
CHAPTER

6 Applications of the
Integral

6.1 Area Between Two Curves

Preliminary Questions

1. Suppose that f (x) ≥ 0 and g(x) ≤ 0. True or False: the integral
∫ b

a ( f (x) − g(x)) dx is still
equal to the area between the graphs of f and g.

2. Two airplanes take off simultaneously and travel east. Their velocities are v1(t) and v2(t).
What is the physical interpretation of the area between the graphs of v1(t) and v2(t)?

Exercises

1. Find the area of the region between y = 3x2 + 12 and y = 4x + 4 over [−3, 3] (Figure 1).

1 3—3

25

50 y = 3x2 + 12

y = 4x + 4

Figure 1

We have∫ 3

−3

(
3x2 + 12

) − (4x + 4) dx = ∫ 3

−3

(
3x2 − 4x + 8

)
dx = (

x3 − 2x2 + 8x
)∣∣3

−3
= 102.

2.
Compute the area of the region lying below y = 2 − x2 and above y = −2 over [−2, 2]
(Figure 2 (A)).3. Let f (x) = 2 − x2 and g(x) = x as in Figure 2 (B).
(a) Determine the points of intersection of the graphs of f and g.
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2 Chapter 6 Applications of the Integral

(b) Compute the area of the region below the graph of f and above the graph of g.

(a) f (x) = g(x) gives 2 − x2 = x which simplifies to 0 = x2 + x − 2 = (x + 2)(x − 1)

and thus f (x) and g(x) intersect at x = −2 and x = 1.

(b) We have
∫ 1

−2

(
2 − x2

) − (x) dx = (
2x − 1

3
x3 − 1

2
x2

)∣∣1

−2
= 4.5.

-2 2 -2 1
-2

(A) (B)

y = x
y = 2 - x2

-2

Figure 2

4.

Let f (x) = 8x − 10 and g(x) = x2 − 4x + 10.
(a) Determine the points of intersection of the graphs of f and g.
(b) Compute the area of the region below the graph of f and above the graph of g.

5. Sketch the region enclosed by the graphs of y = 2x and y = x2 − 8 and compute its area.

The graphs intersect at x = 4 and x = −2. We have∫ 4

−2 (2x) − (
x2 − 8

)
dx = (− 1

3 x3 + x2 + 8x
)∣∣4

−2
= 56.

6.

Refer to Figure 3.
(a) Find the area of the region between y = sin x and y = cos x over [0, π

4
].

(b) Find the area of the region between y = sin x and y = cos x over [ π

4 , π

2 ].
7. Calculate the area between the graphs of sin x and cos x over the interval [0, π ] (see Figure

3).

Using the result of the previous exercise, we have∫ π/4

0 (cos x) − (sin x) dx + ∫ π

π/4 (sin x) − (cos x) dx =(√
2 − 1

)
+ (− cos x + sin x)|ππ/4 =

(√
2 − 1

)
+ 1 = √

2 = 1.414214.

sin x

cos x
4
π

2
π

4
3π π

Figure 3
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In Exercises 8–11, let f (x) = 19 − 3x and g(x) = 2x + 4 as in Figure 4.

8.
Find the area of the region lying below the lines y = f (x), y = g(x), above the x-axis,

and to the right of the y-axis.9. Find the area of the region between the lines y = f (x) and y = g(x) over the interval [4, 6].
We have

∫ 6

4 (2x + 4) − (19 − 3x) dx = ∫ 6

4 (5x − 15) dx = (
5
2
x2 − 15x

)∣∣6

4
= 20.

10.
Find the area of the region between the lines y = f (x) and y = g(x) over the interval
[2, 4].11. Find the area of the region below y = f (x), above y = g(x), and to the right of the y-axis.

1 3 5

5

10

15
g(x) = 2x + 4

f(x) = 19 - 3x

Figure 4

We have
∫ 3

0 (19 − 3x) − (2x + 4) dx = ∫ 3

0 (15 − 5x) dx = (
15x − 5

2
x2

)∣∣3

0
= 22.5.

In Exercises 12–15, refer to the curves y = 20 + x − x2 and y = x2 − 5x shown in Figure 5.

12.
Which is the upper curve over the interval [1, 3]? Find the area between the curves over

[1, 3].13. Which is the upper curve over the interval [6, 8]? Find the area between the curves over
[6, 8].
The upper curve on the interval [1, 3] is y = x2 − 5x . We have∫ 8

6

(
x2 − 5x

) − (
20 + x − x2

)
dx = ∫ 8

6

(
2x2 − 6x − 20

)
dx = (

2
3
x3 − 3x2 − 20x

)∣∣8

6
=

73.333333.
14.

Find the area of the region enclosed by the two curves.
15. Compute the area of the region between the two curves over [4, 8] as a sum of two integrals.

–4 5 8

y = 20 + x – x2

y = x2 – 5x

Figure 5

We have
∫ 5

4

(
20 + x − x2

) − (
x2 − 5x

)
dx + ∫ 8

5

(
x2 − 5x

) − (
20 + x − x2

)
dx =∫ 5

4

(
20 + 6x − 2x2

)
dx + ∫ 8

5

(
2x2 − 6x − 20

)
dx =(

20x + 3x2 − 2
3 x3

)∣∣5

4
+ (

2
3 x3 − 3x2 − 20x

)∣∣8

5
= 254.

16.
Sketch the region between y = x3 + 1 and y = 4x + 4 over [−3, 3] and compute its area.
Hint: Be careful in determining the intervals on which one curve lies above the other.
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17. Calculate the shaded area in Figure 6.

1 2

4

2

y = x + 2

y = 2 — x

y = x2 

Figure 6

18.
Calculate the shaded area in Figure 7.

y = cos x

,

π
6

π
6

3
2

π
3

π
2

( )

,π
3

1
2( )

Figure 7

19. Find the area of the shaded region in Figure 8.

—2

2

y = x3 — 2x2 + 10

y = 3x2 + 4x — 10

Figure 8

We have
∫ 2

−2

(
x3 − 2x2 + 10

) − (
3x2 + 4x − 10

)
dx = ∫ 2

−2

(
x3 − 5x2 − 4x + 20

)
dx =(

1
4
x4 − 5

3
x3 − 2x2 + 20x

)∣∣2

−2
= 53.333333.

20.
(Adapted from the article “Miami University: An Alternative Calculus” by Tom Farmer
and Fred Gass, in Priming the Calculus Pump, Note 17, Ed. Thomas Tucker, MAA 1990.)
Express the area of the shaded region in Figure 9 as a sum of three integrals involving the
functions f and g.

Figure 9

21. Find the area of the region enclosed by the curves y = x3 − 6x and y = 8 − 3x2.

The two curves intersect at x = −4, x = −1 and x = 2. Thus we have∫ −1

−4

(
x3 − 6x

) − (
8 − 3x2

)
dx + ∫ 2

−1

(
8 − 3x2

) − (
x3 − 6x

)
dx =∫ −1

−4

(
x3 + 3x2 − 6x − 8

)
dx + ∫ 2

−1

(−x3 − 3x2 + 6x + 8
)

dx =(
1
4
x4 + x3 − 3x2 − 8x

)∣∣−1

−4
+ (− 1

4
x4 − x3 + 3x2 + 8x

)∣∣2

−1
= 32.5.

22.
Find the area of the region enclosed by the semicubical parabola y2 = x3 and the line
x = 1.

Figure 10
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23. Find the area of the shaded region in Figure 11.

—1

1

2
π π

y = sin x

y = sin 2x

Figure 11

We have
∫ π/3

0 (sin 2x − sin x) dx + ∫ π

π/3 (sin x − sin 2x) dx =(− 1
2

cos 2x + cos x
)∣∣π/3

0
+ (− cos x + 1

2
cos 2x

)∣∣π
π/3

= 2.5.
24.

Find the area of the region in Figure 12 between the graphs of y = x
√

1 − x2 and y = 1
2
x .

Figure 12

25. Find the area of the shaded region in Figure 13.

2–1 y = x3 – 6x

y = 8 – 3x2

Figure 13

We have
∫ 2

−1

(
8 − 3x2

) − (
x3 − 6x

)
dx = ∫ 2

−1

(−x3 − 3x2 + 6x + 8
)

dx =(− 1
4 x4 − x3 + 3x2 + 8x

)∣∣2

−1
= 20.25.

26.
Find the area of the shaded region in Figure 14.

Figure 14
In Exercises 27–30, find the area of the shaded region by integrating along the y-axis.

27.

x = 5

9 – y2

Figure 15 Figure for Problem 27.

We have
∫ 2

−2

(
9 − y2 − 5

)
dy = ∫ 2

−2

(
4 − y2

)
dy = (

4y − 1
3

y3
)∣∣2

−2
= 10.666667.
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28.

Figure 16 Figure for Problem 28.

29.

x = y2 — 5

x = 3 — y2

Figure 17 Figure for Problem 29.

We have
∫ 2

−2

(
3 − y2

) − (
y2 − 5

)
dy = ∫ 2

−2

(
8 − 2y2

)
dy = (

8y − 2
3

y3
)∣∣2

−2
= 21.333333.

30.
Figure 18 shows the graphs of x = y3 − 26y + 10 and x = 40 − 6y2 − y3. Match the
equations with the curve and compute the area of the shaded region.

Figure 18 Figure for Problem 30.

31. Find the area of the shaded region in Figure 17 by integrating with respect to the x-axis.

We have∫ −1

−5

(
2
√

x + 5
)

dx + ∫ 3

−1

(
2
√

3 − x
)

dx = (
4
3 (x + 5)3/2

)∣∣−1

−5
− (

4
3 (3 − x)3/2

)∣∣3

−1
= 0.

In Exercises 32–48, sketch the region enclosed by the curves and compute its area.

32.
y = 4 − x2, y = x2 − 4

33. y = x2 − 6, y = 6 − x3, y-axis

We have
∫ 2

0

(
6 − x3

) − (
x2 − 6

)
dx = ∫ 2

0

(−x3 − x2 + 12
)

dx =(− 1
4 x4 − 1

3 x3 + 12x
)∣∣2

0
= 13.333333.

34.
x + y = 1, x − y = 1, x = 0

35. x + y = 4, x − y = 0, y + 3x = 4

We have
∫ 1

0 (4 − x) − (4 − 3x) dx + ∫ 2

1 (4 − x) − (x) dx =∫ 1

0 (2x) dx + ∫ 2

1 (4 − 2x) dx = (
x2

)∣∣1

0
+ (

4x − x2
)∣∣2

1
= 2.
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Region is the large light-colored triangle.
36.

y = 3x−3, y = 4 − x, y = x/3
37. y = 2 − √

x, y = √
x, x = 0

The curves intersect at x = 1. Thus we have∫ 1

0

(
2 − √

x − √
x
)

dx = ∫ 1

0

(
2 − 2

√
x
)

dx = (
2x − 4

3 x3/2
)∣∣1

0
= 2

3 .

Region is light-colored.
38.

y = x
√

x − 2, y = −x
√

x − 2.
39. y = |x |, y = x2 − 6

We have
∫ 0

−3 (−x) − (
x2 − 6

)
dx + ∫ 3

0 (x) − (
x2 − 6

)
dx =(− 1

2
x2 − 1

3
x3 + 6x

)∣∣0

−3
+ (

1
2
x2 − 1

3
x3 + 6x

)∣∣3

0
= 27.

Light-colored region.
40.

x = |y|, x = 6 − y2

41. x = |y|, x = 1 − |y|
We have

∫ 0

−1/2 (1 + y) − (−y) dy + ∫ 1/2

0 (1 − y) − (y) dy =∫ 0

−1/2 (1 + 2y) dy + ∫ 1/2

0 (1 − 2y) dy = (
y + y2

)∣∣0

−1/2
+ (

y − y2
)∣∣1/2

0
= 0.5.
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42.
x = 12 − y, x = y, x = 2y

43. y = x3 − 18x, y + 2x = 0

We have
∫ 0

−4

(
x3 − 18x

) − (−2x) dx + ∫ 4

0 (−2x) − (
x3 − 18x

)
dx =∫ 0

−4

(
x3 − 16x

)
dx + ∫ 4

0

(−x3 + 16x
)

dy = (
1
4 x4 − 8x2

)∣∣0

−4
+ (− 1

4 x4 + 8x2
)∣∣4

0
= 128.

Region is lighter-colored area.
44.

x = 2y, x + 1 = (y − 1)2

45. x + y = 1, x1/2 + y1/2 = 1

We have
∫ 1

0 (1 − x) −
((

1 − √
x
)2

)
dx = ∫ 1

0

(−2x + 2
√

x
)

dx = (−x2 + 4
3
x3/2

)∣∣1

0
= 1

3
.

Region is lighter-colored area.
46.

y = 6, y = x−2 + x2 (in the region x > 0)
47. y = cos x, y = cos(2x), x = 0, x = 2π

3

We have
∫ 2π/3

0 (cos x − cos 2x) dx = (
sin x − 1

2
sin 2x

)∣∣2π/3

0
= 1.299038.
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Region is lighter-colored area.
48.

y = sin x , y = csc2 x , x = π

4
, x = 3π

4

49. Sketch the region whose area is represented by the integral
∫ √

2/2

−
√

2
2

(√
1 − x2 − |x |) dx and

evaluate using geometry.

The region is a sector of a circle of radius 1 with a central angle of π/4 and is hence a
quarter of a circle. The area must then be

(
πr2

)
/4 = π/4.

Region is lighter-colored area.
50.

R & W Two athletes run in the same direction along a straight track with velocities v1(t)
and v2(t) (in ft/s). Assume that

∫ 5

0 (v1(t) − v2(t)) dt = 2,
∫ 20

0 (v1(t) − v2(t)) dt = 5, and∫ 35

30 (v1(t) − v2(t)) dt = −2.

(a) Give a verbal interpretation of the integral
∫ t2

t1
(v1(t) − v2(t)) dt .

(b) Is enough information given to determine the distance between the two runners at time
t = 5 sec? Explain.

(c) Suppose the runners begin at the same time and place along the track. How far ahead is
runner 1 at time t = 20 sec?

(d) Suppose that runner 1 is 8 ft behind runner 2 at t = 30. How far is she behind at
t = 35?

51. Find the area enclosed by the curves y = c − x2 and y = x2 − c as a function of c. Find the
value of c for which this area is equal to 1.

The curves intersect at x = ±√
c. Thus we have∫ √

c

−√
c

(
c − x2

) − (
x2 − c

)
dx = ∫ √

c

−√
c

(
2c − 2x2

)
dx = (

2cx − 2
3
x3

)∣∣√c

−√
c
= 8

3
c3/2. In order

for the area to equal 1, we must have 8
3 c3/2 = 1 which gives c = 91/3

4 = 0.520021.
52.

Set up (but do not evaluate) an integral that expresses the area between the circles
x2 + y2 = 2 and x2 + (y − 1)2 = 1.53. Set up (but do not evaluate) an integral that expresses the area between the graphs of
y = (1 + x2)−1 and y = x2.

The curves intersect at x = ±0.786151 and thus the area is given by the integral∫ .786151

−.786151

((
1 + x2

)−1
)

− (
x2

)
dx .

54.
CAS Find a numerical approximation to the area above y = 1 − (x/π) and below
y = sin x (find the points of intersection numerically).55. CAS Find a numerical approximation to the area above y = |x | and below y = cos x
(find the points of intersection numerically).

The curves intersect at x = ±0.739085. Thus we have∫ 0

−.739085 (cos x − (−x)) dx + ∫ .739085

0 (cos x − x) dx =(
sin x + 1

2
x2

)∣∣0

−.739085
+ (

sin x − 1
2
x2

)∣∣.739085

0
= 0.800977.

56.
CAS Find a numerical approximation to the area between the curves y = ex ,
y = 5x + 1.
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57. CAS Use a CAS to find a numerical approximation to the number c (besides 0) in
[0, π/2] where the curves y = sin x and y = tan2 x intersect. Then find the area enclosed
by the graphs over [0, c].
The curves intersect at x = 0 and x = 0.666239. Thus we have∫ .666239

0

(
sin x − tan2 x

)
dx = (− cos x − tan x + x)|.666239

0 = 0.093937.
58.

The back of a guitar has length 19 inches. The width is measured at one-inch intervals
beginning and ending one-half an inch from the ends, yielding the measurements:

6, 9, 10.25, 10.75, 10.75, 10.25, 9.75, 9.5, 10, 11.25,

12.75, 13.75, 14.25, 14.5, 14.5, 14, 13.25, 11.25, 9

Use the midpoint rule to calculate the area of the back.

6 9
10

.2
5

10
.7

5

11
.2

5

9

Figure 19 Guitar back.



6.2 Setting Up Integrals: Volumes, Density, Average Value 11

Further Insights and Challenges

59. Find the line y = mx that divides the area under the curve y = x(1 − x) over [0, 1] into two
regions of equal area.

We have
∫ 1

0 (x(1 − x)) dx = ∫ 1

0

(
x − x2

)
dx = (

1
2 x2 − 1

3 x3
)∣∣1

0
= 1

6 . Now, let y = mx and
y = x(1 − x) intersect at x = a. Then ma = a(1 − a) which gives m = (1 − a). Hence
y = mx = (1 − a)x . Then∫ a

0 (x(1 − x)) − ((1 − a)x) dx = ∫ a

0

(
ax − x2

)
dx = (

a
2
x2 − 1

3
x3

)∣∣a

0
= a3

6
. Finally, we

need a3

6
= 1

2
1
6

= 1
12

which gives a = (
1
2

)1/3
and hence m = (1 − a) = 0.206299.60.

CAS Let c be the positive number such that the area under y = sin x over [0, π ] is
divided into two regions of equal area by the line y = cx (Figure 20). Find an equation for
c and solve this equation numerically using a CAS.

Figure 20 Figure for Problem 60.
6.2 Setting Up Integrals: Volumes, Density, Average Value

Preliminary Questions

1. What is the average value of f (x) on [1, 4] if the area between the graph of f (x) and the
x-axis is equal to 9?

2. What is the average value of f (x) over [0, 2] assuming that d/dx(
√

x3 + 1) = f (x)?

Exercises

1. Consider a pyramid of height 20 whose base is a square of side 8.
(a) What is the area of the cross-section of the pyramid at a height x (where 0 ≤ x ≤ 20)?
(b) Calculate the volume of the pyramid by integrating the cross-sectional area.

(a) Using properties of similar triangles, the area of the cross-section at height x is given
by 4

25
(20 − x)2.

(b) We have
∫ 20

0

(
4
25

(20 − x)2
)

dx = (− 4
75

(20 − x)3
)∣∣20

0
= 426 2

3
.

2.

Consider a cone of height 10 whose base is a circle of radius 4.
(a) What is the area of the cross-section of the cone at a height x (where 0 ≤ x ≤ 10)?
(b) Calculate the volume of the cone by integrating the cross-sectional area.

3. Calculate the volume of a cylinder inclined at an angle θ = 30◦ whose height is 10 and
whose base is a circle of radius 4.

4

10

30°

Figure 1 Cylinder inclined at an angle θ = 30◦.

We have
∫ 10

0

(
π(4)2

)
dx = (16πx)|10

0 = 160π .



12 Chapter 6 Applications of the Integral

4.
The area of an ellipse is πab where a and b are the lengths of the major and minor axes
(see Figure 2). Find the volume of a cone of height 12 and whose base is an ellipse whose
major and minor axes are a = 6 and b = 4.

Figure 2

5. Calculate the volume of the ramp in Figure 3 in three ways.
(a) Integrate the area of the rectangular cross-sections perpendicular to the x-axis.
(b) Integrate the area of the triangular cross-sections perpendicular to the y-axis.
(c) Integrate the area of the rectangular cross-sections perpendicular to the z-axis.

4

2

6

z

y

x

Figure 3 Ramp of length 6, width 4, and height 2.

(a) We have
∫ 6

0 4
(− 1

3
x + 2

)
dx = (− 2

3
x2 + 8x

)∣∣6

0
= 24.

(b) We have
∫ 4

0

(
1
2

· 2 · 6
)

dy = (6y)|4
0 = 24.

(c) We have
∫ 2

0 4 (−3(z − 2)) dz = (−6z2 + 24z
)∣∣2

0
= 24.

6.
Derive a formula for the volume of the wedge in Figure 4 (A).

7. Derive a formula for the volume of the wedge in Figure 4 (B) in terms of the constants
a, b, c.

8

6

4

x

a

b

c

x

(A) (B)

Figure 4

The line from c to a is given by the equation (z/c) + (x/a) = 1 and the line from b to a is
given by (y/b) + (x/a) = 1. The cross-sections perpendicular to the x-axis are right
triangles with height c(1 − x/a) and base b(1 − x/a) thus we have∫ a

0

(
1
2 bc (1 − x/a)2

)
dx = (− 1

6 abc(1 − x/a)3
)∣∣a

0
= 1

6 abc.
8.

Consider a cone of height h whose base is a circle of radius r .
(a) What is the area of the cross-section of the cone at a height x (where 0 ≤ x ≤ h)?
(b) Calculate the volume of the cone by integrating the cross-sectional area.
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9. Show that the volume of a pyramid of height h whose base is an equilateral triangle of side
s is equal to

√
3

12 hs2.

0

x

r

s

h

h

Figure 5 Right-circular cone and pyramid with triangular base.

Using similar triangles, the area of the cross-section is given by
√

3
4

(
s(h−x)

h

)2
. Thus we have

s2
√

3
4h2

∫ h

0

(
(h − x)2

)
dx =

(
− s2

√
3

12h2 (h − x)3
)∣∣∣h

0
=

√
3

12
s2h.

10.
Find the volume of a regular tetrahedron whose face is an equilateral triangle of side s.

Figure 6 Regular tetrahedron.

11. Find the volume of the solid B whose base is the unit circle and whose cross-sections
perpendicular to the x-axis are equilateral triangles (one side of which is a chord of the
circle perpendicular to the x-axis).

We have
√

3
4

∫ 1

−1

(
(2

√
1 − x2)2

)
dx = √

3
∫ 1

−1

(
1 − x2

)
dx = √

3
(
x − 1

3
x3

)∣∣∣1

−1
= 4

√
3

3
.

12.
Calculate the volume of liquid in a sphere of radius R that is filled to height h.

Figure 7 Sphere filled with liquid to height. h
In Exercises 13–20, find the volume with given base and cross-sections.

13. The base is the unit circle x2 + y2 = 1 and the cross-sections perpendicular to the x-axis are
triangles whose height and base are equal.

We have 1
2

∫ 1

−1

(
(2

√
1 − x2)2

)
dx = 2

∫ 1

−1

(
1 − x2

)
dx = (

2x − 2
3 x3

)∣∣1

−1
= 8

3 .
14.

The base is the triangle enclosed by x + y = 1, the x-axis, and the y-axis. The
cross-sections perpendicular to the y-axis are semicircles.15. The base is the triangle enclosed by x + y = 1, the x-axis, and the y-axis. The
cross-sections perpendicular to the y-axis are equilateral triangles.

We have√
3

4

∫ 1

0 (1 − y)2 dy =
√

3
4

∫ 1

0

(
1 − 2y + y2

)
dy =

√
3

4

(
y − y2 + 1

3
y3

)∣∣∣1

0
=

√
3

12
= 0.144338.

16.
The base is the semicircle y = √

9 − x2 where −3 ≤ x ≤ 3. The cross-sections
perpendicular to the x-axis are squares.17. The base is a square, one of whose sides is the interval [0, 
] along the x-axis. The
cross-sections perpendicular to the x-axis are rectangles of height x2.

We have
∫ l

0

(
lx2

)
dx = (

1
3 lx3

)∣∣l

0
= 1

3 l4.
18.

The base is the region enclosed by y = x2 and y = 3. The cross-sections perpendicular to
the y-axis are squares.19. The base is the region enclosed by y = x2 and y = 3. The cross-sections perpendicular to
the y-axis are rectangles of height y3.

We have
∫ 9

0

(
y3(3 − √

y)
)

dy = ∫ 9

0

(
3y3 − y7/2

)
dy = (

3
4 y4 − 2

9 y9/2
)∣∣9

0
= 546.75.

20.
The base is the square defined by |x | + |y| = 1 and the cross-sections perpendicular to the
y-axis are equilateral triangles.21. A frustum of a pyramid is a pyramid with the top cut off (Figure 8). Suppose that the height
of the frustum is h, the side of the bottom is a, and the side of the top is b.
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(a) Show that if the frustum were continued to a full pyramid, it would have height
ha/(a − b).

(b) Show that the cross-section at height x is a square of side (1/h)(a(h − x) + bx).
(c) Use integration to show that the volume of the frustum is (1/3)h(a2 + ab + b2). (A

papyrus dating to the year 1850 BCE (almost 4000 years ago!) indicates that Egyptian
mathematicians had discovered this formula.)

(d) Confirm the answer in (c) by calculating the volume of the frustum a second time, as
the difference of the volumes of two pyramids.

a

h

b

Figure 8

(a) Using similar triangles, we have the proportion H
a

= H−h
b

which gives the height H of
the full pyramid as H = ha

a−b
.

(b) Again using similar triangles. we have the proportion a
H

= w

H−x
. Substituting the value

for H from part (a) gives the width w of the square at height x as w = a(h−x)+bx
h

.
(c) We have∫ h

0

(
1
h
(a(h − x) + bx)

)2
dx = 1

h2

∫ h

0

(
a2(h − x)2 + 2ab(h − x)x + b2x2

)
dx =

1
h2

(
− a2

3
(h − x)3 + abhx2 − 2

3
abx3 + 1

3
b2x3

)∣∣∣h

0
= h

3

(
a2 + ab + b2

)
.

(d) We have a2

H2

∫ H

0 (H − x)2 dx − a2

H2

∫ H

h (H − x)2 dx =(
− a2

3H2 (H − x)3
)∣∣∣H

0
+

(
− a2

3H2 (H − x)3
)∣∣∣H

h
= 1

3 a2
(
H − (H − h)3/H 2

)
. Substituting

the value for H from part (a) gives h
3

(
a2 + ab + b2

)
.

22.
A plane inclined at an angle of 45◦ passes through a diameter of the base of a cylinder of
radius r . Find the volume enclosed between the plane and the cylinder.

Figure 9

23. Figure 10 shows the solid S obtained by intersecting two cylinders of radius r whose axes
are perpendicular.
(a) The horizontal cross-section of one cylinder at a vertical distance y from the axis is a

rectangular strip. Find the width of the strip.
(b) Determine the shape and area of the horizontal cross-section of the intersection of the

cylinders at vertical distance y.
(c) Find the volume of S as a function of r .
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Figure 10 Intersection of two cylinders intersecting at right angles.

(a) The width w at vertical distance y is given by w = 2
√

r2 − y2.
(b) The intersection of the two cylinders at vertical distance y is a square with area

w2 = 4(r2 − y2).
(c) We have the volume S = 4

∫ r

−r

(
r2 − y2

)
dy = 4

(
r2 y − 1

3
y3

)∣∣r

−r
= 16

3
r3.

24.
Let S be the solid obtained by intersecting two cylinders of radius r whose axes intersect at
an angle θ . Find the volume of S as a function of r and θ .25. Find the total mass of a one-meter rod whose linear density function is ρ(x) = 10(x + 1)−2

kg/m.

We have
∫ 1

0

(
10(x + 1)−2

)
dx = (−10(x + 1)−1

)∣∣1

0
= 5 kg.

26.
Find the total mass of a two-meter rod whose linear density function is
ρ(x) = 1 + .5 sin(πx) kg/m.27. A mineral deposit along a strip of length 6 cm has density s(x) = .01x(6 − x) g/cm.
Calculate the total mass of the deposit.

We have
∫ 6

0 (.01x(6 − x)) dx = (
.03x2 − .01

3
x3

)∣∣6

0
= 0.36 g.

28.

A plate 1 cm thick is made of a copper alloy whose density is 8.2 g/cm3. The plate is
shaped like the region between the graphs of y = f (x) and y = − f (x) where
f (x) = √

x + 1 as in Figure 11. Let M be the mass of the plate.
(a) Divide [0, 2] into N subintervals of width x = 2/N and let xi = ix . Show that the

mass of the portion of the plate between xi−1 and xi is approximately 16.4 f (xi )x .

(b) Show that M = ∫ 2

0 16.4 f (x) dx .
(c) Find the mass M of the plate.

Figure 11 Copper plate.

29. Calculate the population within a 10-mile radius of the city center if the radial population
density is ρ(r) = 8(1 + r2)1/3.

We have 2π
∫ 10

0

(
8r(1 + r2)1/3

)
dr = 8π

∫ 101

0

(
u1/3

)
du = (

6πu4/3
)∣∣101

0
= 1474.531519.

30.
The radial mass density of a circular plate of radius 20 cm is ρ(r) = .03 + .01 cos(πr2)

g/cm. Compute the total mass of the plate.31. The population density (in people per hectare) as a function of distance (in km) from the
city center in a medium-sized town is listed in Table 31. Estimate the total population
within a 2-km radius of the center by taking the average of the left- and right-endpoint
approximations.

r ρ(r) r ρ(r)

0.0 125.0 1.2 37.6

0.2 102.3 1.4 30.8

0.4 83.8 1.6 25.2

0.6 68.6 1.8 20.7

0.8 56.2 2.0 16.9

1.0 46.0
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We have δx = .2. Thus
R10 = .2 (102.3 + 83.8 + 68.6 + 56.2 + 46 + 37.6 + 30.8 + 25.2 + 20.7 + 16.9) = 97.62
and L10 = .2 (125 + 102.3 + 83.8 + 68.6 + 56.2 + 46 + 37.6 + 30.8 + 25.2 + 20.7) =
119.24. The average is the left and right-endpoint approximations is then
.5(L10 + R10) = 108.43.32.

Let v(r) be the velocity of blood in an arterial capillary of radius R = 4 · 10−5 m. Use
Poiseuille’s Law (Example ??, p. ??) with k = 106 (m-sec)−1 to determine the following
(use correct units):

(a) the velocity of blood at the center of the capillary
(b) the flow rate through the capillary

In Exercises 33–39, calculate the average over the given interval.

33. x3, [0, 1]
The average is 1

1−0

∫ 1

0 x3 dx = ∫ 1

0 x3 dx = 1
4
x4

∣∣1

0
= 1

4
.34.

x3, [−1, 1]
35. cos t , [0, π/2]

The average is
1

π/2 − 0

∫ π/2

0
cos t dt = 2

π

(
sin t

∣∣π/2

0

)
= 2

π
.

36.
tan x , [0, π/4]

37. s−2, [1, 2]
The average is 1

2−1

∫ 2

1 s−2 ds = ∫ 2

1 s−2 ds = −s−1
∣∣2

1
= 1

2
.38.

sin( π

x
)/x2, [1, 2]

39. 2x3 − 3x2, [1, 2]
The average is 1

2−1

∫ 2

1

(
2x3 − 3x2

)
dx = ∫ 2

1

(
2x3 − 3x2

)
dx = (

1
2 x4 − x3

)∣∣2

1
= 1

2 .40.
xn , [0, 1]

41. Find the average of f (x) = ax + b over the interval [−M, M], where a, b, and M are
arbitrary constants.

The average is
1

M−(−M)

∫ M

−M (ax + b) dx = 1
2M

∫ M

−M (ax + b) dx = 1
2M

(
a
2
x2 + bx

)∣∣M

−M
= b.42.

The temperature T (t) at time t in an art museum varies according to the formula
T (t) = 70 + 5 cos( π

12 t)

(a) What is the average temperature over the 24-hour period t = 0 to t = 24?
(b) What is the average temperature during the 4-hour period t = 2 to t = 6?

43. A ball is thrown in the air vertically from ground level with an initial velocity of 64 ft/s.
Find the average height of the ball over the time interval extending from the time of the
ball’s release to its return to ground level. Recall that the height at time t is
h(t) = 64t − 16t2.

The ball is at ground level at time t = 0 and t = 4. The average height of the ball is
1

4−0

∫ 4

0 h(t) dt = 1
4

∫ 4

0

(
64t − 16t2

)
dt = 1

4

(
32t2 − 16

3
t3

)∣∣4

0
= 42.666667.44.

What is the average area of the circles whose radii vary from 0 to 1?
45. An object with zero initial velocity accelerates at a constant rate of 10 m/sec2. Find its

average velocity during the first 15 seconds.

An acceleration a(t) = 10 gives v(t) = 10t + c for some constant c and zero initial velocity
implies c = 0. Thus the average velocity is given by 1

15−0

∫ 15

0 10t dt = 1
3
t2

∣∣15

0
= 75 m/s.46.

The acceleration of a particle is a(t) = t − t3 m/s2 for 0 ≤ t ≤ 1. Compute the average
acceleration and average velocity of the particle over the time interval [0, 1] assuming the
initial velocity is 0.

47. Let M be the average value of f (x) = x3 on [0, 3]. Find a value of c in [0, 3] such that
f (c) = M .

We have M = 1
3−0

∫ 3

0 x3 dx = 1
3

∫ 3

0 x3 dx = 1
12

x4
∣∣3

0
= 27

4
. Then M = f (c) = c3 = 27

4

implies c = 3
41/3 = 1.889882.48.

Let f (x) = √
x . Find a value of c in [4, 9] such that f (c) is equal to the average of f on

[4, 9].49. Give an example of a function (necessarily discontinuous) which does not satisfy the
conclusion of the Mean Value Theorem for integrals.

There are an infinite number of discontinuous function which do not satisfy the conclusion
of the Mean Value Theorem for Integrals. Consider an function on [−1, 1] such that for
x < 0, f (x) = −1 and for x ≥ 0, f (x) = 1. Clearly the average value is 0 but f (c) = 0
for all c in [−1, 1].
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Further Insights and Challenges
50.

An object is tossed in the air vertically from ground level with an initial velocity v0 at
time t = 0. Find the average speed of the object over the time interval [0, T ] where T is the
time the object returns to earth.

6.3 Volumes of revolution

Preliminary Questions

1. Which of the following is a solid of revolution?
(a) sphere
(b) pyramid
(c) cylinder
(d) cube

2. True or false: When a solid is formed by rotating the area under a graph about the x-axis,
the cross-sections perpendicular to the x-axis are circular disks.

3. True or false: When a solid is formed by rotating the area between two curves about the
x-axis, the cross-sections perpendicular to the x-axis are circular disks.

4. Which of the following integrals expresses the volume of the solid obtained by rotating the
area between y = f (x) and y = g(x) over [a, b] around the x-axis (assume f (x) ≥ g(x) ≥
0):

(a) π

∫ b

a

( f (x) − g(x))2 dx

(b) π

∫ b

a

( f (x)2 − g(x)2) dx

Exercises

In Exercises 1–4, (a) sketch the solid obtained by revolving the graph of the function about the
x-axis over the given interval; (b) describe the cross-section perpendicular to the x-axis located
at x; (c) calculate the volume of the solid.

1. x + 1, [0, 3]

(a) [FIGURE]
(b) The cross-section is a disk with radius x + 1.

(c) We have π
∫ 3

0 (x + 1)2 dx = π
∫ 3

0 (x2 + 2x + 1) dx = π
(

1
3 x3 + x2 + x

)∣∣3

0
= 21π .

2.
x2, [0, 1]

3.
√

x + 1, [1, 4]

(a) [FIGURE]
(b) The cross-section is a disk with radius

√
x + 1.

(c) We have π
∫ 4

1 (
√

x + 1)2 dx = π
∫ 4

1 (x + 1) dx = π
(

1
2 x2 + x

)∣∣4

1
= 10.5π .

4.
x−1, [1, 2]
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In Exercises 5–12, find the volume of the solid obtained by rotating the area under the graph of
the function over the given interval about the x-axis.

5. x2 − 3x ; [0,3]

We have
π

∫ 3

0 (x2 − 3x)2 dx = π
∫ 3

0 (x4 − 6x3 + 9x2) dx = π
(

1
5 x5 − 3

2 x3 + 3x3
)∣∣3

0
= 25.4469.

6.
1

x2
; [1, 4]7. x5/3; [1, 8]

We have

π

∫ 8

1
(x5/3)2 dx = π

∫ 8

1
x10/3 dx = π

13

3
x13/3

∣∣8

1
= π

13

3
(213 − 1) = 13π

3
(8192).

8.
4 − x2; [0, 2]

9.
2

x + 1
; [1, 3]

We have π
∫ 3

1

(
2

x + 1

)2

dx = 4π
∫ 3

1 (x + 1)−2 dx = −4π (x + 1)−1
∣∣3

1
= π .

10.
y = √

x4 + 1; [1, 3]
11.

√
cos x + 1; [0, π ]

We have π
∫ π

0 (
√

cos x + 1)2 dx = π
∫ π

0 (cos x + 1) dx = π (sin x + x)|π0 = π 2.
12. √

cos x sin x [0, π

2
]

In Exercises 13–20, sketch the region enclosed by the curves and find the volume of the solid
obtained by rotating the region about the x-axis.

13. y = x2 + 2, y = 10 − x2

The curves intersect at x = ±2. We have
π

∫ 2

−2(10 − x2)2 − (x2 + 2)2 dx = π
∫ 2

−2(96 − 24x2) dx = π
(
96x − 8x3

)∣∣2

−2
= 256π .

14.
y = x2, y = 2x + 3

15. y = 16 − x , y = 3x + 12, x = −1

The lines intersect at x = 1. We have π
∫ 1

−1(16 − x)2 − (3x + 12)2 dx =
π

∫ 1

−1(112 − 104x − 8x2) dx = π
(
112x − 52x2 − 8

3 x3
)∣∣1

−1
= 686.961593.
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16.
y = x2, y = 1, y = 4

17. y = 1
x
, y = 5

2 − x

The lines intersect at x = 1/2 and x = 2. We have

π
∫ 2

1/2(
5
2

− x)2 − (
1

x
)2 dx = π

∫ 2

1/2(
25
4

− 5x + x2 − x−2) dx =
π

(
25
4

x − 5
2
x2 + 1

3
x3 + x−1

)∣∣2

1/2
= 21.125π = 66.366145.

18.
y = x2, y = √

x
19. y = sec x , x = − π

4 , x = π

4

We have π
∫ π/4

−π/4(sec x)2 dx = π (tan x)|π/4
−π/4 = 2π .

20.
y = sec x , y = csc x , y = 2

In Exercises 21–26, make a rough sketch of the solids obtained by rotating region A in Figure 1
about the given axis and find its volume.

21. x-axis

We have
π

∫ 2

0 (6)2−(x2+2)2 dx = π
∫ 2

0 (32−4x2−x4) dx = π
(
32x − 4

3 x3 − 1
5 x5

)∣∣2

0
= 147.445415.

[FIGURE]
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22.
y = −2

23. y = 8

We have π
∫ 2

0 (8 − (x2 + 2))2 − (2)2 dx = π
∫ 2

0 (32 − 12x2 + x4) dx =
π

(
32x − 4x3 + 1

5
x5

)∣∣2

0
= 80.424772.

[FIGURE]

24.
y-axis

25. x = −3

We have π
∫ 6

2 (3 + √
y − 2)2 − (3)2 dy = π

∫ 6

2 (6
√

y − 2 + y − 2) dy =
π

(
4(y − 2)3/2 + 1

2 y2 − 2y
)∣∣6

2
= 40π .

[FIGURE]

26.
x = 6

In Exercises 27–32, make a rough sketch of the solids obtained by rotating region B in Figure 1
about the given axis and find its volume.

27. x-axis

We have
π

∫ 2

0 (x2 + 2)2 dx = π
∫ 2

0 (x4 + 4x2 + 4) dx = π
(

1
5
x5 + 4

3
x3 + 4x

)∣∣2

0
= 78.749256.

[FIGURE]

28.
y = −2

29. y = 8

We have π
∫ 2

0 (8)2 − (8 − (x2 + 2))2 dx = π
∫ 2

0 (28 + 12x2 − x4) dx =
π

(
28x + 4x3 − 1

5
x5

)∣∣2

0
= 256.35396.

[FIGURE]

30.
y-axis (Hint: Express the volume as a sum of two integrals over the integrals [0, 2] and

[2, 6] along the y-axis.)31. x = 2

We have π
∫ 2

0 (2)2 dy +π
∫ 6

2 (2 −√
y − 2)2 dy = π

∫ 2

0 4 dy +π
∫ 6

2 (2 + y − 4
√

y − 2) dy =
π (4y)|2

0 + π
(
2y + 1

2 y2 − 8
3 (y − 2)3/2

)∣∣6

2
= 33.510322.

[FIGURE]
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32.
x = −3

1 2

2

4

6

y = x2 + 2

A

B

Figure 1

In Exercises 33–42, find the volume of the body obtained by rotating the region enclosed by the
graphs about the given axis.

33. y = x2, y = 12 − x , x = 0 about y = −2

The curves intersect at x = 3. We have π
∫ 3

0 (12 − x + 2)2 − (x2 + 2)2 dx =
π

∫ 3

0 (192 − 28x − 3x2 − x4) dx = π
(
192x − 14x2 − x3 − 1

5
x5

)∣∣3

0
= 1176.21229.

34.
y = x2, y = 12 − x , x = 0 about y = 15

35. y = 16 − x , y = 3x + 12, x = 0, about y-axis

We have
π

∫ 15

12 ( 1
3
(y − 12))2 dy + π

∫ 16

15 (16 − y)2 dy = π
∫ 15

12
1
9
(y2 − 24y + 144) dy + π

∫ 16

15 (y2 −
32y + 256) dy = π

9

(
1
3

y3 − 12y2 + 144y
)∣∣15

12
+ π

(
1
3

y3 − 16y2 + 256y
)∣∣16

15
= 4

3
π .

36.
y = 16 − x , y = 3x + 12, x = 0, about x = 2

37. y = 1
x
, y = 5

2 − x about y = −1

The curves intersect at x = 2 and x = 1
2 . We have

π
∫ 2

1/2(
5
2

− x + 1)2 − (x−1 + 1)2 dx = π
∫ 2

1/2(
45
4

− 7x + x2 − x−2 − 2x−1) dx =
π

(
45
4

x − 7
2
x2 + 1

3
x3 + x−1 − 2 ln x

)∣∣2

1/2
= 6.604919.

38.
y = 1

x
, y = 5

2
− x about y = 4

39. y = 1
x
, y = 5

2
− x about y-axis

We have π
∫ 2

1/2(
5
2 − y)2 − (y−1)2 dy = π

∫ 2

1/2(
25
4 − 5y + y2 − y−2) dy =

π
(

25
4 y − 5

2 y2 + 1
3 y3 + y−1

)∣∣2

1/2
= 3.534292.

40.
y = 1

x
, y = 5

2 − x about x = 3
41. y = x3, y = x1/3, about y-axis

We have
π

∫ 1

−1(y1/3)2 − (y3)2 dy = π
∫ 1

−1(y2/3 − y6) dy = π
(

3
5 y5/3 − 1

7 y7
)∣∣1

−1
= 2.872314.

42.
y = x3, y = x1/3, about x = −2

43. Find the volume of the solid obtained by revolving the hypocycloid x2/3 + y2/3 = 1 about
the x-axis.
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1–1

1

–1

Figure 2 Hypocycloid x2/3 + y2/3 = 1.

We have π
∫ 1

−1

(
(1 − x2/3)3/2

)2
dx = 2π

∫ 1

0 (1 − 3x2/3 + 3x4/3 − x2) dx =
2π

(
x − 9

5 x5/3 + 9
7 x7/3 − 1

3 x3
)∣∣1

0
= 0.957438.

44.
Use the disk method to calculate the volume of water needed to fill a sphere of radius r to
height h.45. The volume generated by the rotating the hyperbola with equation y2 − x2 = 1 about the
x-axis is called a hyperboloid. Find the volume of the portion of the hyperboloid with
−a ≤ x ≤ a.

—a a—1

1

Figure 3 The hyperbola with equation y2 − x2 = 1.

We have π
∫ a

−a

(√
1 + x2

)2

dx = π
∫ a

−a(1 + x2) dx = π
(
x + 1

3
x3

)∣∣a

−a
= 8

3
aπ .

46.
A bead is formed by removing a cylinder from the center of a sphere of radius R. Find the
volume of a bead obtained by removing a cylinder of radius 1 from the center of a sphere
of radius 2.

Figure 4 A bead is a sphere with a cylinder removed.Further Insights and Challenges

47. R & W Suppose that a bead is formed by removing a cylinder of radius r from the center
sphere of radius R.
(a) Find the volume V of the bead in terms of r and R.
(b) Show that V = π

6
h3 where h is the height of the bead.

(c) The formula in (b) shows that V depends on the height but not on the radius of the bead.
It follows that two beads of height 2 inches, one formed from a sphere the size of an
orange and the other the size of the earth would have the same volume! (G. Alexan-
derson and L. Klosinski, “Some Surprising Volumes of Revolution,” Two-Year College
Mathematics Journal, v. 6, No. 3, pp. 13–15.) Can you explain intuitively how this is
possible?



6.3 Volumes of revolution 23

(a) We have V = π
∫ √

R2−r2

−
√

R2−r2

(√
R2 − x2

)2 − r2 dx = π
∫ √

R2−r2

−
√

R2−r2
((R2 − r2) − x2) dx =

π
(
(R2 − r2)x − 1

3
x3

)∣∣√R2−r2

−
√

R2−r2
= 4

3
(R2 − r2)3/2π .

(b) We have h = 2
√

R2 − r2 = 2(R2 − r2)1/2 which gives h3 = 8(R2 − r2)3/2 and finally
(R2 − r2)3/2 = 1

8
h3. Substituting into the answer from part (a) gives V = π

6
h3.

(c) The beads may have the same volume but clearly the wall of earth-sized bead must be
extremely thin while the orange-sized bead would be thicker.

48.

The solid generated by rotating the ellipse with equation (x/a)2 + (y/b)2 = 1 around the
x-axis is called an ellipsoid.

(a) Show that the ellipsoid’s volume is 4
3
πab2.

(b) Given the answer to (a), what do you think the formula should be for the volume of the
solid generated by rotating the ellipse around the y-axis? State your reason but do not
calculate.

49. A doughnut-shaped solid is called a torus. Use the Disk Method to calculate the volume of
the torus obtained by rotating the circle with equation (x − a)2 + y2 = b2 around the y-axis
(assume that a > b).

y

x
a a + b

Figure 5 Torus obtained by rotating a circle about the y-axis.

We have π
∫ b

−b

(
a + √

b2 − y2
)2 −

(
a − √

b2 − y2
)2

dy = π
∫ b

−b(4a
√

b2 − y2) dy =
4aπ

(
1
2

y
√

b2 − y2 + b2

2
sin−1(y/b)

)∣∣∣b

−b
= 2π 2ab2.

50.
Challenge Problem Show that the volume obtained by rotating the region in Figure 6
about the x-axis is equal to π

6
h3m2.

Figure 6 Region between the parabola y2 = ax + b and the line y = mx + c.


