know
the others (and that we know the changes suffered by radiation in their travel 
from the star to the Earth) 

In plane parallel geometry, the net flux is conserved.
In spherical geometry, it decreases with r2  
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Optical Depth 

From the expression of the absorption coefficient we have 

dIv
Iv

= −χvds

the solution of this equation is

Iv(s) = Iv(0)e
− χv ds

0

s

∫

We define the optical depth as

τ v = χv ds
0

s

∫
Iv(s) = Iv(0)e−τ v

We see that for τ v >1 the emergent intensity decays rapidly.
An observer will see mostly (but not only!) radiation coming from τ v ≤1
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Optical depth 

 

An important property is that photons will travel a mean optical distance Δτ v ∼1

The mean value of a variable x is:    x =
f x( )xdx∫
f x( )dx∫

Thus        τ v =
e−τ vτ v dτ v

0

∞

∫

e−τ v dτ v
0

∞

∫
   (for simplicity, now we don't write the subindex v)

The first integral is:

e−ττ dτ
0

∞

∫ = u = τ → du = dτ
dυ = e−τdτ →υ = −e−τ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= −τe−τ⎡⎣ ⎤⎦0

∞
− −e−τ( )

0

∞

∫ dτ =

= τe−τ⎡⎣ ⎤⎦∞
0
+ e−τ dτ

0

∞

∫ = 0 + −e−τ⎡⎣ ⎤⎦0

∞
= e−τ⎡⎣ ⎤⎦∞

0
= 1

and the second, e−τ dτ
0

∞

∫ = 1

Thus τ v = 1



A. Herrero IAC XXIX WS 

Optical depth 

If we have a medium (like a stellar atmosphere of semi-infinite optical 
depth) photons will come from τν = 1 

• Photons emitted at larger optical depth 
are absorbed in the medium 
• Photons that escape come from a range 
of taus, whose mean value is 1. 
• This happens for all frequencies 
• The geometrical depth from which 
photons come will depend on frequency : 

dτ v =κ vds

  τ v = 0 τ v = ∞

1 1 
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Source function 

The optical depth is a convenient variable to study radiative transfer 
phenomena 
•  We reformulate the radiative transfer equation. For a given direction 

•  The problem of knowing the emergent intensity is solved if we know Sν(τν) 

  

µ
dIν
dx

= ην − χv Iν

with dτν = −χνdx we have    µ
dIν
dτν

= Iν −
ην

χν

µ
dIν
dτν

= Iν − Sν       

where Sν  is the so-called source function, that can be interpreted 
as the energy emitted along a photon mean free path
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Source function – some cases 

Thermodynamic Equilibrium 
•  We know that in TE (Kirchhoff law) 

•  In TE the source function is the Planck function and is completely linked to T 

Local Thermodynamic Equlibrium 
•  We know that (in general) T decreases outwards in the stellar atmosphere 
•  Let’s assume that we can set the local source function to the Planck function 

at the local temperature 

•  If we know the temperature structure, the RTE can be solved 

  

ηv

χv

= Sv = Bv (T )

  

ηv

χv

= Sv = Bv (T (τ v )) at any point in the atmosphere

       ⇒ complete coupling of the source function to temperature
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Source function – some cases 

Provided by Rob Jeffries in https://physics.stackexchange.com/questions/235157/ 
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Source function – some cases 

Coherent scattering 
•  We have a photon scattered by a particle (usually a free electron). What 

will be the source function? 

   

Be εv  and σ v  the emission and absorption 
coefficients due to coherent scattering. The energy 
"emitted" and "absorbed" in all directions will be

Ev
e = εv!∫ dΩ Ev

a = σ v!∫ IvdΩ

As photons have simply been scattered, we have

Ev
e = Ev

a ⇒ εv!∫ dΩ = σ v!∫ IvdΩ

Assuming isotropic coefficients:

εv

σ v

=
Iv dΩ!∫
dΩ!∫

= 1
4π

Iv dΩ!∫ = Jv = Sv

Scattering tends to decouple the source function 
from the local conditions

e- 

“absorbed” 

“emitted” 

T1 

T2 

T3 

T4 

T5 

The radiation field at T1 has 
characteristic of conditions at T5 
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Source function – some cases 

   

If the scattering is non-coherent or non-isotropic 
it will couple different frequencies and directions:

Ev
em = εv ( ′n )

Ω
!∫ dΩ

Ev
abs = d ′v σ (v, ′v ;n, ′n )I ′v ( ′n )dΩ

Ω
!∫

0

∞

∫
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Let’s have a simple view of what happens. Assume we are in a layer 
between two points, 1 and 2, with τ2 > τ1 

The emergent intensity will 
be I0 e-τ, being τ the optical 

depth between 1 and 2 

Energy emitted within our 
layer, attenuated within the 

same layer. From each 
point c escapes           , 

being τc  the optical depth 
between la profundidad 
óptica entre 1 and c. We 
have to integrate to all 

points in the layer. 

Both components constitute 
the incident intensity for the 

next layer 

Ie = I0e
−τ + Sce

−τ c
1

2

∫ dτ

1 2 

 Sce
−τ c

I0 

Formal solution of the transfer equation 

Incident intensity, I0 , that 
will be attenuated in our 

layer. 
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Assume a layer with an outer point τ1 and an inner 
point τ2 > τ1, so that radiation travels from τ2 to τ1 
forming an angle θ with the normal to the surface 

•  The intensity emerging in τ1 will be 

•  In a semi-infinite atmosphere with τ1=0 and τ2=∞ 

Δτ/µ 
τ1 

τ2 

θ 

tν 

  
Iv (τ1,µ) = Iv (τ 2 ,µ)e−(τ2−τ1 ) µ + Sv (tv )

τ1

τ2

∫ e−(tv −τ1 ) µ dtv

µ

  
Iv (τ v = 0,µ) = Sv

0

∞

∫ (tv )e− tv µ dtv

µ

Formal solution of the transfer equation 

With S known, the RTE can be solved either in integral or differential form.  

In differential form we had a 
first-order linear differential equation

µ dIv
dτ v

= Iv − Sv
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Iv
+ τ v ,µ( ) = S tv( )

τ v

∞

∫ e− tv −τ v( ) µ dtv

µ
; µ > 0

Iv
− τ v ,µ( ) = S tv( )

0

τ v∫ e− tv −τ v( ) µ dtv

µ
; µ < 0

for intensities coming from the bottom and the surface of the atmosphere.

In the first integral, tv ≥ τ v ,whereas in the second tv ≤ τ v

In an intermediate point in the atmosphere (τν) we will have the 
emergent intensity, I+ (from τ’ν>τν) and incident itensity, I- (from τ’ν<τν)  

The Schwarzschild-Milne equations 

I- 

θ 

θ’ 
(=180-θ) 

I+ 

τν 
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Integrating over angle we obtain the intensity moments

Iv−1

+1

∫ τ v ,µ( )µ ndµ = µ n dµ
0

+1

∫ S tv( )e− tv−τ v( ) µ dtv

µτ v

∞

∫ + µ n dµ
−1

0

∫ S tv( )e− τ v−tv( ) −µ dtv

−µ0

τ v∫ =

=
in the first term: 1 µ =ω ;µ = 0→ω = ∞;dµ = − dω ω 2

and in the second one:  −1 µ =ω ;µ = 0→ω = ∞;dµ = dω ω 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

= S tv( )
τ v

∞

∫ dtv

e− tv−τ v( )ω

ω n+11

∞

∫ dω + −1( )n
S tv( )

0

τ v∫ dtv

e− τ v−tv( )ω

ω n+1+1

∞

∫ dω =

= S tv( )
τ v

∞

∫ En+1 tv −τ v( )dtv + −1( )n
S tv( )

0

τ v∫ En+1 τ v − tv( )dtv

where the exponential integrals are defined as

En x( ) ≡ e− xω

ω n1

∞

∫ dω = e− x µ

0

1

∫ µ n−1 dµ
µ

that assymptotically behave as (x≫1):

En x( ) = e− x

x
1− n

x
+ n(n+1)

x2 + ...
⎡

⎣⎢
⎤

⎦⎥
≈ e− x

x

The Schwarzschild-Milne equations 
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This way we obtain the Schwarzschild-Milne equations:

Jv (τ v ) = 1
2

Iv (τ v ,µ)
−1

+1

∫ dµ =

= 1
2

S(tv ) E1(tv −τ v ) dtvτ v

∞

∫ + 1
2

S(tv ) E1(τ v − tv ) dtv0

τ v∫ =

= 1
2

S(tv ) E1( tv −τ v ) dtv0

∞

∫

πFv (τ v ) = 2π S(tv ) E2 (tv −τ v ) dtvτ v

∞

∫ − 2π S(tv ) E2 (τ v − tv ) dtv0

τ v∫
Kv (τ v ) = 1

2
S(tv ) E3( tv −τ v ) dtv0

∞

∫

The Schwarzschild-Milne equations 

Source function Weight given to the source 
function of each point 

Depending on the behaviour of S it can be J>S 
or J<S at a given point (particularly the surface) 
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This can be written in operator form. Defining the so-called Lambda Operator

Λτ f (t)⎡⎣ ⎤⎦ ≡
1
2

f (t) E
0

∞

∫ 1
( t −τ )dt

we get

Λτ v
Sv (tv )⎡⎣ ⎤⎦ =

1
2

Sv (tv ) E
0

∞

∫ 1
( tv −τ v )dtv = Jv (τ v )

The Schwarzschild-Milne equations 
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At the bottom: the diffusion approximation 

  

Assume that the source function can be expanded as:

Sv (τ v ) =
(tv −τ v )n

n!n=0

∞

∑ d nSv (tv )
dtv

n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

Substituting in the emergent and incident instensity expressions:

Iv
+ (τ v ,µ) = Svτ v

∞

∫ (tv )e−(tv−τ v ) µ dtv µ =
(tv −τ v )n

n!n=0

∞

∑ d nSv (tv )
dtv

n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟τ v

∞

∫ e−(tv−τ v ) µ dtv µ

Iv
− (τ v ,µ) = Sv0

τ v∫ (tv )e−(tv−τ v ) µ dtv µ =
(tv −τ v )n

n!n=0

∞

∑ d nSv (tv )
dtv

n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

τ v∫ e−(tv−τ v ) µ dtv µ

For the emergent intensity we obtain:

Iv
+ (τ v ,µ) = µ n d nSv (tv )

dtv
n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

n=0

∞

∑

for Iv
− (τ v ,µ) however we obtain a more complicated expression (with µ<0):

Iv
− (τ v ,µ) = µ n d nSv (tv )

dtv
n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

n=0

∞

∑ 1− e−(τ v µ )

n!
(τ v µ )n + n(τ v µ )n−1 + ...+ n!{ }⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where for τ v >>  the expression 1− e−(τ v µ )

n!
(τ v µ )n + n(τ v µ )n−1 + ...+ n!{ }⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 tends to 1.
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then

Iv (τ v ,µ) = Iv
+ (τ v ,µ)+ Iv

− (τ v ,µ) = µ n d nSv (tv )
dtv

n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

n=0

∞

∑

Iv (τ v ,µ) = Sv (τ v )+ µ
dSv (tv )

dtv

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ µ2 d 2Sv (tv )
dtv

2

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ µ3 d 3Sv (tv )
dtv

3

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ ...

for −1≤ µ ≤ +1 when τ v >>1 (and for µ ≥ 0 at any τ v )

Now we can calculate the mean intensity:

Jv (τ v ) = 1
2

µ n d nSv (tv )
dtv

n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

n=0

∞

∑−1

+1

∫ dµ = 1
2

d nSv (tv )
dtv

n

⎡

⎣
⎢

⎤

⎦
⎥
τ v

n=0

∞

∑ µ n dµ =
−1

+1

∫
1

2k +1
d (2k )Sv (tv )

dtv
(2k )

⎡

⎣
⎢

⎤

⎦
⎥
τ v

k=0

∞

∑

if we only consider the first terms:

Jv (τ v ) = Sv (τ v )+ 1
3

d 2Sv (tv )
dtv

2

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ ...

At the bottom: the diffusion approximation 
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so that, at enough depth in the atmosphere and retaining only the first terms:

Iv (τ v ,µ) = Sv (τ v )+ µ
dSv (tv )

dtv

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ ...⇒ Iv (τ v ,µ) ≈ Sv (τ v )+ µ
dSv (tv )

dtv

⎡

⎣
⎢

⎤

⎦
⎥
τ v

Jv (τ v ) = Sv (τ v )+ 1
3

d 2Sv (tv )
dtv

2

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ ...⇒ Jv (τ v ) ≈ Sv (τ v )

Fv (τ v ) = 4
3

dSv (tv )
dtv

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ 4
5

d 3Sv (tv )
dtv

3

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ ... ⇒ Fv (τ v ) ≈ 4
3

dSv (tv )
dtv

⎡

⎣
⎢

⎤

⎦
⎥
τ v

(astrophysical flux)

Kv (τ v ) = 1
3

Sv (τ v )+ 1
5

d 2Sv (tv )
dtv

2

⎡

⎣
⎢

⎤

⎦
⎥
τ v

+ ...⇒ Kv (τ v ) ≈ 1
3

Sv (τ v )

At the bottom: the diffusion approximation 
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if we assume LTE, then Sv (τ v ) = Bv (τ v )

Iv (τ v ,µ) ≈ Bv (τ v )+ µ
dBv (tv )

dtv

⎡

⎣
⎢

⎤

⎦
⎥
τ v

                 Jv (τ v ) ≈ Bv (τ v )

Fv (τ v ) ≈ 4
3

dBv (tv )
dtv

⎡

⎣
⎢

⎤

⎦
⎥
τ v

                                   Kv (τ v ) ≈ 1
3

Bv (τ v )

where the flux expression has the form of a diffusion process: the flux transported is equal
to the product of a diffusion coefficient times the spatial gradient of a physical magnitude
The first and third moment of the intensity have the same relation than in TE:
Kv (τ v )
Jv (τ v )

= 1
3

The K/J= f= 1/3 ratio is known as Eddington factor. It can be generalized for zones where the 
difussion approximation is not valid. We talk then of variable Eddington factors, f(τ) 

At the bottom: the diffusion approximation 

At the bottom of the atmosphere we recover a nearly isotropic field 
and conditions close to TE, provided that the optical depth is 

sufficiently large (radiation is trapped) 
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Assume now that the source function has the simple form
Sv τ v( ) = S0,v + S1,vτ v

then the emergent intensity from a semi-infinite atmosphere will be

Iv (0,µ) = S0 + S1τ v( )
0

∞

∫ e−τ v µ dτ v µ = S0 + S1µ = Sv (τ v = µ)

At the surface: the Eddington-Barbier approx. 

Eddington-Barbier Relationship for the specific intensity:  
the emergent intensity is characteristic of the value of the 
source function at optical depth unity along the line of view 

For most stars we have no specific intensities, but fluxes. In that case

Hv
+ 0,v( ) = 1

4
S0,v +

2
3
S1,v

⎛
⎝⎜

⎞
⎠⎟ =

1
4
Sv τ v =

2
3

⎛
⎝⎜

⎞
⎠⎟

Eddington-Barbier Relationship for the flux:  
The stellar flux is characteristic of the value of the source 

function at optical depth 2/3 along the line of view 
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➣ 

This allows us to know the source function 
at different heights in the atmosphere just 

by measuring the specific intensity 

Using different wavelengths we map 
different zones (that will actually overlap) 

But we need spatial resolution 

At the surface: the Eddington-Barbier approx. 
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The Eddington-Barbier relationship predicts that for Sν = A+ Bτν

Iν 0,µ( ) = Sν τν = µ( ) = A+ Bµ

and thus

Iν 0,µ( ) Iν 0,1( ) = A+ Bµ
A+ B

≡ f (θ )

Assume (arbitrarily!) A = B = 1

Iν 0,µ( ) Iν 0,1( ) = 1+ cosθ
2

= 0.5+ 0.5cosθ = (1− 0.5+ 0.5cosθ )

Actually, a typical limb-darkening law adopts the form
Iν 0,µ( ) = Iν 0,1( ) 1− ε + ε cosθ( )
where ε  varies with wavelength and stellar temperature 
(for the Sun in the visible, ε=0.6; see Gray Fig. 17.6)

Note that the form of the source function implies that it increases inwards, 
i.e., the temperature increases inwards assuming a connection between 
source function and temperature (like in LTE, but not limited to LTE) 

At the surface: the limb darkening 
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Note the role of T stratification in line formation 
 

we see radiation coming from τ v ∼1⇒
τ v
c ∼1=κ v

csc
τ v
L ∼1=κ v

L sL
Because spectral lines (bound-bound transitions) are more optically thick 
than continuum (bound-free transitions), 
κ v

L ≫κ v
c ⇒ sv

L ≪ sv
c

therefore the line forms (radiation escapes) in higher layers than the continuum

At the surface: intuitive line formation 


