Applied Econometric QEM
Theme 2

Regression Model

Chapters from 2 to 6 of PoE

Michat Rubaszek
Based on presentation by Walter R. Paczkowski

Applied Econometrics QEM Regression model Page 1



Applied Econometrics QEM Regression model Page 2



» Economists interested in relationships between variables

» Example: the theory tells us that expenditwyrégpends on
Incomex

» We cally the “dependent variablé and x the “independent or
“ explanatory” variable

» In econometricy is arandom variable and we need to use data
to learn about the relationship

» The econometric model helps to calculate conditional mean
E(y|x)= nyx and the conditional variane&, which give us
valuable information about the population we are considering
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B To investigate the relationship we build @onomic
model and a correspondingconometric model:

E(ylx) = Hylx = b1+ Box
B, — Intercept
B, — slope

 Interpretation of the slope — derivative of the
expected value of given anx value:
3, = SEGYIX) _ dE(Y] 3
AX dx
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Multiple regression model — a general case:

V=P B P Xt P Xt €

B, measures the effect of a change,inpon the expected
value ofy, all other variables held constant (ceteris paribus)

_AE(y) _9E(Y)
Axk other xs held constant an

Br
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Economic vs. econometric model

Economic model
y = P+ Pax
Econometric model

yi = B1 + Bax; + e, e; ~ N(0,0°)
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Assumptions of linear econometric model:

Al: The value ofy, for each value df, Is:

y=p1+[x+e
A2: The expected value of the random ega:
E(e) =0 < E(y[x) = By + Box

A3: The variance of the random ereis:

var(e) = var(y) = o
A4: The covariance betweenande for i # j Is:

cov(el-,e]-) =0
A5: Variablex is not random and takes at least 2 different
values
A6+: Randonterme is normally distributed:
e ~N(0,0%)
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Assumptions for a multiple regression model:

AL Y =B BB t e i=1..., N

A2. E(Y)=B, +B, X, +-+B. % = HE=0

A3. var(y )=varg)=0

A4. cov(y,,y )=covl e )= (

A5. The values of eacty are not random and are not exact

linear functions of the other explanatory variables
A6. Y~ N[(B1+Bz)|(2+”'+BK )&)’0.2] = £~ NOo*)
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Estimating the Regression Paramet
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Observation Food Weekly
(household) expenditure ($) income ($100)

i i X

1 115.22 3.69

2 135.98 4.39

39 257.95 2940

40 375.73 3340

Summary statistics

Sample mean 283.5735 19.6048
Median 264.4800 20,0300
Maximum 587.6600 334000
Minimum 109.7100 3.6900
Std. Dev. 112.6752 6.8478
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Fitted values, residuals and least squares

m For any value$,; andb, we can calculatétted values:

y, = b + b, X

andresiduals:

Vo N

€=y —Y =Y —b-bx

B The least squares valuesigfandb, minimize the sum of squared residuals:
N N
_ 52 2 __
S55L = z €; = Z(Yi — b1 — byx;)” = S(b1,bz)
=1 =1

Applied Econometrics QEM Regression model Page 16



W=l + by X

M=y +hax

Y= FJH{ + ?1§_|'

(Fy X
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Least squares estimator

B Least squares estimates for the unknown paranfgtensdf, are
obtained my minimizing the sum

N N

SSE = 2 e = 2(3&' — by — byx;)°

=1 =1

B Solution for one explanatoty variable case:

b, = 2 X=X =) . = 7 - b.x

Z (Xi - Y)Z and
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Least squares estimator — multiple regression
Multiple regression
Vi = P1+ Baxz + -+ Brxki + e
In a vector form:
i =B x; + ¢

x; = [1xq; ...xg;]" - the vector of explanatory variables
B =151 B, ...Bx] -the vector of parameters.

We observe;; andx;, but don't know the values ffand
need to estimate it

Applied Econometrics-QEM Regression model Page 20



Let b be the estimate @ so that:

Fitted values: y; = E(y;) = b'x;
Residuals: e; =V — Vi
Sum of sq. residuals: SSE(b) = ¥V, e? = YV, (y; — b'x;)?

Since SSE depends énwe can findb such that the SEE is minimunihe
solution is the formula for LS estimator:

b = Cier xix) Q=1 xiy1)

 The LS estimator is a general formulaand is aandom variable, the
properties of which depend on the structure of tlee@h(described by
assumptions).

* LS estimates are numberghat we obtain by applying the general
formulas to the observed data.
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Least squares estimator - example

Observation Food Weekly
(household) expenditure ($) income ($100)

i i X

1 115.22 3.69

2 135.98 4.39

39 257.95 2940

40 375.73 3340

Summary statistics

Sample mean 283.5735 19.6048
Median 264.4800 20,0300
Maximum 587.6600 334000
Minimum 109.7100 3.6900
Std. Dev. 112.6752 6.8478
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Least squares estimator - example

® \We can calculate:

p, = 206 X% ~Y) 186712684
>(x-%)° 18287876

b =y-bX=2835735-(102099(19.604§ =834160

102096

® And report that:
y. =83.42+10.21x,

B What interpretation of b, andb,?
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Dependent Variable: FOOD_EXP

Method: Least Squares
Sample: 1 40

Included observations: 40

Coefficient Std. Error -Statistic Prob.

C 83.41600 4341016 1.921578 0.0622
INCOME 10.20964 2.093264 4.877381 0.0000
R-squared 0.385002 Mean dependent var 283.5735
Adjusted R-squared 0.368818 S.D. dependent var 112.6752
S.E. of regression 89.51700 Akaike info criterion 11.87544
Sum squared resid 304505.2 Schwarz criterion 11.95988
Log likelihood -235.5088 Hannan-Quinn criter 11.90397
F-statistic 23.78884 Durbin-Watson stat 1.893880
Prob(F-statistic) 0.000019
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Point prediction

Suppose that we wanted to predict food expenditire
household with income of $2000, so tkat 20. We obtain:

y=8342+1021x =8342+102120) =28761

We predictthat a household with a weekly income of
$2000 will spend $287.61 per week on food
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Assessing the Least Squares Fit
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Notice that LS estimators (do not confuse with
estimates) are random variables so we can calculate
their expected values, variances, covariances or
probabillity distributions

Given that:
_— Y =) —y) X0 — ) (Bo(x; —x) +e;)
Y C 7T ) > (x; — x)*

We can derive:

1
b, = f 1 > (s — %2 Y.(x; —X)e; = By + Ywie;
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A5 [xis not randorhand A2 [E(e) = 0] imply that:

E(w;e;) = E i~ X =0
W
This means that the estimatmy is unbiased:
E(by) = E(B + Xwiey) = B + YE(wiey) = B

Important. unbiasedness does not say that an estinoab

any one sample is close to the true parameter yesiienate
#+ estimator). For different samples the estimatds, @ndb,
are different — they are just single draws from the sition

of the estimator
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B Questionwhat is the variance of the LS estimator?

m If A1-A5 hold then the variances and covariance cdid b are

_o| 2% var@,)= — %
var(d,) NS (x- > (x - x)

B Precision of estimates decreases wtland increases witN
B Consistent estimators: fof — oo the variance converges to O
B Effective estimators: estimators with the smallest variance

Applied Econometrics QEM Regression model



The variance ob, is defined agar(,) = E[b, - E(b,)]’

J1(b2)

|
B,
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Gauss-Markov theorem

Under A1-A5 of the linear regression model, theds8mators
have the smallest variance of all linear and umnlastimators
They are thé3est Linear Unbiased Estimators (BLUE

m Notice that:

1. The LS estimators are “best” when compared terdthear and
unbiased estimators - the Theorem doetsay about alpossible
estimators.

2. The LS estimators are the best within their chessause they have
the minimum variance.

3. In order for the Gauss-Markov Theorem to holduagptions A1-A5

must be true. If any of these assumptionanaidrue, then LS isot
the best linear unbiased estimator.
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Interval estimation
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Let us focus on a nultiple regression modelin
which sales revenue depends on price and
advertising expenditure:

SALES = B, + B,PRICE + B;ADVERT

The econometric model Is:

SALES = B, + B,PRICE + B;ADVERT + e

Applied Econometrics-QEM



SALES PRICE ADVERT

City $1.000 units $1 units $1.000 units
1 73.2 5.69 1.3
2 T1.8 .49 2.9
3 62.4 5.63 0.8
4 67.4 H.22 0.7
5 803 5.02 1.5
73 75.4 5.71 0.7
74 ®1.3 5.45 2.0
75 75.0 H.05 2.2

Summary statistics

Sample mean 77.37 5.69 1.84
Median 76.50 5.69 1.80
Maximum 91.20 6.49 3.10
Minimum 62.40 4.83 0.50
Std. Dev. 6.49 0.52 0.83
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Variable Coefficient Std. Error f-Statistic Prob.

C 118.9136 6.3516 18.7217 0.0000
PRICE —7.9079 1.0960 —7.2152 0.0000
ADVERT 1.8626 0.6832 2.7263 0.0080
R® = 0.4483 SSE = 1718.943 o = 4.8861 sy = 6.48854.

 Interpretations of the results:

1. The coefficient ofPRICE:
with advertising held constant, an increase ingat$1
will lead to a fall in monthly revenue of $7,908

2. The coefficient oADVERT
with price held constant, an increase in advedisin
expenditure of $1,000 will lead to an increaseales
revenue of $1,863
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How to assess the precision of our estimates?

If A1-A5 hold, and the errors are normally distributed
(A6), then the LSstimators are normally distributed

b~N(,ZX)

The variance of LS estimator Is:

Uar(bl) COU(bl, bK)
X =wvar(b) = : " : = 0% (Xt=1 X %) 7"

cov(bg,by) -+ wvar(bg)
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However, we don’t knowthe varianced?... so we
need to substitute 1t with the unbiased estimator:

N -
5.2 — Zizlqz
N - K
whereN — K Is the number of degrees of freedom

For sales moddlSE = 1718.943 so that:

"8 1718.943
G°==1E = ~ "=23.874
N-K  75-3

& =+/23.874= 4.886
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Now we are ready to calculate the precision of

estimates with the feasible formula:

£ = var(h) = 62(N7-; x;x}) "
For the sales model we have:

403 —6.80 -0.75 C PRICE ADVERT
S = 120 —-0.02| ¢ 10369 - -
47 PRICE 6,791 12012 00197

ADVERT 0.7434 0.0197

0.4668

The standard errors are:
se(b;) = V40.3 = 6.35
se(b,) =1.20 = 1.096
se(b;) =10.47 = 0.68

Applied Econometrics-QEM Regression model
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Monte Carlo experiment:

.

Sample b, sel(by) b sei(bs) T
1 131.69 400.58 6.48 1.96 T002.85
2 57.25 33.13 10.88 1.60 4668.63
3 103.91 37.22 814 1.79 5891.75
4 46.50 33,33 11,90 1.61 4722.58
5 84.23 41.15 9.29 1.98 7200.16
O 26.63 45,78 13.55 2.21 8911.43
7 64,21 32.03 10,93 1.54 4362.12
3 79.66 20 87 9.76 1.44 3793.83
9 97.30 2014 3.05 1.41 3610.20
10 95.96 37.18 1.0 1.79 5878.71

Applied Econometrics QEM
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IMPORTANT!!

Replacing the variance of with its estimate changes the
distribution from normal to-Student, so that:

be =B,
se(by) (N=K)
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In general, if A1-A6 hold then:

- M ~ t(N—Z) fork = 12

~ sdb,)

fir)

—1, 0 t,
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Interval estimation:

br — Bk
P <_ta,N—K < W < ta,N—K) =1-— (04
P(bk — togn—kSe(by) < B < by — ta,N—Kse(bk)) =1—-«a

For SALESnodel we have N-K)=72]:
Plb,~1.993« sefy, )< B, < b+ 1.998 sb(]3

(-7.9079- 1.993 1.096; 7.907%9 1.903 1.08§ 10.69323

Interpretation: decreasing price by $1 will leadtoincrease in
revenue somewhere between $5,723 and $10,093.
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Distribution for the linear combination of parameters

We may wish to obtain the distribution for a linear combination of
parameters:

A=c1f1 + 2 |
where cl1 and c2 are constants that we specify

Theni = ¢;b; + c,b, we have:

E(A) =2

var(A) = c?var(b,) + csvar(b,) + 2c,c,cov(by, by)
se(A) = Vvar(4)

t = (j, — A)/Se(/:{) ~ t(N—Z)
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Example:

Suppose we want to increase advertising by $800 and drop the price
by 40 cents. The expected change in sales is:

A= E(SALES;) — E(SALES,) = —0.483, + 0.88;
The estimator Is:

A =—0.4b, +0.8b; = —0.4 x (—7.91) + 0.8 x 1.86 = 4.6532

se(A) =/0.16 X 1.2 + 0.64 X 0.47 — 0.64 X (—0.02) = 0.7096

The 90% interval:
(4.6532- 1.666 0.7096,4.6532 1.666 0.7p9¢ 3.B3BBH

Indicates that the expected increase in sales will lie betd@d 71
and $5,835 with 90% probability
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Hypothesis Tests
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B Hypothesis testing = comparison of a conjecture weshav
about a population to the information contained in
sample of data

B In econometric models hypotheses are represented as
statements about model parameters

B Hypothesis tests use the information about a pasrme
from the sample: its LS estimate and standard error

B The proceduy consists of 4 steps:
1. Setting HO and H1
2. Calculate a test statistic
3. Calculate a rejection region
4. A conclusion
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m A null hypothesis is the belief we will maintaintunve
are convinced by the sample evidence that it igmet
(the preasumption of innocence)

® The null hypothesis Is stated as
Hy: Br = ¢
wherec is a constant (usually 0)

B The alternative hypothesis depends to some extent o
economic theory:

Hy: by _ c
Hy: by _c
Hy: By, C

=+
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m To choose between HO and H1 we need a test statistic, for which
the probabillity distribution is known when HO is true (it has some
other distribution if H1 is true)

m [f A1-A5 holds then:

be =B _,
se(b,) WK

m Hence, IfH, : §,, = cIs true we can substitute and:

bk — C ¢
se(by) (N-K)

m We can reject HO or not - avoid saying that you “accept” the null
- we only don’t have a proof to reject the null (which does not
mean that is is true)
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B The rejection region consists of values that have |
probability of occurring when the null is true

m The chain of logic is:If a value of the test statistic is
obtained that falls in a region of low probabilithen it is
unlikely that the test statistic has the assumstridution,
and thus it is unlikely that the null hypothesisrige”

B The probabilityo is calledthe level of significanceand is
|tnterpreter as the probability of rejecting the nutlem it is
rue.

m Two types of error:
— Type | error: we reject the null when it is true (wit
probability a)
— Type Il error: do not reject a null that Is false
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Inference for:

reject My
=

do nod -
reject Hyy x

-i..[. — i

()

e =1 =g N=1)
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Inference for:

Reject ”[]-I.-:L =

Donot reject H
=

'Ir' - 'Il-'u..". 2 0
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Inference for:
HO:IBk = C
H1: :Bk * C

fie)

HL"i | !f.::-. --IJ_. = ) H'.."i'.."'..-[ !f.::-. --IJ_. =
Accept Hy:3, # ¢ Do not reject Accept H:3, # ¢
.”.::'. -'IJ'- ==

o2

X

III"_ III-'|.'1..l'| 1_I III"_ 'Ill i, v —1.'
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Typical Eviews output

Variable Coefficient Std. Error

f-Stanistic Prob.
C 83.41600 43 41016 1.921578 0.0622
INCOME 10,20064 2083264 4, 877381 0.0000
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B Standard practice: report thevalue (an abbreviation for
probability value) of the test.

B We compare thp-value to the significance level
p <arejectH,
p>a do not rejecH,

m For HO:$5, < 5.5 againstH1: 5, > 5.5:
t=2.25 andP(t(zgy = 2.25) = 0.0152
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The fit of the model
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How to measure the fit of the model?
We can separatginto :y; = E(y;) + ¢;

— E(y)) Is the explainable or systematic part
— e Is the random, unsystematic component

In terms of estimated model we have:
=y +e
Or as deviations from the mean:
Y -y=(¥-y)+%
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Use the fact thaX,(9; — y)é; = 0 to decompose the
“total sample variation”

>NV =2(Y-Y) 2B

Specifically:
> (y, - y) =total sum of squares ~ SST

N —\2 .
Z(yi - y) =sum of squares due to regressmn .

Zéiz =sum of squares due to errer  SSE

SST=SSR+SSE
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The coefficient of determination or R?, is defined
as the proportion of variation ynexplained byx:

~ _ SSR_,_SS

SST =~ SS

Interpretation of R?: the proportion of the
variation iny about its mean that is explained by the
regression model
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Example for the food expenditure model:

SST=3"( y-") =495132.160
SSE=>( y-"Y = &=304505.17I

Hence:
304505.176

T 495132160

R* =1 0.385

Conclusion 38.5% of the variation in food expenditure Is
explained by the regression model, which uses imclyme
as an explanatory variable
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Least Squares Prediction
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Prediction = inference aboaott-of-sample
observations

The abllity to predict is important to:
— business (e.g. forecasts of sales)
— policy makers who (e.qg. forecast of output, inflajio

Accurate predictions> better decisions
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The LS predictor of ycomes from the fitted regression
line (we assume that predition is for0).

Yo = by + byxg
Let us define the forecast error:

fo =y0— Yo = (B1 + P2x¢ + eg) — (by + byxg)

We would like the forecast error to be small, implying
that our forecast is close to the value we are predicting

Applied Econometrics-QEM Regression model



The expected value ¢ (unbiased forecast):

E(fo) = By + B2xo + E(eg) — (E(b1) + E(b2)x) =
=1 +P2x9+0 — (f1 + f2x9) =0

The variance of the forecast Is

1 (X0 — X)?

var(fy) = 04|14 NS0 =02

Two sources of forecast variance:
- randomerror
- estimation error
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Multivariate case

True value

Vo = XoB + e
Prediction:

v§ = (x0)'b
Forecast error:

fo=Yo—¥ =
= € (stochastic error)
+(x5)' (B — b) (estimation error)
!/
+(xo —x§) B (exogenous vars. error)

The variance of theforecast:
var(yg) = var(eo) + (x0)'var(b) (x¢)[+B'var(xy)B]
= 021 + xp Z x|
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In practice we need to use:

se(fo) = v var(fo)

The 100(1 )% prediction interval Is:

¥, £ t.se( f)
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Important: prediction most accurate fay = x

oA
]
f
|
|
|
l
I
i
!
\
\
\
\
!
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Normal distribution of the error ter
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Hypothesis tests and interval estimates often relthe
assumption that the errors are normally distributed

We can check this using:
— a histogram
— formal statistical test, e.gJarque—Bera test

JB:E(SZ+(K_3)2]

6 4

N - sample sizeS— skewnesK — kurtosis

Under the nullJB ~ x%(2)
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Food expenditure example

9
Series: Residuals
8 - Sample 140
74 Observations 40
6 - Mean 6.93¢-15
Median —6.324473
5- Maximum 212.0440
4 - Minimum —223.0255
Std. Dev. 88.36190
3+ Skewness  —0.097319
S| Kurtosis 2.989034
| - Jarque-Bera  0.063340
0 Probability  0.968826
T |
—200 —100 0 100 200
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Food expenditure example

The Jarque—Bera statistic Is:

__n)2
JB= 20[ 0.097 + (2'93 3) )20.063

— Because 0.063 < 5.99 (critical value for 5%
significance level) there Is insufficient evidencerfr
the residuals to conclude that the normal distraout
assumption Is unreasonable

— The same conclusion on the basis of p-value, as
0.9688 > 0.05
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Joint Hypothesis Testing
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A null hypothesis with multiple conjectures is eallajoint
hypothesis.For example, for the model

SALES=§, +B, PRICEB, ADVER¥B, ADVERT

a possible joint hypothesis could be:
H,:B,=0,,=0
H,:B,#0 orp, # 0 or both are nonze

Unrestricted model: the restrictions in the null have not
been imposed on the model

Restricted model assumes the parameter restrictionsjn H
are true, I.e.:

SALES=B, +B, PRICE
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F-test for the joint hypothesis: a comparison ofghens of
squared errors from the unrestricted mdsfely and the
restricted on&SE, (J-the number of restrictions)

- _(SSE- ssp)/
SSE/( N- K

If the null hypothesis Is true then the statistie has the
F-distribution withd numerator degrees of freedom ahd
- K denominator degrees of freedom

F~F(, N—K)
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Example, continuation:

_(SSE - SSE)/ J (1896.39% 1532.084 2
= =8.44
SSE/( N- K 1532.084( 75 X4

SinceF = 8.44 >F_, ;= 3.126 we reject the null
Thep-value isp = P(F, ;,> 8.44) = 0.0005

Conclusion advertising does have a significant
effect upon sales revenue
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Overall significance test of the regression model
For the model

Y =P B X P Xt HP X+ E
we examine:

H,:$,=0,,=0,...p =0
H,: At least oneof thep, is nonzero fork= 2,3,.

The restricted model Is:
y, =B, te
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Comparison of F and LM tests

TheF-statistic of the Wald test:

_ (SSEg — SSEy)/J
B =,/ N=K) ~ FUN = K)

Lagrange Multiplier test:

SSE, — SSEy,
Given the LS estimatai® = fvsi’{’ :
F= LM
J
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When testing
Ho:B;=B,=0
IN the equation

SALES=p, +B, PRICE P, ADVER¥B, ADVERT
we get

F =844 p -value= .000!
X° =16.88 p -value= .000

Applied Econometrics-QEM Regression model



Model Specification
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Model specification: the most important issue In
any econometric investigation

Model specification = the set of explanatory
variables + functional form

A model could be misspecified if:
— we have omitted important variables
— Included irrelevant ones
— chosen a wrong functional form
— have a model that violates the LS assumptions
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Steps of choosing a specification of a model

1. Choose variables and a functional form on theshas
your theoretical considerations (economic theory)

2. If an estimated equation has coefficients with
unexpected signs or unrealistic values — a sighamfah
misspecification (e.g. omitted variables)

3. One method for assessing whether a variablegoougp
of variables should be included in an equatiois t
perform significance tests

4. Consider various model selection criteria

5. The adequacy of a model can be tested usingexglen
specification test known as RESET
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Ommited variable bias

Let the true model be

y =p1+ bax, + P3xz te
But we estimate

y =1+ Prx, +e

Omitting X5 Is equivalent to imposing incorrect restrictipy= O.
This leads to the endogeneity bias (subject of future meeting):

cov(x,,X3)

bias(b,) = B3 var(x,)
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Inflated variance due to irrelevant variables

A strategy to avoid omitted variables bias - to
Include as many variables as possible in your model

However, this might complicate the model
unnecessarily and inflate the variances of the
estimator due to the presencarodlevant
variables

As a result — this Is not a good strategy...
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Model selection criteria

The common feature of information criteria of model selection:
— the best fit to the data (minimuSSEH
— the nost parsimonious specification (minimug)

Akaike information criterion (AlC):

AlC:ln(SSEj_l_Z K
N N

Schwarz information criterion (SC) = Bayesian information
criterion (BIC) :

sc=In (SSE) KInI\EN)
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RESET (REgressionSpecification Error Test)

RESET test - designed to incorrect functional form
Let y be the predicted values of

y = P1+ [2x, + f3xz +e
Consider the artificial model:

Y =1+ Boxy + Paxz +y19° +v29° +e

A test for misspecification
Hov, =7v,= 0 againstH;:y;, #0 ory,# 0
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Collinearity

Exact collinearity: there is a linear relationship among the
explanatory variables. In this case the LS esbmatnot
defined and w cannot obtain estimates[bf

Close colinearity. high correlation ammong explanatory
variables> imprecise LS estimates

How to detect the problem? B of auxilary regression

X =aX+ %)g+---+ a X+ erno

IS above 80%

What to do: add nonsample information in the form of
restrictions on the parameters
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Nonlinear Relationships
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A number of issues we must address when building
an econometric model (in whighdepends or):

— Scaling the data

— What does economics say about the relation between
y andx? Is it increasing? Is it linear?

— Themarginal effect =the slope of the tangent to the
curve at a particular point. Does it dependxar y?
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Slope at

point ys, X5

Slope at

point vy, X,

I
I
I
I
I
I
I
I
I
X

Applied Econometrics QEM Regression model Page 89



For aguadratic model PRICE=a, +0, SQFT +

dPRICE

the slope IsT—— = 2a,5QFT

Cuadratic Relationship

| SE000X)

[N
|
L]

nak price, §

SO0
|

(1

1 1 ]
i 20 4000 L R OO0
Total square feel
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Forlog-linear model In(PRICE) =y, +y, SQFT+

dPRICE

the slope Isz—— = y,PRICE

Log-Linear Relanonship

| SOCMCH
!

Sale price, $
| 00000
]
»

SOCMOCHY

()
|

0 20D 4000 M B

Total square feet
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Econometric models often employ natural logarithms,
becausd In = % change

For example, for theog-linear model, In(y) =B, + Bx:

100 In(y,) = In(y,) |= %A y= 108, ( %~ %) =(10( ,) xA x

What Is the interpretation of 0.09 in a model ofQwas.
years of education?

In(WAGE) = 1.60 + 0.09 X EDUC
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For thelinear-log model

y=p1t+phInx+e

the slope Is:
_ By
- Ax/x

b2

— The term 104x/X) Is the percentage changexin

— Thus, in the linear-log model we can say that a 1%
iIncrease irx leads to 8, /100 change Iy
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For thelog-log mode

IN(y) = B, + BIn(x) + e

B, IS Interpreter as elasticity

Applied Econometrics-QEM

Poultry Demand

Price of Chicken
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The estimated model Is:

In(Q) = 3.72 — 1.21In(P)

-- The price elasticity of demand is 1.121: a 1% iasee
In real price Is estimated to reduce quantity comesl
by 1.121%
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Name Function Slope = dwidx Elasticity
Linear ¥y =B+ Bax B2 E'J%
Quadratic r=8+ E‘-:-‘L': RITERY DBJ-"'J%
Cubic ¥ =B+ Bx’ 3B’ (EBI-I'JJ-_:
Log-Log In(1) = B1 + Baln(x) B]% 32 -
Log-Linear In(¥) = B1 + Bax By Pax
or. 2 1 unit change in x leads to (approximately) a 100 B,% change in y
Linear-Log ¥ = PB; + Baln{x) B;% E-:%

or. a 1% change in x leads to (approximately) a B/100 unit change iny
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Cnedmtc ogonatvons
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s == 1
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In{vy = 3 + Fax
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How to check whether the functional form of a
mmodel is well specified?

— Formal tests (e.g. RESET)
— Graph of residuals

Misspecified Model Residuals

= W O
] ] ]

Residuals

|

bt gt |

th S Lh 2 Uh
i 1 7 1

I
)
=

|
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Logarithms
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Suppose that the variabtdhas a normal
distribution, with meam and variance?

— If we considemw = €, theny = In(w) ~ N(u; 62
— W Is said to have Bg-normal distribution .

e |t can shown that:

E(w)=e#/3
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lence, for a log-linear model k)(=p,+ px+ e
with e~ N(0, ¢9):

E( yl) — E( @lithX +e ) — authox é)
=

p— é31+[32xi éz/z
— eﬁl"'ﬁzxi +0%/2
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Regression with Indicator or

Interaction Variables
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An indicator variable Is a binary variable thatdak
the values zero or one. It Is used to represent a

gualitative (nonguantitative) characteristic, such as
gender, race, or location

housasin Universty Town

1
UTOWN= -
{ housasin GoldenOaks

PRICE=, +B,UTOWN# |
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ﬁ -
() | T T T
130 154 178 202 226 250 274 298 3212 346
House prices (31,0000 in Golden Okas
15 A
g 104
.
() I I T

130 154 178 202 226 250 274 298 322 36

House prices (51,0000 in University Town
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Theoretical values in a model with the indicator
variable:

[
—

+ ifUTOWN
E(PRICE = P+ P _
B ifUTOWN

1

[
~

PRICE= b+ UTOWN
=215.7325 61.50QITOWN

_[277.2416 iUTOWN =
~ 1215.7325 iUTOWN =
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Consider a model in which M(AGE depends on
years of educatioreDUC) and years of experience
(EXPER:

In(WAGE) =B, +8, EDUG+B, EXPER

If we believe the effect of an extra year of
experience on wages will depend on the level of
education. This can be done by including an
Interaction variable:

In(WAGE) =8, +B, EDUC+B, EXPERB,( EDUE EXPHR
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In(WAGE) =B, +B, EDUG+B, EXPERB,( EDUE EXPHR

The effect of another year of experience, holding
education constant, Is:

Aln (WAGE)
AEXPER

EDUC fixed

=B, +B,EDUC

The approximate percentage change in wage given
a one-year increase in experience Is

100,+8,EDUC)%
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