

Applied Computing Review

Sep. 2012, Vol. 12, No. 3

Frontmatter

Editors 3

SIGAPP Semi-Annual Report S. Shin 4

A Message from the Editor S. Shin 5

SAC 2013 Preview H. Haddad 6

Selected Research Articles

Feature Space Optimization for Content-Based Image Retrieval L. Avalhais, S. da Silva, J.F.
Rodrigues Jr., A. Traina, and C.
Traina Jr.

 7

An Empirical Study on Clone Stability M. Mondal, C. Roy, and K.
Schneider

 20

XFormsDB: An Extensible Web Application Framework Built
upon Declarative W3C Standards

 M. Laine, D. Shestakov, and P.
Vuorimaa

 37

Analysis of a Triploid Genetic Algorithm over Deceptive and
Epistatic Landscapes

 M. Li, S. Hill, and C. O’Riordan

 51

SART: Speeding up Query Processing in Sensor Networks with
an Autonomous Range Tree Structure

 S. Sioutas, A. Panaretos, I.
Karydis, D. Tsoumakos, G.
Tzimas, and D. Tsolis

 60

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 2

Applied Computing Review

Editor in Chief Sung Y. Shin

Designer/Technical Editor John Kim

Associate Editors Richard Chbeir

 Hisham Haddad

 Lorie M. Liebrock

 W. Eric Wong

Editorial Board Members

Wood Alan

Davide Ancona

Papadopoulos

Apostolos

Alessio Bechini

Giampaolo Bella

Umesh Bellur

Ateet Bhalla

Stefano Bistarelli

Olivier Boissier

Gloria Bordogna

Auernheimer Brent

Barrett Bryant

Alex Buckley

Artur Caetano

Luís Carriço

Rogério Carvalho

Andre Carvalho

Matteo Casadei

Jan Cederquist

Alvin Chan

Richard Chbeir

Jian-Jia Chen

Claramunt Christophe

Yvonne Coady

Luca Compagna

Arthur Wm. Conklin

Massimo Cossentino

Federico Divina

Carlos Duarte

Mario Freire

Lorenz Froihofer

João Gama

Xiao-Shan Gao

M. Karl Goeschka

Claudio Guidi

Svein Hallsteinsen

Jason Hallstrom

Hyoil Han

A. Ramzi Haraty

Jean Hennebert

Jiman Hong

Andreas Humm

L. Robert Hutchinson

Maria-Eugenia Iacob

Francois Jacquenet

Hasan Jamil

Robert Joan-Arinyo

Andy Kellens

Tei-Wei Kuo

Op't Martin Land

Ivan Lanese

Paola Lecca

Maria Lencastre

Va Hong Leong

Ki-Joune Li

Lorie Liebrock

Giuseppe Lipari

Shih-Hsi Liu

Rui Lopes

Mamei Marco

Eduardo Marques

Paulo Martins

Stan Matwin

Manuel Mazzara

Ronaldo Menezes

Marjan Mernik

Schumacher Michael

Fabien Michel

Dominique Michelucci

Ambra Molesini

Eric Monfroy

Barry O'Sullivan

Rui Oliveira

Andrea Omicini

Fernando Osorio

Edmundo Monteiro

V. Ethan Munson

Peter Otto

Brajendra Panda

Gabriella Pasi

Manuela Pereira

G. Maria Pimentel

Antonio Cosimo Prete

Kanagasabai Rajaraman

Rajiv Ramnath

Chandan Reddy

Eliot Rich

Pedro Rodrigues

Giráldez Raúl Rojo

Alexander Romanovsky

Agostinho Rosa

Davide Rossi

Corrado Santoro

Rodrigo Santos

Guido Schryen

Kumar Madhu SD

Jean-Marc Seigneur

Alessandro Sorniotti

Nigamanth Sridhar

Lindsay Yan Sun

Junping Sun

Chang Oan Sung

Emiliano Tramontana

Dan Tulpan

Seidita Valeria

Teresa Vazão

Mirko Viroli

Fabio Vitali

Giuseppe Vizzari

Denis Wolf

W. Eric Wong

Kokou Yetongnon

R. Osmar Zaiane

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 3

SIGAPP FY’12 Semi-Annual Report

March 2012 – August 2012

Sung Shin

Mission

To further the interests of the computing professionals engaged in the development of new computing

applications and to transfer the capabilities of computing technology to new problem domains.

Officers

 Chair Sung Shin

 South Dakota State University, USA

 Vice Chair Richard Chbeir

 Bourgogne University, Dijon, France

 Secretary W. Eric Wong

 University of Texas at Dallas, USA

 Treasurer Lorie M. Liebrock

 New Mexico Institute of Mining and Technology, USA

 Web Master Hisham Haddad

 Kennesaw State University, USA

 ACM Program Coordinator Irene Frawley

 ACM HQ

Notice to Contributing Authors

By submitting your article for distribution in this Special Interest Group publication, you hereby grant to ACM

the following non-exclusive, perpetual, worldwide rights:

 to publish in print on condition of acceptance by the editor

 to digitize and post your article in the electronic version of this publication

 to include the article in the ACM Digital Library and in any Digital Library related services

 to allow users to make a personal copy of the article for noncommercial, educational or research purposes

However, as a contributing author, you retain copyright to your article and ACM will refer requests for

republication directly to you.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 4

A Message from the Editor

I am excited to release the fall issue of Applied Computing Review (ACR). ACR has been published on a

quarterly basis since last winter, and this issue includes five selected papers presented at the 2012 ACM

Symposium on Applied Computing (SAC). They have been expanded, revised, and reviewed for inclusion in ACR,

and we are proud that all of them are high quality papers.

ACR provides you with a platform for sharing novel ideas among practitioners and professionals in various fields

of applied computing. Moreover, we have provided excellent service to various technical communities and to the

scientific computing society in a productive manner. We are working with the ACM SIG Governing Board to

further expand SIGAPP by increasing membership. Also, we are working hard so that ACR can appear in Science

Citation Index (SCI) in the near future. I would like to thank the authors for contributing the state-of-the-art

methods in their research area. I am grateful to the highly qualified peer reviewers who coordinated an

outstanding lineup of technical paper reviews. This issue of ACR couldn’t have been published without

significant efforts made by everyone, and I want to express my sincere gratitude to all of them.

In closing, I am pleased to tell you that the 28th SAC will be held next spring in Coimbra, Portugal. I would like

many of you to join us and make the conference a great success. In addition, I hope you enjoy this issue of ACR

as much as we do. Your continuous support and cooperation would be highly appreciated. Thank you.

Sincerely,

Sung Shin

Editor in Chief & Chair of ACM SIGAPP

Next Issue

The planned release for the next issue of ACR is December 2012.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 5

SAC 2013 Preview

The 28th Annual edition of the ACM Symposium on Applied Computing (SAC) will be held at the Coimbra

Institute of Engineering, March 18-22, 2013, Coimbra, Portugal. The conference Tutorials are planned for

Monday, while the Posters and Technical program start on Tuesday.

Working with the local organizing committee, lead by Professor Nuno Ferreira of ISEC, we have selected

designated hotels with special rates for SAC attendees. The hotel information will be posted on

http://www.acm.org/conferences/sac/sac2013/ along with the reservation code for the special rates. The

organizing committee recommends attendees to book their reservations at the designed hotels as soon as the room

blocks are opened. The Conference will provide shuttle service between ISEC and the designated hotels. Detailed

shuttle schedule will be posted on the website once finalized. Transfer service will also be provided from these

hotels to the sites of SIGAPP Reception and the Banquet event. The daily lunches, coffee breaks, reception, and

banquet dinner will be included in the registration fee. In addition, the local committee is organizing a number of

excursions. Details will be posted on the website.

The conference will include the Student Research Competition (SRC) program. SRC is a new addition to SAC. It

is designed to provide graduate students the opportunity to meet and exchange ideas with researchers and

practitioners in their areas of interest. Active graduate students seeking feedback from the scientific community

on their research ideas are invited to submit abstracts of their original un-published and in-progress research work

in areas of experimental computing and application development related to SAC 2013 Tracks. Accepted research

abstracts will be published in SAC CD Proceedings. Authors of accepted abstracts are eligible to apply for the

SIGAPP Student Travel Award Program (STAP). A designated committee will judge the presentations and select

the top three winners for cash prizes ($500, $300, and $200, respectively). The winners will be recognized during

the banquet event.

As the planning is underway, we are excited to have SAC in the historic city of Coimbra. We invite you to join us

next March, meet other attendees, enjoy the conference programs, and have a pleasant stay in Coimbra. We hope

to see you there.

On Behalf of SAC Steering Committee,

Hisham Haddad

Member of the Steering Committee

Member of SAC 2013 Organzing Commitee

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 6

http://www.acm.org/conferences/sac/sac2013/

Feature Space Optimization for Content-Based Image
Retrieval

Letricia P. S. Avalhais, Sergio F. da Silva,
Jose F. Rodrigues Jr., Agma J. M. Traina and

Caetano Traina Jr.
{letricia, sergio, junio, agma, caetano}@icmc.usp.br

Institute of Mathematics and Computer Science
University of São Paulo

São Carlos, Brazil

ABSTRACT
Substantial benefits can be gained from effective Relevance
Feedback techniques in content-based image retrieval. How-
ever, existing techniques are limited due to computational
cost and/or by being restricted to linear transformations
on the data. In this study we analyze the role of non-
linear transformations in relevance feedback. We present
two promising Relevance Feedback methods based on Ge-
netic Algorithms used to enhance the performance on the
task of image retrieval according to the user’s interests.
The first method adjusts the dissimilarity function by us-
ing weighting functions while the second method redefines
the features space by means of linear and nonlinear trans-
formation functions. Experimental results on real data sets
demonstrate that our methods are effective and the re-
sults show that the transformation approach outperforms
the weighting approach, achieving a precision gain of up to
70%. Our results indicate that nonlinear transformations
have a great potential in capturing the user’s interests in
image retrieval and should be further analyzed employing
other learning/optimization mechanisms1.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search
Process, Relevance Feedback.

General Terms
Algorithm, Experimentation.

Keywords
Image Retrieval, Genetic Algorithm, Weighting, Functions.

1. INTRODUCTION
Techniques for image retrieval follow two main ap-
proaches [8]: Text-Based Image Retrieval (TBIR) and
Content-Based Image Retrieval (CBIR). TBIR techniques
uses descriptions provided by textual annotation, which may
introduce inconsistencies due to the human annotator. This
is due to the fact that, in many domains, text cannot ac-
curately capture the visual attributes of an image based on

1This work is based on an earlier work: SAC’12 Pro-
ceedings of the 2012 ACM Symposium on Applied Com-
puting, Copyright 2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2245471.

human perception. CBIR techniques, in turn, use content-
based description instead of textual description. In CBIR,
the images are indexed/retrieved considering their extracted
visual content, such as color, texture and shape features [1].
Such features together define feature vectors containing m
elements that are interpreted as points in an m-dimensional
space. In the features space, one assumes that a query point
is surrounded by points that represent the most similar im-
ages to a given image of interest, an operation well-known
as similarity query. Such query are appropriately calculated
with the application of dissimilarity functions, one of the
basis of CBIR.

Despite dealing with inherent information obtained from the
images, CBIR systems often present inaccurate results due
to the challenging problem of associating low-level features
with the high-level semantics of the images. This lack of
correspondence between the high-level similarity from the
point of view of the user and the low-level image features is
known as semantic gap [17]. This problem can be caused,
for example, by assuming that all features are equally rele-
vant no matter the objective of the image retrieval. In this
sense, some features can be very representative for some
queries while being irrelevant for other queries. Also, in a
given CBIR context, some features have poor or no seman-
tic meaning, while other features are successful in capturing
the semantics.

As an attempt to attenuate the semantic gap prob-
lem, Relevance Feedback (RF) methods have been pro-
posed [3] [6] [20]. RF methods are very suited to the task of
providing to a CBIR system a mechanism that allows it to
learn which features best capture the user’s interests.

In the RF process, the user is supposed to evaluate the im-
ages retrieved in the current query by assigning them values
that state their relevance, semantically speaking. After this
step the system reformulates the preceding query, taking
into account the user’s evaluations to improve its results.
In many cases the relevant feedback problem itself is han-
dled as a search problem related to weights, parameters,
and/or data aggregation models, such as functions combin-
ing multiple descriptors. A review on RF for image retrieval
is presented in [23].

In regarding search problems, Genetic Algorithms (GAs)
provide a general adaptive search methodology based on
natural selection; a methodology that has been successfully
employed to perform feature selection and weighting on dis-
similarity functions used in CBIR systems. In the realm of

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 7

CBIR systems tuned by Relevance Feedback techniques, this
study proposes two GA-based RF methods to enhance the
accuracy of image retrieval tasks:

• the first method adjusts the dissimilarity calculus by
means of weighting functions that calibrate the impor-
tance and impact of each feature in a given features
space;

• the second method transforms the features space
through linear and non linear transformation func-
tions.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the related work. Section 3 presents the
preliminaries and notations that we use throughout the pa-
per. Section 4 formally describes the proposed methods.
Section 5 details the experimental evaluation. Finally, Sec-
tion 6 presents the conclusions and points out future works.

2. RELATED WORK
Researches on improving image retrieval effectiveness mainly
employ RF [23], dissimilarity function learning [21] and fea-
ture selection [15] methods. The most used RF approach
employs dynamic weighting mechanisms to modify the dis-
tance function or image dissimilarity model through appro-
priate weights, so that the distance between relevant images
becomes smaller if compared to the non-relevant images.

In the study of Stejic et al. [18], the authors incorporate
GA into RF mechanisms in order to assign the appropriate
weights on image descriptors and image regions. However,
the authors did not provide an effective model to learn the
user’s requests, because the R-precision evaluation function
that they employed represents only the ratio of retrieved
relevant images. Differently, our study addresses this ques-
tion through a GA-based RF mechanism that relies on an
order-based ranking evaluation function.

Based on the premise that dissimilarity functions and image
descriptors are problem-oriented, Torres et al. [21] proposed
the use of nonlinear combinations of multiple image simi-
larities, addressing the problem through the use of Genetic
Programming (GP). In their investigation, the learning pro-
cess relies on a training set and not on the user’s feedback.
Thus, the outcomes of their methods are not adjusted to the
user’s transient interests.

Other studies attempt to improve the precision of CBIR
systems by working directly with the features space [13] [5].
The study of Silva et al. [5] relies on ranking evaluation
functions in order to choose the best set of features to rep-
resent images in the CBIR context; the contribution of each
feature is binary (selected or not selected). In a different
course of action, our methods take advantage of the relative
importance of each feature in image retrieval, considerably
improving the retrieval results.

3. PRELIMINARIES AND NOTATION
Let X = {x1, . . . ,xn} represent the set of feature vectors
extracted from the image database I = {i1, . . . , in} us-
ing the feature extractor ε, i.e., ε(ii) = xi = {x1, . . . , xm},

xi ∈ Rm. Now consider xq as being the feature vector ex-
tracted from the query image iq and xi the feature vector
extracted from an arbitrary image ii. A dissimilarity func-
tion d(), also called distance function, provides a mechanism
to measure the dissimilarity between xq and xi.

Since the smaller the dissimilarity the larger the similarity
is, the elements of X can be sorted according to their simi-
larities to xq. In CBIR the most popular form of similarity
query is the k-Nearest Neighbor query, or kNN query for
short.

The kNN query aims at finding the k closest objects to a
query object [22]. A kNN query is formally presented in
Definition 1.

Definition 1. Given the set of objects X, a distance func-
tion d() and the query object xq, the response set T of a
kNN query is defined as:

kNN(xq, k, d(),X) = {T ⊆ X, |T| =k ∧ ∀xi ∈ T,xj ∈ X \T :

d(xq,xi) ≤ d(xq,xj)}
(1)

We consider that the elements of T are sorted according
to their distances to the query image composing a ranking
T = (t1 ≺ t2 ≺ ... ≺ tk−1 ≺ tk), where ∀i = {2, . . . , k},
d(xq, ti−1) ≤ d(xq, ti).

In order to evaluate the effectiveness of kNN queries into the
optimization process of RF, we employed a ranking quality
measure, as described in Definition 2. This is an order-based
utility function that considers the utility of images retrieved
according to their ranks [11]. Relevant images in the first
positions of the ranking will receive higher scores of utility
while relevant images far from the ranking top will receive
lower scores.

Definition 2. Given the ranking Ti = (t1, . . . , tk)
as the result of the query kNNi(xq, k, d(),X) and
Rq = {r1, . . . , rρ}, Rq ⊆ X the set of objects that belong
to the same class of xq, also called here the relevant objects
for xq, the measure of the quality of Ti is calculated by the
function:

Φ(Ti,Rq) =

k∑
j=1

r(tj)

A
.

(
(A− 1)

A

)j−1

(2)

where r(tj) = 1, if tj ∈ Rq or r(tj) = 0 otherwise, and
A ≥ 2 is an adjustment parameter that expresses the relative
importance of the position of the elements on the ranking.
Small values for A means more importance for the relevant
elements on the first positions of the ranking. When A is

large, the fraction (A−1)
A

is close to 1, then the position of
the elements on the ranking is not strongly considered.

We apply the proposed ranking-quality measure as the fit-
ness function at the core of the Genetic Algorithm used along
this research. Our goal relies on achieving a ranking that
maximizes the value of this function.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 8

4. PROPOSED METHODS

4.1 Overview of the System
The scheme of the system is shown in Figure 1. We suppose
that we have an image data set I with the image features
extracted using a feature extractor ε. Initially, the user en-
ters a query image iq and we apply ε on iq to get the feature
vector xq, i.e. xq = ε(iq). Then, the system computes the
distance between the respective feature vector xq to the fea-
tures of the images from data set I.

After this, a ranking is generated and presented to the user,
who is in charge of evaluating the first k images in the rank-
ing, assigning them relevance values: relevant, r(tj) = 1
if the image is relevant to the query; and not desirable,
r(tj) = −1 if the image is not supposed to be in the rank-
ing. By default, the system assigns not relevant, r(tj) = 0 to
every image that eventually has not been evaluated by the
user. This iterative process defines the set of relevant ob-
jects Rq. Since many images can belong to multiple classes
even according to the user’s judgment, it is the specific user’s
need that will define whenever an image is related or not to
the image query iq.

...
...............

...
...............

Figure 1: Systematization of the proposed method.

Once the user’s feedback is provided, we apply a GA-based
search for a sequence of weighting functions or transforma-
tion functions (δw or δT) that that will maximize the fitness
function presented in Equation 2. The application of δw and
δT to adjust the content-based retrieval are presented for-
mally in subsections 4.3 and 4.4, respectively. In summary,
a sequence of weighting functions is inferred in order to ad-
just the distance function so to reflect the user feedback;
and a sequence of transformation functions is determined in
order to transform the original feature space X and the fea-
ture vector of the query xq so to achieve more accuracy in
retrieval tasks.

Values of relevance provided by the user are stored in a tem-

porary space in between successive RF iterations. The cycles
of RF/GA-search are repeated until the optimal solution is
found, which means that the resulting ranking contains, as
much as possible, only relevant images in its first k positions;
or until a predefined maximum number of cycles is reached.

In short, the approaches we propose are:

• inferring a weight vector by means of weighting func-
tions; this allows the distance function to take into
account the degree of contribution of each feature ac-
cording to the user’s feedback;

• optimizing the features space by inferring a space
transformation that will adjust the original space in
order to better represent the user’s similarity criteria.

4.2 Weighting Functions Approach
The use of GA to infer the most appropriate weight vectors
for the dissimilarity function has achieved promising results
as pointed out in previous studies. Accordingly, our first
approach is based on this same concept but, in an innova-
tive fashion, we generate weights that obey to well-known
mathematical functions, as opposed to former methods that
use constant values. This proposal came from investigating
the distribution of the dissimilarity distances before and af-
ter the use of a weight vector. The assumption was that
there could be a well-defined manner to determine the best
weight to each feature so to improve the ranking generated
by the similarity queries. In accordance, we implemented a
CBIR system that integrates Relevance Feedback and Ge-
netic Algorithms in order to find weight vectors in the form
of sequences of mathematical functions. For this intent, we
considered a vast set of functions, as illustrated in Figure 2.

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

Figure 2: Examples of non linear and linear func-
tions used to generate the inference of weights and
features transformations.

The problem, formally presented in Definition 3, consists in
finding a sequence of functions that generate the best weight
vector for a specific query. In our problem, the chromosome
used by the GA search is encoded slightly different from the
most usual approach, according to which real values corre-
sponding to the weights are assigned to genotype. In our
case, the values assigned to the genotype are integers that
correspond to the identifiers of the weighting functions.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 9

Definition 3. Let F = {f1, . . . , fρ} be a set of mathe-
matical functions and δw = (f ′1, . . . , f

′
m), f ′i ∈ F be the

ordered set of weighting functions inferred. The number
of elements of the sequence δw must be equal to the num-
ber of features employed for images descriptions. Now let
w = δw(xq) = {f ′1(xq1), . . . , f ′m(xqm)} be the weighting vec-
tor for the distance function dw(), where f ′i(xqi) is a trans-
formation applied on the i-th feature of query image (xqi)
to produce a weight for the ith feature in the dissimilarity
function. The problem using the weighting functions is to
find a set δw such that

arg max
δw

Φ(T ,Rq) (3)

where T = kNN(xq, k, dw(),X) and Rq is the relevance
values for each image regarding the query represented by
feature vector xq.

The advantage of dealing with weighting functions is that
the search space for the GA is significantly reduced in com-
parison with the usual weighting over a given interval, such
as [0, 1]. The search space in a continuous interval is much
higher than the discrete and finite search space F, according
to, for each weight, we have only |F| possible choices.

4.3 Feature Space Transformation Functions
Approach

The second approach we introduce is based on the transfor-
mation of the features space, according to which each feature
value is redefined by a transformation function, as detailed
in Definition 4. These functions provide linear and nonlin-
ear transformations over the original features space, a way
to capture nonlinear relationships.

Transformations over the features space are defined using
the GA search to find the sequence of functions that lead
to improved retrieval results. For each sequence of trans-
formation functions considered by the GA, a new feature
space is calculated using the original feature values; after
each consideration, a new kNN query is executed.

Definition 4. Given F, as previously set out, let δT, de-
fined analogously to δw, be an ordered set of inferred trans-
formation functions and Y = {y1, . . . ,yn} the new feature
space, and each yi corresponding to a xi transformed by the
functions in δT, i.e., yi = δT(xi) = {f ′1(xi1), . . . , f ′m(xim)}.
The problem translates into finding the set δT of transfor-
mation functions such that:

arg max
δT

Φ(T ,Rq) (4)

where T = kNN(yq, k, d(),Y).

4.4 Genetic Algorithm Description
When implementing a GA, it is necessary to consider its
parameters and operators, such as the chromosome coding,
the fitness function, selection, the crossover, and the muta-
tion operators. The values of the parameters and the chosen
operators can be decisive regarding the effectiveness of the

algorithm. In this investigation, such choices were made ex-
perimentally and are described as follows:

• Chromosome coding : for the two proposed methods,
a chromosome was coded as an integer-valued vector
with m positions, C = (g1, . . . , gm), where gi corre-
sponds to an identifier of a function in F. In the
weighting functions approach, the chromosome pro-
duces the weight vector w for the distance function
dw(); while in the features space transformation ap-
proach, it provides the new features space Y.

• Fitness function: as fitness function we employed the
ranking quality measure presented in Definition 2.

• Selection for recombination operator : we used expo-
nential ranking selection to select pairs of individuals
to reproduce. For an individual Ci, the probability pi
of being selected is given by Equation 5:

pi =
cSp−i

Sp∑
j=1

cSp−j

, 0 ≤ c ≤ 1 (5)

where i ∈ {1, . . . , Sp}, Sp is the population size and
c = 0.9.

• Selection for reinsertion operator : elitism was em-
ployed to select the surviving chromosome for the next
generation. This is because elitism guarantees that the
best individual of the population in a generation g will
be present in the population of generation g+1, and so
it guarantees that the best solution will be improved
or, at least, maintained.

• Crossover operator : we employed uniform crossover.
A mask is randomly built and it indicates which chro-
mosome will supply each gene for the first offspring.
The second offspring is generated by the complement
of the same mask.

• Mutation operator : uniform mutation is applied on the
offspring chromosomes. The genes are selected with
probability Pm and their values are changed by another
valid value randomly chosen.

5. EXPERIMENTAL RESULTS AND
ANALYSIS

We evaluated our proposed methods by comparing it with
the weighting approach most commonly used, according to
which the weights correspond to values in the range [0, 1]
– here, we named this approach direct weights generator
(WG). This section describes the setting of the experiments
and the analysis of the results.

5.1 Image Data sets
In order to assess the applicability of the proposed methods,
experiments were conducted on real data sets in two different
domains: medical and general domain.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 10

General Domain

The first image database from a general domain is
Corel 1000 [9]. This data set contains 1000 images classi-
fied into 10 classes with 100 images per class (africa, beach,
buildings, buses, dinosaurs, elephants, flowers, food, horses
and mountains).

The other general domain data set used for experiments is
Scenes [14]. This data set is comprised of 1678 images di-
vided into 5 classes: 2 classes of urban environments (high-
way with 260 images and tall buildings with 356 images), and
3 classes of natural environments (coast with 360 images,
forest with 328 images, and mountain with 374 images).

Medical Domain

From the medical domain we used two data sets, one related
to general exams and one more specific. These data sets were
collected at the Clinical Hospital at University of São Paulo
in Ribeirão Preto.

The first data set called Medical Exams is a collection of
2400 medical images of various body parts. The images were
extracted by X-Ray and MRI exams, classified according to
the body part and cut type. The base is split into 12 classes
(abdomen, axial brain, coronal brain, sagittal brain, breast,
chest, leg, hand, knee, lung, pelvis and spine sagittal), each
class contain 200 images.

The second data set, called Lung, consists of 246 MRI exams
of human lungs. This data set is divided into 6 classes being
1 of normal and 5 of abnormal patterns (consolidation, em-
physema, thickness, honeycombing, and ground-glass opac-
ity), with an average of 41 images per class, varying from
39 to 44.

5.2 Parameters Setup
Feature Extractors

For each data set, the feature vectors were acquired by the
feature extractors: Color Moments [19], Co-occurrence [7],
Sobel Histogram [2], Histogram [4], Run Length [10] and
SIFT [12]. Table 1 shows the number of features extracted
and the type of the information captured by each extractor.
When extracting Color Moments and Sobel Histogram, the
images were partitioned into 16 rectangular regions. The re-
spective features were extracted from each region and com-
bined in a single vector.

Table 1: Feature extractors employed
Feature extractor Number of features Type

Color Moments 144 Color
Co-occurrence 88 Texture

Sobel Histogram 128 Shape
Histogram 256 Color

Run Length 44 Texture
SIFT 128 Shape

All the features were normalized using the z-score function
to avoid bias on distance calculation. The dissimilarity mea-
sures were obtained by the Euclidean distance function (L2).
The Weighted Euclidean distance function was applied to
the weighting methods.

One important issue concerned to the feature extractors is
that if the extracted features do not describe the relevant

aspect of the user’s interests, the GA may not converge to
satisfactory solutions. This is due to the fact that the set
Rq will be empty and therefore won’t be able to contribute
to the fitness computation.

GA Parameters

After some previous experiments and analysis, it was ob-
served that the values assigned to the GA parameters that
achieved better results were:

• population size (Sp): 50;

• maximum number of generations (Ng): 100;

• crossover rate (Pc): 0.8;

• mutation rate (Pm): 0.02.

5.3 Results
All the experiments were performed using the three fol-
lowing methods: direct weights generator (WG), weighting
functions (WF) and transformation functions (TF). All the
methods (WG, WF e TF) employ the fitness function of
Equation 2, over which we test the values 2, 10 and 20 for
parameter A. Also, we analyze the performance of the dif-
ferent feature extractors. Regarding the kNN query, we
empirically selected k = 30 and the maximum number of
cycles of RF/GA-search is 10.

The effectiveness of our methods WF and TF, in compari-
son with the WG method, was assessed by method Precision
vs. Recall (P&R), by method Number of Relevant Images
vs. Cycles of RF, and by visual data analysis. The qualita-
tive visual analysis aimed at verifying the distribution of the
relevant and non relevant images in the resulting optimized
spaces, and aimed at measuring the cohesion of the cluster
composed of relevant images.

The visual data analysis employed here was obtained
with tool Metric Space Platform (MetricSplat) [16]. This
tool combines the benefits of visualization techniques with
methodologies for content-based image retrieval. Fastmap
projection (cloud of point) was the technique chosen to il-
lustrate features space configuration before and after opti-
mizations.

In the visualization process, for each data set one image was
randomly chosen. Then, we compared the results of the
initial query and the results given after applying the opti-
mization methods WF and TF. In order to allow a better
visual analysis, for each visualization, we considered the en-
tire data space and, comparatively, a reduced space with
only the first 50 elements. Red dots represent the relevant
elements of the query and the blue dots represent elements
that are not relevant.

The cohesion measure was used to quantify how close are
the images that belong to the same class of the query in
relation to the query center. The cohesion measures were
taken before and after the optimizations. We used measure
Mean Square Deviation (MSD), calculated as follows:

MSD(C) =
1

n

k∑
i=1

(c− xi)2 (6)

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 11

where c is the centroid (the query in this case) and xi is an
element of cluster C (here it is considering only the clus-
ter composed of relevant elements). Small values for MSD
indicate better cohesion on clusters.

5.3.1 Corel 1000
Experiments on Corel 1000 are presented considering an av-
erage of 10 image queries randomly chosen, one from each
class. Figure 3(a) shows low precision of each feature extrac-
tor in the initial query and the improvement on precision ob-
tained in the last RF cycle using each method (Figures 3(b),
(c) and (d)). It can be observed that the WF (Figure 3(c))
obtains higher precision then WG (Figure 3(b)), near to
20% of recall with Color Moments feature extractor; TF
(Figure 3(d)), in turn, achieved the highest precision, near
to 30% of recall, also using Color Moments.

Considering extractor Color Moments, which was the best
extractor for the Corel 1000 data set, in Figure 4(a) we
analyze the adjustment of the parameter A of the fitness
function for each method. Figure 4(a) shows that the best
results were achieved when using TF, with A = 20, A = 10
and A = 2, respectively. Following, one can see the WF
method with A = 20 and A = 10. In Figure 4(b) it is
possible to observe that the precision increases until the fifth
cycle, with low or no improvement after that. We believe
that the Color Moments were the best extractor for the Corel
1000 data set because it comprises image classes each with
a characteristic color hue.

The number of relevant images retrieved per cycle obtained
by each feature extractor using TF method with A = 20 is
shown on Figure 5(a). It can be observed that the texture-
based feature extractors, Co-occurrence and Run Length,
have similar and poor improvement while compared to the
other ones. Figure 5(b) shows the number of relevant im-
ages retrieved through the cycles for each method with
A = 2, 10, 20 and using the Color Moment extractor. As
we can see, the TF method was the most effective, followed
by the WF method for the average of all feature extractors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(a) Initial query.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(b) WG, A = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(c) WF, A = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(d) TF, A = 20.

Figure 3: P&R plot for each feature extractor and
A = 20 (a) initial query, (b) cycle 10 using WG, (c)
cycle 10 using WF, (d) cycle 10 using TF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

WG A = 02

WG A = 10

WG A = 20

WF A = 02

WF A = 10

WF A = 20

TF A = 02

TF A = 10

TF A = 20

(a) Cycle 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

01

02

03

04

05

06

07

08

09

10

(b) TF, A = 20.

Figure 4: P&R plot for the feature extractor Color
Moments (a) cycle 10 for each method and for each
value of A, (b) evolution through the cycles 01 to 10
using TF and A = 20.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

C. Mom.
Co-occ.
S. Hist.

Hist.
R. Len.

Sift

(a) TF, A = 20.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

WG A = 02
WG A = 10
WG A = 20
WF A = 02
WF A = 10
WF A = 20
TF A = 02
TF A = 10
TF A = 20

(b) Color Moments.

Figure 5: Number of Relevant (a) for each feature
extractor using TF and A = 20, (b) using Color Mo-
ments for each method and for each value of A.

Figure 6 shows the projection of the original space from
Corel 1000 using Color Moments. The configuration of the
spaces after using methods WG and WF are respectively il-
lustrated in Figure 7 and Figure 8. Figures 7(a) and 8(a)
show that the generated spaces preserve a sparse distribution
of the elements, similar to the original space (Figure 6(a)).
WG retrieved 16 relevant elements (Figure 7(b)) while WF
retrieved 17 (Figure 7(b)) among the first 50 elements re-
trieved. Notice that, in the visualizations, the space scales
are not fixed.

Comparing the TF method with the weighting approaches,
it can be seen (Figure 9(a)) that the generated space is more
compact, and the relevant elements are concentrated closer
to the query center. Figure 9(b) shows that TF retrieved 33
relevant images of the 50 first elements in the ranking; 94%
more accurate than WG and WF.

The bar chart in Figure 10 shows the cohesion for each space
configuration. The cluster of relevant images obtained by
the initial query had the higher cohesion; meanwhile, the
cluster obtained by TF presented the best value. Consider-
ing the weighting methods, WF was superior than WG on
its space configuration.

5.3.2 Scenes
Figure 11(a) illustrates the precision vs. recall results for
the initial queries on data set Scenes. It can be seen that
the Co-occurrence extractor achieved the best result while
Histogram achieved the worst result. After 10 optimization
cycles, it can be observed in Figures 11(b), (c) and (d) that
the extractor Sobel Histogram achieved the best results for
all methods. WG was more accurate when assigned A = 20,
while WF and TF had better results with A = 10. Fixing
recall at 20%, the average precision obtained by TF was 67%,

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 12

(a) (b)

Figure 6: Original space configuration of Corel 1000
using Color Moments (a) entire space (b) 50 nearest
elements from the query point.

(a) (b)

Figure 7: Data space configuration of Corel 1000
data set after applying WG method (a) entire space
(b) 50 nearest elements from the query point.

(a) (b)

Figure 8: Data space configuration of Corel 1000
data set after applying WF method (a) entire space
(b) 50 nearest elements from the query point.

superior to WF with 64% and WG with 61%. The Sobel
Histogram achieved the best results because this descriptor
can capture the complex patterns present in images with a
high number of edges, which is the case for the Scenes data
set.

Regarding extractor Sobel Histogram, Figure 12(a) shows
the results of the last cycle for each method and the val-
ues assigned to parameter A. The maximum precision was
achieved by methods TF (A = 2, 10 and 20) and WF
(A = 10) up to the recall rate of 8%. As Figure 12(b)
shows, the improvements for method TF with A = 10 were
more significant until the fourth cycle, that is, the method
converged at this cycle.

The graphics in Figure 13 present the number of relevant im-
ages retrieved per cycle. Figure 13(a) shows results obtained
by TF with A = 10, where the more effective extractor was
the Sobel Histogram, followed by SIFT on the last cycles.
For extractor Sobel Histogram, the methods TF and WF
(as illustrated on Figure 13(b)) were slightly more effective
while using A = 10, in contrast to WG, which was more ef-
fective with A = 20. TF achieved an average of 30 relevant
retrieved images, while WF and WG achieved 29 and 28,

(a) (b)

Figure 9: Data space configuration of Corel 1000
data set after applying TF method (a) entire space
(b) 50 nearest elements from the query point.

40,00

60,00

80,00

Initial

WG

WF

0,00

20,00

Corel 1000

WF

TF

Figure 10: MSD values for relevant elements clus-
ters on Corel 1000 data set. The smaller the MSD
value the higher cohesion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(a) Initial query.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(b) WG, A = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(c) WF, A = 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(d) TF, A = 10.

Figure 11: P&R plot for each feature extractor (a)
initial query, (b) cycle 10 using WG, A = 20, (c) cycle
10 using WF, A = 10, (d) cycle 10 using TF, A = 10.

respectively.

Figure 14 shows the visualization of the original data space
using Sobel Histogram. The space obtained by TF (Fig-
ure 17(a)) was better adjusted to the query because the rel-
evant elements were closer to the center, different from the
spaces obtained by WG and WF (Figures 15(a) and 16(a)).

All optimization methods increased the number of relevant
images considering the 50 elements closer to the center, as
Figures 15(b), 16(b) and 17(b) show. The best results were
obtained by WF and TF, both with 36 relevant elements
in the first 50 elements, while WG achieved 21 relevant el-
ements. Figure 18 shows the MSD values for the cluster
with relevant elements. TF has a slightly better result if

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 13

compared to WF and to WG; all the three methods had
a significantly smaller MSD for the relevant cluster, which
means that cohesion increased and so the optimizations were
very effective.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

WG A = 02

WG A = 10

WG A = 20

WF A = 02

WF A = 10

WF A = 20

TF A = 02

TF A = 10

TF A = 20

(a) Cycle 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

01

02

03

04

05

06

07

08

09

10

(b) TF, A = 10.

Figure 12: P&R plot for the feature extractor Sobel
Histogram (a) cycle 10 for each method and for each
value of A, (b) evolution through the cycles 01 to 10
using TF and A = 10.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

C. Mom.
Co-occ.
S. Hist.

Hist.
R. Len.

Sift

(a) TF, A = 10.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

WG A = 02
WG A = 10
WG A = 20
WF A = 02
WF A = 10
WF A = 20
TF A = 02
TF A = 10
TF A = 20

(b) Sobel Histogram.

Figure 13: Number of Relevant (a) for each feature
extractor using TF and A = 10, (b) using Sobel His-
togram for each method and for each value of A.

(a) (b)

Figure 14: Original space configuration of Scenes
using Sobel Histogram (a) entire space (b) 50 nearest
elements from the query point.

(a) (b)

Figure 15: Data space configuration of Scenes data
set after applying WG method (a) entire space (b)
50 nearest elements from the query point.

(a) (b)

Figure 16: Data space configuration of Scenes data
set after applying WF method (a) entire space (b)
50 nearest elements from the query point.

(a) (b)

Figure 17: Data space configuration of Scenes data
set after applying TF method (a) entire space (b) 50
nearest elements from the query point.

4 00

6,00

8,00

10,00

12,00

Initial

WG

WF

0,00

2,00

4,00

Scene

WF

TF

Figure 18: MSD values for relevant elements clus-
ters on Scenes data set.

5.3.3 Medical Images
The average P&R results for the initial queries on the Med-
ical Images data set are shown in Figure 19(a). Color Mo-
ments presented the best initial results, with an average of
26 relevant images retrieved, whilst Histogram obtained the
worst initial results, as it retrieved an average of 17 relevant
images considering the first 30 images retrieved. For this
data set, extractor Sobel Histogram was more accurate after
the optimization using WG (A = 20), WF (A = 10) and TF
(A = 10) methods, as can be seen in Figures 19(b), (c) and
(d), respectively). Considering recall rate at 20%, the aver-
age precision was near 95% for all methods. Texture-based
extractors achieved the best results after optimization us-
ing TF; this result is expected as medical images are highly
characterized by textural content.

All three methods achieved maximum precision while us-
ing Sobel Histogram up to 14% of recall, as it is shown in
Figure 20(a). Improvements on accuracy through the cycles
while using TF and A = 10 are shown in Figure 20(b). Once
more, the convergence occurs around the fourth cycle.

The plots of the number of relevant results per cycle
in Figure 21 show that extractor Sobel Histogram had
the best response regarding TF optimization, followed by
SIFT(Figure 21(a)). Figure 21(b) also shows that all meth-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(a) Initial query.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(b) WG, A = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(c) WF, A = 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(d) TF, A = 10.

Figure 19: P&R plot for each feature extractor and
(a) initial query, (b) cycle 10 using WG, A = 20, (c)
cycle 10 using WF, A = 10, (d) cycle 10 using TF,
A = 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

WG A = 02

WG A = 10

WG A = 20

WF A = 02

WF A = 10

WF A = 20

TF A = 02

TF A = 10

TF A = 20

(a) Cycle 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

01

02

03

04

05

06

07

08

09

10

(b) TF, A = 10.

Figure 20: P&R plot for the feature extractor Sobel
Histogram (a) cycle 10 for each method and for each
value of A, (b) evolution through the cycles 01 to 10
using TF and A = 10.

ods achieved 30 relevant images considering the 30 first im-
ages retrieved in the fifth cycle while optimizing features
extracted by Sobel Histogram.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

C. Mom.
Co-occ.
S. Hist.

Hist.
R. Len.

Sift

(a) TF, A = 10.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

WG A = 02
WG A = 10
WG A = 20
WF A = 02
WF A = 10
WF A = 20
TF A = 02
TF A = 10
TF A = 20

(b) Sobel Histogram.

Figure 21: Number of Relevant (a) for each feature
extractor using TF and A = 10, (b) using Sobel His-
togram for each method and for each value of A.

The visualizations of the Medical Images data set correspond
to the spaces generated by the features extracted using So-
bel Histogram. Figure 22 illustrates the initial configuration
of this space. It is noticeable that there is a concentra-
tion of relevant images near to the center of the space (Fig-
ure 22(a)).

The distribution of the elements on space generated by WG
(Figure 23(a)) reveals that the method brought the non rel-
evant images closer to the center in comparison to the ini-
tial space. The methods WF (Figure 24(a)) and TF (Fig-
ure 25(b)) generated better configurations. Both methods
preserved a separation of non relevant elements. TF was
more effective since the cluster of the relevant images was
very close to the center. Considering the 50 elements closer
to the center, WF retrieved 34 relevant ones (Figure 24(b))
and TF (Figure 25(b)) retrieved 36, while WG retrieved 25
(Figure 23(b)). Measures of cohesion on the relevant clus-
ters confirm the visualizations. As shown in Figure 26, TF
obtained the lowest value, with significant difference from
the values on WG and WF.

(a) (b)

Figure 22: Original space configuration of Medical
Images using Sobel Histogram (a) entire space (b) 50
nearest elements from the query point.

(a) (b)

Figure 23: Data space configuration of Medical Im-
ages data set after applying WG method (a) entire
space (b) 50 nearest elements from the query point.

(a) (b)

Figure 24: Data space configuration of Medical Im-
ages data set after applying WF method (a) entire
space (b) 50 nearest elements from the query point.

5.3.4 Lung
For this data set we have randomly chosen 6 images, one
from each class; following we present and the average re-
sults obtained with the respective queries. Figure 27(a)
shows the low precision of each feature extractor of the ini-
tial query, with the best performance, again, obtained by
using Color Moments. Figure 27(b) and 27(c) illustrate the

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 15

(a) (b)

Figure 25: Data space configuration of Medical Im-
ages data set after applying TF method (a) entire
space (b) 50 nearest elements from the query point.

10,00

15,00

20,00

Initial

WG

WF

0,00

5,00

Medical Images

WF

TF

Figure 26: MSD values of clusters of relevant ele-
ments on Medical Images data set.

performance of WG and WF methods respectively, with a
slightly better effectiveness of WF and best improvement
achieved by the feature vector Sobel Histogram in both cases.
Figure 27(d) shows significantly higher effectiveness of TF
method (with 100% of precision until 60% of recall) in com-
parison to both WG and WF, and the best improvement
achieved using SIFT.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(a) Initial query.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(b) WG, A = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(c) WF, A = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

C. Mom.

Co-occ.

S. Hist.

Hist.

R. Len.

Sift

(d) TF, A = 20.

Figure 27: P&R graphics for each feature extractor
and A = 20 (a) initial query, (b) cycle 10 using WG,
(c) cycle 10 using WF, (d) cycle 10 using TF.

Considering the feature extractor SIFT, Figure 28(a) shows
the highest precision when using TF andA = 20, 10 and 2, in
decreasing order. Furthermore, the performance difference
in using weighting and transformation techniques is notice-
able. For instance, taking 60% of recall, the transformation
approach achieved 100% of precision, while weighting was
around 30% of precision. The results on each cycle, using

SIFT, TF and A = 20, are illustrated on Figure 28(b). Once
more, after the fifth cycle low improvements are achieved.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

WG A = 02

WG A = 10

WG A = 20

WF A = 02

WF A = 10

WF A = 20

TF A = 02

TF A = 10

TF A = 20

(a) Cycle 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

Recall

01

02

03

04

05

06

07

08

09

10

(b) TF, A = 20.

Figure 28: P&R graphics for the feature extractor
SIFT (a) cycle 10 for each method and for each value
of A, (b) evolution through the cycles 01 to 10 using
TF and A = 20.

Figure 29(a) shows that, also in this data set, the texture-
based feature extractors (Co-occurence and Run Length)
achieved the lowest effectiveness on TF method. Consider-
ing the SIFT, Figure 29(b) illustrates that the TF method
significantly outperforms the others, and WF with A = 20
has a slightly better result than the WG method in the last
three cycles.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

C. Mom.
Co-occ.
S. Hist.

Hist.
R. Len.

Sift

(a) TF, A = 20.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
.
o

f
R

e
le

v
a
n

t

Cycles

WG A = 02
WG A = 10
WG A = 20
WF A = 02
WF A = 10
WF A = 20
TF A = 02
TF A = 10
TF A = 20

(b) SIFT.

Figure 29: Number of Relevant (a) for each feature
extractor using TF and A = 20, (b) using SIFT for
each method and for each value of A.

(a) (b)

Figure 30: Original space configuration of Lung us-
ing SIFT (a) entire space (b) 50 nearest elements
from the query point.

In the visualization and cluster cohesion analysis, SIFT was
the extractor used in Lung data set. Figure 30 shows the dis-
tribution of the initial data space. The data spaces obtained
from WG, WF and TF methods are illustrated in Figures 31,
32 and 33. In fact, for this data set, all three methods gener-
ated a similar distribution, where the relevant elements are
more spread than the non relevant elements. Nevertheless,
the best configuration after optimization was obtained by
TF, since the non relevant images were closer to each other
and more distant to the center. SIFT was the best extractor

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 16

(a) (b)

Figure 31: Data space configuration of Lung data
set after applying WG method (a) entire space (b)
50 nearest elements from the query point.

(a) (b)

Figure 32: Data space configuration of Lung data
set after applying WF method (a) entire space (b)
50 nearest elements from the query point.

(a) (b)

Figure 33: Data space configuration of Lung data
set after applying TF method (a) entire space (b) 50
nearest elements from the query point.

30,00

40,00

50,00

60,00

70,00

Initial

WG

WF

0,00

10,00

20,00

Lung

WF

TF

Figure 34: MSD values of clusters of relevant ele-
ments on Lung data set.

for the lung data set because it can capture the peculiarities
of lung images, specially regarding well-defined contours.

Figures 31(b), 32(b), 33(b) show the space with only the 50
closest elements. In the initial space, the number of relevant
elements retrieved in the first 50 closest elements retrieved
was 13 (Figure 30(b)). The best result after optimization
was obtained by TF, with 31 relevant elements, followed by
WF with 22 and WG with 18 relevant elements retrieved.
Figure 34 shows that, once more, TF had the best cohesion
on the relevant elements, and WF was slightly better than
WG. It can be observed that all optimization methods gen-
erated clusters of relevant elements significantly superior in

comparison to the initial space.

ACKNOWLEDGMENTS
The authors are grateful for the financial support granted
by CNPq, FAPESP, CAPES, and Microsoft Research.

6. CONCLUSIONS
In this study we have employed Genetic Algorithm tech-
niques combined with Relevance Feedback techniques to im-
prove the accuracy of CBIR systems; we followed this course
of action according to two different novel approaches. The
first one (WF) infers a weight vector to adjust the Euclidean
dissimilarity function by means of weighting functions; the
second one (TF) aims at optimizing the features space using
linear and non linear transformation functions.

We performed several experiments using images from a gen-
eral domain and from the medical domain. The results
considering feature space transformation functions achieved
successful effectiveness, obtaining the highest precision in
all experiments, outperforming the other methods by up to
70%. The higher performance obtained by using the fea-
tures space transformation is due to the fact that it leads
to a configuration in which the space is transformed by dif-
ferent functions such as polynomials with several different
degrees. Meanwhile, weighted distance functions limit the
configuration to linear transformations.

The weighting function approach was more effective than
the simple weighting in continuous interval. The advan-
tage of using weighting functions instead of directly generate
weights is that the search space is considerably reduced.

We have used visual data analysis in order to visualize the
features spaces so to demonstrate that method TF gener-
ated space configurations that better express the semantic
related to the user’s interests; in such visualizations, the
clusters of the relevant elements of the queries were grouped
closer to the center, as expected. As future work, one pos-
sible approach is to investigate the use of the weighting and
transformation functions for further feature extractors and
distance functions, as well as to study possible correlations
between the different feature extractors and their behavior.

7. REFERENCES

[1] Y. Alemu, J. bin Koh, M. Ikram, and D.-K. Kim.
Image retrieval in multimedia databases: A survey. In
Proceedings of the Fifth International Conference on
Intelligent Information Hiding and Multimedia Signal
Processing, pages 681–689, Los Alamitos, CA, USA,
2009.

[2] S. Brandt. Use of shape features in content-based
image retrieval. Master’s thesis, Helsinki University of
Technology, 1999.

[3] P. Bugatti, A. Traina, and C. Traina. Improving
content-based retrieval of medical images through
dynamic distance on relevance feedback. In
Proceedings 24th International Symposium on
Computer-Based Medical Systems(CBMS), pages 1–6,
Bristol, IK, 2011.

[4] P. H. Bugatti, A. J. M. Traina, and C. Traina-Jr.
Assessing the best integration between

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 17

distance-function and image-feature to answer
similarity queries. In Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC), pages
1225–1230, Fortaleza, Ceara, Brazil, 2008.

[5] S. F. da Silva, M. X. Ribeiro, J. do E.S. Batista Neto,
C. Traina-Jr., and A. J. Traina. Improving the ranking
quality of medical image retrieval using a genetic
feature selection method. Decision Support Systems,
51(4):810–820, 2011.

[6] J. dos Santos, C. Ferreira, R. da S. Torres,
M. Gonçalves, and R. Lamparelli. A relevance
feedback method based on genetic programming for
classification of remote sensing images. Information
Sciences, 181(13):2671 – 2684, 2011.

[7] R. M. Haralick, K. Shanmugam, and I. Dinstein.
Textural Features for Image Classification. IEEE
Transactions on Systems, Man and Cybernetics,
3(6):610–621, 1973.

[8] A. Lakdashti, M. Shahram Moin, and K. Badie.
Semantic-based image retrieval: A fuzzy modeling
approach. In Proceedings of the IEEE/ACS
International Conference on Computer Systems and
Applications, pages 575–581, Doha, Qatar, 2008.

[9] J. Li and J. Z. Wang. Automatic linguistic indexing of
pictures by a statistical modeling approach. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 25:1075–1088, 2003.

[10] H.-H. Loh, J.-G. Leu, and R. Luo. The analysis of
natural textures using run length features. IEEE
Transactions on Industrial Electronics, 35(2):323 –328,
1988.

[11] C. López-Pujalte, V. P. Guerrero-Bote, and
F. de Moya-Anegón. Order-based fitness functions for
genetic algorithms applied to relevance feedback.
Journal of the American Society for Information
Science and Technology, 54(2):152–160, January 2003.

[12] D. G. Lowe. Object recognition from local
scale-invariant features. In Proceedings of the 7th
IEEE International Conference on Computer Vision,
volume 2, pages 1150–1157, Los Alamitos, CA, USA,
1999.

[13] d. l. T. F. Nguyen, M.H. Optimal feature selection for
support vector machines. Pattern Recognition,
43:584–591, 2010.

[14] A. Oliva and A. Torralba. Modeling the shape of the
scene: A holistic representation of the spatial

envelope. International Journal of Computer Vision,
42:145–175, 2001.

[15] M. Ribeiro, A. Balan, J. Felipe, A. Traina, and
C. Traina. Mining statistical association rules to select
the most relevant medical image features. In
D. Zighed, S. Tsumoto, Z. Ras, and H. Hacid, editors,
Mining Complex Data, volume 165 of Studies in
Computational Intelligence, pages 113–131. Springer
Berlin / Heidelberg, 2009.

[16] J. F. Rodrigues Jr., L. A. M. Zaina, L. A. S. Romani,
and R. R. Ciferri. Metricsplat - a platform for quick
development, testing and visualization of
content-based retrieval techniques. In Proceedings of
the 24th Brazilian Symposium on Databases,
Fortaleza, Ceara, Brazil.

[17] A. W. M. Smeulders, M. Worring, S. Santini,

A. Gupta, and R. Jain. Content-based image retrieval
at the end of the early years. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
22(12):1349–1380, 2000.

[18] Z. Stejic, Y. Takama, and K. Hirota. Genetic
algorithms for a family of image similarity models
incorporated in the relevance feedback mechanism.
Applied Soft Computing, 2(4):306 – 327, 2003.

[19] M. A. Stricker and M. Orengo. Similarity of color
images. In Proceedings of the Storage and Retrieval for
Image and Video Databases (SPIE, pages 381–392,
San Diego CA, USA, 1995.

[20] J.-H. Su, W.-J. Huang, P. S. Yu, and V. S. Tseng.
Efficient relevance feedback for content-based image
retrieval by mining user navigation patterns. IEEE
Transactions on Knowledge and Data Engineering,
23(3):360–372, 2011.

[21] R. d. S. Torres, A. X. Falcão, M. A. Gonçalves,
J. a. P. Papa, B. Zhang, W. Fan, and E. A. Fox. A
genetic programming framework for content-based
image retrieval. Pattern Recognition, 42:283–292,
February 2009.

[22] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search: The Metric Space Approach,
volume 32 of Advances in Database Systems. Springer,
2006.

[23] X. S. Zhou and T. S. Huang. Relevance feedback in
image retrieval: A comprehensive review. Multimedia
Systems, 8(6):536–544, 2003.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 18

ABOUT THE AUTHORS:

Letricia P. S. Avalhais received the MSc degree in Computer Science and

Computational Mathematics at University of Sao Paulo (in January 2012), and the

BSc in Computer Science at Federal University of Mato Grosso do Sul (in

December 2008). She is currently a Ph.D. candidate at University of Sao Paulo. Her

research interests include Image Processing, Content-Based Image Retrieval, Video

Analysis, Visualization and Machine Learning.

Sergio F. Silva received the B.Sc. degree in computer science from the Federal

University of Goias, Brazil, in 2004. He received the the M.Sc. degree in computer

science at the Faculty of Computation of the University of Uberlandia, Brazil, in

2007 and Ph.D. degree in computer science at the Mathematics and Computer

Science Institute, University of Sao Paulo at Sao Carlos, Brazil. His research

interests include multimedia data mining, computer-aided diagnosis and content-

based image retrieval with special attention for optimization techniques based on

evolutionary computation.

Jose F. Rodrigues Jr. is a Professor at University of Sao Paulo, Brazil. He received

his Ph.D. from this same university, part of which was carried out at Carnegie

Mellon University in 2007. Jose Fernando is a regular author and reviewer of major

events in his field, having contributed with publications in IEEE and ACM journals

and conferences. His topics of research include data analysis, content-based data

retrieval, and visualization.

Agma J. M. Traina received the B.Sc., the M.Sc. and Ph.D. degrees in computer

science from the University of Sao Paulo, Brazil, in 1983, 1987 and 1991,

respectively. She is currently a full Professor with the Computer Science Department

of the University of Sao Paulo at Sao Carlos, Brazil. Her research interests include

image databases, image mining, indexing methods for multidimensional data,

information visualization, image processing for medical applications and

optimization techniques based on evolutionary computation.

Caetano Traina Jr. received the B.Sc. degree in electrical engineering, the M.Sc. and

Ph.D. degrees in computer science from the University of Sao Paulo, Brazil, in 1978,

1982 and 1987, respectively. He is currently a full professor with the Computer

Science Department of the University of Sao Paulo at Sao Carlos, Brazil. His

research interests include access methods for complex data, data mining, similarity

searching and multimedia databases.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 19

An Empirical Study on Clone Stability
Manishankar Mondal Chanchal K. Roy Kevin A. Schneider

Department of Computer Science,
University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

ABSTRACT
Code cloning is a controversial software engineering practice
due to contradictory claims regarding its effect on software
maintenance. Code stability is a recently introduced mea-
surement technique that has been used to determine the
impact of code cloning by quantifying the changeability of a
code region. Although most existing stability analysis stud-
ies agree that cloned code is more stable than non-cloned
code, the studies have two major flaws: (i) each study only
considered a single stability measurement (e.g., lines of code
changed, frequency of change, age of change); and, (ii) only
a small number of subject systems were analyzed and these
were of limited variety.

In this paper, we present a comprehensive empirical study on
code stability using four different stability measuring meth-
ods. We use a recently introduced hybrid clone detection
tool, NiCAD, to detect the clones and analyze their sta-
bility in different dimensions: by clone type, by measuring
method, by programming language, and by system size and
age. Our in-depth investigation on 12 diverse subject sys-
tems written in three programming languages considering
three types of clones reveals that: (i) cloned code is gener-
ally less stable than non-cloned code, and more specifically
both Type-1 and Type-2 clones show higher instability than
Type-3 clones; (ii) clones in both Java and C systems ex-
hibit higher instability compared to the clones in C# sys-
tems; (iii) a system’s development strategy might play a key
role in defining its comparative code stability scenario; and,
(iv) cloned and non-cloned regions of a subject system do
not follow any consistent change pattern.1

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, Reverse Engineering and
Reengineering.

General Terms
Measurement and Experimentation

Keywords
Software Clones, Types of Clones, Code Stability, Modifica-
tion Frequency, Changeability, Overall Instability.

1This work is based on an earlier work: SAC ’12 Proceed-
ings of the 2012 ACM Symposium on Applied Computing,
Copyright 2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2231969.

1. INTRODUCTION
Frequent copy-paste activity by programmers during soft-
ware development is common. Copying a code fragment
from one location and pasting it to another location with
or without modifications cause multiple copies of exact or
closely similar code fragments to co-exist in software sys-
tems. These code fragments are known as clones [22, 25].
Whatever may be the reasons behind cloning, the impact
of clones on software maintenance and evolution is of great
concern.

The common belief is that the presence of duplicate code
poses additional challenges to software maintenance by mak-
ing inconsistent changes more difficult, introducing bugs and
as a result increasing maintenance efforts. From this point of
view, some researchers have identified clones as “bad smells”
and their studies showed that clones have negative impact
on software quality and maintenance [8, 15, 16, 19]. On
the other hand, there has been a good number of empirical
evidence in favour of clones concluding that clones are not
harmful [1, 7, 10, 11, 27]. Instead, clones can be useful from
different points of views [9].

A widely used term to assess the impact of clones on soft-
ware maintenance is stability [7, 12, 13, 15]. In general,
stability of a particular code region measures the extent to
which that code region remains stable (or unchanged) during
the evolution of a software system. If cloned code is more
stable (changes less frequently) as compared to non-cloned
code during software evolution, it can be concluded that
cloned code does not significantly increase maintenance ef-
forts. Different studies have defined and evaluated stability
from different viewpoints which can be broadly divided into
two categories:

(1) Stability measurement in terms of changes: Some
methodologies [7, 12, 15, 6] have measured stability by quan-
tifying the changes to a code region using two general ap-
proaches: (i) determination of the ratio of the number of
lines added, modified and deleted to the total number of
lines in a code region (cloned or non-cloned) [12, 15, 6] and
(ii) determination of the frequency of modifications to the
cloned and non-cloned code [7] with the hypothesis that the
higher the modification frequency of a code region is the less
stable it is.

(2) Stability measurement in terms of age: This ap-
proach [13] determines the average last changed dates of
cloned and non-cloned code of a subject system. The hy-
pothesis is that the older the average last change date of a
code region is, the more stable it is.

To measure the comparative stability of cloned and non-
cloned code, Krinke carried out two case studies [12, 13].

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 20

In his first study, he calculated the comparative instabilities
caused by cloned and non-cloned regions in terms of addi-
tion, deletion and modification in these regions whereas in
a most recent study [13] (elaborated in Section 3.2), he de-
termined the average last change dates of the regions. Both
of these studies suggest cloned code to be more stable than
non-cloned code.

Hotta et al., in a recent study [7], calculated the modification
frequencies of cloned and non-cloned code and found that
the modification frequency of non-cloned code is higher than
that of cloned code.

1.1 Motivation
Though all of the studies [7, 12, 13, 6] generally agreed on
the higher stability of cloned code over non-cloned code, we
conducted our research to address the following drawbacks
of these studies.

(1) The studies only considered limited aspects of stability.

(2) General decisions were made without considering a wide
variety of subject systems.

(3) No study addresses the comparative stabilities as well as
impacts of different clone types. This issue is important in
the sense that different types of clones might have different
impacts (good or bad) on maintenance. Based on impact
variability, we might take care of some specific clone types
while leaving others alone.

(4) Instability of clones on the basis of language variabil-
ity was not measured. This information might be very im-
portant from a managerial perspective. Projects developed
using programming languages that exhibit high clone insta-
bility may require more care regarding cloning activities.

(5) Different studies were conducted on different experimen-
tal setups (e.g. different subject systems, different clone de-
tection tools with different parameters, considering software
releases or revisions at different intervals), which might be
a potential cause behind their contradictory outcomes.

(6) No study performed statistical tests about how signif-
icant is the difference between the metric values of cloned
and non-cloned code. If the metric values regarding cloned
and non-cloned code are not significantly different, then we
do not need to be much worried about clones.

(7) The existing metrics are not sufficient to reveal all as-
pects of changeability (as well as stability) of cloned and
non-cloned code.

1.2 Contribution
Focusing on the issues mentioned above, our study con-
tributes in the following ways.

(1) Considering the count of lines affected in source code
modifications (additions, deletions or changes) we propose a
new method which calculates four new metrics: UP (Unsta-
ble Proportion), UPHL (Unstable Proportion per 100 LOC),
PCRM (Proportion of Code Region Modified), and OICR
(Overall Instability of Code Region) that provide us more
precise information about code changeability in comparison
with existing metrics as well as methods [12, 6] that con-
sidered line counts. The comparison between our proposed
metrics and the existing ones has been elaborated in Section

3.5. We investigated these metrics to compare the stability
of cloned and non-cloned code.

(2) We have investigated four methods in total by imple-
menting them on the same experimental setup and answered
seven research questions as listed in Table 1. One of the four
methods is our proposed new method that has already been
mentioned in the previous point. Two of these methods are
existing and were proposed by Hotta et al. [7] and Krinke
[13]. The last method is our proposed variant of Krinke’s
method [13]. The reasons behind introducing this variant
are elaborated in Section 3.3. The research questions (Table
1) belong to five different dimensions. The first three re-
search questions are answered by investigating the metrics
calculated by our proposed new method. The other four
questions are answered by combining the experimental re-
sults of all four candidate methods.

For detecting clones, we used the recently introduced hybrid
clone detection tool NiCad [3] that combines the strengths
and overcomes the limitations of both text-based and AST-
based clone detection techniques and exploits novel applica-
tions of a source transformation system to yield highly ac-
curate identification of Type-1, Type-2 and Type-3 cloned
code in software systems [20].

Our experimental results on three clone types of 12 subject
systems written in three languages (Java, C and C#) reveal
that:

(1) Cloned code gets modified significantly more often (sup-
ported with Mann-Whitney Wilcoxon (MWW) tests [17])
than non-cloned code.

(2) A significantly higher proportion of cloned LOC is mod-
ified in commit operations compared to non-cloned LOC.

(3) Type-1 and Type-2 clones are potential threats to a
system’s stability while Type-3 clones are possibly not.

(4) Clones in Java and C systems exhibit a higher level of
instabilities as compared to those of C# systems. This is
also statistically supported by Fisher’s Exact Test [5].

(5) Cloned code generally exhibits higher instability than
non-cloned code. However, cloned and non-cloned regions
of subject systems do not follow any consistent change pat-
tern. Moreover, the development strategy may have a strong
impact on the stability of cloned and non-cloned code.

The rest of the paper is organized as follows. Section 2
outlines the relevant research. Section 3 elaborates on the
candidate methods. Our experimental setup is described in
Section 4 and Section 5 contains the experimental results.
A detailed analysis of the experimental results is presented
in Section 6 while Section 7 mentions some possible validity
threats of our study. Section 8 concludes the paper and
describes future directions. The work presented in this paper
is an extended version of our earlier work [18].

2. RELATED WORK
Over the last several years, the impact of clones has been
an area of focus for software engineering research resulting
in a significant number of studies and empirical evidence.
Kim et al. [10] introduced a clone genealogy model to study
clone evolution and applied the model on two medium sized
Java systems. They showed that: (i) refactoring of clones

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 21

Table 1: Research Questions

Research Questions (RQs) Dimensions

RQ1 How often is a particular code region type (cloned or non-cloned) modified
during evolution? Which code region type is modified more often?

RQ2 Which code region type (cloned or non-cloned) has a higher proportion of
LOC modifications in the commit operations?

Comparative stability
centric

RQ3 Which code region type (cloned or non-cloned) exhibits higher instability
compared to the other?

RQ4 Do different types of clones exhibit different stability scenarios? Which
type(s) of clones is (are) more vulnerable to the system’s stability?

Type centric

RQ5 Why and to what extent do the decisions made by different methods on
the same subject system differ?

Method centric

RQ6 Do different programming languages exhibit different stability scenarios? Language centric

RQ7 Is there any effect of system sizes and system ages on the stability of cloned
and non-cloned code?

System centric

may not always improve software quality and (ii) immediate
refactoring of short-lived clones is not required and that such
clones might not be harmful. Saha et al. [27] extended their
work by extracting and evaluating code clone genealogies at
the release level of 17 open source systems and reported that
most of the clones do not require any refactoring effort in
the maintenance phase.

Kapser and Godfrey [9] strongly argued against the conven-
tional belief of harmfulness of clones by investigating dif-
ferent cloning patterns. They showed that: (i) about 71%
of the cloned code has a kind of positive impact in soft-
ware maintenance and (ii) cloning can be an effective way
of reusing stable and mature features in software evolution.
Lozano and Wermelinger et al. performed three studies [14,
15, 16] on the impact of clones on software maintenance
considering method level granularities using CCFinder [2].
They developed a prototype tool CloneTracker [14] to inves-
tigate the changeability of clones. The other studies, though
conducted on a small number of Java systems (4 in [15] and
5 in [16]), reported that clones have a harmful impact on
the maintenance phase because clones often increase main-
tenance efforts and are vulnerable to a system’s stability.

Juergens et al. [8] studied the impact of clones on large
scale commercial systems and suggested that: (i) incon-
sistent changes occurs frequently with cloned code and (ii)
nearly every second unintentional inconsistent change to a
clone leads to a fault. Aversano et al. [1] on the other hand,
carried out an empirical study that combines the clone de-
tection and co-change analysis to investigate how clones are
maintained during evolution or bug fixing. Their case study
on two subject systems confirmed that most of the clones
are consistently maintained. Thummalapenta et al. [28] in
another empirical study on four subject systems reported
that most of the clones are changed consistently and other
inconsistently changed fragments evolve independently.

In a recent study [6] Göde et al. replicated and extended
Krinke’s study [12] using an incremental clone detection
technique to validate the outcome of Krinke’s study. He
supported Krinke by assessing cloned code to be more sta-
ble than non-cloned code in general.

Code stability related research conducted by Krinke [12, 13]
and Hotta et al. [7] referred to in the introduction is elabo-
rated on in the next section.

In our empirical study, we have replicated Krinke’s [13] and
Hotta et al.’s [7] methods and implemented our variant of
Krinke’s method [13] and our proposed new method using
NiCad [3]. Our experimental results and analysis of those
results reveal inportant information about comparative sta-
bilities and harmfulness of three clone types along with lan-
guage based stability trends.

3. STABILITY MEASURING METHODS
This section discusses the three methods and associated met-
rics that we have implemented for our investigation. These
methods follow different approaches and calculate different
metrics but their aim is identical in the sense that each of
these methods takes the decision about whether cloned code
of a subject system is more stable than its non-cloned code.
For this reason we perform a head-to-head comparison of
the stability decisions indicated by the metrics of these three
methods and focus on the implementation and strategic dif-
ferences that cause decision dissimilarities.

3.1 Modification Frequencies
Hotta et al. [7] calculated two metrics: (i) MFd (Modifica-
tion Frequencies of Duplicate code) and (ii) MFn (Modi-
fication Frequencies of Non-Duplicate code) considering all
the revisions of a given codebase extracted from SVN. Their
metric calculation strategy involves identification and check-
ing out of relevant revisions of a subject system, normal-
ization of source files by removing blank lines, comments
and indents, detection and storing of each line of duplicate
code into the database. The differences between consecu-
tive revisions are also identified and stored in the database.
Then, MCd (Modification Count in Duplicate code region)
and MCn (Modification Count in Non-Duplicate code re-
gion) are determined exploiting the information saved in the
database and finally MFd and MFn are calculated using the
following equations [7]:

MFd =
∑rεRMCd(r)

∣R∣
∗
∑rεR LOC(r)

∑rεR LOCd(r)
(1)

MFn =
∑rεRMCn(r)

∣R∣
∗
∑rεR LOC(r)

∑rεR LOCn(r)
(2)

Here, R is the number of revisions of the candidate subject
system. MCd(r) and MCn(r) are the number of modifica-
tions in the duplicate and non-duplicate code regions respec-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 22

tively between revisions r and (r+1). MFd and MFn are the
modification frequencies of the duplicate and non-duplicate
code regions of the system. LOC(r) is the number of LOC
in revision r. LOCd(r) and LOCn(r) are respectively the
numbers of duplicate and non-duplicate LOCs in revision r.

3.2 Average Last Change Date
Krinke [13] introduced a new concept of code stability mea-
surement by calculating the average last change dates of
cloned and non-cloned regions of a codebase using the blame
command of SVN. He considers only a single revision (gener-
ally the last revision) unlike the previous method proposed
by Hotta et al. [7] that considers all the revisions up to the
last one. The blame command on a file retrieves each line’s
revision and date when the line was last changed. He calcu-
lates the average last change dates of cloned and non-cloned
code from the file level and system level granularities.

File level metrics: (1) Percentage of files where the av-
erage last change date of cloned code is older than that of
non-cloned code (PFc) (cloned code is older than non-cloned
code) in the last revision of a subject system. (2) Percent-
age of files where the average last change date of cloned code
is newer than that of non-cloned code (PFn) (cloned code
is younger than non-cloned code) in the last revision of a
subject system.

System level metrics: (1) Average last change date of
cloned code (ALCc) for the last revision of a candidate sub-
ject system. (2) Average last change date of non-cloned code
(ALCn) for the last revision of a candidate subject system.
To calculate file level metrics in our implementation, we con-
sidered only the analyzable source files, which excludes two
categories of files from consideration: (i) files containing no
cloned code and (ii) fully cloned files. But, system level met-
rics are calculated considering all source files. According to
this method, the older the code is the more stable it is.

Calculation of average last change date: Suppose five
lines in a file correspond to 5 revision dates (or last change
dates) 01-Jan-11, 05-Jan-11, 08-Jan-11, 12-Jan-11, 20-Jan-
11. The average of these dates was calculated by deter-
mining the average distance (in days) of all other dates
from the oldest date 01-Jan-11. This average distance is
(4+7+11+19)/4 = 10.25 and thus the average date is 10.25
days later to 01-Jan-11 yielding 11-Jan-11.

3.3 Proposed Variant of Krinke’s Method
We have proposed a variant of Krinke’s methodology [13] to
analyze the longevity (stability) of cloned and non-cloned
code by calculating their average ages. We also have used
the blame command of SVN to calculate the age for each of
the cloned and non-cloned lines in a subject system.

Suppose we have several subject systems. For a specific
subject system we work on its last revision R. By applying
a clone detector on revision R, we can separate the lines
of each source file into two disjoint sets: (i) containing all
cloned lines and (ii) containing all non-cloned lines. Differ-
ent lines of a file contained in R can belong to different pre-
vious revisions. If the blame command on a file assigns the
revision r to a line x, then we understand that line x was pro-
duced in revision r and has not been changed up to the last
revision R. We denote the revision of x as r = revision(x).
The creation date of r is denoted as date(r). In the last

revision R, we can determine the age (in days) of this line
by the following equation:

age(x) = date(R) − date(revision(x)) (3)

We have calculated the following two average ages for cloned
and non-cloned code from system level granularity.

1. Average age of cloned code (AAc) in the last revision of a
subject system. This is calculated by considering all cloned
lines of all source files of the system.

2. Average age of non-cloned code (AAn) in the last revision
of a subject system. AAn is calculated by considering all
non-cloned lines of all source files of the system.
According to our method, a higher average age is the impli-
cation of higher stability.

We have introduced this variant to address the following
issues in Krinke’s method.

1. blame command of SVN gives the revisions as well as
revision dates of all lines of a source file including its com-
ments and blank lines. Krinke’s method does not exclude
blank lines and comments from consideration. This might
play a significant role on skewing the real stability scenario.

2. As indicated in the average last change date calculation
process, Krinke’s method often introduces some rounding
errors in its results. This might force the average last change
dates of cloned and non-cloned code to be equal (There are
examples in Section 5).

3. The method’s dependability on the file level metrics
sometimes alters the real stability scenario. The type-3
case of ‘Greenshot’ is an example where both Hotta et al.’s
method and our proposed variant make a similar decision
(non-cloned code is more stable); but, the file level metrics of
Krinke’s method alters this decision. The system level met-
rics (ALCs) of Krinke’s method could not make a stability
determination because the metrics corresponding to cloned
(ALCc) and non- cloned (ALCn) code were the same.

Our proposed variant overcomes these issues while calcu-
lating stability results. It does not calculate any file level
metrics because its system level metrics are adequate in de-
cision making. It should also be mentioned that Hotta et
al.’s method also ensures the exclusion of blank lines and
comments from consideration through some preprocessing
steps prior to clone detection.

3.4 Proposed New Method and Metrics
Hotta et al.’s method [7] calculates modification frequency
by only considering the count of modifications that occurred
in a subject system without considering the number of lines
affected by those modifications. Focusing on this issue, we
propose a new method that calculates four new metrics for
measuring the stability (as well as changeability) of a par-
ticular code region. The descriptions and calculation proce-
dures of the metrics are given below.

UP (Unstable Proportion): Unstable proportion (UP)
of a particular code region (cloned or non-cloned) is the pro-
portion of the commit operations in which that code region
is modified.

Suppose C is the set of all commit operations through which
a subject system has evolved. The two sets of commit op-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 23

erations in which the cloned and non-cloned regions of this
system was modified are Cc and Cn respectively. We should
note that the sets Cc and Cn might not be disjoint. The
unstable proportions of cloned and non-cloned regions are
calculated using the following two equations, respectively.

UPc =
100 × ∣Cc∣

∣C ∣
(4)

UPn =
100 × ∣Cn∣

∣C ∣
(5)

Here, UPc is the unstable proportion of cloned code and
UPn is the unstable proportion of non-cloned code.

UPHL (Unstable Proportion per 100 LOC): Gen-
erally the UP of a particular code region (cloned or non-
cloned) is positively proportional to the total LOC of that
region. UPn is expected to be higher than the correspond-
ing UPc for a particular subject system. To determine how
often a particular code region is modified, we should also
consider the total LOC of that region. From this perspec-
tive we calculated the UPHL using equations Eq. 6 and Eq.
7. According to the equations, the UPHL of a particular re-
gion is equal to the UP per 100 LOC of that region. In other
words, UPHL determines the likelihood of being modified per
100 LOC of a code region. As there are many revisions of a
particular software system, we determined the total LOC of
the cloned or non-cloned region of this system by calculating
the average LOC per revision of the corresponding region.

UPHLc =
100 ×UPc × ∣C ∣

∑ciεC
LOCcci

(6)

UPHLn =
100 ×UPn × ∣C ∣

∑ciεC
LOCnci

(7)

Here, UPHLc and UPHLn are the unstable proportions
per 100 LOC of the cloned and non-cloned regions respec-
tively. LOCc(ci) is the count of total cloned LOC of the
revision corresponding to the commit ci. Also, LOCn(ci)
is the count of total non-cloned LOC of the revision corre-
sponding to the commit ci.

PCRM (Proportion of Code Region Modified): For
a particular code region (cloned or non-cloned) we calcu-
late the PCRM by determining the proportion of that code
region getting modified in commit operations. Here, we
consider only those commit operations where the particular
code region had some modifications. Considering the pre-
vious example, we can calculate the PCRM of cloned and
non-cloned code according to the following equations.

PCRMc =
100 ×∑ciεCc

LCc(ci)

∑ciεCc
LOCc(ci)

(8)

PCRMn =
100 ×∑ciεCn

LCn(ci)

∑ciεCn
LOCn(ci)

(9)

Here, PCRMc and PCRMn are respectively the proportions
of cloned and non-cloned regions that are modified. LCc(ci)
and LCn(ci) are the number of lines changed in cloned and
non-cloned regions in commit operation ci.

OICR (Overall instability of code region): We calcu-
late the OICR of a particular code region (cloned or non-
cloned) by multiplying its UP with its PCRM. We see that
the PCRM determines the proportion of a particular code
region being modified per commit operation and UP deter-
mines the proportion of commit operations in which that
particular code region is being modified. Thus, the multipli-
cation of these two will determine the instability exhibited
by the code region throughout the evolution. We calculate
OICR for cloned and non-cloned code according to the fol-
lowing two equations.

OICRc = UPc × PCRMc (10)

OICRn = UPn × PCRMn (11)

Here, OICRc and OICRn are respectively the overall in-
stabilities of cloned and non-cloned regions of a software
system.

3.5 Comparison of Our Proposed Metrics With
Existing Ones

Two existing studies performed by Krinke [12] and Göde
and Harder [6] investigated some metrics that are similar
to our proposed metric PCRM. Krinke [12] computed the
instabilities of cloned and non-cloned code with respect to
addition, deletion, and change. Göde and Harder extended
Krinke’s study [12] considering tokens instead of lines. While
Göde and Harder analyzed all of the revisions of a particular
software system, Krinke considered 200 weekly snapshots
for each of his candidate systems. However, none of these
studies could answer the first and second research questions
(RQ 1 and RQ 2 in Table 1).

RQ 1 was not addressed because no existing study defined
and evaluated a relevant metric. Our proposed metric UPHL
addresses this question.

Also, RQ 2 was not addressed by any existing studies. Our
metric PCRM answers this question. The studies performed
by Krinke [12] and Göde and Harder [6] computed some re-
lated metrics. However, the strategic difference between our
proposed metric (PCRM) and the existing ones is that while
calculating the metric value for a particular code region we
considered only those commits where that particular code
region was modified excluding those commits where that re-
gion did not have any modifications. However, the existing
studies did not exclude commits that do not have any ef-
fect on a particular code region while calculating the metric
value for the region.

We think that if a particular commit does not affect a par-
ticular code region, we should not consider that commit for
investigating the stability of that region, because that com-
mit is not responsible for increasing the instability of that
region. We call such a commit an ineffective commit for that
particular region. As the previous studies [12, 6] did not ex-
clude these ineffective commits for a particular region while
investigating the region’s instability, no study could deter-
mine what proportion of code from a particular region is
being modified when that region is actually receiving some
changes (due to effective commits). Our proposed metric
PCRM eliminates this drawback of the similar existing met-
rics.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 24

3.6 Major Difference Between Hotta’s Method
and Our Proposed New Method

Hotta et al.’s method relies on the count of modifications for
making stability decisions disregarding the number of lines
affected by the modifications. However, our proposed new
method relies on the count of affected lines. In a particular
commit operation, l (l >0) consecutive lines of a particular
code region might get modified. According to Hotta et al.’s
method the count of modifications is one. It calculates mod-
ification frequencies by considering this modification count
disregarding the number of lines modified. However, our
proposed new method calculates PCRM and OICR consid-
ering the count of affected lines (for this example l).

This difference may cause disagreements in the stability de-
cisions made by the two methods. Suppose the cloned and
non-cloned regions of a software system received respectively
mc and mnc modifications in a commit operation. The to-
tal number of lines affected by these mc and mnc modifi-
cations are lc and lnc respectively. If mc >mnc, Hotta et
al.’s method will decide that cloned code is more unstable.
However, in this situation our proposed new method may
decide the opposite, since lnc could be greater than lc.

3.7 Major Difference Between Hotta’s Method
and the Method Proposed by Krinke and
Its Variant

Hotta et al.’s method [7] considers all modifications to a
region from its creation and it does not matter when the
modifications to the region are applied. The other two meth-
ods only consider the last modification (which can also be
creation) and do not consider any modification before.

Suppose a file contains two lines denoted by x and y in re-
vision 1 and this file passed through 100 commits during
which x had 5 changes and y had only one change. Let the
change on y occur at the 99th commit and the last change on
x occur at the 50th commit. A blame command on the last
revision (100) of this file will assign x revision 50 and y will
be assigned revision 99. According to both Krinke’s method
and our variant, x is older than y because the revision date
corresponding to revision 50 is much older than the revi-
sion date corresponding to revision 99 and thus, x will be
suggested to be more stable than y by these two methods.
On the other hand, the method proposed by Hotta et al.
counts the number of modifications that occurred on these
two lines. Consequently, Hotta et al. will suggest y to be
more stable than x because the modification frequency of x
will obviously be greater than that of y.

4. EXPERIMENTAL SETUP
We implemented all four candidate methods in a common
framework in Java using MySQL for the back-end database.
Instead of using any existing implementations, we have reim-
plemented the two already existing methods (proposed by
Hotta et al.[7] and Krinke [13]) as we wanted to have a
common framework for comparison. Our selected subject
systems and setup of the clone detection tool are described
below.

4.1 Clone Detection
We used the NiCad [3, 21] clone detection tool to detect
clones in the subject systems in our study. NiCad can detect

Table 2: NiCad Settings

Clone
Types

Identifier Re-
naming

Dissimilarity
Threshold

Type 1 none 0%
Type 2 blindrename 0%
Type 3 blindrename 20%

Table 3: Subject Systems

Systems Domains LOC Rev

J
a
v
a

DNSJava DNS protocol 23,373 1635
Ant-
Contrib

Web Server 12,621 176

Carol Game 25,092 1699
Plandora Project Management 79,853 32

C

Ctags Code Def. Generator 33,270 774
Camellia Image Processing 100,891 608
QMail Ad-
min

Mail Management 4,054 317

Hashkill Password Cracker 83,269 110

C
#

GreenShot Multimedia 37,628 999
ImgSeqScan Multimedia 12,393 73
Capital
Resource

Database Management 75,434 122

MonoOSC Formats and Protocols 18,991 355

Rev = Revisions

both exact and near-miss clones at the function or block level
of granularity. We detected block clones with a minimum
size of 5 LOC in the pretty-printed format that removes
comments and formatting differences.

NiCad can provide clone detection results in two ways: (1)
by separating three types of clones (Type-1, Type-2, Type-
3) and (2) by combining all three types of clones. The NiCad
settings for detecting the three types of clones is provided in
Table 2. The dissimilarity threshold means that the clone
fragments in a particular clone class may have dissimilarities
up to that particular threshold value between the pretty-
printed and/or normalized code fragments. We set the dis-
similarity threshold to 20% with blind renaming of identi-
fiers for detecting Type-3 clones. For all these settings above
NiCad was shown to have high precision and recall [20]. We
have used NiCad’s combined type results for answering the
first three research questions. The remaining four questions
have been answered by investigating the three types of clones
separately.

4.2 Subject Systems
Table 3 lists the details of the subject systems used in our
study. We selected these subject systems because they are
diverse in nature, differ in size, span 11 application domains,
and are written in three programming languages. Also, most
of these systems differ from those included in the studies of
Krinke[13] and Hotta et al.[7], which was intentionally done
to retrieve exact stability scenarios.

5. EXPERIMENTAL RESULTS
For answering the first three research questions we applied
our proposed new method on the combined type clone detec-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 25

Table 4: Decision Making Strategy

Method
Metrics Decision Making

CC NC CC More
Stable

NC More
Stable

Proposed
Method

OICRc OICRn OICRc
<OICRn

OICRn
<OICRc

Hotta et
al. [7]

MFd MFn MFd
<MFn

MFn <MFd

Krinke
[13]

ALCc,
PFc

ALCn,
PFn

ALCc is
older

ALCn is
older

Krinke’s
Variant

AAc AAn AAc
>AAn

AAn >AAc

Special Decision for Krinke’s Method
if ALCc = ALCn then
PFc >PFn implies CC more stable
PFn >PFc implies NC more stable

CC = Cloned Code NC = Non-cloned Code

tion results of each of the 12 subject systems and obtained
the values of the four new metrics. However, for answering
the remaining questions we applied each of the four methods
on each of the three types of clones of each of the 12 candi-
date systems and calculated the metric values for three types
of clones separately. By applying our proposed new method
on the individual type results we obtained the value of the
fourth metric (OICR) only. So, in our investigation regard-
ing the research questions 4 to 7, each of the four methods
contributed one metric (4 metrics in total).

We should mention that we have three different implementa-
tions corresponding to three types of clones for each of the
candidate methods. Thus, we have 12 (4 subject systems
× 3 clone types) stability evaluation systems in total. For
answering the RQs 4 to 7, we applied each of these 12 sta-
bility evaluation systems on each of the 12 subject systems
to get the values of the stability metrics. So, we have 144
(12 subject systems × 12 stability evaluation systems) sets
of metric values from 144 different experiments. Each set
contains two values: (1) the metric value for cloned code (of
a particular type), and (ii) the metric value for non-cloned
code (corresponding to that particular type). From these
two values, we can make a decision about comparative sta-
bility of cloned and non-cloned code. For this reason, we
have called each of these metric value sets a decision point.
Finally, our investigation regarding the RQs 4 to 7 depends
on these 144 decision points obtained by conducting 144 dif-
ferent experiments. However, for answering the RQs 1 to 3
we conducted 12 experiments (by applying our proposed new
method on the combined type results of 12 subject systems).
The following paragraphs in this section describes the tables
that contain the results obtained from the experiments.

Table 5 shows the average last change dates obtained by
applying Krinke’s method. Table 7 and Table 9 contain
respectively the modification frequencies and average ages
of cloned and non-cloned code. File level metrics for two
special cases (Table 4) are shown in Table 6. The overall
instabilities of cloned and non-cloned code obtained by ap-
plying our proposed new method are presented in Table 8.
Interpretation of the table data is explained below.

Almost all of the tables are self-explanatory. Decision mak-
ing strategies for Tables 5, 7, 9, and 8 are elaborated in Table

Table 6: File Level Metrics for Two Systems

Subject System Clone Type PFc PFn

Plandora Type-2 6 4
Greenshot Type-3 43 12

Table 7: Modification Frequencies of Cloned (MFd)
and Non-cloned (MFn) code by Hotta et al.’s method

Type 1 Type 2 Type 3
Systems MFd MFn MFd MFn MFd MFn

J
a
v
a

DNSJava 21.61 7.12 19.34 6.99 7.93 8.66
Ant-Contrib 3.62 1.49 2.02 1.52 1.43 1.59
Carol 8.15 6.60 4.07 3.69 9.91 8.97
Plandora 0.44 0.92 0.45 0.97 0.55 1.11

C

Ctags 6.37 3.82 7.19 7.17 6.71 3.68
Camellia 18.50 18.04 42.37 17.73 30.02 17.53
QMailAdmin 5.09 2.74 8.83 5.47 8.24 2.58
Hash Kill 61.24 115.22 59.92 115.64 65.75 118.04

C
#

GreenShot 7.94 6.07 6.92 6.07 8.13 6.06
ImgSeqScan 0 20.93 0 21.06 0 21.29
Capital Re-
source

0 67.15 0 67.31 3.63 67.11

MonoOSC 8.58 29.14 7.92 29.23 10.62 29.63

4. However, for our proposed new method we have specified
only one metric Overall Instability of Code Region (out of
four) in Table 4. The other three metrics are investigated in
section 6.1.

The stability decisions (as per Table 4) of all the metric val-
ues contained in the Tables 5, 7, 8, and 9 are summarized
in Table 10, which contains decisions for 144 (12 subject
systems x 4 methods x 3 clone types) decision points corre-
sponding to 144 cells containing stability decision symbols
(‘⊕’ and ‘⊖’, explained in the table).

For decision making regarding Krinke’s method we prior-
itized the system level metrics (ALCc and ALCn) as they
represent the exact scenarios of the whole system. There are
only two examples of special cases as per Table 4: (i) Type-3
case of ‘Greenshot’ and (ii) Type-2 case of ‘Plandora’. For
these, the system level metrics (Table 5) are the same and
thus, we based the decisions on the file level metrics. We
show the file level metrics for these two cases in Table 6
without providing them for all 36 cases (12 subject systems
x 3 clone types).

6. ANALYSIS OF RESULTS
We present our analysis of the experimental results in five
dimensions and answer the seven research questions intro-
duced in Table 1.

To address the first three research questions we produced
four graphs: Fig. 1, Fig. 2, Fig. 3, and Fig. 4. Table
11 contains 36 (12 subject systems, 3 clone types) decision
points and was developed from Table 10 for the purpose
of answering research questions 4 to 7. Each cell in the
table corresponds to a decision point and implies agreement
(‘⊕’ or ‘⊖’) or disagreement (‘⊗’) of the candidate methods
regarding stability decisions. The meanings of ‘⊕’, ‘⊖’ and
‘⊗’ are provided in the tables.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 26

Table 5: Average Last Change Dates of Cloned (ALCc) and Non-cloned (ALCn) code

Clone Types Type 1 Type 2 Type 3
Systems ALCc ALCn ALCc ALCn ALCc ALCn

J
a
v
a

DNSJava 24-Mar-05 26-Apr-04 21-Jan-05 24-Apr-04 31-Mar-05 19-Apr-04
Ant-Contrib 22-Sep-06 03-Aug-06 18-Sep-06 02-Aug-06 08-Sep-06 03-Aug-06
Carol 25-Nov-07 18-Jan-07 25-Nov-07 14-Jan-07 12-Jun-05 27-Feb-07
Plandora 31-Jan-11 01-Feb-11 01-Feb-11 01-Feb-11 31-Jan-11 01-Feb-11

C

Ctags 27-May-07 31-Dec-06 24-Mar-07 31-Dec-06 17-Sep-06 01-Jan-07
Camellia 04-Nov-07 14-Nov-07 17-Jul-08 14-Nov-07 8-Feb-09 9-Nov-07
QMail Admin 07-Nov-03 24-Oct-03 19-Nov-03 24-Oct-03 26-Nov-03 24-Oct-03
Hash Kill 14-Jul-10 02-Dec-10 27-Jul-10 02-Dec-10 19-Jul-10 02-Dec-10

C
#

GreenShot 11-Jun-10 21-Jun-10 12-Jun-10 21-Jun-10 20-Jun-10 20-Jun-10
ImgSeqScan 19-Jan-11 14-Jan-11 17-Jan-11 14-Jan-11 19-Jan-11 14-Jan-11
Capital Resource 13-Dec-08 12-Dec-08 11-Dec-08 12-Dec-08 10-Dec-08 12-Dec-08
MonoOSC 08-Apr-09 21-Mar-09 05-Mar-09 21-Mar-09 21-Jan-09 22-Mar-09

Table 8: Overall Instabilities of Cloned (OICRc) and Non-cloned (OICRn) code by our proposed new method

Type 1 Type 2 Type 3
Systems OICRc OICRn OICRc OICRn OICRc OICRn

J
a
v
a

DNSJava 12.41 12.62 20.85 16.67 21.21 16.56
Ant-Contrib 37.16 7.28 3.65 8.53 10.61 7.94
Carol 6.06 8.64 5.31 8.79 12.41 8.00
Plandora 10.5 3.72 4.99 3.83 6.17 3.36

C

Ctags 4.63 9.37 9.72 9.33 5.90 9.65
Camellia 16.34 5.31 24.84 5.29 25.60 8.56
QMailAdmin 49.84 32.37 44.77 32.38 52.50 30.72
Hash Kill 7.42 53.69 0.71 53.44 11.75 55.23

C
#

GreenShot 10.76 10.18 8.27 10.29 10.63 10.24
ImgSeqScan 0 243.35 0 246.23 0 247.34
CapitalResource 0 9.88 0 9.78 2.05 9.83
MonoOSC 7.28 37.32 8.82 36.96 12.56 37.89

Table 9: Average Age in days of Cloned (AAc) and Non-cloned (AAn) code by the proposed variant

Type 1 Type 2 Type 3
Systems AAc AAn AAc AAn AAc AAn

J
a
v
a

DNSJava 2181 2441 2247 2443 2210.9 2446.9
Ant-Contrib 853.6 903.7 896.1 903.3 870.6 904.4
Carol 189.6 210.9 190.3 211.3 227 209.6
Plandora 51.82 51.32 50.6 51.4 51.5 51.32

C

Ctags 1301.4 1345.2 1351.9 1345 1564.8 1343.4
Camellia 1066.8 1056.7 810.9 1057.3 604.9 1062.4
QMail Admin 2664.2 2678.1 2651.7 2678.2 2644.6 2678.3
Hash Kill 261.5 118.5 250.3 118.4 257.9 118

C
#

Green Shot 103.1 97.1 102.9 97.1 94.5 97.2
ImgSeq Scan 14 20 15.6 20.3 14.4 20.4
Capital Resource 86.7 86.5 88 86.5 89.3 86.5
Mono OSC 315.4 313.5 347.9 313 378 312.3

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 27

Table 10: Comparative Stability Scenarios

Methods Krinke [13] Hotta et al.[7] Variant Proposed new
Systems T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

J
a
v
a

DNSJava ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖

Ant-Contrib ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖

Carol ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ ⊖

Plandora ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ ⊕ ⊖ ⊖ ⊖
C

Ctags ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ ⊖ ⊕

Camellia ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖

QMailAdmin ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Hash Kill ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

C
#

GreenShot ⊕ ⊕ ⊕ ⊖ ⊖ ⊖ ⊕ ⊕ ⊖ ⊖ ⊕ ⊖

ImgSeqScan ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ ⊖ ⊖ ⊖ ⊕ ⊕ ⊕

CapitalResource ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

MonoOSC ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕=Cloned Code More Stable

⊖=Non-Cloned Code More Stable
T1, T2 and T3 denote clone types 1, 2 and 3 respectively

Table 11: Overall stability decisions by methods

Lang. Java C C#

C
lo

n
e

T
y
p

e
s

D
N

S
J
av

a

A
n
t-

C
o
n
tr

ib

C
a
ro

l

P
l a

n
d
o
ra

C
ta

g
s

C
a
m

el
li
a

Q
M

a
il

A
d
m

in

H
a
sh

K
il
l

G
re

en
S
h
o
t

I m
g
S
eq

S
ca

n

C
a
p
it

a
l

R
es

o
u
rc

e

M
o
n
o
O

S
C

Type-1 ⊖ ⊖ ⊖ ⊕ ⊖ ⊗ ⊖ ⊕ ⊗ ⊗ ⊕ ⊕

Type-2 ⊖ ⊖ ⊖ ⊗ ⊖ ⊖ ⊖ ⊕ ⊕ ⊗ ⊕ ⊕

Type-3 ⊖ ⊖ ⊗ ⊕ ⊕ ⊖ ⊖ ⊕ ⊖ ⊗ ⊕ ⊕

⊕=Most of the methods agree with ⊕
⊖=Most of the methods agree with ⊖
⊗=Decision conflict (Two methods agree with ⊕ and

the remaining two methods agree with ⊖)

For example, in Table 10 three methods (excluding our pro-
posed new method) agree there is higher Type-1 clone insta-
bility in ‘Ctags’. For the Type-3 case in ‘Carol’, two methods
(the method proposed by Krinke and the proposed variant
of Krinke’s method) agree there is higher cloned code sta-
bility, whereas the other two methods agree there is higher
non-cloned code stability. Thus, in Table 11, Type-1 clones
for ‘Ctags’ is marked with ‘⊖’ and Type-3 clones for ‘Carol’
is marked with ⊗.

6.1 Analysis Regarding the Comparative Sta-
bility of Cloned and Non-cloned Code

6.1.1 Analysis regarding UP and UPHL
From the graph in Fig.1 presenting the unstable propor-
tions of cloned and non-cloned code we see that the un-
stable proportion of non-cloned code is always higher than
that of cloned code. This is obvious because a larger code re-
gion would generally require more modifications to be main-
tained. To get more precise information we determined the

UPHL for cloned and non-cloned regions of each of the can-
didate systems. The comparative scenario between UPHLc
and UPHLn is presented in Fig. 2.

According to this graph, for most of the subject systems (11
out of 12) UPHLc >UPHLn. Thus, cloned code is more
likely to be modified compared to non-cloned code. In answer
to the first research question (RQ 1) we can say that cloned
code is modified more often than non-cloned code.

We performed the MWW (Mann-Whitney Wilcoxon) test
[17] on the observed values (UPHLc and UPHLn) for the 11
subject systems with a higher UPHLc to determine whether
UPHLc is significantly higher than UPHLn. The two tailed
probability value (p-value) for this test is 0.00244672. The
p-value is much less than 0.05 and it implies that UPHLc
is significantly higher than UPHLn for our candidate sub-
ject systems. Thus, according to our experimental result,
cloned code is modified significantly more often than non-
cloned code.

6.1.2 Analysis regarding PCRM
The graph in Fig. 3 presents the comparison between the
PCRMc and PCRMn of the each of the candidate systems.
We see that for most of the subject systems (10 out of 12),
PCRMc >PCRMn. For one (ImgSeqScan) of the remaining
two subject systems, PCRMc = 0 because the cloned regions
of this subject system did not have any modifications. Thus,
in answer to the second research question (RQ 2) we can say
that the proportion of cloned regions (i.e., the proportion of
cloned LOC) modified due to effective commits is generally
higher than the proportion of the non-cloned regions getting
modified due to effective commits.

Considering the 10 subject systems with higher PCRMc we
performed the MWW (Mann-Whitney Wilcoxon) test [17]
on the observed values of PCRMc and PCRMn to deter-
mine whether PCRMc is significantly higher than PCRMn

for these systems. The two tailed probability value (p-value)
regarding the test is 0.01854338. We see that the p-value is
less than 0.05. Thus, the difference between PCRMc and
PCRMn is marginally significant according to our findings.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 28

Figure 1: Unstable proportions (UP) of cloned and non-cloned code

Figure 2: Unstable proportion per 100 LOC (UPHL) of cloned and non-cloned code

Figure 3: Proportions of cloned and non-cloned regions getting modified (PCRM)

Figure 4: Overall instabilities of cloned and non-cloned code (OICR)

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 29

6.1.3 Analysis regarding OICR
The comparison of the overall instabilities of the cloned and
non-cloned regions of the candidate systems is presented in
Fig. 4. According to this graph seven subject systems have
higher overall instability of cloned code (higher OICRc)
while the remaining five subject systems have the oppo-
site. For one (ImgSeqScan) of these remaining five systems,
OICRc equals zero because cloned regions of this system did
not get modified. In other words, the cloned regions of this
system did not have any effective commits. However, the
comparison scenario presented by the graph indicates that
in the presence of effective commits, overall instability of a
cloned region is generally higher than that of a non-cloned
region.

6.1.4 Analysis Result
From the analysis of our experimental results regarding the
comparative stability of cloned and non-cloned code, we see
that (1) cloned code gets modified significantly more often
than non-cloned code, (2) the proportion of cloned region
getting modified due to effective commits (defined in the
last paragraph of Section 3.5) is higher than that of non-
cloned region, and (3) finally, in answer to the third research
question (RQ 3) we can say that the overall instability of
cloned code is generally higher than that of non-cloned code.
The comparative scenario implies that software clones are
generally less stable than non-cloned code and thus, clones
should be managed with proper care to increase the stability
of software systems.

6.2 Type Centric Analysis
In this analysis, we tried to answer the fourth research ques-
tion (Table 1) by investigating how a particular method’s
decisions on a particular subject system vary with the vari-
ation of clone types. We have the following observations.

The stability decisions made by a method on a specific sub-
ject system corresponding to three types of clones are similar
for 31 cases with some minor variations for the remaining
cases. That is, Table 10, shows there are 64.58% similar
cases among 48 cases. Each case consists of three decisions
for three types of clones made by a particular method on a
particular subject system. As an example of variations, con-
sider the decisions made by Hotta’s method for ‘DNSJava’.
For the Type-3 case (Table 7), MFd < MFn suggests that
Type-3 clones are more stable than the corresponding non-
cloned code. However, according to this method, Type-1 and
Type-2 clones of ‘DNSJava’ are much less stable than non-
cloned code (the difference of MF s for the Type-3 case is
smaller compared to the differences for the other two cases).
We analyzed the experimental results in the following two
ways.

6.2.1 Analysis 1
This analysis is based on the agreement-disagreement sce-
nario of the Table 11. According to the agreed decisions
points (Table 11) of the Type-1 case:

(i) clones decrease the stability of a system with probability
= No. of cells with cloned code less stable/total no. of cells
= 5/12 = 0.42.

(ii) non-cloned code decreases the stability of a system with
probability = 4/12 = 0.33.

Figure 5: Type centric analysis

For the Type-2 case, these two probabilities are 0.50 (for
cloned code) and 0.33 (for non-cloned code) respectively.
So, for both of these cases (Type-1 and Type-2) cloned code
has a higher probability of decreasing the system’s stability.
But, for Type-3 case these two probabilities are the same
(0.42 for both cloned and non-cloned code). We see that for
both Type-1 and Type-2 cases, clones have higher probabil-
ity of making a system unstable compared to the probability
of corresponding non-cloned code. However, Type-3 clones
do not appear to be more unstable than non-cloned code
according to our findings.

6.2.2 Analysis 2
In this case, we analyzed the data in Table 10. In this table,
each type of clones contribute 48 decision points in total.
Considering these 48 decision points (for each type of clones)
we calculated the proportions of decision points agreeing
with higher instability of cloned or non-cloned code. These
proportions are plotted in Fig. 5.

According to this graph, the higher proportion of decision
points belonging to both Type-1 and Type-2 case agree with
the higher instability of cloned code compared to the Type-3
case. Thus, Type-1 and Type-2 clones are more vulnerable
in the software systems compared to the vulnerability ex-
hibited by Type-3 clones.

6.2.3 Analysis Result
Both Type-1 clones (created by exact copy-paste activities),
and Type-2 clones (created by renaming identifiers and chang-
ing data types) should be given more attention during the
development and maintenance phase.

6.3 Method Centric Analysis
We see that Table 10 contains 144 decision points where
each method contributes 36 decisions (corresponding to 12
systems and 3 clone types). From this we can retrieve the
decision making scenario presented in Table 12 exhibited by
the candidate methods. According to this table, the major-
ity of the methods (three out of four) agree there is higher
instability in cloned code. However, there are decision dis-
agreements among the methods. The disagreements have
been analyzed in the following way.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 30

Figure 6: Method centric analysis regarding dis-
agreements

6.3.1 Analysis of disagreements
We see that in Table 10 each method contributes 36 deci-
sion points. From this table we determined the percentage
of disagreements for each pair of methods. For each deci-
sion point belonging to a particular method we get a corre-
sponding decision point in another method. For each pair of
methods, we see whether the corresponding decision points
are conflicting (making different stability decisions) or not.
From 36 sets of corresponding points for a particular method
pair, we determine the proportion of conflicting sets. These
proportions are shown in the graph of Fig.6. We have the
following observations from the graph.

(1) We see that the method proposed by Krinke and its
variant have the lowest proportion of conflicts. As both of
these methods work on the last revision of a subject sys-
tem they should exhibit a higher proportion of agreements
in their decisions. The reason behind the observed disagree-
ments is that the proposed variant excludes blank lines and
comments from consideration while calculating average ages
of cloned and non-cloned code. But, Krinke’s method is bi-
ased by the blank lines and comments because it does not
exclude these from consideration while determining average
last change dates.

(2) Each of the methods proposed by Krinke and its variant
has strong disagreements with each of the other two methods
(proposed by Hotta et al. and our proposed new method).
The reason behind this disagreement is that while both of
the methods proposed by Hotta et al. and our proposed new
method examine each of the existing revisions of a particular
software system, the other two methods examine only the
last revision for making stability decisions. In the following
example we explain an observed strong disagreement.

Example and explanation of a strong disagreement:
We consider ‘ImqSeqScan’ as an (extreme) example. For
each clone type, each of the methods proposed by Hotta et
al. and the proposed new method shows strong disagree-
ment to the decision of Krinke’s method and its variant.
Each of the three types of clones was suggested to be more
stable than non-cloned code by the methods proposed by

Table 12: Stability w.r.t. candidate methods

Decision Pa-
rameters

% of Decision Points

Krinke
[13]

Hotta
et al.[7]

Proposed
variant

Proposed
New

Non-cloned
code more
stable (cloned
code less sta-
ble)

55.56 52.78 52.78 47.22

Cloned code
more stable

44.44 47.22 47.22 52.78

Hotta et al. (Table 7) and the proposed new method (Ta-
ble 8). However, both Krinke’s method and its variant yield
the opposite decisions (Table 5 and 9). More interestingly,
both Hotta et al.’s method and our proposed new method
reveal that the cloned regions of ‘ImgSeqScan’ did not re-
ceive any change (modification frequencies of cloned code
is 0 according to the Table 7, overall instability of cloned
code is 0 according to the Table 8) during the entire lifetime
(consisting of 73 commit transactions) where the other two
methods show that the cloned code is significantly younger.
In this case the regions of cloned code have only been cre-
ated lately and have not been modified after creation. The
following explanation will clarify this.

Suppose a subject system receives 100 commit transactions.
Some clone fragments were created in some of these com-
mits but no existing clone fragment was modified at all. In
such a case, both Hotta et al.’s method and our proposed
new method will see that there are no modifications in the
cloned region. As a result, MFd (for Hotta et al.’s method)
and OICRc (for the proposed new method) will be zero.
On the other hand, the blame command will retrieve the
creation dates of the clone fragments existing in the last
revision of the system and Krinke’s method will determine
the average last change date for the cloned region consid-
ering these creation dates. If the creation dates of some
clone fragments are newer than the modification dates of
non-cloned fragments which forces the average last change
date of the cloned region to be newer than that of the non-
cloned region, Krinke’s method will suggest cloned code to
be less stable than non-cloned code. Thus, the cloned or
non-cloned region of a subject system might be represented
to be less stable than its counterpart even if it does not
undergo any modifications during the entire evolution time
while its counterpart does.

(3) The proposed new method disagrees with Hotta et al.’s
method for 33.33% cases. The main reason behind this dis-
agreement has already been explained in Section 3.6. Plan-
dora is an extreme example of such disagreement. According
to Hotta et al.’s method, each type of clones of this subject
system are more stable than the corresponding non-cloned
code. But, our proposed new method makes the opposite
decision in each case.

Finally, in answer to the fifth research question (RQ 5) we
can say that the stability decisions made by the candidate
methods are often not similar and both Hotta et al.’s method
and our proposed new method have strong disagreements
with the other two methods in many cases.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 31

Table 13: Stability w.r.t. programming languages

Decision Parameters % of Agreed Decision Points
Java C C#

Non cloned code more
stable (Cloned code less
stable)

66.67 58.33 8.33

Cloned code more stable 16.67 33.33 58.33
Conflicting decisions 16.66 8.34 33.34

6.3.2 Analysis result
Considering all candidate methods and metrics we see that
cloned code (all three types) has a higher probability to
force a system into an unstable state compared to non-cloned
code. According to Table 10, cloned code is less stable than
non-cloned code for 75 cells (among 144 cells). The oppo-
site is true for the remaining 69 cells. So the probability
by which cloned code makes the system unstable is 75/144
= 0.52 which outweighs the probability of non-cloned code
(0.48). Though the difference between the probabilities is
very small, it disagrees with the conclusion drawn by both
Krinke [13] and Hotta et al.[7] regarding comparative stabil-
ity. Thus, clones should be carefully maintained and refac-
tored (if possible) instead of keeping aside.

6.4 Language Centric Analysis
We performed language centric analysis in two ways.

6.4.1 Analysis 1
This analysis is based on the agreement-disagreement sce-
nario of Table 11. Our set of subject systems consists of
four systems from each of the three languages (Java, C and
C#). In Table 11, each language contributes 12 (4 subject
systems, 3 clone types) decision points. Considering these
decision points we retrieved the language specific stability
scenario presented in Table 13.

According to this table, both Java and C exhibit higher
cloned code instability: 66.67% and 58.33% of the cases,
respectively. The majority of the candidate methods agreed
there is higher instability in cloned code. An exactly the
opposite scenario was observed for C#. Moreover, for C#
we can observe the highest proportion (33.33%) of decision
conflicts. Thus, clones in both Java and C systems have a
higher probability of making a system unstable compared to
the clones in C# systems. Our Fisher’s Exact Test results
regarding the language centric statistics are described below.

Fisher’s Exact Test: We performed Fisher’s exact tests
[5] on the three possible paired-combinations of the three
languages using the values in Table 13 to see whether there
are significant differences among the observed proportions of
different languages. We defined the following null hypoth-
esis. The values in Table 13 were rounded before using in
Fisher’s exact test.

Null Hypothesis: There is no significant difference between
the stability scenarios presented by different programming
languages.

From Table 14 we see the P value for each paired combi-
nation of programming languages is less than 0.05. This
rejects the null hypothesis and confirms that there are sig-

Table 14: Fisher’s Exact Tests for prog. languages

Java C Java C# C C#

CCLS 67 58 67 8 58 8

NCLS 17 33 17 58 33 58

DC 17 8 17 33 8 33

P = 0.0103 P <0.0001 P <0.0001

CCLS = Cloned Code Less Stable
NCLS = Non-cloned Code Less Stable
DD = Decision Conflicts

nificant differences among the observed scenarios of different
programming languages.

6.4.2 Analysis 2
This analysis is based on the Table 10. In this table we
see that each method contributes 12 decision points for each
programming language. For each combination of method
and language we determined two proportions: (1) the pro-
portion of decision points agreeing there is higher cloned
code instability, and (2) the proportion of decision points
agreeing there is higher non-cloned code instability. These
proportions are presented in Fig. 7.

In the bar chart (Fig. 7) we see that for each method, a
higher proportion of decision points belonging to both Java
and C agree there is higher cloned code instability. The
opposite scenario is exhibited by C#. For each method,
a higher proportion of decision points (belonging to C#)
agree that there is higher cloned code stability. Thus, from
this analysis we can also say that clones in both Java and
C systems have a higher probability of making a system
unstable compared to the clones in C#.

6.4.3 Analysis result
In answer to the sixth research question (RQ 6) we can say
that clones in both Java and C systems exhibit significantly
higher instability compared to the clones in C# systems and
so developers as well as project managers should be more
careful regarding clones during software development using
these languages (Java and C).

6.5 System Centric Analysis
In the system centric analysis we investigated whether sys-
tem sizes and system ages affect the comparative stabili-
ties. In this investigation we wanted to observe how modi-
fications occur in the cloned and non-cloned code of a sub-
ject system as the system becomes older and bigger in size.
So, we recorded and plotted the modification frequencies of
four subject systems for different revisions. We chose ‘DNS-
Java’, ‘Carol’, ‘MonoOSC’ and ‘Hashkill’ in this investiga-
tion. ‘DNSJava’ and ‘Carol’ have a large number of revisions
compared to the revision numbers of other two systems. On
the other hand ‘Hashkill’ is much bigger than the remaining
three systems in terms of LOC. So, selecting these system
we have a range of systems in terms of LOCs and revision
numbers covering three languages. Also, these subject sys-
tems yielded contradictory stability scenarios for the method
proposed by Hotta et al.

We present four line graphs (Fig. 8, Fig. 9, Fig. 10, Fig.
11) for these subject systems plotting their modification fre-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 32

Figure 7: Language centric analysis

quencies for each of the revisions beginning with the second
revision. For each revision r (r ≥ 2), the modification fre-
quencies of cloned and non-cloned code plotted in the graph
were calculated by considering all revisions from 1 to r. The
intention is to calculate the modification frequencies for r
(r ≥ 2) considering r as the current last revision. These vi-
sual representations of the gradual changes of modification
frequencies reflect the exact trends of how the cloned and
non-cloned regions were modified in the development phase.

In both Fig. 8 and Fig. 10, we see that for some devel-
opment time cloned code was more stable than non-cloned
code and vice versa. But the graph in Fig. 9 shows that
for most of the development time, cloned code was modified
more frequently than the non-cloned code. The graph in Fig.
11 exhibits a completely different scenario. The four graphs
exhibit no change consistency or bias. Also, in the case of
Carol (Fig. 9) we see that although for most of the life time
the modification frequency curves showed opposite charac-
teristics, the curves tend to meet each other at the end. On
the other hand, the curves of the other three systems seem
to diverge from each other. From Table 3 we can see that
these four systems are of diverse sizes and nature. Thus,
the convergence or divergence of the modification frequency
curves is not dependent on the system sizes. So, RQ 7 can
be answered by the observation that system sizes and sys-
tem ages do not affect the stability of cloned and non-cloned
code in a consistent or correlated way.

It is worth noting that every system can have a different de-
velopment strategy which can affect changes to cloned and
non-cloned code. For example, programmers might be afraid
of changing cloned code because of the risk of inconsistent
changes and would try to restrict the changes to the non-
cloned code. Another possibility is that developers are ad-
vised to not change any code of other authors and thus are
forced to create a clone in order to apply a change. However,
such development strategies cannot be identified by looking
at the change history alone and thus it is not possible to
measure the impact on cloned and non-cloned code.

Figure 8: MFs for DNSJava (Type-1 case. Non-
cloned code is more stable)

Figure 9: MFs for Carol (Type-3 case. Non-cloned
code is more stable)

Figure 10: MFs for Hash Kill (Type-3 case. Cloned
code is more stable)

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 33

Figure 11: MFs for MonoOSC (Type-1 case. Cloned
code is more stable)

7. THREATS TO VALIDITY
In the experimental setup section we mentioned the clone
granularity level (block clones), difference thresholds and
identifier renaming options that we have used for detecting
three clone types. Different setups in corresponding clone
types might result in different stability scenarios. However,
the NiCad setups that we have used for detecting three types
clones are considered standard [23, 24, 26, 4, 29] and thus
we contend that the clone detection results that we have
investigated are reliable.

8. CONCLUSION
In this paper we presented an in-depth investigation on the
comparative stabilities of cloned and non-cloned code. We
presented a five dimensional analysis of our experimental re-
sults to answer seven research questions. The ultimate aim
of our investigation is to find out the changeabilities exhib-
ited by different types of clones and languages and whether
there is any yet-undiscovered consistency in code modifica-
tion biasing the stability scenarios. We introduced a new
method that calculates four new stability related metrics
for the purpose of analysis.

According to our comparative stability centric analysis, cloned
code is more unstable (as well as vulnerable) than non-
cloned code because clones get modified significantly more
often than non-cloned code (supported with Mann-Whitney-
Wilcoxon tests). Also, the proportion of the cloned regions
modified in effective commits is significantly higher than the
proportion of non-cloned regions being modified.

However, our system centric analysis suggests that there are
no existing biases in the modifications as well as stabili-
ties of cloned and non-cloned code, and system development
strategy can play an important role in driving comparative
stability scenarios.

Our type centric analysis reveals that Type-1 (exact clones)
and Type-2 (clones with differences in identifier names and
data types) clones are possibly harmful for a system’s sta-
bility. They exhibit higher probabilities of instabilities than
the corresponding non-cloned code. Thus, these clone types
should be given more attention both from a development
and a management perspective.

Our language centric analysis discovers that clones of Java
and C systems show higher modification probabilities com-
pared to those of C# systems. This argument is also sup-
ported by statistical proof using Fisher’s exact test (2 tailed).

Our method centric analysis discovers the causes of strong

and weak disagreements of the candidate methodologies in
making stability decisions. In this analysis we evaluated
144 decision points of comparative stabilities and found that
cloned code exhibits higher changeability than that of non-
cloned code which contradicts the already established bias
([13, 7]) regarding comparative stabilities of cloned vs. non-
cloned code. Thus, cloned code is not necessarily stable as
was observed in the previous studies [7, 13] and clones should
be managed.

Our future plan is to perform an exhaustive empirical study
for further analysis of the impacts of clones using several
clone detection tools, methods and a wider range of subject
systems.

Acknowledgments: This work is supported in part by
the Natural Science and Engineering Research Council of
Canada (NSERC).

9. REFERENCES

[1] Aversano, L., Cerulo, L., and Penta, M. D., “How
clones are maintained: An empirical study”, in Proc.
The 11th European Conference on Software
Maintenance and Reengineering (CSMR), 2007, pp.
81-90.

[2] CCFinderX.
http://www.ccfinder.net/ccfinderxos.html

[3] Cordy, J. R., and Roy, C. K., “The NiCad Clone
Detector”, in Proc. The Tool Demo Track of the 19th
International Conference on Program Comprehension
(ICPC), 2011, pp. 219-220.

[4] Cordy, J. R., and Roy, C. K., “Tuning Research Tools
for Scalability and Performance: The NICAD
Experience”, in Science of Computer Programming,
2012, 26 pp. (to appear)

[5] Fisher’s Exact Test. http://in-silico.net/
statistics/fisher_exact_test/2x3.

[6] Göde, N., and Harder, J., “Clone Stability”, in Proc.
The 15th European Conference on Software
Maintenance and Reengineering (CSMR), 2011, pp.
65-74.

[7] Hotta, K., Sano, Y., Higo, Y., and Kusumoto, S., “Is
Duplicate Code More Frequently Modified than
Non-duplicate Code in Software Evolution?: An
Empirical Study on Open Source Software”, in Proc.
The Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of
Software Evolution (IWPSE) , 2010, pp. 73-82

[8] Juergens, E., Deissenboeck, F., Hummel, B., and
Wagner, S., “Do Code Clones Matter?”, in Proc. The
31st International Conference on Software
Engineering (ICSE), 2009, pp. 485-495.

[9] Kapser, C., and Godfrey, M. W., ““Cloning considered
harmful” considered harmful: patterns of cloning in
software”, in Journal of Empirical Software
Engineering. 13(6), 2008, pp. 645-692.

[10] Kim, M, Sazawal, V., Notkin, D., and Murphy, G. C.,
“An empirical study of code clone genealogies”, in
Proc. The joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (ESEC-FSE), 2005, pp. 187-196.

[11] Krinke, J., “A study of consistent and inconsistent
changes to code clones”, in Proc. The 14th Working

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 34

Conference on Reverse Engineering (WCRE), 2007,
pp. 170-178.

[12] Krinke, J., “Is cloned code more stable than
non-cloned code?”, in Proc. The 8th IEEE
International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2008, pp. 57-66.

[13] Krinke, J., “Is Cloned Code older than Non-Cloned
Code?”, in Proc. The 5th International Workshop on
Software Clones (IWSC), 2011, pp.28-33.

[14] Lozano, A., Wermelinger, M., and Nuseibeh, B.,
“Evaluating the Harmfulness of Cloning: A Change
Based Experiment”, in Proc. The 4th International
Workshop on Mining Software Repositories (MSR),
2007, pp. 18-21.

[15] Lozano, A., and Wermelinger, M., “Tracking clones’
imprint”, in Proc. The 4th International Workshop on
Software Clones (IWSC), 2010, pp. 65-72.

[16] Lozano, A., and Wermelinger, M., “Assessing the
effect of clones on changeability”, in Proc. The 24th
IEEE International Conference on Software
Maintenance (ICSM), 2008, pp. 227-236.

[17] Mann-Whitney-Wilcoxon Test:
http://elegans.som.vcu.edu/ leon/stats/utest.html

[18] Mondal, M., Roy, C. K., Rahman, M. S., Saha, R. K.,
Krinke, J., and Schneider, K. A., “Comparative
Stability of Cloned and Non-cloned Code: An
Empirical Study”, in Proc. The 27th Annual ACM
Symposium on Applied Computing (SAC), 2012, pp.
1227–1234.

[19] Mondal, M., Roy, C. K., and Schneider, K. A.,
“Dispersion of Changes in Cloned and Non-cloned
Code”, in Proc. The 6th International Workshop on
Software Clones (IWSC), 2012, pp. 29-35 .

[20] Roy, C. K., and Cordy, J. R., “A mutation /
injection-based automatic framework for evaluating
code clone detection tools”, in Proc. The IEEE
International Conference on Software Testing,
Verification, and Validation Workshops , 2009, pp.
157-166.

[21] Roy, C. K., and Cordy, J. R., “NICAD: Accurate
Detection of Near-Miss Intentional Clones Using

Flexible Pretty-Printing and Code Normalization” in
Proc. The 16th IEEE International Conference on
Program Comprehension (ICPC), 2008, pp. 172-181.

[22] Roy, C. K., Cordy, J. R., and Koschke, R.,
“Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach”, in
Science of Computer Programming, 74 (2009) 470-495,
2009.

[23] Roy, C. K., and Cordy, J. R., “Near-miss Function
Clones in Open Source Software: An Empirical
Study”, in Journal of Software Maintenance and
Evolution: Research and Practice, 22(3), 2010, pp.
165-189.

[24] Roy, C. K., and Cordy, J. R., “An Empirical
Evaluation of Function Clones in Open Source
Software”, in Proc. The 15th Working Conference on
Reverse Engineering (WCRE), 2008, pp. 81-90.

[25] Roy, C. K., and Cordy, J. R., “Scenario-based
Comparison of Clone Detection Techniques”, in Proc.
The 16th IEEE International Conference on Program
Comprehension (ICPC), 2008, pp.153-162.

[26] Saha, R. K., Roy, C. K., and Schneider, K. A., “An
Automatic Framework for Extracting and Classifying
Near-Miss Clone Genealogies”, in Proc. The 27th

IEEE International Conference on Software
Maintenance (ICSM), 2011, pp. 293-302.

[27] Saha, R. K., Asaduzzaman, M., Zibran, M. F., Roy,
C. K., and Schneider, K. A., “Evaluating code clone
genealogies at release level: An empirical study”, in
Proc. The 10th IEEE International Conference on
Source Code Analysis and Manipulation (SCAM),
2010, pp. 87-96.

[28] Thummalapenta, S., Cerulo, L., Aversano, L., and
Penta, M. D., “An empirical study on the maintenance
of source code clones”, in Journal of Empirical
Software Engineering (ESE), 15(1), 2009, pp. 1-34.

[29] Zibran, M. F., Saha, R. K., Asaduzzaman, M., and
Roy, C. K., “Analyzing and Forecasting Near-miss
Clones in Evolving Software: An Empirical Study”, in
Proc. The 16th IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS), 2011, pp. 295-304.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 35

ABOUT THE AUTHORS:

Manishankar Mondal is a graduate student in the Department of Computer Science

of the University of Saskatchewan, Canada under the supervision of Dr. Chanchal

Roy and Dr. Kevin Schneider. He is a lecturer at Khulna University, Bangladesh and

currently on leave for pursuing his higher studies. He received the Best Paper Award

from the 27th Symposium On Applied Computing (ACM SAC 2012) in the

Software Engineering Track. His research interests are software maintenance and

evolution including clone detection and analysis, program analysis, empirical

software engineering and mining software engineering.

Chanchal Roy is an assistant professor of Software Engineering/Computer Science

at the University of Saskatchewan, Canada. While he has been working on a broad

range of topics in Computer Science, his chief research interest is Software

Engineering. In particular, he is interested in software maintenance and evolution,

including clone detection and analysis, program analysis, reverse engineering,

empirical software engineering and mining software repositories. He served or has

been serving in the organizing and/or program committee of major software

engineering conferences (e.g., ICSM, WCRE, ICPC, SCAM, ICSE-tool, CASCON,

and IWSC). He has been a reviewer of major Computer Science journals including

IEEE Transactions on Software Engineering, International Journal of Software

Maintenance and Evolution, Science of Computer Programming, Journal of

Information and Software Technology and so on. He received his Ph.D. at Queen’s

University, advised by James R. Cordy, in August 2009.

Kevin Schneider is a Professor of Computer Science, Special Advisor ICT Research

and Director of the Software Engineering Lab at the University of Saskatchewan. Dr.

Schneider has previously been Department Head (Computer Science), Vice-Dean

(Science) and Acting Chief Information Officer and Associate Vice-President

Information and Communications Technology. Before joining the University of

Saskatchewan, Dr. Schneider was CEO and President of Legasys Corp., a software

research and development company specializing in design recovery and automated

software engineering. His research investigates models, notations and techniques

that are designed to assist software project teams develop and evolve large,

interactive and usable systems. He is particularly interested in approaches that

encourage team creativity and collaboration.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 36

XFormsDB: An Extensible Web Application Framework
Built upon Declarative W3C Standards

Markku Laine, Denis Shestakov, Petri Vuorimaa
Department of Media Technology, Aalto University

P.O. Box 15500, FI-00076 Aalto, Finland

{markku.laine, denis.shestakov, petri.vuorimaa}@aalto.fi

ABSTRACT
Most Web applications are based on a conventional three-tier
architecture, in which the presentation, application logic, and data
management are developed and maintained in separate tiers. The
main disadvantage of this architecture is that it requires expertise
in multiple programming languages, programming paradigms, and
data models used in each tier. A single expert rarely masters all
the technologies and concepts involved. In this paper, we
introduce a tier-expanding architectural approach that unifies the
client-side (presentation tier) and server-side (logic and data tiers)
programming under a single model. We base our approach on a
W3C-standardized client-side markup language, XForms, and its
server-side extension proposed in this paper. We derive the
extension requirements from the literature and use cases, and
demonstrate their functionality on the example of a blog Web
application. We also show how the extension can be implemented
as part of a comprehensive Web application framework called
XFormsDB. The XFormsDB framework is an extensible Web
application framework built upon declarative W3C standards. It
has four major advantages: (1) one programming language, (2)
one data model, (3) based on W3C-standardized declarative
markup, and (4) extensibility in all tiers. Our conclusion is that
expanding the presentation tier to cover both application logic and
data management functionality makes both the development and
maintenance of small- and medium-sized Web applications
easier.1

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Languages. D.3.3 [Programming Languages]: Language
Constructs and Features – Frameworks. I7.2 [Document and
Text Processing]: Document Preparation – Markup Languages.

General Terms
Design, Languages.

Keywords
Web Framework, Web Application, Web Development,
Declarative Language, XForms.

1 This work is based on an earlier work: SAC '12 Proceedings of

the 2012 ACM Symposium on Applied Computing, Copyright
2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2245407.

1. INTRODUCTION
The constantly evolving Internet has grown from an information
dissemination platform to the medium running variety of
applications and services. Highly interactive data-driven Web
applications—commonly known as Rich Internet Applications
(RIAs) [9]—are now an integral part of our lives: we use them to
pay our bills, work collaboratively with our colleagues, check
weather conditions, play games, browse friends’ photos, and blog
about our experiences.

While the widespread adoption of RIAs has significantly
improved the utility and user experience of the Web, developing
such applications has dramatically increased in complexity. We
can see this trend by examining Web applications based on a
conventional three-tier Web application architecture [1]. In those
applications, the structure and layout of a user interface is
typically authored in HTML and CSS, whereas JavaScript handles
the interaction. The server-side application logic, on the other
hand, is implemented using an object-oriented or scripting
language, such as Java, Ruby, or PHP. The client-server
communication is handled using the HTML, XML, or JSON
formats and asynchronous submissions, and the application data is
managed with SQL statements. In addition, data-mapping libraries
may be used for translating data from one format to another when
moving data between different tiers. In this way, RIA developers
not only need to know a multitude of systems, frameworks, best
practices and languages, but also to deal with their conceptual
dissimilarities [29]—indeed, the same Web application often
consists of components written in imperative (e.g., Java and
JavaScript) and declarative (e.g., CSS, HTML, and SQL)
languages.

Unifying the client-side (presentation tier) and server-side (logic
and data tiers) programming under a single model can simplify the
Web application development and particularly reduce the skill set
required from a developer. Reducing the number of technologies
involved also makes an application more secure, as in general
each technology is one more compromise in the overall
application security. Generally, a unified model can be based on
either server-side or client-side concepts. For instance, Google
Web Toolkit (GWT)2 realizes a server-side approach, in which a
general-purpose programming language—namely, object-oriented
imperative Java—is used to author the application logic both on
the client and the server. GWT also allows authoring the Web
application user interface portion in Java. However, because the
user interface design and implementation almost always require

2 Google Web Toolkit, http://developers.google.com/web-toolkit/

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 37

human involvement and judgment, while most of the server-side
application logic can be covered by generic components, an
approach based on a client-side programming language is a more
compelling alternative.

Since our primary target group is users who are involved in Web
content authoring and possess no or little programming skills, a
declarative markup language is a proper candidate for this client-
side based Web programming model. Thus, we chose XForms [4],
an XML-based Web user interface language standardized by
W3C. XForms addresses the most common problems found in
HTML forms (e.g., dependency on imperative scripting
languages, such as JavaScript) and eases dynamic Web form
authoring by using declarative markup.

In this paper, we propose a tier-expanding architectural approach,
which allows using the declarative XForms markup language on
all three tiers of a Web application. We define the requirements
for extending the language with common server-side and
database-related functionality and present the design of the
extension. We also introduce XFormsDB, a comprehensive Web
application framework that supports the XForms markup language
and its server-side extension proposed in this paper. Furthermore,
we describe the architecture of the XFormsDB framework,
present its implementation in detail, and show how it leverages
declarative W3C standards on different tiers. Finally, we argue
that the framework could significantly simplify the development
and maintenance work of small- and medium-sized Web
applications as well as reduce the skill set required from a
developer. We developed the XFormsDB framework as an open
source project and made it available under the MIT license. The
presentation of the framework can be found elsewhere [22].

The rest of the paper is organized as follows. The next section
reviews the literature relevant to this research. Section 3 provides
the fundamentals of XForms and describes how the technology
fits into the conventional three-tier Web application architecture.
Then, an overview of XQuery is given in Section 4. In Sections 5
and 6, we present our approach of extending a client-side Web
programming language with server-side functionality along with
the use cases and requirements for the proposed language
extension. In Section 7, we describe the design of the server-side
and database-related functionalities to be included into standard
XForms. Section 8 presents the implementation details of
XFormsDB, a framework supporting the proposed language
extension. Finally, we discuss the feasibility of our approach in
Section 9 and present our conclusions and suggestions for future
work in Section 10.

2. RELATED WORK
An overview of software development methodologies used for
Web application development can be found in [5]. Toffetti et al.
[36] reviewed the current state-of-the-art in RIA development
approaches. They indicated that the current framework-based RIA
development practices lack support for complete application
development (client-side and server-side application logic, client-
server communication, and interaction). We addressed this issue
by proposing a framework based on a unified development model.

In general, unified Web application development frameworks can
be based either on programming, modeling, or markup languages.
For instance, Hop is a general-purpose Web programming
language primarily designed for programming small- and

medium-sized interactive Web applications [34, 35]. Hop—with
its Scheme-based syntax—exposes a model based on two
computation levels: while the application logic is executed on the
first level, the second level is responsible for the graphical user
interface (GUI). Though Hop separates the application logic from
the GUI, it packages them together and supports strong
collaboration between them via execution engines. While Hop
provides an extensive set of libraries for Web development, its
main drawback is not relying on any W3C-standardized language.

Hanus and Kluß presented a declarative multi-paradigm
programming language called Curry [11] to describe graphical
user interfaces for desktop applications as well as Web user
interfaces for standard Web browsers. Curry has a Haskell-like
syntax and divides the design of a user interface (UI) into three
parts: structure (the hierarchical structure of UI elements, such as
text inputs or select fields), functionality (the interaction with UI
elements), and layout (the visual appearance of UI elements). In
comparison with XFormsDB, Curry does not rely on Web
standards, and thus is unlikely to be attractive to Web developers.
In addition, Curry does not provide any server-side or database-
related functionality required in most Web applications.

Kuuskeri and Mikkonen [19] introduced a JavaScript-based
middleware platform, extending the JavaScript language with
server-side functionality. As in our approach, this proposed Web
development model uses one client-side language only. The two
approaches differ on the conceptual level: while Kuuskeri and
Mikkonen presented a server-side language extension to
imperative JavaScript, we expanded the scope of declarative
XForms.

Hilda [38] is a Web application development framework based on
Unified Modeling Language (UML). The data model is relational,
and thus query and update operations use SQL. Hilda’s main
constructs are AUnits, which correspond to UML classes.
However, the presentation layer is based on HTML. The Hilda
compiler translates a Hilda program into executable code: a
server-side Java Servlet and client-side scripts. Compared to
Hilda, XForms simplifies Web application development, since it
includes both the data model and the client-side application logic.
In addition, the embedding of XForms into a host markup
language (e.g., XHTML) is well defined.

Unified Web application development frameworks based on
markup languages are usually built either upon XML or HTML
(including HTML5). Cardone et al. [6] proposed a programming
model, which simplifies the design of form-based Web
applications by separating client-side XML markup from the
server-side programming language considerations. They based
their approach on XForms, separating the data representation used
on the client (XML) from the programming language structures
(Java) native to the server. Unlike Cardone et al., we propose a
server-side language extension to XForms that together allow
developing a Web application user interface and all of its
application logic using XForms only.

Hemel and Visser [13] introduced mobl, a high-level, declarative
language for programming mobile Web applications. Mobl
integrates languages for user interface design, styling, data
modeling, querying, and application logic. Before deployment,
mobl compiler translates the language into a combination of
HTML, CSS, and JavaScript. Compared to XFormsDB, mobl’s
approach is based more on imperative languages. Furthermore,

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 38

mobl is not directly based on an existing language, such as
XForms. In addition, it does not support server-side data
synchronization.

Heinrich and Gaedke [12] proposed the WebSoDa framework for
binding UI elements and data objects. The WebSoDa framework
consists of an HTML5 Microdata binding language as well as
both client-side and server-side messaging components. The
client-side component is an external JavaScript file. It parses the
binding expressions and automatically establishes bidirectional
connections to the server-side component using WebSocket as a
messaging protocol. The server-side component is implemented
using Java Servlet. Compared to XFormsDB, WebSoDa uses
more advanced WebSocket for real-time communication, but it
lacks of more advanced XFormsDB features, such as error
handling, session management, and access control.

3. XFORMS
XForms [4], a W3C recommendation since October 2003, is an
XML-based client-side forms technology and the successor to
HTML forms. In contrast to conventional HTML forms, an
XForms form cleanly separates the presentation, XForms User
Interface, from the logic, XForms Model, and data, Instance Data,
of a form by internally following the Model-View-Controller
(MVC) architecture [17]. Figure 1 illustrates the main components
of an XForms form.

Instance Data defines an arbitrary XML document template (the
Model part of MVC) for the data to be collected in a form. The
initial content and structure of an XML document can be
dynamically modified afterwards through user interactions.

XForms Model uses XML to define the non-visual portion—that
is, the data and the client-side application logic (the Controller
part of MVC)—of a form. The data portion contains one or more
Instance Data definition(s), whose structures and data types can
be defined using XML Schema [8]. The logic portion embodies
data submission definitions and Model Item Properties (MIPs)
written in XPath [2]. The MIPs define dynamic calculations and
constraints on Instance Data nodes (e.g., dependencies between
various Instance Data nodes), which are impossible to define
using XML Schema.

XForms User Interface provides a standard control set to
declaratively define the visual portion of a form. The form
controls (the View part of MVC) are bound to Instance Data
nodes, allowing the separation between presentation and data.

XForms Submit Protocol defines how XForms sends and
receives Instance Data as well as the serialization of that data.
The data is typically transferred to and from a server, but XForms
also allows saving the data to local files, for later reuse.

XForms itself does not define a document format, and therefore
must always be embedded into a host language, such as XHTML
or SVG. XForms also integrates seamlessly with other declarative
W3C standards, including XPath (querying), XML Schema
(validation), and CSS (styling). Furthermore, using XForms for
authoring dynamic forms does not preclude the use of imperative
scripting languages, such as JavaScript, but they can co-exist and
interact within the same document.

Currently, only experimental browsers such as X-Smiles3 [15]
support XForms natively. Fortunately, several options are
available, ranging from browser plug-ins and client-side XSLT
transformations to Ajax-based server-side transformations, that
allow XForms to be used in all modern Web browsers.

3.1 Extending XForms
Conventional HTML forms offer limited extensibility options,
whereas XForms has been explicitly designed from the start with
extensibility in mind. The different options available for
extending XForms include script, new data types and libraries,
XPath extension functions, new form controls, XForms Actions,
custom events, and new serialization formats [7]. However, the
use of certain XForms extension options does not suit well to be
used with XForms implementations relaying on native browser
support or browser plug-ins because it requires end users to
update the client (XForms processor) running in the browser.
XForms also allows foreign attributes in all XForms elements.
Foreign elements from any namespace other than XForms,
however, can only be used when defined within the extension
element or in a host language.

3.2 XForms in Web Applications
Figure 2 depicts the conventional three-tier Web application
architecture using XForms. The architecture follows the MVC
design pattern by distinctively separating the declaratively defined
user interface from the application logic and persistent data
residing on the server. The user interface consists of documents,
which are written in XForms and use XHTML as a host language.
The difference between user interface technologies used in
today’s Web applications is that declarative XHTML is combined
with declarative XForms instead of imperative JavaScript. The
application logic portion residing on the server, on the other hand,
contains custom software components using an application-
specific programming language and data model. Typically, the
server also hosts a server-side XForms processor in order to
ensure cross-browser compatibility. The communication between
the client and the server occurs asynchronously over HTTP(S), in
which collected form data, Instance Data, is serialized in XML
and submitted to the server using an HTTP(S) POST request. The
benefit of using asynchronous submissions, similarly as in Ajax
[10], is that it allows the user interface to remain responsive,
while the request is being processed on the server. Finally, the
server returns an XML response to the client, and the user
interface is dynamically updated according to that response.

3 X-Smiles, http://www.x-smiles.org/

Figure 1. The main components of XForms are based on the

MVC architecture.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 39

4. XQUERY
XQuery [3] is a declarative query language designed by W3C for
extracting and manipulating data from XML documents or any
data source that can be viewed as XML, such as relational
databases. XQuery has a lot in common with XPath [2], another
W3C recommendation for addressing parts of an XML document,
as XQuery 1.0 is a superset of XPath 2.0 and they both share the
same data model as well as the same set of functions and
operators.

XQuery overcomes the limitations of XPath (e.g., lack of
grouping, sorting, and cross document joins) by providing an
SQL-like feature called a FLWOR expression, in which FLWOR
stands for “for, let, where, order by, and return”, the keywords
used in the expression. By using FLWOR expressions, it is
possible to select and filter XML data based on specific criteria as
well as transform and restructure the XML data into another XML
vocabulary or structure.

One of the main design goals of XQuery was that it would use and
share appropriate W3C standards as much as possible, such as
XML (modeling), Namespaces (qualifying), XPath (querying),
and XML Schema (validation). In addition, there are several
peripheral W3C standards and working drafts that complement
XQuery with capabilities, such as updating, full-text searching,
and scripting. These complementary specifications, along with
existing XQuery extensions, turn XQuery into a general-purpose
programming language, powerful enough to replace proprietary
server-side programming languages, such as Java. XQuery is
widely implemented and supported by native XML databases as
well as all major database vendors.

5. EXPANDING THE PRESENTATION
TIER
Although this architectural change from JavaScript to XForms
simplifies the development process from a Web designer’s point
of view, there are still significant architectural hurdles to
overcome in developing entire Web applications. For example, as
Figure 3a shows, in a typical Web application using XForms in
conjunction with XHTML, the server-side application logic is
implemented using an object-oriented imperative language, such
as Java, Ruby, or PHP. The client and the server communicate
using declarative formats (e.g., XML or JSON 4) and
asynchronous submissions. In addition, a data-mapping library for
translating the data between distinct formats used on the two tiers
may be used. Finally, on the undermost tier of the application, i.e.,
the data tier, either an ORM library or declarative SQL statements
manage the data stored in a relational database.

To accomplish all of the aforementioned processes requires tier-
specific experts because the programming languages,
programming paradigms, and data models differ on each tier. In
addition, the manual partitioning of a Web application between
the client (presentation tier) and the server (logic and data tiers)
complicates the development process. [18, 37]

From a Web designer’s point of view, one way of simplifying the
Web application architecture is expanding the presentation tier to
cover all three tiers. This presentation-centric architectural
expansion allows using a single programming language and
paradigm—namely, declarative XForms—as well as the XML
data model throughout the entire Web application. Figure 3b
depicts this presentation-centric architectural approach for
extending XForms with common server-side and database-related
functionality. The approach follows the MVC design pattern,
where XForms can be seen as the View part, its extension as the
Controller part, and XPath (part of XForms) as the language for
managing the Model part stored in a database.

6. RESEARCH PROBLEM AND SCOPE
This paper explores how to extend the XForms markup language
with common server-side functionality. The server-side language
extension primarily aims to simplify the development and
maintenance work of highly interactive data-driven Web
applications so that users—mainly Web designers—can
implement simple yet useful Web applications quickly and easily
using only markup languages. Because most of common server-
side functionality relates to data management, researching how to
seamlessly integrate a standardized query language with the
XForms markup language is also important. Covering the
functionality of complex Web applications, however, is beyond
the scope of this extension, as both the XForms markup language
and the server-side extension are targeted at Web designers, who
do not require advanced application logic in their Web
applications.

6.1 Use Cases
The following subsections describe three possible Web
applications, in which the server-side language extension can be
utilized.

4 Possible candidate for XForms 1.2. Specification is available at:

http://www.w3.org/MarkUp/Forms/wiki/Json

Figure 2. The conventional three-tier Web application

architecture using XForms instead of JavaScript for the
client-side application logic.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 40

6.1.1 Address Book
Address Book5 is a simple application that allows users to store,
browse, and manage information about their personal contacts,
such as names, addresses, phone numbers, and e-mail addresses.
In addition, the list of contacts can be sorted and the language of
the user interface can be changed between Finnish, Swedish, and
English.

6.1.2 Blog
Blog6 is an online journal tool for publishing content, such as
news, thoughts, comments, and experiences. It allows users to
browse through archives, read published posts, and leave
comments on the posts. The application offers necessary tools for
administrators to write new posts as well as manage published
posts and comments.

6.1.3 Project Management
Project Management7 is a comprehensive software that simplifies
project planning, tracking, and management. The software
includes sections for managing a user’s profile, browsing
announcements about news and upcoming events, following
projects’ deadlines and statuses, sharing documents, and reporting
working hours. Functions available on each section are
determined by the roles of a currently logged-in user.

6.2 Requirements
Kaufmann and Kossmann [16] listed general requirements for
Web applications that cover all three tiers of a Web application,
including communication requirements. From this list, only four
requirements fall within the scope of the server-side language
extension: persistence and database, error handling, session
management and security, and modules to facilitate recurring
tasks. In addition, we included two additional general
requirements, which were derived from the use cases: state
maintenance as well as authentication, authorization, and access
control. Finally, we defined two specific requirements for the

5 Address Book, http://testbed.tml.hut.fi/pim/
6 Blog, http://testbed.tml.hut.fi/blog/
7 Project Management, http://flexi.tml.hut.fi/fs/

language extension: similar syntax and processing model as well
as extensible architecture.

6.2.1 General Requirements
Persistence and database: A uniform API for connecting to
different types of data sources must be provided. In addition, a
standardized declarative query language, which is applicable
across all data sources viewable as XML, must be supported.

Error handling: A method for notifying the client about errors
occurred while processing a requested server-side command must
be provided.

Session management and security: Managing sessions between
the client and the server must be supported regardless of the
browser used or its settings. In addition, documents sent to the
client must neither expose nor allow the unauthorized alteration of
sensitive information.

Modules to facilitate recurring tasks: A method to facilitate
modularity and the reuse of ready-made components (e.g., user
interface parts and queries) in Web applications must be
supported.

State maintenance: A method to maintain the state in Web
applications—especially a mechanism for passing state
information (e.g., Instance Data) between documents—must be
supported.

Authentication, authorization, and access control: A simple
way to authenticate users and to handle common access control
tasks must be provided.

6.2.2 Language Extension Requirements
Similar syntax and processing model: The syntax and
processing model of the server-side language extension must be
similar to XForms.

Extensible architecture: The architecture for the server-side
language extension must provide a method to define new
features—that is, server-side commands—while retaining the
same processing model.

Figure 3. (a) The conventional three-tier Web application architecture using XForms and its (b) presentation-centric architectural

expansion.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 41

7. DESIGN OF THE LANGUAGE
EXTENSION
This section provides a high-level description of the proposed
server-side language extension, which was designed to meet the
research objectives and requirements presented in Section 6. The
language extension specifies common server-side and database-
related functionalities, which are needed to turn XForms into a
comprehensive Web programming language. The following
defines the functionalities provided by the language extension:
definition of server-side requests, submission of server-side
requests, notification about server-side errors, permission
management, and reuse of code fragments.

We chose the Blog Web application (cf. Figure 4) from the use
cases to demonstrate the applicability of the proposed server-side
language extension, which is used as an example throughout the
rest of this paper. Listing 1 shows an excerpt of the relevant
portions of the application source code8. The namespace URI for
the language extension used in the code example is
http://www.tml.hut.fi/2007/xformsdb and is bound
to the prefix xformsdb. The complete description of the proposed
language extension, along with syntax definitions and usage
examples, is available in [20].

7.1 Definition of Server-Side Requests
Server-side requests are commands submitted to the server, where
they are securely executed. They are defined within a new
element, xformsdb:instance, that acts as a wrapper for all
server-side requests. The benefit of using a wrapper around

8 For the demonstration and readability reasons, the application

source code (available at http://tinyurl.com/xformsdb-blog-src)
may differ from the code shown in Listing 1.

server-side requests is that it enables adding new features to the
language without requiring any changes to the request processing
model. Currently, the language extension includes definitions for
the following server-side commands: maintaining state
information, logging users in and out, retrieving information
about a currently logged-in user, executing queries against data
sources, managing files, and checking the browser support for
cookies.

The demonstrated application utilizes three of the aforementioned
commands: logging users in and out for authenticating blog
administrators and executing queries against data sources. Lines
27-34 show an example definition of a query command for
retrieving the comments of a specific blog post, identified by an
external variable $postid. In this particular example, the
parameterized query expression is written in XPath and defined in
an external resource (cf. line 30). The query expression is
executed against a single XML document (blog.xml) stored in
a database, when a corresponding submission is dispatched.

7.2 Submission of Server-Side Requests
The xformsdb:submission element is a new element that
can submit server-side requests that have been defined within the
same document. As with the standard XForms submissions,
server-side requests can also be submitted multiple times and at
any point in a form’s lifetime.

The demonstrated application has multiple server-side request
submission elements for submitting various commands to be
executed on the server. Lines 35-49 show how the query
command defined in the previous subsection can be submitted to
the server, where it is securely executed against the blog.xml
document stored in the database.

For triggering the submission, the standard XForms send action
is used. After a successful submission, the query result extracted
from the database is stored in an XForms instance element (cf.
lines 23-26), whose original content is replaced with the extracted
data. Finally, lines 67-70 iterate over the data within the
aforementioned XForms instance element and display it in the
main content area of the Blog administration user interface.

7.3 Notification about Server-Side Errors
XForms includes a set of different events (e.g., xforms-ready
and xforms-submit-done), which can be caught by standard
XForms event handlers (XForms Actions) using XML Events.
XForms also provides a possibility to create custom events. We
have extended this set of predefined events to include a new
notification-type event, xformsdb-request-error, that is
dispatched to indicate a failure in a server-side request submission
and/or execution process. For example, the event is dispatched if
an error occurs in establishing a connection to a data source or in
executing a query expression. The event’s context information,
i.e., the error code and description, can be accessed with the
XForms event function.

In the demonstrated application, the xformsdb-request-
error event is used within all xformsdb:submission
elements to catch server-side errors, as shown in lines 45-48.

Figure 4. A screenshot image showing the Blog administration

user interface.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 42

Listing 1. An excerpt of the application source code of the Blog administration user interface.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 43

7.4 Permission Management
Standard XForms does not provide a secure mechanism for
controlling user access to certain portions of a document. We have
extended XForms to include a role-based authorization system.
The system contains (1) a new element, xformsdb:secview,
to control user access within a document; (2) server-side requests
for logging users in and out, and retrieving information about a
currently logged-in user; and (3) a realm XML document
representing a “database” of usernames, passwords, and roles
assigned to those users.

The demonstrated application uses the authorization system to
control user access to the Blog administration user interface. Only
users with the admin role can access the webpage, whereas others
are redirected to the login webpage. Lines 14-19, 20-52, 55-63,
and 64-72 demonstrate the use of the xformsdb:secview
element.

7.5 Reuse of Code Fragments
The xformsdb:include element is a new element that
provides a recursive inclusion mechanism to facilitate modularity.
This element allows the construction of large XML documents
from several well-formed XML documents. The idea behind the
xformsdb:include element differs from XInclude [25] only
in that its processing model lines up with the other new elements
and is simpler than XInclude.

In the demonstrated application, the xformsdb:include
element includes common metadata information on all webpages
(cf. lines 12-13).

8. IMPLEMENTATION
The Blog Web application presented above was implemented
using a framework called XFormsDB [20]. The XFormsDB
framework is an open source project and is available at
http://code.google.com/p/xformsdb/. The

framework is implemented in pure Java, and includes an
XFormsDB processor supporting the proposed server-side
language extension. The architecture of the XFormsDB
framework and the XFormsDB processor is presented below as a
reference implementation of the proposed language extension.

8.1 The XFormsDB Framework
The XFormsDB framework is a generic platform for developing
and hosting Web applications based on the XForms markup
language and its server-side extension, as proposed in this paper.
The framework uses a set of third-party software and libraries,
including the Apache Tomcat9 HTTP Web server, the eXist-db10
native XML database (NXD) [28], and the Orbeon Forms11 Ajax-
based server-side XForms processor.

Figure 5 depicts the high-level architecture of the XFormsDB
framework. Here, it differs from the conventional three-tier Web
application architecture using XForms (cf. Figure 2) in that a
generic software component (an XFormsDB processor) replaces
the functionality provided by custom server-side software
components. Because of this architectural change, all application
development is now moved to the client side and is performed in
extended XHTML+XForms documents. The server also hosts an
Ajax-based server-side XForms processor called Orbeon Forms,
which in the end—if necessary—transforms these documents into
cross-browser (X)HTML+CSS+JavaScript or plain
(X)HTML+CSS, depending on the configuration. The
communication between the client and the server happens
asynchronously over HTTP(S). Currently, the framework supports
only XML-based data sources (XML documents and eXist-db) but
by using a middleware, e.g., DataDirect XQuery12, support for
other data sources (e.g., relational databases) can be easily added.
In the demonstrated application, all data was stored in the eXist-
db native XML database.

8.2 The XFormsDB Processor
The XFormsDB processor is a generic software component
supporting the proposed server-side language extension. The
processor’s responsibilities include handling requests and writing
responses, transforming extended XHTML+XForms documents,
managing sessions, performing synchronized updates, and
providing integration services to heterogeneous data sources.
Separate components carry out each of these tasks, as depicted in
Figure 6.

When a client makes an HTTP(S) request to the server, the
request first reaches the XFormsDB processor and is handled by
its front controller, XFormsDB Servlet. The front controller
extracts relevant request information and forwards the request to
an appropriate request handler. In case an extended
XHTML+XForms document is requested, XFormsDB
Transformer processes the document according to the following
steps:

9 Apache Tomcat, http://tomcat.apache.org/
10 eXist-db, http://exist-db.org/
11 Orbeon Forms, http://www.orbeon.com/
12 DataDirect XQuery, http://www.xquery.com/xquery/

Figure 5. The high-level architecture of the XFormsDB

framework.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 44

1. Parse the document and identify server-side extension
elements.

2. Incorporate all external documents into the main
document (cf. xformsdb:include).

3. Filter out those parts to which the user does not have
access rights (cf. xformsdb:secview).

4. Identify and collect information from other relevant
elements (e.g., xformsdb:instance,
xformsdb:query, and xformsdb:submission).

5. Store the collected information found in step 4 in the
session (XFormsDB Managers).

6. Transform the document (including the server-side
extension elements) into XHTML+XForms 1.1
compliant markup, in which the definitions of server-
side commands containing sensitive information have
been substituted with opaque reference IDs for security
reasons. During the transformation process, certain
utility instances (e.g., an Instance Data containing
HTTP request headers) are automatically added to the
document.

7. Return the transformed document.

Before returning the transformed document to the client, the
document goes through another transformation process (cf.
Orbeon Forms) that transforms it into a format viewable by the
requesting client.

Asynchronous form submissions over HTTP(S) also go through
the front controller (XFormsDB Servlet), which extracts relevant
request information and forwards the request to an appropriate
request handler based on the submitted command. In the case of a
query command submission, the original query expression is
fetched from the session (XFormsDB Managers) using the opaque
reference ID submitted along with the query command, and then
executed against the underlying data source (XML Document and
eXist-db Adapters). Finally, a response XML is composed and
returned to the client.

8.2.1 Data Synchronization
The XFormsDB processor includes built-in support for
performing synchronized updates (3DM XML 3-Way Merger). To
accomplish data synchronization, the XFormsDB processor uses

3DM13 [23], a middleware for performing three-way merging of
XML documents, which is able to detect and handle update,
insert, and delete operations as well as moves and copies of entire
subtrees. Furthermore, the aforementioned operations can be
performed without the use of unique element identifiers, i.e.,
original XML documents can be used as such without equipping
them with excess attributes.

We illustrate how the 3DM merging process works in the example
shown in Figure 7. In the example, (a) is referred to as the original
version, (b) as the altered version, (c) as the current version stored
in the data source, and (d) as the merged version. Green color
indicates that the node has been either updated (marked with an
asterisk), inserted, or moved, whereas white color indicates that
the node has remained unaltered.

In XFormsDB, the updating process with data synchronization
includes the following steps. In the first step, an XML fragment is
retrieved from a data source using an XPath expression that points
to the root element of the XML fragment to be updated. Then, the
retrieved XML fragment can be altered on the client, after which
the altered XML fragment is submitted back to be stored in the
data source using the same XPath expression as before. Next, the
data synchronization process is performed and upon a successful
synchronization, the result XML fragment is stored in the data
source. Finally, the stored XML fragment, which may contain
changes made concurrently by other clients, is returned to the
client. In case the data synchronization process fails (e.g., a merge
conflict), an appropriate error message is reported back to the
client, which handles the error on a case-by-case basis.

8.3 Extensibility and Limitations
The XFormsDB framework supports extensibility at different
levels of the architecture. The most elegant way of extending the
architecture is by defining new server-side requests to the
language extension, as stated in Subsection 7.1. Listing 2 shows a
simple example of how to define a new server-side request (cf.
line 2) for retrieving HTTP request headers from a hosting server.
In the case of the Blog Web application, the retrieved information
could be used, for instance, to detect mobile clients and redirect
them automatically to the mobile-optimized version of a particular
webpage.

The main disadvantage of this approach is that every syntax
addition made to the language extension also needs to be
implemented in the XFormsDB processor. In its current state,
extended XHTML+XForms documents provide the basic means
for users to implement simple yet useful Web applications using
only markup languages. Due to the limited expressive power of
the languages, however, they are alone insufficient to meet the
requirements of more complex Web applications. In the following
subsections, we give examples of how the expressive power of the

13 3DM, http://developer.berlios.de/projects/tdm/

Figure 6. The components of the XFormsDB processor.

Listing 2. An example of a new server-side request definition.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 45

XFormsDB framework can be improved by using different
technologies specific to each tier.

8.3.1 Presentation Tier
The XFormsDB framework relies mainly on XForms on the
presentation tier. XForms uses declarative markup to define both
the form controls and related client-side application logic of a
Web application. It also offers a wide variety of options for
extensibility, as described in Subsection 3.1.

The primary reasons for using extensions on the presentation tier
include adding animations, interactivity, and client-side
application logic to webpages that goes beyond the capabilities of
XForms. In the demonstrated application, extended
XHTML+XForms documents are supplemented with imperative
JavaScript embeddings for the purpose of measuring the response
time of each webpage. In addition, one of Orbeon Forms’ XForms
extension attributes is used to format dates into a human-readable
form (cf. Listing 3).

8.3.2 Logic Tier
Our proposed server-side extension to XForms is responsible for
covering common server-side and database-related functionality
required by most small-sized Web applications. To meet more
advanced server-side application logic requirements, XQuery (cf.
Section 4), and especially eXist-db’s XQuery extension

functions14 can be utilized. eXist-db’s functions are divided into
pluggable modules and, as a whole, provide an extensive set of
functionality ranging from small utility functions (e.g., for
performing date and time operations as well as transforming XML
into JSON) to complete libraries, such as the HTTP Client
module.

In the Blog Web application, we did not resort to any eXist-db’s
XQuery extension modules. Nonetheless, we demonstrate an
example of how an extension module could be used in XQuery
code (cf. Listing 4).

8.3.3 Data Tier
As described in Subsection 8.2.1, the XFormsDB framework
provides a simple and elegant means for performing queries and
synchronized updates using XPath only. Though this approach has
its advantages, it also inherits few problems to be addressed. For
instance, performing a simple insert or delete operation requires
redundant transfer of large XML fragments between the client and

14 eXist-db’s XQuery extension modules, http://exist-

db.org/exist/extensions.xml

Listing 3. An example of Orbeon Forms’ XForms extension

attribute used in the xforms:output element.

Listing 4. An example of eXist-db’s XQuery extension module

used in XQuery code.

Figure 7. The data synchronization process: a three-way merge for XML documents.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 46

the server. In addition, an XML fragment that needs to be updated
might expose sensitive information to the client.

To overcome the limitations of the aforementioned method, and
XPath in general, the XFormsDB framework provides an option
to use a more expressive query language, XQuery. The
demonstrated application relies heavily on XQuery and its
standard functions as well as the functions defined in the FunctX
XQuery Function library 15 . Listing 5 shows an XQuery
expression which retrieves a single blog post identified by the
external variable $id and returns a custom XML document as a
response.

Besides the extension methods discussed above, the XFormsDB
framework allows the use of the same XML Schema document
both on the client and the server to validate the structures and data
types of transmitted XML documents. Furthermore, with the
extension methods, the framework becomes fully compatible with
the XRX (XForms/REST/XQuery) architecture [26], making it a
viable option for developing complex Web applications.

An obvious drawback of each extension method is, however, that
they all require a user to learn a new technology. The framework
also shares some of the problems that are common to many Ajax-
based Web applications, such as problems related to the use of the
browser’s back button and bookmarking. In addition, the
XFormsDB framework assumes that the user possesses a basic
knowledge of XForms and our proposed server-side language
extension, which may be a barrier for Web content authors.
Fortunately, these limitations can be addressed by providing a
Web-based tool that allows authors to visually develop
XFormsDB-based Web applications. The prototype of such a tool
called XFormsDB IDE (XIDE)16 has already been implemented
and the results have been published in a separate paper [24].

15 FunctX XQuery Function Library,

http://www.xqueryfunctions.com/
16 XFormsDB IDE (XIDE), http://code.google.com/p/xformsdb-

ide/

9. DISCUSSION
Typically, the amount of code in Web applications is distributed
approximately equally between the client and the server [16]. In
the Blog Web application that uses the XFormsDB framework,
this ratio was 90% and 10% respectively [20], meaning that our
proposed server-side language extension (including XPath and
XQuery code) significantly reduced the amount of code required
to develop the server-side application logic and data management
functionalities. In terms of lines of code (LoC), this means that the
amount of code required for implementing the Blog Web
application was decreased by 45%—that is, approximately 2400
LoC17. Detailed metrics for the Address Book and Blog Web
applications (cf. Sections 6.1.1 and 6.1.2, respectively) are
available in [20].

The advantages of using the XRX architecture compared to the
conventional three-tier architecture are further discussed in [31].
In their paper, Nemeş et al. show that applications developed
according to the XRX architecture are more efficient and elegant.
They continue by stating that the XRX architecture increases
productivity and reduces implementation costs.

According to Cardone et al. [6], there are three main reasons for
the inefficiency of the conventional three-tier architecture when it
comes to developing complex Web applications. First, dynamic
webpages are often generated on the fly, making application
source code harder to understand and debugging more difficult.
Second, dynamic webpages often contain a mixture of markup
languages, client-side scripting code, and server-side function
calls, making application source code nearly unreadable and
difficult to maintain. Third, the high number of tools,
technologies, and techniques used in developing Web applications
makes those applications complicated to design and fragile to
deploy and run.

Using only one language on all three tiers reduces the number of
technologies involved and can unify the Web development
process [21]. Determining the most suitable language for building
Web applications thus becomes a question. According to Schmitz
[33], declarative languages (e.g., XHTML) have several
advantages over imperative languages (e.g., Java). Particularly,
one compelling advantage is that most Web content authors, not
being programmers, prefer declarative languages. Moreover,
content authors working on the presentation tier are, as a rule,
familiar with declarative (X)HTML and CSS, but not the server-
side aspects of a Web application. They can thus benefit from a
client-side language that has been extended with server-side
functionality.

To justify the choice of our client-side programming language, we
followed a recent survey [32], in which five XML-based client-
side languages, including HTML5 [14] and XForms, were
evaluated. According to the study, XForms is best suited for data-
intensive applications and applications with accessibility
requirements. XForms also provides a rich declarative use of
client-side data and can easily define interdependencies between
the data and user interface.

17 Note that these results are merely suggestive, as the application

has not been developed using the conventional three-tier Web
application architecture.

Listing 5. An XQuery expression for retrieving a specific blog

post identified by its $id.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 47

10. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the challenge of simplifying the
development and maintenance work of highly interactive data-
driven Web applications. We proposed a presentation-centric
architectural approach that allows users to implement simple yet
useful Web applications using only markup languages. The
approach is based on a W3C-standardized client-side technology,
the XForms markup language, and its server-side extension
proposed in this paper. In addition, we presented the XFormsDB
framework, a comprehensive implementation of the proposed
approach and the language extension. The framework has four
major advantages. First, the entire application can be developed
using a single markup language and within a single document
(i.e., an extended XHTML 2.0 document). Second, the same data
model (i.e., XML) can be used across all tiers of a Web
application. Third, the approach is based on declarative
programming, and thus allows users with limited programming
skills (particularly Web user interface designers who are well
familiar with declarative HTML and CSS) to create entire Web
applications. Finally, the framework offers a variety of options for
extensibility, mainly by leveraging declarative W3C standards.
This framework, together with a number of examples, is available
under the MIT license at
http://code.google.com/p/xformsdb/.

In our future work, we will mainly focus on the next two
functionality aspects: (1) real-time communication and (2) client-
side storage. By adding real-time communication capabilities
(namely, XMPP over WebSocket [30] together with a declarative
API definition) to the XFormsDB framework, opens up new
possibilities for developing more dynamic, event-driven Web
applications. To adapt the XFormsDB framework to the
requirements of mobile Web application development, we plan to
extend our framework with the support for client-side databases
(e.g., IndexedDB [27]). Together these technologies can yield
significant improvements in performance and user experience for
highly interactive data-driven Web applications.

11. ACKNOWLEDGMENTS
This research work was conducted as part of TIVIT’s Flexible
Services program and its Ecosystem Design and Evolution
(EDEN) project. The funding for this project was granted by
Tekes and Nokia Research Center.

12. REFERENCES
[1] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web

Services: Concepts, Architectures and Applications (1st ed.).
Springer, 2004. ISBN: 978-3-540-44008-6.

[2] Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F.,
Kay, M., Robie, J., and Siméon, J. (eds.). XML Path
Language (XPath) 2.0 (Second Edition). W3C
Recommendation, December 2010.
http://www.w3.org/TR/xpath20/.

[3] Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D.,
Robie, J., and Siméon, J. (eds.). XQuery 1.0: An XML Query
Language (Second Edition). W3C Recommendation,
December 2010. http://www.w3.org/TR/xquery/.

[4] Boyer, J.M. (eds.). XForms 1.1. W3C Recommendation,
October 2009. http://www.w3.org/TR/xforms/.

[5] Brandon, D.M. Software Engineering for Modern Web
Applications: Methodologies and Technologies (1st ed.). IGI
Global, 2008. ISBN: 978-1-599-04492-7.

[6] Cardone, R., Soroker, D., and Tiwari, A. Using XForms to
Simplify Web Programming. In Proceedings of the 14th
International Conference on World Wide Web (WWW ’05),
pages 215-224. ACM, 2005. DOI:
10.1145/1060745.1060780.

[7] Dubinko, M. XForms Essentials (1st ed.). O’Reilly Media,
2003. ISBN: 978-0-596-00369-2.

[8] Fallside, D.C. and Walmsley, P. (eds.). XML Schema Part 0:
Primer Second Edition. W3C Recommendation, October
2004. http://www.w3.org/TR/xmlschema-0/.

[9] Fraternali, P., Rossi, G., and Sánchez-Figueroa, F. Rich
Internet Applications. IEEE Internet Computing, Vol. 14,
No. 3, pages 9-12. IEEE, 2010. DOI: 10.1109/MIC.2010.76.

[10] Garrett, J.J. Ajax: A New Approach to Web Applications.
February 2005. http://www.adaptivepath.com/ideas/e000385.

[11] Hanus, M. and Kluß, C. Declarative Programming of User
Interfaces. In Practical Aspects of Declarative Languages
(PADL ’09), LNCS 5418, pages 16-30. Springer, 2009. DOI:
10.1007/978-3-540-92995-6_2.

[12] Heinrich, M. and Gaedke, M. Data Binding for Standard-
based Web Applications. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing (SAC ’12), pages
652-657. ACM, 2012. DOI: 10.1145/2245276.2245402.

[13] Hemel, Z. and Visser, E. Declaratively Programming the
Mobile Web with Mobl. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’11), pages
695-712. ACM, 2011. DOI: 10.1145/2076021.2048121.

[14] Hickson, I. (eds.). HTML5: A vocabulary and associated
APIs for HTML and XHTML. W3C Working Draft, March
2012. http://www.w3.org/TR/html5/.

[15] Honkala, M. and Vuorimaa, P. XForms in X-Smiles. World
Wide Web, Vol. 4, No. 3, pages 151-166. Springer (formerly
Kluwer), 2001. DOI: 10.1023/A:1013853416747.

[16] Kaufmann, M. and Kossmann, D. Developing an Enterprise
Web Application in XQuery. Technical Report. ETH Zürich,
2008.
http://download.28msec.com/sausalito/technical_reading/ent
erprise_webapps.pdf.

[17] Krasner, G.E. and Pope, S.T. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal Of Object-Oriented Programming,
Vol. 1, No. 3, pages 26-49. SIGS, 1988.

[18] Kuuskeri, J. and Mikkonen, T. Partitioning Web
Applications Between the Server and the Client. Journal of
Web Engineering, Vol. 9, No. 3, pages 207-226. Rinton
Press, 2010.

[19] Kuuskeri, J. and Mikkonen, T. REST Inspired Code
Partitioning with a JavaScript Middleware. In Current
Trends in Web Engineering (ICWE 2010 Workshops), LNCS
6385, pages 244-255. Springer, 2010. DOI: 10.1007/978-3-
642-16985-4_22.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 48

[20] Laine, M. XFormsDB—An XForms-Based Framework for
Simplifying Web Application Development. M.Sc. Thesis.
Aalto University, January 2010.
http://lib.tkk.fi/Dipl/2010/urn100141.pdf.

[21] Laine, M., Shestakov, D., Litvinova, E., and Vuorimaa, P.
Toward Unified Web Application Development. IT
Professional, Vol. 13, No. 5, pages 30-36. IEEE, 2011. DOI:
10.1109/MITP.2011.55.

[22] Laine, M., Shestakov, D., and Vuorimaa, P. XFormsDB: A
Declarative Web Application Framework. In Web
Engineering (ICWE 2012), LNCS 7387, pages 477-480.
Springer, 2012. DOI: 10.1007/978-3-642-31753-8_48.

[23] Lindholm, T. A Three-Way Merge for XML Documents. In
Proceedings of the 2004 ACM Symposium on Document
Engineering (DocEng ’04), pages 1-10. ACM, 2004. DOI:
10.1145/1030397.1030399.

[24] Litvinova, E., Laine, M., and Vuorimaa, P. XIDE: Expanding
End-User Web Development. In Proceedings of the Eighth
International Conference on Web Information Systems and
Technologies (WEBIST ’12), pages 123-128. SciTePress,
2012.

[25] Marsh, J., Orchard, D., and Veillard, D. (eds.). XML
Inclusions (XInclude) Version 1.0 (Second Edition). W3C
Recommendation, November 2006.
http://www.w3.org/TR/xinclude/.

[26] McCreary, D. Introducing the XRX Architecture:
XForms/REST/XQuery. December 2007.
http://datadictionary.blogspot.com/2007/12/introducing-xrx-
architecture.html.

[27] Mehta, N., Sicking, J., Graff, E., Popescu, A., and Orlow, J.
(eds.). Indexed Database API. W3C Working Draft, May
2012. http://www.w3.org/TR/IndexedDB/.

[28] Meier, W. eXist: An Open Source Native XML Database. In
Web, Web-Services, and Database Systems (Web Databases
and Web Services 2002), LNCS 2593, pages 169-183.
Springer, 2003. DOI: 10.1007/3-540-36560-5_13.

[29] Mikkonen, T. and Taivalsaari, A. Web Applications -
Spaghetti Code for the 21st Century. Technical Report,
SMLI TR-2007-166. Oracle (formerly Sun Microsystems),
June 2007. https://labs.oracle.com/techrep/2007/smli_tr-
2007-166.pdf.

[30] Moffit, J. and Cestari, E. (eds.). An XMPP Sub-protocol for
WebSocket. Internet Draft (Standards Track), June 2012.
https://tools.ietf.org/html/draft-moffitt-xmpp-over-
websocket-01.

[31] Nemeş, C., Podean, M, and Rusu, L. XRX: The
Implementation Process under XRX Architecture. In
Proceedings of the Eighth International Conference on Web
Information Systems and Technologies (WEBIST ’12), pages
103-109. SciTePress, 2012.

[32] Pohja, M. Comparison of Common XML-Based Web User
Interface Languages. Journal of Web Engineering, Vol. 9,
No. 2, pages 95-115. Rinton Press, 2010.

[33] Schmitz, P. The SMIL 2.0 Timing and Synchronization
Model: Using Time in Documents. Technical Report, MSR-
TR-2001-01. Microsoft Research, January 2001.
https://research.microsoft.com/pubs/69839/tr-2001-01.doc.

[34] Serrano, M. Programming Web Multimedia Applications
with Hop. In Proceedings of the 15th International
Conference on Multimedia (MULTIMEDIA ’07), pages
1001-1004. ACM, 2007. DOI: 10.1145/1291233.1291450.

[35] Serrano, M., Gallesio, E., and Loitsch, F. Hop, a Language
for Programming the Web 2.0. In Proceedings of the First
Dynamic Languages Symposium (DLS ’06), Companion to
OOPSLA 2006, pages 975-985. ACM, 2006. DOI:
10.1145/1176617.1176756.

[36] Toffetti, G., Comai, S., Preciado, J.C., and Linaje, M. State-
of-the-Art and Trends in the Systematic Development of
Rich Internet Applications. Journal of Web Engineering,
Vol. 10, No. 1, pages 70-86. Rinton Press, 2011.

[37] Yang, F., Gupta, N., Gerner, N., Qi, X., Demers, A., Gehrke,
J., and Shanmugasundaram, J. A Unified Platform for Data
Driven Web Applications with Automatic Client-Server
Partitioning. In Proceedings of the 16th International
Conference on World Wide Web (WWW ’06), pages 341-350.
ACM, 2007. DOI: 10.1145/1242572.1242619.

[38] Yang, F., Shanmugasundaram, J., Riedewald, M., Gehrke, J.,
and Demers, A. Hilda: A High-Level Language for Data-
Driven Web Applications. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE ’06),
pages 32-43. IEEE, 2006. DOI: 10.1109/ICDE.2006.75.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 49

ABOUT THE AUTHORS:

Markku Laine is a doctoral student in the Department of Media Technology at the

Aalto University, Finland. He received his M.Sc. degree in Communications

Engineering from the Aalto University in 2010. His current research interests

include declarative Web application development, Web performance optimization,

and real-time communication protocols. Contact him at markku.laine@aalto.fi.

Denis Shestakov is a postdoctoral researcher in the Department of Media

Technology at the Aalto University, Finland. He earned his Ph.D. (2008) degree

from the University of Turku, Finland. His dissertation addressed the limitations of

Web crawlers, specifically the poor coverage of information available in online

databases (a.k.a. the Deep Web). His current research interests span the areas of

distributed data management and big data processing, with a particular focus on

scalable Web agents and services. Contact him at denis.shestakov@aalto.fi.

Petri Vuorimaa is a full professor in the Department of Media Technology at the

Aalto University, Finland. He obtained both his M.Sc. (1990) and D.Sc. (1995)

degrees from the Tampere University of Technology, Finland. His current research

interests include Web-based services, smart spaces, and mobile media applications.

Contact him at petri.vuorimaa@aalto.fi.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 50

Analysis of a Triploid Genetic Algorithm over Deceptive
and Epistatic Landscapes

Menglin Li
College of Engineering and

Informatics
National University of Ireland

Galway

m.li1@nuigalway.ie

Seamus Hill
College of Engineering and

Informatics
National University of Ireland

Galway

seamus.hill@nuigalway.ie

Colm O’Riordan
College of Engineering and

Informatics
National University of Ireland

Galway

colm.oriordan.nuigalway.ie

ABSTRACT
This paper1 examines the performance of a canonical ge-
netic algorithm (CGA) against that of the triploid genetic
algorithm (TGA) introduced in [14], over a number of well
known deceptive landscapes and a series of NK landscapes
in order to increase our understanding of the the TGA’s
ability to control convergence. The TGA incorporates a
mechanism to control the convergence direction instead of
simply increasing the population diversity. Results indicate
that the TGA appears to have the highest level of difficulty
in solving problems with a disordered pattern. While these
problems seem to improve the CGA’s performance, it has a
negative affect on the performance of the TGA. However, the
results illustrate that the TGA performs better on NK-like
problems (i.e. the overlapped problems) and NK problems
with higher levels of epistasis.

Categories and Subject Descriptors
H.4 [EC]: Evolutionary Computation

Keywords
Genetic Algorithms, Diversity, Epistasis

1. INTRODUCTION
Inspired by the evolution of living organisms, Genetic Al-
gorithms (GAs) are one of the Evolutionary Computation
(EC) algorithms which were introduced by John H. Hol-
land [11]. Much research has been undertaken to illustrate
that genetic algorithms are a useful approach for dealing
with NP-Complete problems. However, despite the success
of GAs in many domains and in many classes of problems,
GAs still have difficulty with some problems. Two of the fea-
tures associated with difficulty for GAs, deceptiveness and
epistasis, have been the focus of much research in GA lit-
erature. Deceptive problems, for example [6, 26] have been
shown to be difficult for GAs. These kinds of problems have
been called GA-Hard Problems [6]. The local optima that
lead the GA away from the global optimum in deceptive
problems are called deceptive attractors [26].

1This work is based on an earlier work: SAC ’12 Proceed-
ings of the 2012 ACM Symposium on Applied Computing,
Copyright 2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2245324.

Problems containing high levels of epistasis are also widely
recognised as being difficult to optimise for GAs [4, 20, 18].
Epistasis can be viewed as an expression of the degree of
linkage between genes in a chromosome [16]. The notion of
epistasis in relation to GAs was introduced by Rawlins [19],
where minimal epistasis exists when each gene is indepen-
dent of every other gene and maximum epistasis relates to
a situation where no gene is independent of any other gene.
In general, when designing your genotype, it is often viewed
that small changes in the object should also lead to minor
changes in the behaviour of the object [25]. This is known as
the principal of causality, as outlined in [17]. Both deceptive
and epistatic problems violate this principal as small alter-
ations of the genotype can lead to major changes in fitness.
Maintaining a suitable balance between sufficient diversity
and suitably efficient convergence is an ongoing important
problem in GA research.

This paper compares the use of a Triploid GA (TGA) [14]
which uses a multi-chromosome representations against that
of a canonical GA (CGA) over a number of different decep-
tive and epistatic landscapes. The TGA uses a dominant
chromosome to converge to optima in the space while a re-
cessive chromosome is used to maintain and promote diver-
sity. A third chromosome is also used to search for local
minima near the current optima. This is to check whether
the current fittest individual is a local optimum in order to
reduce the time spent searching near this local optimum.
These three chromosomes combine to assist the TGA in
searching the landscape. The paper’s structure is as fol-
lows: Section 2 examines some background concepts. Sec-
tion 3 outlines the test suite used for the experiments, while
Section 4 presents and analyses the experimental results.
Finally, Section 5 presents conclusions.

2. BACKGROUND CONCEPTS

2.1 Diversity
Much research has focused on solving deceptive problems
by maintaining population diversity [10, 3, 21, 1, 22, 23,
2]. One possible approach is to maintain a many-to-one
relationship between genotype and phenotype using multi-
layered genotype-phenotype models [10, 3, 21]. There are
also several other explicit diversity maintenance methods
such as using multi-chromosomes with dominance [1, 22],
using multiple populations [23], and utilising reserve selec-
tion in the algorithm [2]. There is no doubt that increasing

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 51

diversity is one of the key approaches to solving deceptive
problems. However, there are several factors that have a di-
rect impact on GAs’ performance in deceptive problems. In
addition to the population diversity, convergence is another
important property of genetic algorithms. We use the term
convergence direction to describe the path to the building
block to which the GA is currently being attracted. If the
convergence direction repeatedly changes, the GAs will pa-
trol between several solutions and will not fully converge
to any of them. In general, increasing diversity will slow
down the GA’s convergence speed, and if the GA converges
to one direction too fast, the GA will lose its diversity very
quickly. One approach to maintaining diversity is to build
a many-to-one mapping between genotype and phenotype.
The ability to solve deceptive problems with this approach
has been shown [10, 3, 21]. The inefficiency of this approach
due to the lack of convergence has also been shown. In or-
der to find a GA which can solve deceptive problems more
accurately and efficiently, the balance between convergence
and diversity must be found.

2.2 Deceptive Problems
Deceptive problems [6] are probably the best known GA-
Hard problem, in which the solution space does not com-
pletely converge to the global optima. Some solutions con-
verge to local optima in the solution space; the local optima
that may attract the algorithm to converge are called de-
ceptive attractors [26]. Manifestly, the difficulty of decep-
tive problems increases as the number of deceptive attrac-
tors and the percentage of the solutions that converge to
the deceptive attractors increases. Furthermore, if the de-
ceptive attractor has a very close fitness score to the global
optimum, or, if it is more attractive, then the deceptive
problems are more difficult. There are also deceptive prob-
lems defined in both the discrete space and continuous space.
They have a common trait in that their solution spaces are
non-monotonic. As one form of GA-hard problems, decep-
tive problems can be found in may areas from mathematics
problem solving to fitness landscape searching. Many NP
complete problems are deceptive, e.g. the traveling sales
person problem. Therefore, it is very important for genetic
algorithms to deal with problems which are deceptive. Many
approaches can prevent GAs being trapped at deceptive at-
tractors, as diversity plays an important role in solving de-
ceptive problems.

2.2.1 Order-N Problem
The Order-N problem is a classic deceptive problem in dis-
crete space, which was first introduced by Goldberg as a
minimal deceptive problem [6]. The most used order-N
problems are order-3 and order-4 problems.

2.2.2 Order-3 Problem
Due to the small solution space, the GAs’ searching strat-
egy can not obviously be seen in either order-3 or order-4
problems. Subsequently, Goldberg, Deb, and Korb defines
a 10-dimensional order-3 problem [7], which each pattern of
the problem can be presented as in Table 1.

2.2.3 Order-4 Problem
By increasing each pattern of the order-3 problem from 3
bits to 4 bits, Chow designed order-4 problems in his pa-
per [3]. Order-4 problems have been divided into two cat-

Table 1: Order-3 problem

f(111) 30 f(101) 0
f(110) 0 f(011) 0
f(100) 14 f(010) 22
f(000) 28 f(001) 26

egories, “Bad” order-4 problems and “Ugly” order-4 prob-
lems, which are described in Table 2.

Table 2: “Bad” and “Ugly” Order-4 Problems

Order-4 Ugly Order-4 Bad
f2(1111) 30 f2(0110) 14 f3(1001) 30 f3(0101) 14
f2(0111) 0 f2(0101) 16 f3(1011) 0 f3(0011) 16
f2(1011) 2 f2(0011) 18 f3(1101) 2 f3(0000) 18
f2(1101) 4 f2(1000) 20 f3(1000) 4 f3(0111) 20
f2(1110) 6 f2(0100) 22 f3(0001) 6 f3(1110) 22
f2(1100) 8 f2(0010) 24 f3(1111) 8 f3(0100) 24
f2(1010) 10 f2(0001) 26 f3(1100) 10 f3(0010) 26
f2(1001) 12 f2(0000) 28 f3(1010) 12 f3(0110) 28

2.3 Epistatic Problems
In continuing to develop an understanding of the TGA, we
examine another factor, epistasis, which is associated with
making one problem harder than another to optimise for a
GA. Epistasis can be viewed as the degree to which a gene is
dependent upon other genes; in other words, minimal epis-
tasis relates to a situation where each gene is independent
for all other genes and maximum epistasis is where a genes is
dependent on all other genes [16]. For GAs epistasis can be
viewed as the extent of “nonlinearity and interdependency
among the elements composing the representation” [5]. It
has also been shown that deceptive problems cannot contain
low epistasis and also problem functions with high epistasis
are not always deceptive [16], but if a problem is deceptive,
then epistasis can differentiate between type I and the more
difficult type II deceptivity [8]. Where the higher level of
difficulty is explained by the behaviour of epistasis [16]. So
although a problem with a high level of epistasis may not be
deceptive it can still remain difficult for a GA to solve. By
examining the performance of the TGA over epistatic prob-
lems we will obtain a better understanding of its problem
solving ability.

2.3.1 NK Landscape
Stuart Kauffman [13] devised the “NK fitness Landscape”
model to explore the way that epistasis controls the “rugged-
ness” of a landscape. By specifying a fitness function which
allowed the ruggedness to be tuned by a single parameter,
the NK model allows the development of a landscape re-
flecting a specified level of epistasis. The properties of NK
landscapes have been the focus of much research i.e. [13, 24].
The NK model is a stochastic method for generating a fit-
ness function F : 0, 1N → R binary strings x ∈ 0, 1N , where
the genotype x consists of N loci, with two possible alleles at
each locus xi . It has two basic components: a structure for
gene interactions, and a way this structure is used to gen-
erate a fitness function for all possible genotypes. The gene

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 52

interaction structure is created as follows: the genotype’s
fitness is the average of N fitness components contributed
by each locus. Each gene’s fitness component Fi is deter-
mined by its own allele, xi , and also the alleles at K other
epistatic loci (therefore K must fall between 0 and N − 1).
These K other loci could be chosen in any number of ways
from the N loci in the genotype.

The NK model was introduced by Kauffman to have a prob-
lem independent model for constructing fitness landscapes
that can gradually be tuned from smooth to rugged. The
main parameters of the model are N, the number of genes
in the genotype, i.e. the length of the strings that form the
points in the landscape, and K, the number of other genes
that epistatically influence a particular gene (i.e., the fit-
ness contribution of each gene is determined by the gene
itself plus K other genes) [12]. K sets the level of epista-
sis by determining the dependence the partial fitness of a
gene at location n has on the genes in a neighbourhood of
K other locations. The neighbourhood may be at the K lo-
cations nearest to n in the genotype or a set of K locations
randomly picked from anywhere on the genotype. Following
this, a series of N lookup tables are then generated, one for
each gene location in the genotype. Each table has 2K+1

random entries in the interval (0, 1). The fitness, FNK , of a
particular genotype is calculated by the function:

FNK =
1

N

NX
n=1

f(x)

where the partial fitness f(n) is obtained from the nth lookup
table using the values of the genes in location n and its
neighbourhood as the lookup key [15]. To illustrate this we
examine the calculation of f(n) where N = 8 and K = 2.
In this example our genotype and the neighbourhood on n
(shaded area) are shown in Figure 1.

Figure 1: Genotype and Neighbourhood of n

1 0 0 0 1 1 0 0

To discover f(n), where n = 011 we look up Table 3 and see
that it is 0.274095.

Table 3: nth Lookup Table

0 0 0 0.724367
0 0 1 0.123989
0 1 0 0.987432
1 0 0 0.432809
1 1 0 0.987234
1 0 1 0.349566
0 1 1 0.274095
1 1 1 0.521926

2.4 Triploid GA Representation
The new triploid genetic algorithm is designed to make search
more efficient. The dominance of the triploid representation
is decided by the phenotype. Elitism and immigration have

also been used in this representation. The main idea of the
TGA is to use the recessive chromosome to help the dom-
inant chromosome converge in the early stages. Once the
dominant chromosomes have converged, the recessive chro-
mosomes help maintain diversity. An extra chromosome
(termed a reverse chromosome) has been added in TGA,
which is used to search the nearest local minimum. To main-
tain the minima, the reverse chromosome should converge
to the local minima. Following every N generations (reverse
generation), the reverse chromosome should crossover with
the dominant chromosome in the same individual by a cer-
tain rate (reverse rate). With the reverse chromosomes, the
TGA can solve completely deceptive problems efficiently.

A difficulty in creating the TGA is that the dominant chro-
mosomes converge on the global optimum while the reverse
chromosomes converge on the local minimum in the same
individual; two different selection functions cannot be used
in one population within normal crossover. The problem is
circumvented using multi-parent crossover. Two individuals
(b1, b2) are selected from the current generation, the better
the dominant chromosome’s fitness score, the more oppor-
tunity it has of being selected. Another two individuals (w1,
w2) are selected using an alternative metrics: the worse the
reverse chromosome’s fitness score, the more opportunity
it has of being selected. During crossover, the children’s
dominant chromosome is produced by b1 and b2’s domi-
nant chromosome, and the children’s reverse chromosome
is produced by w1 and w2’s chromosomes. The children’s
recessive chromosome is produced by any two of the four
recessive chromosomes.

2.5 Previous TGA Findings
The analysis of deceptive problems shows that the diversity
is not the only parameter that may affect the GAs’ per-
formance in solving these kinds of problems. In fact, in
completely non-deceptive problems, the GA does not have
correct convergence to find the global optimum because it
cannot maintain a definite convergence direction. Increasing
diversity could help to solve the problems but it is not the
only way to do it. Given enough generations, the canonical
GA with elitism could solve deceptive problems. Therefore,
a new approach to solving deceptive problems is by con-
trolling the convergence direction has been proposed. The
TGAs has been designed and tested over different problems
in both discrete and continuous spaces [14]. The results
show that increasing the diversity can increase the proba-
bility that GAs solve deceptive problems, and that the abil-
ity to maintain convergence directions affects the efficiency.
Maintaining diversity while controlling the convergence di-
rection is much more efficient than only maintaining the
diversity [14].

3. TEST SUITE

3.1 2-bit overlapped order-4 problem
The 2-bit overlapped order-4 problem stems from the nor-
mal order-4 problem. However, it has two epistatic linkage
genes situated between each two patterns (see Figure 2).
Therefore, a 40 bit chromosome length will have 79 decep-
tive patterns.

The pattern’s fitness mapping is shown in Table 4. In order

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 53

Figure 2: 2-bit overlapped order-4 100 bit problem

1 0 1 1 1 0 0 1 0 1 1 1

to illustrate the calculation of the best fitness levels for the
12 bit string shown in Table 2, we can see the four bits 1011
have a fitness value of 10, the next four bits 1001 have a
fitness value of 26 and the last four bits 0111 have a value
of 2. The 2-bit overlapped order-4 problem includes fitness
values for the last 2-bits and first 2-bits of adjacent four
bits (shaded in light gray). Therefore, between the first and
second four bits (1011 and 1001) we have the bits 1110 with
a fitness value of 30 and between the second and third four
bits shaded in dark grey, (1001 and 0111) we have four bits
0101 with the fitness value of 18. This leaves us with a
fitness value of 76 (10 + 26 + 2 + 30 + 18) for the twelve bit
string in Table 2.

Table 4: 2-bit overlapped order-4 problem

f2(1111) 20 f2(0110) 0
f2(0111) 2 f2(0101) 18
f2(1011) 10 f2(0011) 24
f2(1101) 22 f2(1000) 14
f2(1110) 30 f2(0100) 16
f2(1100) 4 f2(0010) 8
f2(1010) 12 f2(0001) 28
f2(1001) 26 f2(0000) 6

3.2 Cross Pattern Order-4 Problem
The Cross pattern Order-4 problem is a variation of the Nor-
mal Order-4 problem. However, it does not have overlapped
bits between each pattern; instead it uses an extra mapping
to allocate the genes from each pattern as outlined in Figure
3. Therefore, if we use the fitness values outlined in Table
4, the fitness value for the 16-bit string 1001 0101 1111 in
Figure 3 is 56 (30+2+0+24).

Figure 3: Cross pattern Order-4 problem

3.3 Disorder Order-4 Problem
We created a Disordered Pattern which is outlined in Fig-
ure 4. The Disordered order-4 problem is a variation of
the order-4 problem. The disordered nature of the pattern
makes the problem landscape more difficult to search rather
than the ordered pattern, because of the defining length
which increases the distance between building blocks and
increases the probability of disruption when using crossover.

4. EXPERIMENTS
All of the experiments carried out in this paper were for
25, 000 generations over 200 runs.

Figure 4: Disordered pattern Order-4 problem

4.1 2-bit Overlapped Order-4 Problem Exper-
iments

The CGA and TGA both ran for 25, 000 generations for the
2-bit overlapped order-4 problem. The experiments were
conducted with various chromosome lengths (CL) and vari-
ous population sizes (PS). In attempting to allow fair com-
parison between the CGA and TGA, we have kept the PS
differences constant between both algorithms, that is, the
population size of the CGA is always three times that of the
TGA.

Looking at Figure 5, we can see the results for the 2-bit
overlapped order-4 100 bit problem. The average best fitness
per generation for 25000 generations, are plotted for the
CGA with a PS of 300; the TGA with a PS of 100; the
CGA with a PS of 150 and the TGA with a PS 0f 50. The
first two rows of Table 5 show in row one, the CGA with
a population size of 300 achieving an average best fitness
score of 1164 and the TGA with a population size of 100,
achieving an average best fitness score of 1165. While row
two shows the best fitness result for the CGA and TGA with
CL of 100 but with smaller population sizes (CGA PS of 150
and TGA PS of 50). The results indicate that there is little
difference between the CGA and TGA in relation to average
best fitness scores, with a CL of 100 even by varying the PS.

Figure 5: 2-bit overlapped order-4 100 bit problem

Figure 6 plots the performance of the CGA and TGA for a
2-bit overlapped order-4 problem using a CL of 60. Again
the differences in the PS of both the CGA and TGA remain
constant i.e., 300 for the CGA and 100 for the TGA. We can
see that there is little difference between the performance of
the CGA and the TGA using a CL of 60. Row three in Ta-
ble 5 shows the average best fitness achieved of 649 for the
CGA and 696 for the TGA, basically illustrating little or no
difference between the two algorithms for their average best
fitness score.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 54

Figure 6: 2-bit overlapped order-4 60 bit problem

In Figure 7, we see the average best fitness for a 2-bit over-
lapped order-4 40 bit problem. This plot shows the results
for the CGA and TGA with different pairs of PS i.e. CGA
PS of 300 and TGA with PS of 100 and CGA with a PS
of 150 and the TGA with a PS of 50. It is interesting that
although there is little difference between the CGA and the
TGA, they both perform similarly over the two different PS.
Rows four and five in Table 5 show the average best fitness
for the CGA with a PS of 300 at 458 and the average best
fitness of 457 for a PS of 150. Although this is a small dif-
ference in terms of raw fitness score, it does mean that with
a smaller population the CGA settles in a local optima and
fails to find the better solution. Whereas the TGA has an
average best fitness of 460 for both a PS of 100 and a PS of
50.

Figure 7: 2-bit overlapped order-4 40 bit problem

Figure 8 contains the average best fitness for both the CGA
and the TGA with PS of 300 and 100 respectively, over a 2-
bit overlapping order-4 30 bit problem. The results indicate
the TGA, with a PS of 100, marginally outperforms and
the CGA with a PS of 300. The average best performance
as seen in row six of Table 5, shows the CGA achieving
an average best fitness of 340 and the TGA achieving an
average best fitness of 342. A plot of the results of the CGA
with a PS of 300 and the TGA with a PS of 100 over a
2-bit overlapped order-4 20 bit problem is shown in Figure
9. Again we see little or no difference between the average

Figure 8: 2-bit overlapped order-4 30 bit problem

best fitness of the CGA and the TGA.

Figure 9: 2-bit overlapped order-4 20 bit problem

Table 5: 2-bit overlapped order-4 problem best fit-
ness score

Row Problem CGA TGA
1 100 CL, 300/100 PS 1164 1165
2 100 CL, 150/50 PS 1163 1163
3 60 CL, 300/100 PS 694 696
4 40 CL, 300/100 PS 458 460
5 40 CL, 150/50 PS 457 460
6 30 CL, 300/100 PS 340 342
7 20 CL, 300/100 PS 220 220

The experiment results outlined, show that the TGA has
slightly better performance on 30/40/60 bit problems than
the CGA, while both of them perform similarly on the 20/100
bit problems. This is probably because the 20 bit problem
is much easier and the 100 bit problem is much more com-
plicated. However, the figures (5, 6, 7, 8 and 9) shows the
CGA converges very fast at the beginning, and after that,
the plot goes flat, while the TGA still maintains the ability
to find better solutions.

To gain a further understanding of the results we examined
in more detail the performance of the CGA and the TGA

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 55

with a CL of 20. Following numerous runs the best fitness
score obtained had a value of 222. In the following exper-
iments we use a PS of 150 for the CGA and a PS of 50
for the TGA, to test how many times that CGA and TGA
could obtain a fitness value of 222. The results of which are
summarised in Table 6 and show that the CGA was success-
ful 74 times out of 200 runs, while the TGA was successful
104 times out of 200. Also the results indicate that when
the CGA appeared to locate the best fitness level, it was on
average at generation 750 while the TGA, although locating
it far more often, on average located it at generation 3086.

Table 6: 2-bit overlapped order-4 problem average
generation of reach fitness score 222

Problem CGA TGA
Reach times 74/200 104/200
Avg. Gen 750 3086

The results indicate that the TGA located the optimum
more often than the CGA. However, when the CGA did
locate the optimum, it did so in fewer generations when com-
pared with the TGA. One reason for this is that the CGA
converges very quickly in the beginning, because the chro-
mosome length is quite small. Furthermore, even though
the CGA sometimes could find the solution very quickly,
due to the diversity-maintaining mechanism associated with
the TGA, the TGA has a better chance than the CGA to
find better solutions.

From the experiments conducted we believe that the TGA
is better than CGA because even though the TGA may only
locate, on average, a marginally higher fitness score (as out-
lined in Figures 5, 6, 7, 8 and 9), it may indicate that the
CGA is trapped in an deceptive attractor which may be
quite far away from the optimum. Overall when comparing
the CGA and the TGA over a normal order-4 overlapping
problem, the TGA does not appear to have a significant ad-
vantage over the CGA. However due to the nature of the
problem landscape, as explained in this section, we are un-
certain as to what the global landscape is like. To try and
shed more light onto the performance of the TGA, we con-
ducted another series of experiments over a Cross pattern
Order-4 problem landscape.

4.2 Cross Pattern Order-4 Problem Experi-
ments

For the Cross Pattern Order-4 problem experiments we used
an Ugly 40 and 60 bit chromosome and a Bad 40 and 60
bit chromosome [9] [3]. It is very interesting to note that in

Table 7: Cross pattern Order-4

Problem CGA(PS 300) CGA(PS 100) TGA(PS 100)
Ugly 40 2951 (200/200) 8897 (200/200) 7583 (199/200)
Ugly 60 19193 (57/200) - (0 / 200) 17718 (1/200)
Bad 40 2931 (200/200) 7092 (200/200) 7751 (200/200)
Bad 60 19428 (86/200) 23925 (1/200) - (0/200)

the cross pattern problems, the problem landscape appeared
to impact more negatively on the TGA than on the CGA.

The TGA, in past research, has benefited from crossover
(with the local minima, which are close to the global op-
timum). In this problem however, the crossover operation
has a higher probability of disrupting building blocks due
to the distance between building blocks caused by the in-
creased defining length inherent in the problem landscape.
Normally crossover will have an effect on almost every pat-
tern, but in this situation the TGA cannot benefit from it’s
reverse chromosome anymore. However, the CGA still has
the benefit of the population size as we use one third of the
CGA population with the TGA. We feel that there are three
reasons of this;

1. The TGA cannot benefit from the reverse chromosome
anymore in this landscape.

2. The reordered landscape actually provide a good mech-
anism for preserving diversity, so the CGA also has a
diversity maintaining mechanism to compete with the
recessive chromosome in TGA.

3. The CGA has a larger population, therefore it has a
proportionally greater chance of solving the problem.
This may be one explanation as to why the TGA per-
formance is far worse than that of the CGA over this
problem. Once we reduce the population of CGA, it
impacts negatively on the CGA and the performance
is comparable with and in some cases worse, that that
of the TGA.

One other item of interest emerging from these results is that
even with more effective crossover it still does not guarantee
the GA a better diversity rate [14]. We tested the diversity
rate on CGA on both cross pattern and normal pattern 40
bit Ugly order-4 problems and the results are shown in Table
7:

Figure 10: Diversity Rate plot

The result shows that the cross pattern experiments have
higher diversity rates for 2, 000−3, 000 generations and then
the diversity rate drops to around 0.25. The canonical 40
bit ugly order-4 problem’s diversity score goes down very
quickly to around 0.29 at the beginning of the evolution,
and continues to hover around that figure. Look at past ex-
periment results [14], the CGA found the global optimum at
cross pattern / canonical order-4 ugly problem at 2900/1500
generations respectively. The cross point of the diversity
curves in in Figure 10 is around 2, 000− 3, 000 generations,

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 56

which means that the cross pattern will made the GA con-
verge slower, but once converged, the diversity score will be
even poorer than that of the canonical pattern.

4.3 Disorder Order-4 Experiments
To examine the significance of the effect on the TGA of
crossover over the disordered crossed pattern problem (see
Figure 4), we conducted another set of experiments which
we tested on a 40 bit order-4 Ugly. The results of these
experiments are summarised in Table 8.

Table 8: Disorder Order-4

Problem CGA(PS 300) TGA(PS 100)
Ugly 40 1360 (200/200) 1545 (199/200)

The disorder problem is quite similar to the cross pattern
problem, but it has the effect of reducing the influence that
crossover may have. Compared with the results of the cross
pattern problem, the TGA appears to have a less negative
effect than with the disordered problem. Taken together
with the crossed pattern experiment, this may mean that
crossover can have a significant influence on the performance
of the TGA. Moreover, we have also tested the CGA and
the TGA on a canonical 40 bit “ugly” order-4 deceptive
problem, where the average global optimum was reached
at generation 1549 (200/200) for CGA, and 585 (200/200)
for TGA. We found that with the Disorder problem, the
CGA may even find the global optimum (1360) a little faster
than the normal pattern order-4 problem, while the TGA’s
convergence speed has slowed significantly. Through the
result of the experiment on a normal ordered2, crossed, and
disorder landscape, we found that the reordered landscape
may improve the performance of GAs over the disordered or
not crossed problems, it is depended on the reorder mapping
approach. Using a disorder approach in creating a genotype
to phenotype mapping, has a slightly positive effect on the
GAs, but it is not very effective and should only be noted
when the disorder mapping is well designed. This result is
similar to that discovered by Rick Chow [3], where they used
a permutation operator to reset the order of phenotype bit
and got a better result in solving deceptive problems.

4.4 NK Experiment Results
For the NK experiments we considered three different set-
tings, one containing low epistasis, one containing a medium
level of epistasis and one containing a high level of epistasis.
The results are outlined in Figures 11, 12 and 13 below.
In Figure 11 we can see that there is little or no difference
between the CGA and the TGA over the landscape gener-
ated by the NK model, where N=32 and K=5. Therefore,
at low levels of epistasis, the TGA does not appear to offer
any advantage over the CGA when searching the type of
landscape generated by the NK model. When we examine
an NK model landscape containing a medium level of epis-
tasis i.e. where N=32 and K=15 as illustrated in Figure
12, there is no difference of significance between the perfor-
mance of the CGA and the TGA, indicating that over this
type of NK landscape containing a medium level of epistasis,
there is no apparent advantage in using the TGA over the

2normal/canonical order means that landscape is not re-
ordered

CGA. Finally, on an NK landscape containing a high level of
epistasis, where N=32 and K=27, we can see in Figure 13
that the TGA outperforms the CGA. This indicates, bear-
ing in mind the nature of the problem, that there appears
to be an advantage in using the TGA over NK like problems
where the levels of epistasis are relatively high. Our findings
were shown to be statistically significant using a Wilcoxon
rank sum test.

Figure 11: NK Model N = 32 and K = 5

Figure 12: NK Model N = 32 and K = 15

5. CONCLUSION
From the experiments outlined above the results indicate
that the TGA appears to have the highest level of difficulty
in solving problems with a disordered pattern. While the
disorder mapping seems to improve the canonical GA’s per-
formance, it has a negative affect on the TGA. However,
bearing this in mind the TGA performs better on the NK
like problems (i.e. the overlapped problems). More specifi-
cally, when we examined the performance of the TGA over
NK landscapes with varying levels of epistasis, the TGA
performed better at higher levels of epistasis. But it should
also be noted that in our attempt to allow fair comparison,
all the experiments conducted have a ratio of 3:1 for the
population size. That is the population used by the CGA
is consistently three times the population size of the TGA,

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 57

Figure 13: NK Model N = 32 and K = 27

which plays a critical role, as once we set the population sizes
equal to one another, then the TGA always outperforms the
CGA.

6. REFERENCES
[1] R. Cavill, S. Smith, and A. Tyrrell.

Multi-chromosomal genetic programming. In
Proceedings of the 2005 conference on Genetic and
evolutionary computation, GECCO ’05, pages
1753–1759, New York, NY, USA, 2005. ACM.

[2] Y. Chen, J. Hu, K. Hirasawa, and S. Yu. Gars: an
improved genetic algorithm with reserve selection for
global optimization. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation,
GECCO ’07, pages 1173–1178, New York, NY, USA,
2007. ACM.

[3] R. Chow. Evolving genotype to phenotype mappings
with a multiple-chromosome genetic algorithm. In
Genetic and Evolutionary Computation - GECCO
2004, volume 3102 of Lecture Notes in Computer
Science, pages 1006–1017. Springer Berlin /
Heidelberg, 2004. 10.1007/978-3-540-24854-5 100.

[4] Y. Davidor. Epistasis variance: A viewpoint on
ga-hardness. In FOGA, pages 23–35, 1990.

[5] Y. Davidor. Epistasis variance: Suitability of a
representation to genetic algorithms. Complex
Systems, 4:369–383, 1990.

[6] D. Goldberg. Simple genetic algorithms and the
minimal deceptive problem. Genetic Algorithms and
Simulated Annealing, pages 74–88, 1987.

[7] D. Goldberg, K. Deb, and B. Korb. Messy genetic
algorithms: motivation, analysis, and first results.
Complex Systems, pages 493–530, 1989.

[8] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Publishing Company, Inc., Reading, MA, 1989.

[9] V. S. Gordon, V. S. Gordon, D. Whitley, and
D. Whitley. Serial and parallel genetic algorithms as
function optimizers. In Proceedings of the Fifth
International Conference on Genetic Algorithms,
pages 177–183. Morgan Kaufmann, 1993.

[10] S. Hill and C. O’Riordan. Solving fully deceptive
problems in changing environments. In 21st conference

on Artificial Intelligence and Cognitive Science
(AICS), July 2010.

[11] J. H. Holland. Genetic algorithms. Scientific
American, pages 66–72, July 1992.

[12] W. Hordijk. Population flow on fitness landscapes.
PhD thesis, University of Rotterdam, 1994.

[13] S. Kauffman. The Origins of Order. Oxford University
Press, 1995.

[14] M. Li, S. Hill, and C. O’Riordan. An analysis of
multi-chromosome gas on deceptive problems. In
GECCO: Genetic and Evolutionary Computation
Conference 2011, 2011.

[15] G. Mayley. The evolutionary cost of learning.
Technical report, School of Cognitive and Computer
Sciences, University of Sussex, 1996.

[16] B. Naudts and A. Verschoren. Epistasis and
deceptivity. In Simon Stevin - Bulletin of the Belgian
Mathematical Society , 6 , 147-154. Novkovic, S, 1999.

[17] C. Palmer and A. Kershenbaum. Representing trees in
genetic algorithms. In Evolutionary Computation,
1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE
Conference on, volume 1, pages 379–384, jun 1994.

[18] M. Pelikan. Analysis of epistasis correlation on nk
landscapes with nearest-neighbor interactions. In
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages
1013–1020, New York, NY, USA, 2011. ACM.

[19] G. J. E. Rawlins, editor. Proceedings of the First
Workshop on Foundations of Genetic Algorithms.
Bloomington Campus, Indiana, USA, July 15-18 1990.
Morgan Kaufmann, 1991.

[20] C. R. Reeves and C. C. Wright. Epistasis in genetic
algorithms: An experimental design perspective. In
Proc. of the 6th International Conference on Genetic
Algorithms, pages 217–224. Morgan Kaufmann, 1995.

[21] J. L. Risco-Mart́ın, J. I. Hidalgo, J. Lanchares, and
O. Garnica. Solving discrete deceptive problems with
emmrs. In Proceedings of the 10th annual conference
on Genetic and evolutionary computation, GECCO
’08, pages 1139–1140, New York, NY, USA, 2008.
ACM.

[22] R. E. Smith and D. E. Goldberg. Diploidy and
dominance in artificial genetic search. Complex
Systems, 6:251–285, 1992.

[23] P. T and R. K. R. A dual-population genetic
algorithm for adaptive diversity control. Evolutionary
Computation, IEEE Transactions on, Issue:99:1–1,
June 2010.

[24] E. D. Weinberger. Local properties of kauffman’s N k
model: A tunably rugged energy landscape. Phys.
Rev. A, 44:6399–6413, Nov 1991.

[25] T. Weise, S. Niemczyk, H. Skubch, R. Reichle, and
K. Geihs. A tunable model for multi-objective,
epistatic, rugged, and neutral fitness landscapes. In
Proceedings of the 10th annual conference on Genetic
and evolutionary computation, GECCO ’08, pages
795–802, New York, NY, USA, 2008. ACM.

[26] L. D. Whitley. Fundamental principles of deception in
genetic search. In Foundations of Genetic Algorithms,
pages 221–241. Morgan Kaufmann, 1991.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 58

ABOUT THE AUTHORS:

Menglin Li is currently a postgraduate student of IT department, form the National

University of Ireland, Glaway. He was graduated in Mathematics department at the

year of 2008 from Capital Normal University, Beijing, China. His research interest

includes Genetic Algorithms, and Evolutionary Game Theory.

Seamus Hill is currently a lecturer in Computer Science & Information Technology

in the School of Engineering & Informatics at the National University of Ireland

Galway. He has spent a number of years in industry and his main research interests

include Artificial Intelligence and Evolutionary Computation.

Colm O'Riordan is a lecturer in Computer Science & Information Technology in the

School of Engineering and Informatics at NUI, Galway. His main research interests

are in the fields of Artificial Intelligence, Evolutionary Computation and Information

Retrieval. He has published over a 100 papers in refereed journals and conferences.

He has published papers in the domains of evolutionary computation and

evolutionary game theory, artificial life and multi agent systems, information

retrieval and computational intelligence in games.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 59

SART: Speeding up Query Processing in Sensor Networks
with an Autonomous Range Tree Structure

Spyros Sioutas
Department of Informatics,

Ionian University
49100 Corfu, Greece
sioutas@ionio.gr

Alexandros Panaretos
Department of Informatics,

Ionian University
49100 Corfu, Greece

alex@ionio.gr

Ioannis Karydis
Department of Informatics,

Ionian University
49100 Corfu, Greece
karydis@ionio.gr

Dimitrios Tsoumakos
Department of Informatics,

Ionian University
49100 Corfu, Greece
dtsouma@ionio.gr

Giannis Tzimas
Dept. of Applied Informatics in
Management and Economy,

Techn. Educ. Institute
30200 Messolonghi, Greece

tzimas@teimes.gr

Dimitrios Tsolis
Cult. Herit. Management and

New Technologies Dept.,
University of Western Greece

30100 Agrinio, Greece
dtsolis@upatras.gr

ABSTRACT
We consider the problem of constructing efficient P2P over-
lays for sensornets providing “Energy-Level Application and
Services”. In this context, assuming that a sensor is respon-
sible for executing some program task but unfortunately it’s
energy-level is lower than a pre-defined threshold. Then,
this sensor should be able to introduce a query to the whole
system in order to discover efficiently another sensor with
the desired energy level, in which the task overhead must
be eventually forwarded. In this way, the “Life-Expectancy”
of the whole network could be increased. Sensor nodes are
mapped to peers based on their energy level. As the energy
levels change, the sensor nodes would have to move from
one peer to another and this operation is very crucial for
the efficient scalability of the proposed system. Similarly,
as the energy level of a sensor node becomes extremely low,
that node may want to forward it’s task to another node
with the desired energy level. The method presented in [15]
presents a novel P2P overlay for Energy Level discovery in
a sensornet. However, this solution is not dynamic, since re-
quires periodical restructuring. In particular, it is not able
to support neither join of sensor nodes with energy level
out of the ranges supported by the existing p2p overlay nor
leave of empty overlay peers to which no sensor nodes are
currently associated. On this purpose and based on the ef-
ficient P2P method presented in [16], we design a dynamic
P2P overlay for Energy Level discovery in a sensornet, the
so-called SART (Sensors’ Autonomous Range Tree) 1. The
adaptation of the P2P index presented in [16] guarantees the
best-known dynamic query performance of the above oper-
ation. We experimentally verify this performance, via the
D-P2P-Sim simulator 2.

1This work is based on an earlier work: SAC ’12 Pro-
ceedings of the 2012 ACM Symposium on Applied Com-
puting, Copyright 2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2245442.
2D-P2P-Sim is publicly available at
http://code.google.com/p/d-p2p-sim/

Categories and Subject Descriptors
H.2 [Database Management]: [Emergent Systems]; D.2
[Software Engineering]: [P2P Simulators for Sensornets,
QoS]

General Terms
Distributed Data Structures, Indexing

Keywords
Peer-to-Peer Overlays, Sensor Networks

1. INTRODUCTION
In the last years sensornet research primarily focused on
data collection, finding applications in ecology (e.g., envi-
ronmental and habitat monitoring [13]), in precision agri-
culture (e.g., monitoring of temperature and humidity), in
civil engineering (e.g., monitoring stress levels of buildings
under earthquake simulations), in military and surveillance
(e.g., tracking of an intruder [7]), in aerospace industry (e.g.,
fairing of cargo in a rocket), etc.

Traditionally, sensors are used as data gathering instruments,
which continuously feed a central base station database. The
queries are executed in this centralized base station database
which continuously collates the data. However, given the
current trends (increase in numbers of sensors, together col-
lecting gigabits of data, increase in processing power at sen-
sors) it is not anymore feasible to use a centralized solution
for querying the sensor networks. Therefore, there is a need
for establishing an efficient access structure on sensor net-
works in order to contact only the relevant nodes for the
execution of a query and hence achieve minimal energy con-
sumption, minimal response time, and an accurate response.
We achieve these goals with our peer-to-peer query process-
ing model on top of a distributed index structure on wireless
sensor networks.

In sensor networks any node should be able to introduce
a query to the system. For example, in the context of a
fire evacuation scenario a firefighter should be able to query
a nearby sensor node for the closest exit where safe paths
exist. Therefore, a peer-to-peer query processing model is
required. A first P2P program for spatial query execution

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 60

presented in [8].

According to [1], the benefits of the P2P overlays in sen-
sornets are the following: Efficient Data Lookup, Guar-
anties on Lookup Times, Location Independence, Overlay
Applications and Services, Elimination of proxies/sinks with
undesirable central authority, Limited Broadcast. P2P de-
sign, for Internet-like environments, has been a very active
research area and there are many P2P Internet protocols
and systems available like CAN [3], Pastry [3], and Chord
[3]. The main arguments against P2P designs in sensor-
nets were the following: Logical Topology=Physical Topol-
ogy, Route Maintenance Overhead, Sensor Nodes are Not
Named, DHTs are Computationally Intensive. By overcom-
ing the arguments above (for details see [1], [2] and [4]), in
[2] and [4] the first DHT (Distributed Hash Table) based
protocols for sensornets were presented, the CSN and VRR
respectively. In [1] the Tiered Chord (TChord) protocol
was proposed, which is similar to, and inspired by, CSN.
TChord is a simplified mapping of Chord onto sensornets.
Unlike CSN the design of TChord is more generic (to sup-
port a variety of applications and services on top instead
of just serving incoming data queries). Gerla et al. argue
for the applicability and transfer of wired P2P models and
techniques to MANETs [9].

Most existing decentralized discovery solutions in practice
are either DHT based, like Chord or hierarchical cluster-
ing based, like BATON [3], NBDT [14], ART [16] or Skip-
Graphs [3]. The majority of existing P2P overlays for sen-
sornets were designed in a DHT fashion and the best current
solution is the TChord. On the contrary, ELDT [15] is the
only existing P2P protocol for sensornets, which combines
the benefits of both DHT and hierarchical [14] clustering
fashions. In this solution, sensor nodes are mapped to peers
based on their energy level. As the energy levels change, the
sensor nodes would have to move from one peer to another
and this oparation is very crucial for the efficient scalability
of the proposed system. Similarly, as the energy level of a
sensor node becomes extremely low, that node may want
to forward it’s task to another node with the desired en-
ergy level. However, the ELDT solution is not dynamic,
since requires periodical restructuring. In particular, it is
not able to support neither join of sensor nodes with energy
level out of the ranges supported by the existing p2p overlay
nor leave of empty overlay peers to which no sensor nodes
are currently associated. On this purpose and based on the
efficient P2P method presented in [16], we design a dynamic
P2P overlay for Energy Level discovery in a sensornet, the
so-called SART (Sensors’ Autonomous Range Tree). The
adaptation of the P2P index presented in [16] guarantees
the best-known dynamic query performance of the above
operation.

The main functionalities of SART attempt to increase the
“Life-Expectancy” of the whole sensor network in dynamic
way, providing support for processing: (a) exact match queries
of the form“given a sensor node with low energy-level k′, lo-
cate a sensor node with high energy-level k, where k >> k′”
(the task will be forwarded to the detected sensor node) (b)
range queries of the form“given an energy-level range [k, k′],
locate the sensor node/nodes the energy-levels of which be-
long to this range” (the task will be forwarded to one of

the detected sensor nodes) (c) update queries of the form
“find the new overlay-peer to which the sensor node must
be moved (or associated) according to it’s current energy
level” (the energy level of each sensor node is a decreas-
ing function of time and utilization) (d) join queries of the
form “join a new overlay-peer to which the new (inserted)
sensor node is associated” and (e) leave queries of the form
“leave (delete) the overlay-peer to which no sensor nodes are
currently associated”. The SART overlay adapts the novel
idea of ART P2P infrastructure presented in [16] providing
functionalities in optimal time. For comparison purposes,
an elementary operation’s evaluation is presented in table
1 between ART, NBDT, Skip-Graphs [3], Chord [3] and its
newest variation (F-Chord(á) [3]), BATON and its newest
variation (BATON* [3]).

The rest of this paper is structured as follows. Section 2
and 3 describe the SART system while section 4 presents an
extended experimental verification via an appropriate simu-
lator we have designed for this purpose. Section 5 concludes
the work.

2. THE SART PROTOCOL
SART, is a simplified mapping of ART [16] onto sensornets.
Like ART, at the heart of SART, lookup and join/leave re-
spectively are the two main operations. Given a set of sensor
nodes, we hash the unique address of each sensor node to
obtain node identifiers. Meta-data keys, generated from the
data stored on the nodes, are hashed to obtain key identi-
fiers.

The SART protocol (see figure 1) is an hierarchical arrange-
ment of some sensor nodes (master nodes). The master
node of level i maintains information (in its local finger ta-

ble) about all its slave nodes and 22
i−1

other master nodes
(you can find more details about master and slave nodes in
[15]). All queries are resolved in a distributed manner with
a bound of O(log2b logN) messages. When a master node re-
ceives a query it first checks its own keys to resolve the query,
if the lookup is not successful the master node then checks
its local finger table. The finger table contains information

about 22
i−1

other master nodes and if the key can be located
according to the information stored in the finger table, the
query is directly forwarded to the master node storing the
data. If the lookup on the local finger table also fails then
the master node routes the query to the master node closest
to the target according to the finger table. We handle the
master node joins/leaves and fails according to join/leave
and fail operations respectively presented in [16]. Thus, all
the above operations are bounded by O(log logN) expected
w.h.p. number of messages. Slave nodes do not store in-
formation about their neighbors. If a slave node directly re-
ceives a query, it checks its own data and if the lookup fails it
simply forwards the query to its master node. For simplicity,
in the SART proposal we opt for not connecting the slave
nodes in a ART arrangement and lookups are not imple-
mented in slave nodes. The master nodes could be thought
as“virtual sinks”with an ART overlay between these virtual
sinks. Unlike IP in the Internet, the sensornet protocol SP is
not at the network layer but instead sits between the network
and data-link layer (because data-processing potentially oc-
curs at each hop, not just at end points). Figure 2 shows

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 61

P2P Architectures Lookup/update key
Data Overhead-Routing

information
Join/Depart Node

Chord O(logN) O(logN) nodes O(logN) w.h.p.
H-F-Chord(a) O(logN/loglogN) O(logN) nodes O(logN)
LPRS-Chord O(logN) O(logN) nodes O(logN)
Skip Graphs O(logN) O(1) O(logN) amortized
BATON O(logN) Two (2) nodes O(logN) w.h.p.
BATON* O(logmN) m nodes O(mlogmN)

NBDT O(loglogN) O(loglogN) or 22
i−1

for nodes at
level i of left spine

periodical restructuring

ART O(log2b logN) O(N1/4/ logc N) nodes O(log logN) expected w.h.p.

Table 1: Performance Comparison between ART, NBDT, Chord, BATON and Skip Graphs

how P2P overlays can be implemented on top of SP. The
P2P overlay (shown as P2P Overlay Management) could be
built on top of any generic network protocol. An underly-
ing DHT or Hierarchical Clustering routing protocol (e.g.,
VRR, CSN, TChord or SNBDT or SART) is recommended
as it simplifies the job of overlay management. In particu-
lar, it is more efficient to build routing directly on top of the
link layer instead of implementing it as an overlay on top of
a routing protocol [4]. P2P Services and Applications (e.g.
event notification, resource allocation, and file systems) can
then be built on top of the P2P overlay and sensornet appli-
cations could either use these services or communicate with
the P2P overlay themselves.

Figure 1: The SART protocol

3. THE SART P2P OVERLAY
Let G a network graph of n sensor nodes and SART the
respective overlay of N peers. With each overlay peer p
(1 ≤ p ≤ N) we associate a set of pairs Sp = {(g, L[g])},
where g is a sensor node (1 ≤ g ≤ n) and L[g] its current

Physical Architecture
 sensing
 carrier sense
 Transmit
 Receive

Data Link
 Media Access
 Time Stamping
 ACK

Sensor - Net Protocol (SP)

P
o

w
er

 M
an

ag
em

en
t

S
ys

te
m

 M
an

ag
em

en
t

M
o

b
ili

ty
 M

an
ag

em
en

t

D
is

co
ve

ry

S
ec

u
ri

ty

T
im

in
g

DHT && Hierarchical Network

Protocols (e.g. VRR, CSN,

TChord, SNBDT,SART)

Address Free

Protocols

Named - Based

Protocols

P2P Overlay Management

(e.g. route maintenance,

resource discovery)

P2P Services and

Applications

(e.g.storage, naming,

event notification e.t.c.)

Sensor - Net Application

Figure 2: P2P Overlay in SP Architecture

energy level. The criterion of associating the sensor node g
to peer p depends on it’s current energy level. Obviously, it
holds thatN << n. Let’s explain more the way we structure
our whole system.

One of the basic components of the final SART structure is
the LRT (Level Range Tree) [16] structure. LRT will be
called upon to organize collections of peers at each level of
SART.

3.1 The LRT structure: An overview
LRT [16] is built by grouping nodes having the same ancestor
and organizing them in a tree structure recursively. The in-
nermost level of nesting (recursion) will be characterized by
having a tree in which no more than b nodes share the same
direct ancestor, where b is a double-exponentially power of
two (e.g. 2,4,16,...). Thus, multiple independent trees are
imposed on the collection of nodes. Figure 3 illustrates a
simple example, where b = 2.

The degree of the overlay peers at level i > 0 is d(i) = t(i),
where t(i) indicates the number of peers at level i. It holds
that d(0)=2 and t(0)=1. Let n be w-bit keys. Each peer
with label i (where 1 ≤ i ≤ N) stores ordered keys that
belong in the range [(i− 1) lnn, i lnn–1], where N = n/lnn
is the number of peers. Each peer is also equipped with a
table named Left Spine Index (LSI), which stores pointers to
the peers of the left-most spine (see pointers starting from

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 62

9

8

10

11

1

keys in range [0, lnn - 1]

2
 3

.

.

.

LSI

CI

CI

LSI
 LSI

4
 6
 7

CI

5

.
 .
 .
 .

LSI

LSI
 LSI
LSI

8
 9
 10
 11

CI

12
 13
 14
 15

 [lnn, 2lnn - 1]
 [2lnn, 3lnn - 1]

13

12

14

15

Figure 3: The LRT structure

peer 5). Furthermore, each peer of the left-most spine is
equipped with a table named Collection Index (CI), which
stores pointers to the collections of peers presented at the
same level (see pointers directed to collections of last level).
Peers having the same father belong to the same collection.

Lookup Algorithm: Assume we are located at peer s and
seek a key k. First, the algorithm finds the range where
k belongs. If k ∈ [(j − 1) lnn, j lnn − 1], it has to search
for peer j. The first step of algorithm is to find the LRT
level where the desired peer j is located. For this purpose,
it exploits a nice arithmetic property of LRT. This property
says that for each peer x located at the left-most spine of
level i, the following formula holds:

label(x) = label(father(x)) + 22
i−2

(1)

For each level i (where 0 ≤ i ≤ log logN), it computes
the value x of its left most peer by applying Equation (1).
Then, it compares the value j with the computed value x.
If j ≥ x, it continues by applying Equation (1), otherwise it
stops the loop process with current value i. The latter means
that node j is located at the i-th level. Then, it follows the
i-th pointer of the LSI table located at peer s. Let x the
destination peer, that is the leftmost peer of level i. Now,
the algorithm must compute the collection in which the peer
j belongs to. Since the number of collections at level i equals
the number of nodes located at level (i − 1), it divides the
distance between j and x by the factor t(i − 1) and let m
the result of this division. Then, it follows the (m + 1)-th
pointer of the CI table. Since the collection indicated by the
CI[m+1] pointer is organized in the same way at the next
nesting level, it continues this process recursively.

Analysis: Since t(i) = t(i−1)d(i−1), it gets d (i) = t (i) =

22
i−1

for i ≥ 1. Thus, the height and the maximum num-
ber of possible nestings is O(log logN) and O(logb logN) re-
spectively. Thus, each key is stored in O(logb logN) levels at
most and the whole searching process requires O(logb logN)
hops. Moreover, the maximum size of the CI and RSI ta-
bles is O(

√
N) and O(log logN) in worst-case respectively.

Each overlay peer stores tuples (g, L[g]), where L[g] is a
k − bit key belonging in universe K = [0, 2k − 1], which
represents the current energy-level of the sensor node g.

We associate to ith peer the set Si = {(g, L[g])}, where
Lg ∈ [(i − 1)lnK, ilnK − 1]. Obviously, the number of
peers is N = K/lnK and the load of each peer becomes
Θ(polylogN) in expected case with high probability (for
more details see[1]). Each energy-level key is stored at most
in O(loglogN) levels. We also equip each peer with the ta-
ble LSI (Left Spine Index). This table stores pointers to the
peers of the left-most spine (for example in figure 3 the peers
1, 2, 4 and 8 are pointed by the LSI table of peer 5) and
as a consequence its maximum length is O(loglogN). Fur-
thermore, each peer of the left-most spine is equipped with
the table CI (Collection Index). CI stores pointers to the
collections of peers presented at the same level (see in figure
3 the CI table of peer 8). Peers having same father belong
to the same collection. For example in the figure 2, peers
8,9,10 and 11 constitute a collection of peers. It’s obvious
that the maximum length of CI table is O(

√
N).

3.2 The ART structure: An Overview
The backbone of ART [16] is exactly the same with LRT.
During the initialization step the algorithm chooses as clus-
ter peer representatives the 1st peer, the (lnn)-th peer, the
(2 lnn)-th peer and so on.

This means that each cluster peer with label i′ (where 1 ≤
i′ ≤ N ′) stores ordered peers with energy-level keys be-
longing in the range [(i′ − 1) ln2 n, . . . , i′ ln2 n − 1], where
N ′ = n/ ln2 n is the number of cluster peers.

ART stores cluster peers only, each of which is structured
as an independent decentralized architecture. Moreover, in-
stead of the Left-most Spine Index (LSI), which reduces
the robustness of the whole system, ART introduces the
Random Spine Index (RSI) routing table, which stores point-
ers to randomly chosen (and not specific) cluster peers (see
pointers starting from peer 3). In addition, instead of using
fat CI tables, the appropriate collection of cluster peers can
be accessed by using a 2-level LRT structure.

Load Balancing: The join/leave of peers inside a clus-
ter peer were modeled as the combinatorial game of bins
and balls presented in [12]. In this way, for a µ(·) random
sequence of join/leave peer operations, the load of each clus-
ter peer never exceeds Θ(polylog N ′) size and never becomes
zero in expected w.h.p. case.

Routing Overhead: The 2-level LRT is an LRT structure
over log2c Z buckets each of which organizes Z

log2c Z
collec-

tions in a LRT manner, where Z is the number of collec-
tions at current level and c is a big positive constant. As
a consequence, the routing information overhead becomes
O(N1/4/ logc N) in the worst case (even for an extremely
large number of peers, let say N=1.000.000.000, the routing
data overhead becomes 6 for c = 1).

Lookup Algorithms: Since the maximum number of nest-
ing levels is O(logb logN) and at each nesting level i the

standard LRT structure has to be applied in N1/2i col-
lections, the whole searching process requires O(log2b logN)
hops. Then, the target peer can be located by searching
the respective decentralized structure. Through the poly-
logarithmic load of each cluster peer, the total query com-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 63

G = Sensornet Graph
A

C

K

G

SART Overlay

1

2
 3

RSI

RSI
 RSI

4
 6
 7
5

.
 .
 .

RSI
 RSI
 RSI

RSI

8
 9
 10
 11

Cluster_Peer 1

12
 13
 14
.
 15
 i

Decentralized Architecture of

Peer_Node
1
,Peer_Node
2
,......,Peer_Node
lnn

Cluster_Peer i

Decentralized Architecture of

Peer_Node
(i-1)lnn+1
Peer_Node
(i-1)lnn+2

,......,Peer_Node
ilnn

i

9
 10

11

8

13

12

14

15

2-level LRT

Energy Color: Red

Energy Color: yellow

S1={(A,L[A]),(C,L[C])}

Si={(K,L[K]),(G,L[G])}

L[A] and L[C] belong in range
 [0, ln
2
n-1]

L[K] and L[G] belong in range
 [(i-1)ln
2
n, iln
2
n-1]

(A,L[A])

(C,L[C])

(K,L[K])

(G,L[G])

S
i
=S
i,
1

U
 S
i,
2

U
....
U
 S
i,
lnn

S

i,j

={ }

IF S
i,j

= empty then LEAVE (Peer
i,j
)

(see the blue node of cluster_peer i)
 S

i,m

={ }

B

IF a new_sensor_node B JOIN G

AND L[B] belong in Range of S
i,m

THEN JOIN Peer
i,m

(see the peer with the GREEN energy color)

Figure 4: Building the SART Bipartite P2P Overlay

plexity O(log2b logN) follows. Exploiting now the order of
keys on each peer, range queries require O(log2b logN + |A|)
hops, where |A| the answer size.

Join/Leave Operations: A peer u can make a join/leave
request at a particular peer v, which is located at clus-
ter peer W . Since the size of W is bounded by a polylogN
size in expected w.h.p. case, the peer join/leave can be car-
ried out in O(loglogN) hops.

Node Failures and Network Restructuring: Obviously,
node failure and network restructuring operations are ac-
cording to the decentralized architecture used in each clus-
ter peer.

3.3 Building the SART Overlay
Let Pi,j the jth peer of cluster peer i. Each overlay peer
Pi,j , stores a set Si,j = {(g, L[g])}, where L[g] is a k − bit
key belonging in universe K = [0, 2k − 1], which represents
the current energy-level of the sensor node g. In particular
(and based on design analysis of previous section) it holds
that L[g] ∈

[
(i− 1)ln2n, iln2n− 1

]
. Thus, the total set of

Cluster Peer i becomes Si = Si,1∪Si,2∪ . . .∪Si,Θ(polylogN),
where |Si,j | ≤ n.

For example in Figure 4, S1 = {(A,L[A]), (C,L[C])} is
the set of cluster peer 1, which stores the energy-level keys
of red (energy color) sensors A and C as well as Si =
{(K,L[K]), (G,L[G])} is the set of cluster peer i, which stores
the energy-level keys of yellow sensors K and G. Tuples
(A,L[A]) and (C,L[C]) are located in different peers of the

decentralized structure associated to cluster peer 1. The
same holds for the tuples (K,L[K]) and (G,L[G]) in the
decentralized structure associated to cluster peer i.

According to the complexity analysis of ART structure, the
theorem 1 follows:

Theorem 1: Assume a SART lookup P2P system for the
sensor network G. The queries of the form (a), (b) and (c)
require O(log2b logN) expected w.h.p. number of messages.
The queries of the form (d) and (e) require O(log logN)
expected w.h.p. number of messages.

Let G the sensor network and T the SART overlay. We are
located at sensor node S ∈ G with low energy level k′ and
we are looking for a sensor node R ∈ G with the desired
energy level k. Algorithm 1 depicts the pseudocode for the
Sensor Net Exact Match Search routine.

Let G the sensor network and T the SART overlay. We are
located at sensor node S ∈ G with low energy level k′ and we
are looking for a sensor node R ∈ G the desired energy level
of which belongs in the range [k1, k2]. Algorithm 2 depicts
the pseudocode for the Sensor Net Range Search routine.

Let G the sensor network and T the overlay structure. We
are located at sensor node S ∈ G, the energy level of which
has been decreased from k1 to k2. We have to find the
new overlay peer to which the update node S is going to
be associated. Algorithm 3 depicts the pseudocode for the
update overlay peer routine.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 64

Let G the sensor network and T the overlay structure. If
a new sensor node B joins G and L[B] ∈ Si,m then JOIN
Pi,m (see the peer with the green energy color). Algorithm
4 depicts the respective pseudocode.

Let G the sensor network and T the overlay structure. If
Si,j = ⊘ then LEAVE Pi,j (see the blue node of cluster peer
i). Algorithm 5 depicts the respective pseudocode.

Algorithm 1 Sensor Net Exact Match Search(G,S,T ,k′,k,
R)

1: Find the peer node to which sensor S (of energy level k’)
is associated;

2: Let p ∈ T the respective overlay peer;
3: r = send overlay search(T, p, k); {it is the basic lookup

routine of ART structure T}
4: Let r ∈ T the peer node which stores sensor nodes with

the desired energy-level k and let say R a randomly cho-
sen one;

5: Return R

Algorithm 2 Sensor Net Range Search(G,S,T ,k′,k1,k2,R)

1: Find the peer to which sensor S (of energy level k’) is
associated;

2: Let p ∈ T the respective overlay peer;
3: r = send overlay range search(T, p, k); {it is the range

searching routine of ART structure T}
4: Let A the set of peers the desired energy-level of which

belong in range [k1, k2] and let say R a randomly chossen
one;

5: Return R

Algorithm 3 Update Overlay Peer(G,T ,S,k1,k2)

1: Find the peer to which S is associated according to old
energy level k1;

2: Let p ∈ T the respective overlay peer;
3: Delete (S, k1) from p;
4: r = send overlay search(T, p, k2);
5: Insert the tuple (S, k2) into r;

4. EXPERIMENTS
The Admin tools of D-P2P-Sim GUI (see Figure 5) have
specifically been designed to support reports on a collec-
tion of wide variety of metrics including, protocol opera-
tion metrics, network balancing metrics, and even server
metrics. Such metrics include frequency, maximum, mini-
mum and average of: number of hops for all basic operations
(lookup-insertion-deletion path length), number of messages
per node peer (hotpoint-bottleneck detection), routing table
length (routing size per node-peer) and additionally detec-
tion of network isolation (graph separation). All metrics can
tested using a number of different distributions (e.g. normal,
weibull, beta, uniform etc). Additionally, at a system level
memory can also be managed in order to execute at low or
larger volumes and furthermore execution time can also be
logged. The framework is open for the protocol designer to
introduce additional metrics if needed. Furthermore, XML
rule based configuration is supported in order to form a large
number of different protocol testing scenarios. It is possible
to configure and schedule at once a single or multiple ex-
perimental scenarios with different number of protocol net-
works (number of nodes) at a single PC or multiple PCs and

Algorithm 4 Join Overlay Peer(G,T ,B,L[B])

1: Let L[B] ∈ Si,m and the mth peer of cluster peer i does
not exist;

2: send join peer(T, Pi,m); {it is the Join routine of ART
structure T}

3: Let Si,m = ⊘ the initial empty set of the new inserted
peer Pi,m;

4: Insert the tuple (B,L[B]) into Si,m;

Algorithm 5 Leave Overlay Peer(G,T ,Pi,j)

1: Let Si,j = ⊘ the empty set of peer Pi,j ;
2: send Leave peer(T, Pi,j); {it is the Leave routine of

ART structure T}

servers distributedly. In particular, when D-P2P-Sim simu-
lator acts in a distributed environment (see Figure 6) with
multiple computer systems with network connection delivers
multiple times the former population of cluster peers with
only 10% overhead.

Our experimental performance studies include a detailed
performance comparison with TChord, one of the state-of-
the-art P2P overlays for sensor networks. Moreover, we im-
plemented each cluster peer as a BATON* [10], the best
known decentralized tree-architecture. We tested the net-
work with different numbers of peers ranging up to 500,000.
A number of data equal to the network size multiplied by
2000, which are numbers from the universe [1..1,000,000,000]
are inserted to the network in batches. The synthetic data
(numbers) from this universe were produced by the follow-
ing distributions: beta3, uniform4 and power-law5. The dis-
tribution parameters can be easily defined in configuration
file6. Also, the predefined values of these parameters are
depicted in the figure 7.

For evaluation purposes we used the Distributed Java D-
P2P-Sim simulator presented in [16]. The D-P2P-Sim simu-
lator is extremely efficient delivering > 100, 000 cluster peers
in a single computer system, using 32-bit JVM 1.6 and 1.5
GB RAM and full D-P2P-Sim GUI support. When 64-bit
JVM 1.6 and 5 RAM is utilized the D-P2P-Sim simulator
delivers > 500, 000 cluster peers and full D-P2P-Sim GUI
support in a single computer system.

For each test, 1,000 exact match queries and 1,000 range
queries are executed, and the average costs of operations
are taken. Searched ranges are created randomly by getting
the whole range of values divided by the total number of
peers multiplies α, where α ∈ [1..10]. The source code of
the whole evaluation process is publicly available 7.

In the first tab (see Figure 8) the user can set the number of
peers which will constitute the overlay and select the energy

3http://goo.gl/ltQXY
4http://goo.gl/Y1fEB
5http://goo.gl/lqp91
6http://goo.gl/dHZ6D
7http://code.google.com/p/d-p2p-sim/

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 65

Figure 5: D-P2P-Sim GUI

Figure 6: The Distributed Environment

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 66

<distribution>

<random>

<seed>1</seed>

</random>

<beta>

<alpha>2.0</alpha>

<beta>4.0</beta>

</beta>

<powerLaw>

<al
pha>0.5</alpha>

<beta>1.0</beta>

</powerLaw>

</distribution>

Figure 7: Snippet from config.xml with the pre-
defined distribution’s parameters setup

Figure 8: The tab “SetUp”

level distribution over these nodes. The available distribu-
tions are: uniform, normal, beta, and pow-law. After the
user has set these two fields then the system’s initialization
can begin.

In the same tab there is a progress bar so the user can obtain
the overall process due to the fact that this process may
take several minutes. Also there is a button, which resets

Figure 9: The tab “Operations”

Figure 10: The tab “Experiments”

the system without the need of closing and reopening the
simulator if we want to carry out several experiments with
different number of peers and energy level distribution.

The second tab (see Figure 9) provides the ability to search,
insert(join) / delete (leave) and update the energy level of a

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 67

Figure 11: Lookup Performance Graph

Figure 12: Load balance after 200 updates with uniform distribution.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 68

Figure 13: Average Messages per Level

sensor starting the procedure from any peer in the overlay.
While one of these operations is being executed, appropriate
messages are appearing at the bottom of this tab.

In the third tab (see Figure 10) the user can prosecute ex-
periments to evaluate the efficiency of the lookup/update
operations. There are two panels one for each operation
where the user sets the number of the experiments and se-
lects the distribution according to the energy-level keys of
the sensors picked up for the experiments. After the termi-
nation of the experiments the user can see and save the chart
that has been generated. In the forth tab - statistics - the
user can see the current number of peers into the system,
the number of sensors that have been stored over the peers
and the range of sensors’ energy level that we can store in
the overlay. This tab represents also performance statistics
such as the minimum, the maximum and the average path
of the total operations that have been performed. Further-
more, this tab generates a chart with the load-balancing over
the peers (see Figure 12), the number of messages that have
been forwarded by each peer (see Figure 11)and the number
of messages per tree level (see Figures 13).

In the most of cases, SART outperforms TChord by a wide
margin. As depicted in Figures 14, 15 and 16 our method
is almost 2 times faster for b = 2, 4 times faster for b = 4
and 5 times faster for b = 16. As a consequence we have
a performance improvement from 50% to 80%. The results
are analogous with respect to the cost of range queries as

depicted in Figures 17, 18, 19, 20, 21 and 22.

In case Query Range Length < Cluster Peer Key Range
and b = 2, we have an 25% improvement, however, when
Query Range Length > Cluster Peer Key Range, SART
and TChord have almost similar performance behaviour.

In case Query Range Length < Cluster Peer Key Range
and b = 4, we have an 50% improvement, however, when
Query Range Length > Cluster Peer Key Range the im-
provement of our method downgrades to 13.15%.

In case Query Range Length < Cluster Peer Key Range
and b = 16, we have an 52.7% improvement, however, when
Query Range Length > Cluster Peer Key Range the im-
provement of our method downgrades to 21.05%.

Figures 23, 24 and 25 depict the cost of update queries.
In particular, for b = 2, 4, 16, we have an improvement of
37.5%, 75% and 87.5% respectively.

Finally, Figure 26 depicts the cost of updating the routing
tables, after peer join/leave operations. For bad or non-
smooth distributions, like powlow, we have an 23.07% im-
provement. However, for more smooth distributions like
beta, normal or uniform the improvement of our method
increases to 38.46%.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 69

Cost of exact match operation in case b=2:

Queries of Type (a)

0

5

10

15

20

25

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Figure 14: Cost of Exact Match Queries in Case b=2

Cost of exact match operation in case b=4:

 Queries of Type (a)

0

5

10

15

20

25

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Figure 15: Cost of Exact Match Queries in Case b=4

Cost of exact match operation in case b=16:

 Queries of Type (a)

0

5

10

15

20

25

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Figure 16: Cost of Exact Match Queries in Case
b=16

0

10

20

30

40

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Cost of Range Searching in case b=2 and

|range|<ln
2
n : Queries of type(b)

Figure 17: Cost of Range Queries in Case b=2 and
Query Range Length < Cluster Peer Key Range

0

10

20

30

40

50

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Cost of Range Searching in case b=2 and

|range|>ln
2
n : Queries of type(b)

Figure 18: Cost of Range Queries in Case b=2 and
Query Range Length > Cluster Peer Key Range

0

10

20

30

40

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Cost of Range Searching in case b=4 and

|range|<ln
2
n : Queries of type(b)

Figure 19: Cost of Range Queries in Case b=4 and
Query Range Length < Cluster Peer Key Range

0

10

20

30

40

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Cost of Range Searching in case b=4 and

|range|>ln
2
n : Queries of type(b)

Figure 20: Cost of Range Queries in Case b=4 and
Query Range Length > Cluster Peer Key Range

5. CONCLUSIONS
We considered the problem of constructing efficient P2P
overlays for sensornets providing “Energy-Level Application
and Services”. On this purpose we designed SART, the best-
known dynamic P2P overlay providing support for process-
ing queries in a sensornet. We experimentally verified this
performance via the D-P2P-Sim framework.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 70

0

10

20

30

40

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Cost of Range Searching in case b=16 and

|range|<ln
2
n : Queries of type(b)

Figure 21: Cost of Range Queries in Case b=16 and
Query Range Length < Cluster Peer Key Range

0

10

20

30

40

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Cost of Range Searching in case b=16 and

|range|>ln
2
n : Queries of type(b)

Figure 22: Cost of Range Queries in Case b=16 and
Query Range Length > Cluster Peer Key Range

Cost of update operation in case b=2:

Queries of Type (c)

0

10

20

30

40

50

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Figure 23: Cost of Update Queries in Case b=2

Cost of update operation in case b=4:

Queries of Type (c)

0

10

20

30

40

50

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Figure 24: Cost of Update Queries in Case b=4

Cost of update operation in case b=16:

Queries of Type (c)

0

10

20

30

40

50

0
 200000
 400000
 600000

Number of nodes

Number of

routing hops

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Figure 25: Cost of Update Queries in Case b=16

Cost of updating routing tables after peer join/leave

operations: Queries of type (d) and (e)

0

10

20

30

40

0
 200000
 400000
 600000

Number of nodes

Number of

messages

Tchord

SART (normal, beta,

uniform)

SART (powlow)

Figure 26: Cost of updating routing tables, after
peer join/leave operations: The Cost is independed
on parameter b

6. REFERENCES
[1] Muneeb Ali and Koen Langendoen, A Case for

Peer-to-Peer Network Overlays in Sensor Networks,
International Workshop on Wireless Sensor Network
Architecture(WWSNA’07), pages 56-61, Cambridge,
Massachusetts, USA, 2007.

[2] M. Ali and Z. A. Uzmi., CSN: A network protocol for
serving dynamic queries in large-scale wireless sensor
networks. In 2nd CNSR’04, pages 165-174, Fred-
ericton, N.B, Canada, 2004.

[3] J. F. Buford, H. Yu, and E. K. Lua. P2P Networking
and Applications. Morgan Kaufman Publications,
California, 2008.

[4] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea,
and A. Rowstron., Virtual Ring Routing: Network
routing inspired by DHTs. In ACM SIGCOMM’06,
pages 351-362, Pisa, Italy, 2006.

[5] Crainiceanu, A., Linga, P., Gehrke, J. and
Shanmugasundaram, J., P-Tree: A P2P Index for
Resource Discovery Applications, WWW’04, pages
390-391, New York, NY, USA, 2004.

[6] D. Clark, C. Partridge, R. T. Braden, B. Davie, S.
Floyd, V. Jacobson, D. Katabi, G. Minshall, K. K.
Ramakrishnan, T. Roscoe, I. Stoica, J. Wroclawski, and
L. Zhang., Making the world (of communications) a
different place. ACM SIGCOMM’05 CCR, 35(3):91-96,
Philadelphia, PA, 2005.

[7] M.Demirbas, A.Arora, and M.Gouda., A
pursuer-evader game for sensor networks. Sixth
Symposium on Self- Stabilizing Systems(SSS’03), pages

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 71

1-16, San Francisco, CA, USA, 2003.

[8] Murat Demirbas, Hakan Ferhatosmanoglu, Peer-to-Peer
Spatial Queries in Sensor Networks, IEEE Proceedings
of the 3rd International Conference on Peer-to-Peer
Computing, pp. 32-40, Linkoping, Sweden, 2003.

[9] M. Gerla, C. Lindemann, and A. Rowstron., P2P
MANET’s - new research issues. In Dagstuhl Seminar
Proceedings, number 05152, Germany, 2005.

[10] H. V. Jagadish, B. C. Ooi, K. L. Tan, Q. H. Vu and R.
Zhang., Speeding up Search in P2P Networks with a
Multi-way Tree Structure, ACM SIGMOD’06, pages
1-12, Chicago, Illinois, 2006.

[11] H. V. Jagadish, B. C. Ooi, and Q. H. Vu., Baton: A
balanced tree structure for peer-to-peer networks. In
Proceedings of the 31st VLDB’05 Conference, pages
661-672, Trondheim, Norway, 2005.

[12] A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis,
K. Tsichlas, and C. Zaroliagis. Improved Bounds for
Finger Search on a RAM. Algorithms,
Vol. 2832:325-336, 2003.

[13] A.Mainwaring, J.Polastre, R.Szewczyk, D.Culler, and
J. Anderson. Wireless sensor networks for habitat
monitoring. ACM Int. Workshop on Wireless Sensor
Networks and Applications, September 2002.

[14] S.Sioutas, NBDT: An efficient p2p indexing scheme
for web service discovery, Journal of Web Engineering
and Technologies, Vol. 4 (1), pp 95-113, 2008.

[15] S. Sioutas, K. Oikonomou, G. Papaloukopoulos, M.
Xenos, Y. Manolopoulos, “An Optimal Bipartite P2P
Overlay for Energy-Level Queries in Sensor Networks”,
Proceedings of the ACM international Conference on
Management of Emergent Digital Ecosystems - ACM
Special Interest Group on Applied Computing
(ACM-SIGAPP MEDES 2009), Lyon, France,
pp.361-368.

[16] S.Sioutas, G. Papaloukopoulos, E. Sakkopoulos, K.
Tsichlas, Y. Manolopoulos and P. Triantafillou “Brief
Announcement: ART:Sub-Logarithmic Decentralized
Range Query Processing with Probabilistic
Guarantees”, In Proceedings of Twenty-Ninth Annual
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (ACM PODC 2010), Zurich,
Switzerland July 25-28, pp. 118-120, 2010.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 72

ABOUT THE AUTHORS:

Spyros Sioutas was born in Greece, in 1975. He graduated from the Department of

Computer Engineering and Informatics, School of Engineering, University of Patras,

in December 1997. He received his Ph.D. degree from the Department of Computer

Engineering and Informatics, in 2002. He is now an Assistant Professor in

Informatics Department of Ionian University. His research interests include Data

Structures and Databases, P2P Data Management, Data Warehouses and Data

Mining, Computational Geometry, GIS and Advanced Information Systems. He has

published over 100 papers in various scientific journals and refereed conferences.

Alexandros Panaretos is currently a PhD Student at the Department of Informatics,

Ionian University. He obtained his BEng in Software Engineering from the

Computer Science Department, University of Wales Aberystwyth in 2001 and his

MSc in E-Commerce Technology from the Computer Science Department ,

University of Essex in 2002. His research interests focuses on P2P Data

Management, GIS Systems and Social Networks.

Ioannis Karydis was born in Athens, Greece in 1979. He received a BEng (2000) in

Engineering Science & Technology from Brunel University, UK, an MSc (2001) in

Advanced Methods in Computer Science from Queen Mary University, UK and a

PhD (2006) in Mining and Retrieval Methods for Acoustic and Symbolic Music

Data from the Aristotle University of Thessaloniki, Greece. He has contributed to

more than 35 academic publications and currently is a contract lecturer at the Ionian

University, Greece. His research interests include Networking Data Management,

Music Databases, Music Information Retrieval (indexing & searching), Music Genre

Classification, Musical Similarity using Contextual Information, Continuous

Querying in musical streams, Cultural Information Systems and Privacy Issues in

Databases.

Dimitrios Tsoumakos is an Assistant Professor in the Department of Informatics of

the Ionian University. He is also a senior researcher at the Computing Systems

Laboratory of the National Technical University of Athens (NTUA). He received his

Diploma in Electrical and Computer Engineering from NTUA in 1999, joined the

graduate program in Computer Sciences at the University of Maryland in 2000,

where he received his M.Sc. (2002) and Ph.D. (2006).

His research interests lie in the area of distributed data management, particularly in

designing and implementing adaptive and scalable schemes for big data storage and

indexing. He is also involved in Database research, especially in designing

distributed indexing schemes for sharded databases. His most recent projects relate

to automatic elasticity provisioning for NoSQL engines and scalable RDF query

processing using NoSQL and MapReduce.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 73

Giannis Tzimas is currently an Assistant Professor in the Department of Applied

Informatics in Management & Economy of the Technological Educational Institute

of Mesolonghi. Since 1995, he is also an adjoint researcher in the Graphics,

Multimedia and GIS Lab, Department of Computer Engineering & Informatics of

the University of Patras. He graduated from the Computer Engineering and

Informatics Department in 1995 and has participated in the

management and development of many Research and Development projects funded

by national and EU resources, as well as the private sector. His research activity lies

in the areas of Computer Networks, Web Engineering, Web Modelling and

Bioinformatics. He has published a considerable number of articles in prestigious

national and international conferences and journals.

Dimitrios Tsolis is a lecturer of the Cultural Heritage Management and New

Technologies Department of the University of Western Greece. He is responsible for

the courses for Introduction to Informatics and Networks, Internet and Semantic

Web Technologies and Human Computer Interaction. His Ph.D. was focusing on

Software Development and Engineering for Advanced Information Systems and

Networks especially focusing on Digital Rights Management. He has over 70

publications in scientific and international Journals, Conferences and Technical

Reports. He has also supervised or participated to more than 30 R&D Projects in the

area of Computer Science.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 74

	ACR 12-3 (INTRO)
	ACR 12-3 (papers only)
	Letricia Avalhais
	Letricia Avalhais_BIO
	Manishankar Mondal
	Manishankar Mondal_BIO
	Markku Laine
	Markku Laine_BIO
	Menglin Li
	Menglin Li_BIO
	Spyros Sioutas
	Spyros Sioutas_BIO

