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1 Introduction to Functional Analysis

1.1 Goals of this Course

In these lectures, we shall present functional analysis for partial differential
equations (PDE’s) or distributed parameter systems (DPS) as the basis of
modern PDE techniques. This is in contrast to classical PDE techniques
such as separation of variables, Fourier transforms, Sturm-Louiville prob-
lems, etc. It is also somewhat different from the emphasis in usual functional
analysis courses where one learns functional analysis as a subdiscipline in
its own right. Here we treat functional analysis as a tool to be used in
understanding and treating distributed parameter systems. We shall also
motivate our discussions with numerous application examples from biology,
electromagnetics and materials/mechanics.

1.2 Uses of Functional Analysis for PDEs

As we shall see, functional analysis techniques can often provide powerful
tools for insight into a number of areas including:

∙ Modeling

∙ Qualitative analysis

∙ Inverse problems

∙ Control

∙ Engineering analysis

∙ Computation (such as finite element and spectral methods)

1.3 Example 1: Heat Equation

∂y

∂t
(t, �) =

∂

∂�
(D(�)

∂y

∂�
(t, �)) + f(t, �) 0 < � < l, t > 0 (1)

where y(t, �) denotes the temperature in the rod at time t and position �
and f(t, �) is the input from a source, e.g. heat lamp, laser, etc.
B.C.

� = 0 : y(t, 0) = 0 Dirichlet B.C. This indicates temperature
is held constant.

� = l : D(l)∂y∂� (t, l) = 0 Neumann B.C. This indicates an insulated
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end and results in heat flux being zero.

Here j(t, �) = D(�)∂y∂� (t, �) is called the heat flux.

I.C.

y(0, �) = Φ(�) 0 < � < l

Here Φ denotes the initial temperature distribution in the rod.

1.4 Some Preliminary Operator Theory

Let X,Y be normed linear spaces. Then

ℒ(X,Y ) = {T : X → Y ∣bounded, linear}

is also a normed linear space, and

∣T ∣ℒ(X,Y ) = sup
∣x∣X=1

∣Tx∣Y .

Recall that linear spaces are closed under addition and scalar multiplication.
A normed linear space X is complete if for any Cauchy sequence {xn} there
exists x ∈ X such that limn→∞ xn = x. Note: ℒ(X,Y ) is complete if Y is
complete.

If X is a Hilbert or Banach space (complex), then T is a bounded linear
operator from X1 → X2, i.e., T ∈ ℒ(X1, X2) ⇐⇒ T is continuous.

Differentiation in Normed Linear Spaces [HP]

Suppose f : X → Y is a (nonlinear) transformation (mapping).

Definition 1 If lim�→0+
f(x0+�z)−f(x0)

� exists, we say f has a directional
derivative at x0 in direction z. This is denoted �f(x0; z), and is called the
Gateaux differential at x0 in direction z.

If the limit exists for any direction z, we say f is Gateaux differentiable at
x0 and z → �f(x0; z) is Gateaux derivative. Note that z → �f(x0; z) is not
necessarily linear, however it is homogeneous of degree one (i.e., �f(x0;�z) =
��f(x0; z) for scalars �). Moreover, it need not be continuous in z.

The following definition of o(∣z∣) will be useful in defining the Fréchet
derivative:
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Definition 2 g(z) is o(∣z∣) if ∣g(z)∣∣z∣ → 0 as z → 0.

Definition 3 If there exists df(x0; ⋅) ∈ ℒ(X,Y ) such that ∣f(x0 + z) −
f(x0) − df(x0; z)∣Y = o(∣z∣X), then df(x0; ⋅) is the Fréchet derivative of f

at x0. Equivalently, lim�→0
f(x0+�z)−f(x0)

� = df(x0; z) for every z ∈ X with
z → df(x0; z) ∈ ℒ(X,Y ). We write df(x0; z) = f ′(x0)z.

Results

1. If f has a Fréchet derivative, it is unique.

2. If f has a Fréchet derivative at x0, then it also has a Gateaux derivative
at x0 and they are the same.

3. If f : Dopen ⊂ X → Y has a Fréchet derivative at x0, then f is
continuous at x0.

Examples

1. X = ℝn, Y = ℝm, and f : X → Y such that each component of f has

partials at x0 in the form ∂f i

∂xj
(x0). Then

f ′(x0) =

(
∂f i

∂xj
(x0)

)
and hence

df(x0; z) =

(
∂f i

∂xj
(x0)

)
z.

2. Now we consider the case where X = ℝn and Y = ℝ1. Then

df(x0; z) = ▽f(x0) ⋅ z.

3. We also look at the case where X = Y = ℝ1. Here,

df(x0; z) = f ′(x0)z.

Normally z = 1 because that is the only direction in ℝ1. Then f ′(x0)
is called the derivative, but in actuality z → f ′(x0)z is the derivative.
Note that f ′(x0) ∈ ℒ(ℝ1,ℝ1), but the elements of ℒ(ℝ1,ℝ1) are just
numbers.
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Homework Exercises

∙ Ex. 1 : Consider f : ℝ2 → ℝ1.

f(x1, x2) =

{
x1x22
x21+x42

, if x ∕= 0

0, if x = 0

Show f is Gateaux differentiable at x = (x1, x2) = 0, but not contin-
uous at x = 0, (and hence cannot be Fréchet differentiable).

1.5 Transforming the Initial Boundary Value Problem

If we can transform the initial boundary value problem (IBVP) for equation
(1) into something of the form{

ẋ(t) = Ax(t) + F (t)
x(0) = x0

(2)

then conceptually it might be an easier problem with which to work. That
is, formally it looks like an ordinary differential equation problem for which
eAt is a solution operator.

To rigorously make this transformation and develop a corresponding con-
ceptual framework, we need to undertake several tasks:

1. Find a space X of functions and an operator A : D(A) ⊂ X → X such
that the IBVP can be written in the form of equation (2). We may
find X = L2(0, l) or C(0, l).

We want a solution x(t) = y(t, ⋅) to (2), but in what sense - mild,
weak, strong, classical? This will answer questions about regularity
(i.e., smoothness) of solutions.

2. We also want solution operators or “semigroups” T (t) which play the
role of eAt. But what does “eAt” mean in this case? If A ∈ Rn × Rn
is a constant matrix, then

eAt ≡
∞∑
n=0

(At)n

n!
= I +At+

A2t2

2!
+ . . .

where the series has nice convergent properties. In this case, by the
“variation of constants” or “variation of parameters” representation,
we can then write

x(t) = eAtx0 +

∫ t

0
eA(t−s)F (s)ds.
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We want a similar variation of constants representation in X with
operators T (t) ∈ ℒ(X) = ℒ(X,X) such that T (t) ∼ eAt, so that

x(t) = T (t)x0 +

∫ t

0
T (t− s)F (s)ds.

holds and represents the PDE solutions in some appropriate sense and
can be used for qualitative (stability, asymptotic behavior, control)
and quantitative (approximation and numerics) analyses.
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2 Semigroups and Infinitesimal Generators

2.1 Basic Principles of Semigroups [HP, Pa, Sh, T]

Definition 4 A semigroup is a one parameter set of operators {T (t) :
T (t) ∈ ℒ(X)}, where X is a Banach or Hilbert space, such that T (t) satisfies

1. T (t+ s) = T (t)T (s) (semigroup or Markov or translation property)

2. T (0) = I. (identity property)

Classification of semigroups by continuity

∙ T (t) is uniformly continuous if lim
t→0+

∣T (t)− I∣ = 0.

This is not of interest to us, because T (t) is uniformly continuous if
and only if T (t) = eAt where A is a bounded linear operator.

∙ T (t) is strongly continuous, denoted C0, if for each x ∈ X, t → T (t)x
is continuous on [0, �) for some positive �.

Note 1: All continuity statements are in terms of continuity from the
right at zero. For fixed t

T (t+ ℎ)− T (t) = T (t)[T (ℎ)− T (0)]

= T (t)[T (ℎ)− I]

and
T (t)− T (t− �) = T (t− �)[T (�)− I]

so that continuity from the right at zero is equivalent to continuity at any t
for operators that are uniformly bounded on compact intervals.

Note 2: T (t) uniformly continuous implies T (t) strongly continuous
(∣T (t)x− x∣ ≤ ∣T (t)− I∣ ∣x∣), but not conversely.

2.2 Return to Example 1 : Heat Equation

To begin the process of writing the system of Example 1 in the form of
equation (2), take X = L2(0, l) and define

D(A) = {' ∈ H2(0, l)∣'(0) = 0, '′(l) = 0}
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to be the domain of A. (Assume D is smooth for now, e.g., D is at least
H1.) Then we can define A : D(A) ⊂ X → X by

A['](�) = (D(�)'′(�))′. (3)

Notation: In general, W k,p(a, b) = {' ∈ Lp∣'′, '′′, . . . , '(k) ∈ Lp}.
If p = 2, we write W k,2(a, b) = Hk(a, b). AC(a, b) = {' ∈ L2(a, b)∣' is
absolutely continuous (AC) on [a, b]}.

Homework Exercises

∙ Ex. 2 : Show that A : D(A) ⊂ X → X of the heat example (Example
1) is not bounded X → X.

∙ Ex. 3 : Give an example when X is a Hilbert space, but ℒ(X) is not
a Hilbert space.

∙ Ex. 4 : Consider H1(a, b) = W 1,2(a, b),W 1,1(a, b) and AC(a, b). Find
the relationships for each pair of spaces in terms of ⊂. That is, estab-
lish X ⊂ Y or X ⊊ Y , etc.

2.3 Example 2 : General Transport Equation

Problems in which the transport equation is used

∙ Insect dispersion

∙ Growth and decline of population-a special case-see Example 4 below

∙ Flow problems (convective/diffusive transport)

Specific applications as described in [BKa, BK] include the “cat brain
problem” (which involves in vivo labeled transport) and population dispersal
problems.

Description of various fluxes

The quantity y(t, �) is the population or amount of a substance at location
� in the habitat.

∙ j1(t, �) is the flux due to dispersion (random foraging or moments;
random molecular collisions).

j1(t, �) = D(�)
∂y

∂�
(t, �)
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∙ j2(t, �) is the advective/convective/directed bulk movement.

j2(t, �) = �(�)y(t, �)

∙ j3(t, �) is the net loss due to “birth/death”; immigration/emigration,
label decay.

j3(t, �) = �(�)y(t, �)

General transport equation for a 1-dimensional habitat

∂y

∂t
(t, �) +

∂

∂�
(�(�)y(t, �)) =

∂

∂�
(D(�)

∂y

∂�
(t, �))− �(�)y(t, �) (4)

0 < � < l, t > 0

B.C.

� = 0 : y(t, 0) = 0 (essential)

� = l :
[
D(�)∂y∂� (t, �)− �(�)y(t, �)

]
�=l

= 0 (natural)

I.C. y(0, �) = Φ(�)

To write this example in operator form (2), we first let X = L2(0, l)
be the usual complex Hilbert space of square integrable functions, and the
domain of A be defined by D(A) = {' ∈ H2(0, l)∣'(0) = 0, [D'′ − �'] (l) =
0} where

A'(�) = (D(�)'′(�))′ − (�(�)'(�))′ − �'(�). (5)

Note: We will assume D and � are smooth for now.

2.4 Example 3 : Delay Systems–Insect/Insecticide Models

Delay systems have been of interest for the past 70 or more years, arising
in applications ranging from aerospace engineering to biology (biochemical
pathways, etc.), population models, ecology, HIV and other disease pro-
gression models to viscoelastic and smart hysteretic materials, as well as
network models [BBH, BBJ, BBPP, BKurW1, BKurW2, BRS, Hutch, KP,
Ma, Vis, Warga, Wright]. We describe here one arising in insect/insecrticide
investigations [BBJ].

Mathematical models that are suitable for field data with mixed pop-
ulations should consider reproductive effects and should also account for
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multiple generations, containing neonates (juveniles) and adults and their
interconnectedness. This suggests the need at the minimum for a coupled
system of equations describing two separate age classes. Additionally, due
to individual differences within the insect population, it is biologically un-
realistic to assume that all neonate aphids born on the same day reach the
adult age class at the same time. In fact, the age at which the insects reach
adulthood varies from as few as five to as many as seven days. Hence one
must include a term in any model to account for this variability, leading one
to develop a coupled delay differential equation model for the insect pop-
ulation dynamics. We consider the delay between birth and adulthood for
neonate pea aphids and present a first mathematical model that treats this
delay as a random variable. For a careful derivation of models with similar
structure in HIV progression at the cellular level, see [BBH].

Let a(t) and n(t) denote the number of adults and neonates, respectively,
in the population at time t. We lump the mortality due to insecticide into
one parameter pa for the adults, pn for the neonates, and denote by da and dn
the background or natural mortalities for adults and neonates, respectively.
We let b be the rate at which neonates are born into the population.

We suppose that there is a time delay for maturation of a neonate to
adult life stage. We further assume that this time delay varies across the in-
sect population according to a probability distribution P (�) for � ∈ [−Tn, 0]

with corresponding density m(�) = dP (�)
d� . Here we tacitly assume an up-

per bound on Tn for the maturation period of neonates into adults. Thus,
we have that m(�), � < 0, is the probability per unit time that a neonate
who has been in the population −� time units becomes an adult. Then
the rate at which such neonates become adults is n(t + �)m(�). Summing
over all such � ’s, we obtain that the rate at which neonates become adults
is
∫ 0
−Tn n(t + �)m(�)d� . Using the biological knowledge that the matu-

ration process varies between five and seven days (i.e., m vanishes out-
side [−7,−5]), we obtain the functional differential equation (FDE) (see
[JKH1, JKH2, JKH3] for the widespread interest and use of such systems)
system

da
dt (t) =

∫ −5

−7
n(t+ �)m(�)d� − (da + pa) a(t)

dn
dt (t) = ba(t)− (dn + pn)n(t)−

∫ −5

−7
n(t+ �)m(�)d�

a(�) = Φ(�), n(�) = Ψ(�), � ∈ [−7, 0)
a(0) = a0, n(0) = n0,

(6)

where m is now a probability density kernel which we have assumed has the
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property m(�) ≥ 0 for � ∈ [−7,−5] and m(�) = 0 for � ∈ (−∞,−7)∪(−5, 0].
The system of functional differential equations described in (6) can be

written in terms of semigroups [BBu1, BBu2, BKa].
Let

x(t) = (a(t), n(t))T

and
xt(�) = x(t+ �),−7 ≤ � ≤ 0. (7)

We define the Hilbert space Z ≡ ℝ2 × L2(−7, 0;ℝ2) with inner product

∣(�, ')∣Z =

(
∣�∣2 +

∫ 0

−7
∣'(�)∣2d�

)1/2

, (�, ') ∈ Z,

and let z(t) = (x(t), xt) ∈ Z. Then our system (6) can be written as

dx
dt (t) = L (x(t), xt) for 0 ≤ t ≤ T,
(x(0), x0) = (Φ(0),Φ) ∈ Z, Φ ∈ C(−7, 0;ℝ2),

(8)

where T <∞ and for � = ( 0, �0)T ∈ ℝ2 and ' = ( , �)T ∈ C(−7, 0;ℝ2)

L(�, ') =

[
−da − pa 0

b −dn − pn

]
� +

[
0 1
0 −1

] ∫ −5

−7
'(�)m(�)d�. (9)

We now define a linear operator A : D(A) ⊂ Z → Z with domain

D(A) =
{

(�, ') ∈ Z ∣' ∈ H1(−7, 0;ℝ2) and � = '(0)
}

(10)

by
A(�, ') = (L(�, '), '̇) . (11)

Then the delay system (6) can be formulated as

ż(t) = Az(t)
z(0) = z0,

(12)

where z0 =
(
(a0, n0)T , (Φ,Ψ)T

)
.
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2.5 Example 4 : Probability Measure Dependent Systems -
Maxwell’s Equations

We consider Maxwell’s equations in a complex, heterogenerous material (see
[BBL] for details):

▽× E =
−∂B
∂t

▽×H =
∂D

∂t
+ J

▽ ⋅D = �

▽ ⋅B = 0

where E is the electric field (force), H is the magnetic field (force), D is the
electric flux density (also called the electric displacement), B is the magnetic
flux density, and � is the density of charges in the medium.

To complete this system, we need constituitive (material dependent)
relations:

D = �0E + P

B = �0H +M

J = Jc + Js

where P is electric polarization, M is magnetization, Jc is the conduction
current density, Js is the source current density, �0 is the dielectric permit-
tivity, and �0 is the magnetic permeability.

General Polarization:

P (t, x̄) = [g ∗ E](t, x̄) =

∫ t

0
g(t− s, x̄)E(s, x̄)ds

Here, g is the polarization susceptibility kernel, or dielectric response func-
tion (DRF).

Several examples of polarization are widely used:

∙ Debye Model for Polarization
This describes reasonably well a polar material. This is also called
dipolar or orientational polarization. The DRF is defined by

g(t− s, x̄, �) = e
−(t−s)
�

(
�0(�s − �∞)

�

)
11



and corresponds to

Ṗ +
1

�
P = �0(�s − �∞)E.

It is important to note that P represents macroscopic polarization,
and when we refer to microscopic polarization we will instead use p.

∙ Lorentz Polarization
This is also called electronic polarization or the electronic cloud model.
The DRF is given by

g(t− s, x̄, �) =
�0!

2
p

�0
e
−(t−s)

2� sin(�0(t− s)),

and corresponds to

P̈ +
1

�
Ṗ + !2

0P = �0!
2
pE

where !p = !0
√
�s − �∞ and �0 =

√
!2

0 − 1
4�2

.

Note: When we allow for instantaneous polarization, we find that D =
�0�rE + P where �r = 1 + � ≥ 1 is a relative permittivity.

For complex composite materials, the standard Debye or Lorentz polar-
ization model is not adequate, e.g., we need multiple relaxation times � ’s
in some kind of distribution [BBo, BG1, BG2]. Then the multiple Debye

model becomes

P (t, x̄;F ) =

∫
T
p(t, x̄; �)dF (�)

where T is a set of possible relaxation parameters � and

F ∈ ℱ(T ) = {F : T → ℝ1∣F is a probability distribution T }.

Note: Here the microscopic polarization is given by

p(t, x̄; �) =

∫ t

0
g(t− s, x̄; �)E(s, x̄)ds

where g(t− s, x̄; �) = �0(�s−�∞)
� e

−(t−s)
� which corresponds to

ṗ+
1

�
p = �0(�s − �∞)E.
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Here, E is the total electric field. Thus,

P (t, x̄;F ) =

∫
T

∫ t

0
g(t− s, x̄; �)E(s, x̄)dsdF (�)

=

∫ t

0

[∫
T
g(t− s, x̄; �)dF (�)

]
E(s, x̄)ds

=

∫ t

0
G(t− s, x̄;F )E(s, x̄)ds

Assuming M = 0 (nonmagnetic materials), we find this system becomes

▽× E = − ∂

∂t
(�0H)

▽×H =
∂

∂t

[
�0�rE +

∫ t

0
G(t− s, x̄;F )E(s, x̄)ds

]
+ J

▽ ⋅D = 0 (13)

▽ ⋅H = 0

where F ∈ ℱ(T ) and J = Jc + Js. Note: Jc is usually also a convolution
on E although Ohm’s law uses Jc = �E where � is the conductivity of the
material. In general, one should treat Jc as a convolution, e.g.,

Jc = �c ∗ E =

∫ t

0
�c(t− s, x̄)E(s, x̄)ds.

For the measure dependent system (13), existence and uniqueness via a
semigroup formulation have not been established. Comparison of solutions
via semigroups versus weak solution have not been done. Nothing has yet
been done in two or three dimensions. For the one-dimensional case only,
existence, uniqueness, and continuous dependence have been established via
a weak formulation (see [BG1]). For continuous dependence of solutions on
F , a metric is needed on ℱ(T ). More generally, we may need to treat other
material parameters q = (�, �s, �∞, �), where q ∈ Q ⊂ ℝ4 and we look for
F ∈ ℱ(Q).

∙ Special Case

We can consider a physically meaningful special case of the Maxwell
system in a dielectric material which has a general polarization convolution
relationship. Detailed derivations given in Section 2.3 of [BBL] lead to a
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one-dimensional version we next present and will use for an example in our
subsequent discussions. Among the assumptions are some homogeneity in
the medium (in planes parallel to that of an interrogating polarized planar
wave) and a polarized sheet antenna source Js. The resulting model leads
to only nontrivial E fields in the x direction, and H fields in the y direction,
each depending only on t and z. Assuming Ohm’s law for Jc, we find the
system reduces to

∂E

∂z
= −�0

∂H

∂t
∂H

∂z
=

∂D

∂t
+ �E + Js (14)

D = �E + P

or in second order form for E(t, z):

�0�
∂2E

∂t2
+ �0

∂2P

∂t2
+ �0�

∂E

∂t
− ∂2E

∂z2
= −�0

∂Js
∂t

or

�r
∂2E

∂t2
+

1

�0

∂2P

∂t2
+
�

�0

∂E

∂t
− c2∂

2E

∂z2
=
−1

�0

∂Js
∂t

,

where c2 = 1
�0�0

and �r is a relative permittivity that is material and geom-
etry dependent. Typical boundary conditions (say on Ω = [0, 1]) are[

1

c

∂E

∂t
− ∂E

∂z

]
z=0

= 0 (absorbing B.C. at z = 0)

and E∣z=1 = 0 (supraconductive B.C. at z = 1).

If we assume a general polarization relationship

P (t, z) =

∫ t

0
g(t− s, z)E(s, z)ds

and initial conditions

E(0, z) = Φ(z),
∂E(0, z)

∂t
= Ψ(z),

then it can be argued that the system becomes

∂2E

∂t2
+ 


∂E

∂t
+ �E +

∫ 0

−∞
g̃(s)E(t+ s)ds− c2∂

2E

∂z2
= J (t),
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(without loss of generality we may take �r = 1 for theoretical conditions)
where we have tacitly assumed E(t, z) = 0 for t < 0. If we approximate
the “memory” term by assuming only a finite past history is significant, we
obtain the integro-partial differential equation

∂2E

∂t2
+ 


∂E

∂t
+ �E +

∫ 0

−r
g̃(s)E(t+ s)ds− c2∂

2E

∂z2
= J (t). (15)

As with the first two examples, this example can also be written as
dx
dt = Ax + F in an appropriate function space setting. In this direction
we define an operator A in appropriate state spaces. In this example one
might choose the electric field E and the magnetic field (H in (14)) as
“natural” state spaces along with some type of hysteresis state to account
for the memory in (15). However, in second order (in time) systems, it is
also sometimes natural to choose the state E and velocity ∂E

∂t as states.
We do that in this example. We first define an auxiliary variable w(t) in
W ≡ L2

g̃(−r, 0;L2(Ω)) by

w(t)(�) = E(t)− E(t+ �), −r ≤ � ≤ 0.

For the inner product in W , we choose the weighted inner product

⟨�, w⟩W ≡
∫ 0

−r
g̃(�)⟨�(�), w(�)⟩L2(Ω)d�

and then (15) can be written as

∂2E

∂t2
+ 


∂E

∂t
+ (� + g11)E −

∫ 0

−r
g̃(s)w(t)(s)ds− c2∂

2E

∂z2
= J (t),

where g11 ≡
∫ 0
−r g̃(s)ds and w(t)(s) = E(t) − E(t + s), −r ≤ s ≤ 0. For a

semigroup formulation we consider the state space

Z = V ×H ×W = H1
R(Ω)× L2(Ω)× L2

g̃(−r, 0;H)

(here H1
R(Ω) = {� ∈ H1∣�(1) = 0}) with states

(�,  , �) = (E(t),
∂E(t)

∂t
, w(t)) = (E(t),

∂E(t)

∂t
, E(t)− E(t+ ⋅)).

To define what we will later see is an infinitesimal generator of a C0

semigroup, we first define several component operators. Let Â ∈ ℒ(V, V ★)
be defined by

Â� ≡ c2�′′ − (� + g11)�+ c2�′(0)�0
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where �0 is the Dirac operator �0 =  (0). Here V ★ is the dual space of
V (e.g. the space of continuous linear functionals on V , to be discussed in
detail later). We also define B ∈ ℒ(V, V ★) and K̂ ∈ ℒ(W,H) by

B� = −
�− c�(0)�0

and, for � ∈W ,

K̂�(z) =

∫ 0

−r
g̃(s)�(s, z)ds, z ∈ Ω.

Moreover, we introduce the operator C : D(C) ⊂W →W defined on

D(C) = {� ∈ H1(−r, 0;L2(Ω)) ∣ �(0) = 0}

by

C�(�) =
∂

∂�
�(�).

We then define the operator A on

D(A) = {(�,  , �) ∈ Z∣ ∈ V, � ∈ D(C), Â�+B ∈ H}

by

A =

⎛⎝ 0 I 0

Â B K̂
0 I C

⎞⎠ .

That is,
AΦ = ( , Â�+B + K̂�,  + C�)

for Φ = (�,  , �) ∈ D(A).

2.6 Example 5: Structured Population Models

We consider the special case of “transport” models or Example 2 with
D = 0 but with so-called renewal or recruitment boundary conditions.
The “spatial” variable � is actually “size” in place of spatial location (see
[BT]) and such models have been effectively used to model marine popula-
tions such as mosquitofish [BBKW, BF, BFPZ] and, more recently, shrimp
[GRD-FP, BDEHAD, GRD-FP2]. Such models have also been the basis
of labeled cell proliferation models in which � represents label intensity
[BSTBRSM]. The early versions of these size structured population mod-
els were first proposed by Sinko and Streifer [SS] in 1967. Cell population
versions were proposed by Bell and Anderson [BA] almost simultaneously.
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Other versions of these models called “age structured models”, where age
can be “physiological age” as well as chronical age, are discussed in [MetzD].

The Sinko-Streifer model (SS) for size-structured mosquitofish popula-
tions is given by

∂v

∂t
+

∂

∂�
(gv) = −�v, �0 < � < �1, t > 0 (16)

v(0, �) = Φ(�)

g(t, �0)v(t, �0) =

∫ �1

�0

K(t, s)v(t, s)ds

g(t, �1) = 0.

Here v(t, �) represents number density (given in numbers per unit length)
or population density, where t represents time and � represents the length
of the mosquitofish. The growth rate of individual mosquitofish is assumed
given by g(t, �), where

d�

dt
= g(t, �) (17)

for each individual (all mosquitofish of a given size have the same growth
rate).

In the SS �(t, �) represents the mortality rate of mosquitofish, and the
function Φ(�) represents initial size density of the population, while K repre-
sents the fecundity kernel. The boundary condition at � = �0 is recruitment,
or birth rate, while the boundary condition at � = �1 = �max ensures the
maximum size of the mosquitofish is �1. The SS model cannot be used as
formulated above to model the mosquitofish population because it does not
predict dispersion or bifurcation of the population in time under biologi-
cally reasonable assumptions [BBKW, BF, BFPZ]. As we shall see, we will
subsequently replace the growth rate g by a family G of growth rates and
reconsider the model with a probability distribution P on this family. The
population density is then given by summing “cohorts” of subpopulations
where individuals belong to the same subpopulation if they have the same
growth rate [BD, BDTR, GRD-FP, BDEHAD, GRD-FP2]. Thus, in the
so-called Growth Rate Distribution (GRD) model, the population density
u(t, �;P ), first discussed in [BBKW] and developed in [BF], is actually given
by

u(t, �;P ) =

∫
G
v(t, �; g)dP (g), (18)
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where G is a collection of admissible growth rates, P is a probability mea-
sure on G, and v(t, �; g) is the solution of the (SS) with growth rate g. This
model assumes the population is made up of collections of subpopulations
with individuals in the same subpopulation having the same size dependent
growth rate. This example can also be formulated in terms of semigroups
[BKa, BKW1, BKW2], but the details are somewhat more difficult than
those for the first three examples. In some cases it is advantageous to use a
weak formulation (to be developed below) instead of a semigroup formula-
tion.

2.7 Infinitesimal Generators

Definition 5 Assume {T (t) ∈ ℒ(X); 0 ≤ t < ∞} is a C0 semigroup in X
or on X, then the infinitesimal generator A of the semigroup T (t) is defined
by

D(A) = {x ∈ X : lim
t→0+

T (t)x− x
t

exists in X}

and

Ax = lim
t→0+

T (t)x− x
t

with A : D(A) ⊂ X → X.

Theorem 1 Let T (t) be a C0 semigroup in X. Then there exist constants
! ≥ 0 and M ≥ 1 such that

∣T (t)∣ ≤Me!t t ≥ 0.

See [Pa]: Theorem 2.2.

Outline of proof: We want to show there exists � > 0 and M > 0 such
that ∣T (t)∣ ≤ M on [0, �]. If not, then there exists tn → 0+ such that
∣T (tn)∣ ≥ n, which implies ∣T (tn)x∣ is unbounded for some x ∈ X (by the
uniform boundedness principle). This contradicts the fact that t → T (t)x
continuously on [0, �] for each x ∈ X. Then define ! ≡ 1

� ln(M). Then

e!t = M t/� for any t > 0.
Let t = � + k� for some integer k and � ∈ [0, �]. Then ∣T (t)∣ =

∣T (�)T (�)k∣ ≤MMk ≤MM t/� = Me!t.

Notation: Write A ∈ G(M,!). For M = 1 and ! = 0, A ∈ G(1, 0) is
the infinitesimal generator of the contraction semigroup: ∣T (t)x− T (t)y∣ ≤
∣x− y∣.
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Theorem 2 Let T (t) be a C0 semigroup and let A be its infinitesimal gen-
erator. Then

1. For x ∈ X,

lim
ℎ→0

1

ℎ

∫ t+ℎ

t
T (s)xds = T (t)x.

2. For x ∈ X,∫ t

0
T (s)xds ∈ D(A) and A

(∫ t

0
T (s)xds

)
= T (t)x− x.

3. If x ∈ D(A), then T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax.

In other words, D(A) is invariant under T (t), and on D(A) at least,

T (t)x0 is a solution of

{
ẋ(t) = Ax(t)
x(0) = x0.

4. For x ∈ D(A),

T (t)x− T (s)x =

∫ t

s
T (�)Axd� =

∫ t

s
AT (�)xd�.

See [Pa]: Theorem 2.4.

Corollary 1 A ∈ G(M,!)⇒ D(A) is dense in X and A is a closed linear
operator.

See [Pa]: Corollary 2.5.

Recall: By definition, a linear operator A is closed is equivalent to the
property that A has a closed graph in X ×X.

That is, Gr(A) = {(x, y) ∈ X × X∣x ∈ D(A), y = Ax} is closed or for
any (xn, yn) ∈ Gr(A), if xn → x and yn → y, then x ∈ D(A) and y = Ax.

Question: Does there exist a one-to-one relationship between a semigrouup
and its infinitesimal generator?

Theorem 3 Let T (t) and S(t) be C0 semigroups on X with infinitesimal
generators A and B respectively. If A = B, then T (t) = S(t), i.e., the
infinitesimal generator uniquely determines the semigroup on all of X.

See [Pa]: Theorem 2.6.
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3 Generators

3.1 Introduction to Generation Theorems

How do we tell when A, derived from a PDE (recall Example 1: the heat
equation), is actually a generator of a C0 semigroup? This is important,
because it leads to the idea of well-posedness and continuous dependence of
solutions for an IBVPDE.

Well-posedness of a PDE is equivalent to saying that a unique solution
exists in some sense and is continuous with respect to data. In other words,{

ẋ(t) = Ax(t) + F (t)
x(0) = x0,

is satisfied in some sense and the corresponding semigroup generated solution
x(t) = T (t)x0 +

∫ t
0 T (t−s)F (s)ds, yields the map (x0, F )→ x(⋅;x0, F ), that

is then continuous in some sense (depending on the spaces used).
Probably the best known generation theorem is the Hille-Yosida theo-

rem. First, however, we review resolvents. In the study of C0-semigroups,
one frequently encounters the operators �I − A, for � ∈ ℂ (also denoted
by � − A), and their inverse R�(A) = (� − A)−1. Here ℂ is the field of
complex scalars. For a linear operator A in X, we denote the resolvent set
by �(A) = {� ∈ ℂ∣� − A has range ℛ(� − A) dense in X and � − A has
a continuous inverse on ℛ(� − A)}. We recall that any continuous densely
defined linear operator in X can be extended continuously to all of X. For
� ∈ �(A), we denote the resolvent operator in ℒ(X) by R�(A) = (�−A)−1.
The spectrum �(A) of a linear operator A is the complement in ℂ of the
resolvent set �(A).

3.2 Hille-Yosida Theorems [HP, Pa, Sh, T]

Theorem 4 (Hille - Yosida) For M ≥ 1, ! ∈ ℝ, we have A ∈ G(M,!) if
and only if

1. A is closed and densely defined (i.e., A closed and D(A) = X).

2. For real � > !, we have � ∈ �(A) and R�(A) satisfies

∣R�(A)n∣ ≤ M

(�− !)n
, n = 1, 2, . . . .

Note: The equivalent version of Hille-Yosida in [Pa] is stated differently:
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Theorem 5 (Hille - Yosida) A ∈ G(1, 0) ⇐⇒

1. A is closed and densely defined.

2. R+ ⊂ �(A) and for every � > 0, ∣R�(A)∣ ≤ 1
� .

See [Pa]: Theorem 3.1.

Homework Exercises

∙ Ex. 5 :

a) Study the proof of Theorem 3.1 in [Pa] and read Section 1.3
carefully.

b) Show that the version of Hille-Yosida in [Pa] is completely equiv-
alent to the version stated previously. (Hint: This is not an
exercise in proving Hille-Yosida. It is an exercise in comparing
A ∈ G(M,!) and A ∈ G(1, 0) with regard to exponential rates
and norms.)

3.3 Results from the Hille-Yosida proof

Results of the necessity portion of the proof

Out of the necessity portion of the proof of Hille-Yosida we find the repre-
sentation:

R�(A)x = R(�,A)x ≡
∫ ∞

0
e−�tT (t)xdt for x ∈ X, � > !

This says that the Laplace transform of the semigroup is the resolvent op-
erator.

We now ask the question: can we recover the semigroup T (t) from the
resolvent R�(A) through some kind of inverse Laplace transform? Yes -
later!!

Homework Exercises

∙ Ex. 6 : Show that the heat equation operator of Example 1 generates
a C0 semigroup in X = L2(0, l).

(That is, show thatA' = (D(�)'′(�))′ onD(A) = {' ∈ H2(0, l)∣'(0) =
0, '′(l) = 0} is the infinitesimal generator of a C0 semigroup in X.)

Note: If you want to, you can take D(�) = D constant for this exercise.
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Results of the sufficiency portion of the proof

In the sufficiency proof of Hille-Yosida, we encounter the Yosida approxi-
mation:

For � > !,
A� ≡ �AR�(A) = �2R�(A)− �I.

From this definition, we can see that A� is bounded and defined on all of
X. To see the above relationship, note that

�AR�(A) = �[(A− �I)R�(A) + �R�(A)].

We also found that for A satisfying the hypothesis of Hille-Yosida, we have

lim
�→∞

A�x = Ax for all x ∈ D(A).

This says that for large �, A� acts like A. Moreover, under this hypothesis,
A� is the infinitesimal generator of the uniformly continuous semigroup of
contraction operators : etA� . Then we can argue that T (t)x ≡ lim

�→∞
etA�x,

for all x ∈ X, is the desired semigroup that A generates. (The proof is
constructive.) See Corollary 3.5 in [Pa].

3.4 Corollaries to Hille-Yosida

Corollary 2 Let A be the infinitesimal generator of a C0 semigroup in X,
and A� be the Yosida approximation, then

T (t)x = lim
�→∞

etA�x for all x ∈ X.

Corollary 3 If A is the infinitesimal generator of a C0 semigroup in X,
then we actually have {�∣Re(�) > !} ⊂ �(A) and for such �

∣R�(A)n∣ ≤ M

(Re�− !)n
.

Corollary 4 A ∈ G(M,!) implies D(A) is dense in X, and moreover, we

find
∞∩
n=1
D(An) is also dense in X.
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4 Example 6: Cantilever Beam

4.1 The Beam Equation

We consider the beam equation given by

�
∂2y

∂t2
+ 


∂y

∂t
+

∂2

∂�2
M = f(t, �) (19)

where the term 
 ∂y∂t represents the external damping (the air or viscous
damping), M is the internal moment, and f is the external force applied.
For a development of this equation from basic principles, see [BSW, BT].
Boundary Conditions

Fixed end:

y(t, 0) = 0 No displacement.
∂y
∂� (t, 0) = 0 No slope.

Free end:
M(t, l) = 0 No moment.
∂M
∂� (t, l) = 0 No shear.

where the shear force is represented by ∂M
∂� (t, �).

Initial Conditions
y(0, �) = Φ(�)
ẏ(0, �) = Ψ(�)

Now we have an equation given with two unknowns; however we have
the constitutive relationship given by

M = M(y).

Using Hooke’s law, we get

� = E� = I
∂2y

∂�2

where I represents the cross-sectional area. Note: I may be a function of �,
I = I(�). From this we have

M = EI
∂2y

∂�2

where E is Young’s modulus, and E could also depend on �, E = E(�).
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Note: We used the assumptions of linear elasticity and small displacements.
(Without small displacements, M could be a nonlinear function of y.)

We also have internal damping involved for which we must account. We
will assume Kelvin-Voigt damping so that M(t, �) is given by

M(t, �) = EI
∂2y

∂�2
+ cDI

∂3y

∂�2∂t
. (20)

Combining equations (19) and (20), we have the beam equation given
by

�
∂2y

∂t2
+ 


∂y

∂t
+

∂2

∂�2

(
EI

∂2y

∂�2
+ cDI

∂3y

∂�2∂t

)
= f(t, �).

with the modified boundary conditions(
EI ∂

2y
∂�2

+ cDI
∂3y
∂�2∂t

)
∣�=l = 0

[
∂
∂�

(
EI ∂

2y
∂�2

+ cDI
∂3y
∂�2∂t

)]
�=l

= 0.

4.2 Writing the Beam Equation in the form ẋ = Ax+ F

We want the beam equation to be of the form ẋ = Ax + F . Let x be
represented by

x(t, ⋅) =

(
y(t, ⋅)
ẏ(t, ⋅)

)
and let our space X = H2

L(0, l)× L2(0, l) where

H2
L(0, l) = {' ∈ H2(0, l)∣ '(0) = 0, '′(0) = 0}.

In other words, the function and the derivative both vanish at the left bound-
ary. Now, let’s rewrite our equation using the abbreviation ∂ = ∂

∂� .

ÿ =
1

�

[
−∂2(EI∂2y)− ∂2(cDI∂

2ẏ)
]
− 


�
ẏ +

1

�
f.

We expect to have the following:

d

dt

(
y
ẏ

)
=

(
0 I
−A −B

)(
y
ẏ

)
+

(
0

1
�f

)
.

Let

A =

(
0 I
−A −B

)
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where we define A and B in the following way:

A = 1
�∂

2(EI∂2⋅)

B = 1
�∂

2(cDI∂
2⋅) + 


� .

Then we have the form ẋ = Ax+F with D(A) = {(', ) ∈ X∣  ∈ H2
L(0, l),

A'+B ∈ L2(0, l), [EI∂2'+ cDI∂
2 ]l = 0, [∂(EI∂2'+ cDI∂

2 )]l = 0}.

4.3 Show that A is an Infinitesimal Generator

We claim that A is an infinitesimal generator of a C0 semigroup in Xℰ where
Xℰ is the energy space. We define Xℰ as X with the energy product

⟨('1,  1), ('2,  2)⟩ℰ =
∫ l

0 EI∂
2'1∂

2'2d� +
∫ l

0 � 1 2d�

=
∫ l

0 EI∂
2'1∂

2'2d� + ⟨� 1,  2⟩.

If 0 < �1 ≤ �(�) ≤ �2 < ∞, then ⟨� 1,  2⟩ is equivalent to the norm in
L2(0, l) where the norm for H2(0, l) is defined by

∣'∣2H2 = ∣'∣2L2 + ∣'′∣2L2 + ∣'′′∣2L2 .

An equivalent norm is

∣'∣2∼ = ∣'(a)∣+ ∣'′(b)∣+ ∣'′′∣2L2 .

In other words, on H2
L, we can write ∣'∣2H2 ≡ ∣'(0)∣+ ∣'′(0)∣+ ∣'′′∣2L2 . This

defines a Hilbert space which is topologically equivalent to X so that we
thus have that the semigroup that A generates is also a C0 semigroup in X.

4.4 Poincare (First) Inequality

Suppose there exists a set Ω which is a bounded subset of Rn, a c = c(Ω),

and for all ' ∈W l,2
0 (Ω) = H l

0(Ω). Then

∣'∣2Hl(Ω) ≤ c(Ω)
∑
∣s∣=l

∫
Ω
∣∂s'∣2

where s = (s1, . . . , sn).
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4.5 Dissipativeness of A

We argue that A is dissipative in Xℰ :

⟨A(', ), (', )⟩ℰ =

∫ l

0
EI∂2 ∂2'+

∫ l

0

[
−∂2(EI∂2'+ cDI∂

2 )− 
 
]
 

=

∫ l

0
EI∂2 ∂2'−

∫ l

0
∂2(EI∂2'+ cDI∂

2 ) −
∫ l

0

 2)

=

∫ l

0
EI∂2 ∂2'−

∫ l

0

(
(EI∂2'+ cDI∂

2 )∂2 + 
 2
)

− ∂M ∣l0 +M∂ ∣l0

= −
∫ l

0
cDI∣∂2 ∣2 −

∫ l

0

∣ ∣2

≤ −k∣ ∣2H2(0,l)

≤ 0

for k =min {∣cDI∣, ∣
∣}. Here we have integrated by parts twice and used the
fact that (', ) ∈ D(A) so that  (0) = ∂ (0) = 0 and M(t, l) = ∂M(t, l) =
0.

4.6 Show ℛ(�I −A) = X for some �

The range statement of Lumer Phillips means that we need to show

�(', )−A(', ) = (ℎ, g). (21)

for (ℎ, g) ∈ X. However, (21) reduces to finding, for any (ℎ, g) ∈ X =
H2
L(0, l)× L2(0, l), a solution (', ) in D(A) to

− + �' = ℎ (22)

A'+B + � = g (23)

where ℎ ∈ H2
L and g ∈ L2. We can rewrite (22) to get

 = �'− ℎ (24)

By substituting (24) into(23), we can reduce the above system to solving

�2'+A'+ �B' = g + �ℎ+Bℎ (25)

for ', given any (ℎ, g) in H2
L(0, l)×L2(0, l). After solving for ', we can then

solve for  . If (', ) ∈ D(A), then we have proven the range statement of
Lumer-Phillips.
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5 Gelfand Triple

An easy way to solve the above problem is to use Lax-Milgram; however,
we must first talk about Gelfand triples. For relevant material, see also
[Sh, T, W].

5.1 Concept of Gelfand Triple

The usual notation for a Gelfand triple is “V ↪→ H ↪→ V ∗ with pivot space
H”. This notation stands for V,H, complex Hilbert spaces, such that V ⊂ H
and V is densely and continuously embedded in H. That is, V is a dense
subset of H and

∣v∣H ≤ k∣v∣V
for all v ∈ V and some constant k. Therefore, you can identify elements in
V with elements in H with an injection operator, i, where i is continuous
and i(V ) is a dense subset of H.

We denote by V ∗ the conjugate dual of V . That is, V ∗ consists of all
conjugate linear continuous functionals on V . (Note that we use V ′ to denote
the algebraic dual of V and V ∗ to denote the topological dual. Frequently
one encounters exactly the opposite notation in the literature.)

For ℎ ∈ H, we define '(ℎ) ∈ V ∗ by

'(ℎ)(v) = ⟨ℎ, v⟩H
for v ∈ V . We claim that ' : H → '(H) ⊂ V ∗ is continuous, linear,
one-to-one and onto. Moreover, '(H) is dense in V ∗ in the V ∗ topology.

By the Riesz theorem, every ℎ∗ ∈ H∗ can be represented by

ℎ∗(ℎ) = ⟨ℎ̂∗, ℎ⟩H ℎ ∈ H

for some ℎ̂∗ ∈ H. Hence, it is readily argued that H∗ is isomorphic to H,
H∗ ≃ H. That is, we may identify H∗ with H through '(H) = H̃ ≃ H∗

and write ℎ(v) = ⟨ℎ, v⟩H for ℎ ∈ H = H∗.
This construction is commonly written as V ↪→ H ∼= H∗ ↪→ V ∗ for the

pivot space H.

5.2 Duality Pairing

With a Gelfand triple, one frequently utilizes the duality pairing denoted by
⟨⋅, ⋅⟩V ∗,V given by the extension by continuity of the H inner product from
H × V to V ∗ × V . That is, for v∗ ∈ V ∗,

v∗(v) = ⟨v∗, v⟩V ∗,V = lim
n
⟨ℎn, v⟩H
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where ℎn ∈ H,ℎn → v∗ in V ∗. Note that we have ⟨ℎ, v⟩V ∗,V = ⟨ℎ, v⟩H if
ℎ ∈ V ∗ also satisfies ℎ ∈ H.
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6 Sesquilinear Forms

Definition 6 Let H1 and H2 be two complex Hilbert spaces, and let � :
H1 ×H2 → C. Then we call � a sesquilinear form if it satisfies

1. � is linear/conjugate linear.

2. � is continuous. In other words,

∣�(x, y)∣ ≤ 
∣x∣1∣y∣2

for x ∈ H1 and y ∈ H2.

6.1 Norm of a Sesquilinear Form

The norm of a sesquilinear form � is defined by

∣�∣ = sup
x,y ∕=0

∣�(x, y)∣
∣x∣1∣y∣2

for x ∈ H1 and y ∈ H2.

6.2 Representation

We’ll consider two different representations:

1. For y ∈ H2, x → �(x, y) is continuous and linear on H1. Therefore,
by the Riesz Theorem, there exists a unique z ∈ H1 such that

�(x, y) = ⟨x, z⟩H1 .

In other words, there exists a mapping B ∈ ℒ(H2, H1) defined by
By = z. Therefore,

�(x, y) = ⟨x, z⟩H1 = ⟨x,By⟩H1 .

Claim ∣�∣ = ∣B∣ℒ(H2,H1)

Proof
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For x in H1 and y in H2, we have

∣�∣ = sup
x,y ∕=0

∣�(x,y)∣
∣x∣1∣y∣2

= sup
∣⟨x,By⟩H1

∣
∣x∣1∣y∣2

≤ sup ∣x∣1∣By∣1∣x∣1∣y∣2

= sup
y ∕=0

∣By∣1
∣y∣2

= ∣B∣ℒ(H1,H2).

Therefore, we have ∣�∣ ≤ ∣B∣ℒ(H2,H1). Now we need to prove that
∣�∣ ≥ ∣B∣ℒ(H2,H1). However, we have

∣�∣ = sup
x,y ∕=0

∣�(x,y)∣
∣x∣1∣y∣2

= sup
∣⟨x,By⟩H1

∣
∣x∣1∣y∣2

≥ sup
x=By

∣⟨By,By⟩H ∣
∣By∣1∣y∣2

= sup ∣By∣1∣y∣2

= ∣B∣ℒ(H2,H1).

Therefore, ∣�∣ = ∣B∣ℒ(H2,H1).

2. For x ∈ H1, y → �(x, y) is continuous and antilinear on H2, i.e.
�(x, ⋅) ∈ H∗2 . Therefore, by the Riesz Theorem, there exists a unique
z ∈ H2 such that

�(x, y) = ⟨z, y⟩H2 .

In other words, there exists a mapping A ∈ ℒ(H1, H2) defined by
Ax = z. Therefore,

�(x, y) = ⟨z, y⟩H2 = ⟨Ax, y⟩H2 .

with ∣A∣ = ∣�∣. Define �̃(y, x) = �(x, y), and interchange the roles of
H1 and H2 in the above arguments to prove ∣A∣ = ∣�∣.
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We want to consider elliptic equations of the form Ax = f . However,
first, we want to start by discussing operators of the form A : H1 → H2 such
that A is bounded and continuous. This is very useful in integral equations.
We will need to modify this to account for the unbounded nature of PDE’s.
We can think of our equation Ax = f in the form �(x, y) = ⟨f, y⟩H for all y
in H where � is equivalent to A. In other words, ⟨Ax− f, y⟩H = 0 for all y
in H.
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7 Lax-Milgram(bounded form)

Theorem 6 (Lax-Milgram Theorem (bounded form)) Suppose � : H×H →
C is continuous and linear/conjugate linear, i.e., it is a sesquilinear form
with

∣�(x, y)∣ ≤ 
∣x∣H ∣y∣H
for all x and y in H, and � is strictly positive, i.e

∣�(x, x)∣ ≥ �∣x∣2

for all x in H where 
 and � are positive constants. Then there exists
A : H → H,A ∈ ℒ(H,H) defined by

�(x, y) = ⟨Ax, y⟩

with ∣A∣ = ∣�∣ ≤ 
 for all x and y in H. Moreover,

�(A−1x, y) = ⟨x, y⟩

with ∣A−1∣ ≤ 1
� for all x and y in H.

Proof of Theorem

By the Riesz Theorem, we know there exists A ∈ ℒ(H) such that ∣A∣ =
∣�∣ ≤ 
 where �(x, y) = ⟨Ax, y⟩H for all x and y in H.

Claim A is one-to-one.
We need to show that Ax = 0 implies x = 0. Suppose Ax = 0. Then, by
the definition of A and the assumptions given, we have

0 = ∣⟨Ax, x⟩∣
= ∣�(x, x)∣
≥ �∣x∣2

Therefore, �∣x∣2 ≤ 0 implies ∣x∣ = 0, and hence x = 0. In other words, A is
one-to-one. Since A is one-to-one, we know that A−1 exists on ℛ(A) ⊂ H.

Claim A−1 is bounded on ℛ(A).
By the proposition that � was strictly positive and the definition of A, we
have

�∣x∣2 ≤ ∣�(x, x)∣
= ∣⟨Ax, x⟩∣
≤ ∣Ax∣∣x∣
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Therefore, ∣Ax∣ ≥ �∣x∣ for all x in H. In particular, for x = A−1y, we have

∣y∣ ≥ �∣A−1y∣.

Therefore,

∣A−1y∣ ≤ 1

�
∣y∣

for all y in ℛ(A). In other words, A−1 is bounded.
Now all we have to show is that ℛ(A) = H.

Claim ℛ(A) = H.
By assumption, we know that A is a continuous operator and we have argued
that A−1 is bounded on ℛ(A). Therefore, ℛ(A) is closed. Now suppose
ℛ(A) ∕= H. This implies there exists z ∕= 0 such that z ⊥ ℛ(A). In other
words,

⟨Ax, z⟩ = 0

for all x in H. In particular, if x = z,

0 = ⟨Az, z⟩ = �(z, z) ≥ �∣z∣2.

This implies z = 0; therefore, we have a contradiction. So, ℛ(A) = H.

7.1 Discussion of Ax = f with A bounded

The bounded form of Lax-Milgram is very useful in linear integral equations.
The Fredholm integral equations with kernel k ∈ L2([a, b]× [a, b]):∫ b

a
k(x, y)'(y)dy = f(x) x ∈ [a, b] (first kind)

'(x)−
∫ b

a
k(x, y)'(y)dy = f(x) x ∈ [a, b] (second kind)

can be written as operator equations in H = L2(a, b),

A' = f

'−A' = f

to be solved for ', given f , where A is the set of bounded linear operators
in H. It also has applications in scattering theory (acoustic and electromag-
netic radiation), for field radiation, and single and double layer potential.

For relevant material, see also [K], [CK1], and [CK2].
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The bounded form of Lax-Milgram is adequate if one wants to solve
Ax = f inH where A is bounded. It’s okay for an integral operator; however,
most applications of interest in PDE’s require an unbounded operator A.
Let’s consider k ∈ L2(Ω) with Ω = [0, 1] × [0, 1] with H = L2(0, 1). Let’s
define A : H → H by

(A')(t) =

∫ 1

0
k(t, �)'(�)d�.

We want to know if this operator is bounded, i.e, is∫ 1

0

(∫ 1

0
k(t, �)'(�)d�

)2

dt < 


∫ 1

0
∣'(�)∣2d�

We can readily argue this. Therefore, there is a � such that A↔ � with

�(', ) =
∫ 1

0

(∫ 1
0 k(t, �)'(�)d�

)
 (t)dt

= ⟨A', ⟩L2(0,1).

We can show that all the requirements of Lax-Milgram(bounded form) are
met with this operator A; therefore, Lax-Milgram(bounded form) is appli-
cable.

7.2 Example - Steady State Heat Equation

Let Ω = [0, 1]× [0, 1]. Then the heat equation is given by

∂u

∂t
= ∇ ⋅ (D∇u) + f.

We assume boundary conditions that require u ∈ H1
0 (Ω) where ∇ = ∂

∂�1
î+

∂
∂�2
ĵ with (�1, �2) ∈ Ω. Then the steady state equation is given by

−∇ ⋅ (D∇u) = f (26)

or
∂

∂�1
(D ∂u
∂�1

) +
∂

∂�2
(D ∂u
∂�2

) = f(�1, �2).

In the weak or variational form, we have

⟨D∇u,∇'⟩ = ⟨f, '⟩ (27)
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for a test function '. Let’s take �( ,') = ⟨D∇ ,∇'⟩ with ∣D∣ ≤ 
, i.e, D
is bounded. Then � is not continuous on H = L2(Ω). On the other hand,

∣�( ,')∣ ≤ 
∣∇ ∣L2 ∣∇'∣L2

≤ 
∣ ∣H1
0
∣'∣H1

0

implies � is continuous on V = H1
0 (Ω).

Moreover, do we have some type of positivity? If ∣D(�1, �2)∣ ≥ �, then

∣�(',')∣ = ∣⟨D∇',∇'⟩∣

≥ �∣∇'∣2L2

≥ �̃∣'∣H1
0 (Ω)

In other words, in the V = H1
0 (Ω) norm, we would have both continuity and

strictly positive. But, we don’t have continuity and strictly positive in the
H = L2(Ω) sense. However, if we choose our H space to be H1

0 (Ω), we would
get a solution of ⟨Au− f, '⟩ = 0. This requires our f to be in H1

0 (Ω) which
is a strong requirement for f . Therefore, it would not be useful to choose
our H space to be H1

0 (Ω). Instead, we need an extension of Lax-Milgram
to treat this case.
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8 Lax-Milgram (unbounded form)

Let V ↪→ H ↪→ V ∗ be a Gelfand triple.

Definition 7 A sesquilinear form � is said to be V continuous if

∣�(', )∣ ≤ 
∣'∣V ∣ ∣V

for all ' and  in V .

Consequences of V -continuous

For a fixed ' in V , let’s consider the mapping  → �(', ). This mapping
is continuous by the definition of continuous from above, and its a conjugate
linear mapping into C. Therefore,  → �(', ) is in V ∗. This implies there
exists an operator A ∈ ℒ(V, V ∗) such that �(', ) = ⟨A', ⟩V ∗,V .

Conversely, if A ∈ ℒ(V, V ∗), we can define � : V × V → C by �(', ) =
(A') where � is V -continuous and linear/conjugate linear.

In other words, if we have a V -continuous sesquilinear form �, there is
a one-to-one correspondence between � and A ∈ ℒ(V, V ∗). So the operator
is not going to be bounded in V . Therefore, Au = f in V ∗ will be useful.

Definition 8 A sesquilinear form � is V -coercive if there exists a constant
� > 0 such that

∣�(',')∣ ≥ �∣'∣2V
for ' ∈ V .

Theorem 7 (Lax-Milgram Theorem (unbounded form)) Let V ↪→ H ↪→ V ∗

be a Gelfand triple. Let � : V × V → C be a V continuous, V -coercive
sesquilinear form. Then A : V → V ∗ given by

�(', ) = ⟨A', ⟩V ∗,V

is a linear (topological) isomorphism between V and V ∗. A−1 is continuous
from V ∗ to V with

∣A−1∣ℒ(V ∗,V ) ≤
1

�
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Proof of Theorem

Let R : V ∗ → V be a Riesz isomorphism, in other words,

v∗ ∈ V ∗ → v∗(v) = ⟨v∗, v⟩V ∗,V = ⟨Rv∗, v⟩V . (28)

Then R−1 : V → V ∗ is continuous.
Let � : V × V → C be a V continuous, V -coercive sesquilinear form. In

other words,  → �(', ) is in V ∗ implies there exists a z in V such that
�(', ) = ⟨z,  ⟩V . From the bounded version of Lax-Milgram, this implies
there exists A ∈ ℒ(V ) such that

�(', ) = ⟨A', ⟩V (29)

for all ' and  in V , with A one-to-one, A onto, ∣A∣ℒ(V ) ≤ 
 and ∣A−1∣ℒ(V ) ≤
1
� . In other words, A is an isomorphism V → V .

We have that R−1 : V → V ∗ is also an isomorphism; therefore, R−1A :
V → V ∗ is an isomorphism. The claim is that A = R−1A. By (28)

⟨R−1A', ⟩V ∗,V = ⟨A', ⟩V .

However, by (29), this implies

⟨R−1A', ⟩V ∗,V = �(', ).

Therefore, by definition of A : V → V ∗, A must be given by A = R−1A.
So, we have

⟨A', ⟩V ∗,V = �(', ) ≤ 
∣'∣V ∣ ∣V (30)

and
⟨A','⟩V ∗,V ≥ �∣'∣2V . (31)

However, sup
∣ ∣≤1

 ∕=0

∣⟨A', ⟩V ∗,V ∣ = ∣A'∣V ∗ . Now, let ' = A−1 . By combining

this with (30) and (31), we have

�∣'∣2V ≤ ∣A'∣2V ∗ ≤ 
∣'∣V . (32)

Therefore, we have
∣A∣ℒ(V,V ∗) ≤ 


and

∣A−1∣ℒ(V ∗,V ) ≤
1

�
.
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Implications of Lax-Milgram(unbounded form)

Consider Au = f in V ∗, i.e. f ∈ V ∗. Then Lax-Milgram implies there exists
a unique solution u = A−1f in V that depends continuously on f . In other
words,

∣u∣V = ∣A−1f ∣V ≤ �∣f ∣V ∗ .

Now revisit the steady-state heat equation (26) in the example above with
D ∈ L∞(Ω). This, of course, allows discontinuous coefficients. Then for
any f in V ∗ = H−1(Ω) satisfying Au = f . That is, ⟨Au − f, '⟩V ∗,V =
�(u, ') − ⟨f, '⟩V ∗,V = ⟨D∇u,∇'⟩ − ⟨f, '⟩V ∗,V = 0 for all ' ∈ V . Thus
we say u ∈ V satisfies Au = f in the sense of V ∗. Hence (26) holds in the
V ∗ sense which is precisely (27). This is also sometimes referred to as u
satisfying (26) in the “sense of distributions.”

8.1 The concept of DA

Definition 9 Now we assume that we have a Gelfand triple V ↪→ H ↪→ V ∗

and a continuous sesquilinear form � : V ×V → C. As usual, f( ) = ⟨f,  ⟩H
defines, for f ∈ H, an element f ∈ V ∗. Considering (A')( ) = �(', ) for
' and  in V , we define

DA = {' ∈ V ∣A' ∈ H}.

That is, DA is the set of ' ∈ V such that A' ∈ V ∗ has the representation
(A')( ) = ⟨'̃,  ⟩H , for  in V and for some '̃ in H.

We denote this element '̃ by −A' = '̃, i.e, A is linear from DA ⊂ V into
H and given by

�(', ) = ⟨−A', ⟩H
for  in V and ' in DA.

We note that the above can be interpreted as: ' ∈ DA ⊂ V if and
only if ' ∈ V and A' ∈ H∗ ∼= H so that (A')( ) = ⟨'̃,  ⟩H , for all
 in V , and for some '̃ ∈ H. Alternatively, we may write DA = {' ∈
V ∣∣(A')( )∣ = ∣�(', )∣ ≤ k∣ ∣H ,  ∈ V } for some k. Moreover, we could
write DA = {' ∈ V ∣ → �(', ) is in H∗, i.e, continuous on H (continuous
in the H sense) }.

Note that we also have

�(', ) = (A')( ) = ⟨A', ⟩V ∗,V

for all ' and  in V . If we restrict ' ∈ DA then this also equals ⟨−A', ⟩H .
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Theorem 8 If � is a continuous V -coercive sesquilinear form on V , then
DA is dense in V and, hence, dense in H.

Proof of Theorem

Define �̃(', ) = �( ,') (called the “adjoint” sesquilinear form)
If � is V -coercive and V continuous, then �̃ is also V -coercive and V con-
tinuous. In other words, there exists an operator Ã : V → V ∗ such that
Ã ∈ ℒ(V, V ∗) with

�̃(', ) = ⟨Ã', ⟩V ∗,V = (Ã')( )

for all ' and  in V . Hence, ℛ(Ã) = V ∗ by the Lax-Milgram theorem.

Now we need to show that DA is dense in V . It suffices to show that if
f ∈ V ∗ and f(v) = 0 for all v ∈ DA, then f ≡ 0.
Let f ∈ V ∗ such that f(v) = 0 for all v ∈ DA. Since f ∈ V ∗ andℛ(Ã) = V ∗,
then there exists ' ∈ V such that f = Ã'.
For v ∈ DA, we have

(−Av)(') = (Av)(')

= �(v, ')

= �̃(', v)

= ⟨Ã', v⟩V ∗,V

= ⟨f, v⟩V ∗,V

= f(v)

= 0

Therefore, (Av)' = 0 for all v ∈ DA.
But, we know ℛ(A∣DA) = H ∼= H∗. Then, for every ℎ ∈ H∗, ℎ(') = 0 .
However, as H∗ is dense in V ∗, then this implies ' = 0. Moreover, Ã' = f
implies f = 0.

Thus we find that any continuous V -coercive sesquilinear form on V
gives rise to a densely defined operator A on D(A) = DA with

�(', ) = ⟨A', ⟩V ∗,V ', ∈ V
= ⟨−A', ⟩H ' ∈ DA,  ∈ V.
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8.2 V-elliptic

Definition 10 A sesquilinear form � on V is V -elliptic if there exists a
constant � > 0 such that

Re �(',') ≥ �∣'∣2V ' ∈ V.

Discussion of V -elliptic

We note that � is V -elliptic implies � is V -coercive. Of course, if we are
working in real spaces, Re � = � and V -elliptic is equivalent to V -coercive.
We also remark that the terminology among various authors is not standard.
Some authors (e.g. Wloka in [W]) use our definition for V -coercive as the
definition of V -elliptic and then use

∣�(',') + k∣'∣2H ∣ ≥ �∣'∣2V ' ∈ V, � > 0

as the definition of V -coercive.
Some of the terminology and usage of sesquilinear forms derives directly

from that for PDE’s of the form

∂y

∂t
=
∑
i,j

∂

∂�i
(aij

∂y

∂�j
) +

∑
j

bj
∂y

∂�j
, t > 0, � ∈ G ⊂ Rn.

Definition 11 In classical PDE’s, an “operator” {aij} is said to be strongly
elliptic on G if there exists � > 0 such that for � ∈ G

Re
∑
i,j

aij(�)qiq̄j ≥ �
∑
i

∣qi∣2

for all q ∈ Cn.

An associated sesquilinear form on V = H1(G) can be defined by

�(', ) =

∫
G

⎡⎣∑
i,j

aij(�)
∂'

∂�i

∂ ̄

∂�j
+
∑
k

bk
∂'

∂�k
 ̄

⎤⎦ d�
Discussion of Strongly elliptic

It is a standard result that {aij} strongly elliptic implies there exists � > 0
such that for � sufficiently large

Re �(',') + �∣'∣2H ≥ �∣'∣2V , ' ∈ V.
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Hence if {aij} is strongly elliptic, then for some �0 sufficiently large,

�̃(', ) = �(', ) + �0⟨', ⟩H

is V -elliptic and hence V -coercive.
A most useful result is that continuous V -elliptic forms give rise to oper-

ators that are infinitesimal generators of C0 (actually analytic) semigroups.
(We say that T (t) is an analytic semigroup if t → T (t)' is analytic for
' ∈ H.)
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9 Necessary Theorems

Theorem 9 Let V , H be complex Hilbert spaces with V ↪→ H ↪→ V ∗ and
suppose that � : V × V → C is continuous and V -elliptic; i.e.

∣�(', )∣ ≤ 
∣'∣V ∣ ∣V ', ∈ V,

and
Re �(',') ≥ �∣'∣2V � > 0, ' ∈ V.

Define A : D(A) ⊂ V → H by

D(A) = {' ∈ V ∣ there exists K' > 0 such that �(', ) ≤ K'∣ ∣H ,  ∈ V }

and
�(', ) = ⟨−A', ⟩H , ' ∈ D(A),  ∈ V.

Then D(A) is dense in H and A is the infinitesimal generator of a contrac-
tion semigroup in H that actually is an analytic semigroup.

The proof of this theorem will come later.

Definition 12 T (t) is called an analytic semigroup if t→ T (t)' is analytic
for each ' in H.

Theorem 10 Suppose all the assumptions of Theorem 18 hold except that
the V -ellipticity condition for � is replaced by

Re �(',') + �0∣'∣2H ≥ �∣'∣2V

for some �0, � > 0, ' ∈ V . Then defining A as in Theorem 18, we have
that A is densely defined and is the infinitesimal generator of an analytic
semigroup in H.

9.1 Example 1

The system is given by

∂y

∂t
=

∂

∂�

(
D(�)

∂y

∂�

)
y(t, 0) = 0

∂y
∂� (t, l) = 0

y(0, �) = Φ(�).
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We choose the state space X = L2(0, l) as before. To obtain the weak
variational form and the space V , we work backwards by multiplying the
equation by a ”test” function ' and integrating.∫ l

0 ẏ' =
∫ l

0(Dy′)′'

=
∫ l

0 −Dy
′'′ +Dy′'∣l0

Therefore we have

⟨ẏ(t), '⟩+ ⟨Dy′(t), '′⟩ −Dy′(t)'∣l0 = 0 (33)

However, (36) is equivalent to

⟨ẏ(t), '⟩+ ⟨Dy′(t), '′⟩ = 0

if ' ∈ H1
L(0, l) = {' ∈ H1(0, l)∣'(0) = 0} and Dy′(t, l) = 0.

Defining V = H1
L(0, l) and � on V × V by

�(', ) = ⟨D'′,  ′⟩,

we may write the equation in weak form as: find y(t) ∈ V satisfying

⟨ẏ(t), '⟩+ �(y(t), ') = 0

for all ' ∈ V . This equation is equivalent to the original system whenever
y(t) ∈ V

∩
H2(0, l) by using the reverse of the above arguments.

What about the flux boundary condition of the original problem? Sup-
pose y(t) is a weak solution, i.e.,

⟨ẏ(t), '⟩+ �(y(t), ') = 0 ∀ ' ∈ V

y(0) = Φ(�)

and y in H2(0, l). Then

⟨ẏ(t), '⟩+

∫ l

0
Dy′'′ = 0

Integrating by parts, the above equation is equivalent to∫ l

0
(ẏ − (Dy′)′)'+Dy′(t, l)'(l) = 0 (34)
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for all ' ∈ H1
L. However, H1

0 ⊂ H1
L; therefore,∫ l

0
(ẏ − (Dy′)′)' = 0 (35)

for all ' ∈ H1
0 . Since H1

0 is dense in L2(0, l), (38) implies ẏ − (Dy′)′ =
0. However, if we choose ' ∈ H1

L such that '(l) ∕= 0, then (37) implies
Dy′(t, l) = 0, i.e., the flux boundary condition is satisfied.

If we define the V -inner product as

⟨', ⟩V =

∫ l

0
'′ ′,

and set H = X = L2(0, l), then we readily see V ↪→ H ↪→ V ∗. Note that
the V norm is equivalent to the usual H1 norm on H1

L(0, l). Furthermore,
we have

∣�(', )∣ = ∣⟨D'′,  ′⟩∣

≤ ∣D∣∞∣'′∣L2 ∣ ′∣L2

= ∣D∣∞∣'∣V ∣ ∣V .

Also,
Re �(',') = Re ⟨D'′, '′⟩ ≥ �∣'′∣2L2 = �∣'∣2V

so that � is bounded and V -elliptic.
We can define A : V → V ∗ by

⟨A', ⟩V ∗,V = �(', ) = ⟨D'′,  ′⟩

Note that A' ∈ H ↪→ V ∗ if and only if ⟨D'′,  ′⟩ = ⟨w, ⟩ for all  ∈ V for
some w ∈ H. However, integrating by parts we have∫ l

0 D'
′ ′ = −

∫ l
0(D'′)′ +D'′ ∣l0

= ⟨−(D'′)′,  ⟩+D(l)'′(l) (l)

= ⟨−(D'′)′,  ⟩

if '′(l) = 0 and (D'′)′ ∈ L2(0, l). Thus we may define

A' = (D'′)′
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on
D(A) = {' ∈ H1

L(0, l)∣(D'′)′ ∈ L2(0, l), '′(l) = 0}

and obtain A' = −A' ∈ H exactly whenever ' ∈ D(A).
The above results hence guarantee that A generates a C0-semigroup

(actually an analytic semigroup) T (t) on H = X = L2(0, l).

9.2 Example 2

Let’s consider the transport equation given by

∂y

∂t
+

∂

∂�
(�y) =

∂

∂�
(D

∂y

∂�
)− �y

y(t, 0) = 0

(D ∂y
∂� − �y)∣�=l = 0

y(0, �) = Φ(�).

We can rewrite the transport equation by

yt = (Dy′ − �y)′ − �y.

Multiplying by a test function and integrating from 0 to l, we have

⟨yt, '⟩ =
∫ l

0 ((Dy′ − �y)′'− �y') d�

= −⟨Dy′ − �y, '′⟩+ (Dy′ − �y)'∣l0 − ⟨�y, '⟩.

If we choose H = X = L2(0, l) and V = H1
L(0, l) as in Example 1, with the

same V - inner product, we have

⟨yt, '⟩ = −⟨Dy′ − �y, '′⟩ − ⟨�y, '⟩.

As before, we have V ↪→ H ↪→ V ∗. Then we can define the sesquilinear form
� : V × V → C by

�(', ) = ⟨D'′ − �',  ′⟩+ ⟨�',  ⟩.

Therefore, we have the equation

⟨ẏ, '⟩+ �(y, ') = 0.

Briefly, we’ll discuss the various possibilities for boundary conditions and
the effects on the choice of V . If we had a no flux boundary condition at
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� = 0, we would choose V = H1
R(0, l). On the other hand, if we had essential

boundary conditions at both boundaries, i.e, y = 0 at � = 0 and � = l, we
would need to choose V = H1

0 (0, l). A third possibility is if we had the no
flux boundary conditions at both boundaries, � = 0 and � = l. In that case,
as both boundary conditions were natural, we would choose V = H1(0, l).

The V -continuity of � is established by arguing

∣�(', )∣ ≤ ∣D∣∞∣'′∣H ∣ ′∣H + ∣�∣∞∣'∣H ∣ ′∣H + ∣�∣∞∣'∣H ∣ ∣H

≤ ∣D∣∞∣'∣V ∣ ∣V + ∣�∣∞k∣'∣V ∣ ∣V + ∣�∣∞k2∣'∣V ∣ ∣V

= (∣D∣∞ + k∣�∣∞ + k2∣�∣∞)∣'∣V ∣ ∣V .

As � is V -continuous, we have

�(', ) = ⟨A', ⟩V ∗,V ' ∈ V
= ⟨−A', ⟩H ' ∈ D(A)

where D(A) is defined by

D(A) = {' ∈ H2(0, l)∣'(0) = 0, (D'′ − �') ∈ H1(0, l), (D'′ − �')(l) = 0}.

Note that V carries the essential boundary conditions, while the natural
boundary conditions are found in D(A).

To show that � is V -coercive, if we assume D ≥ c1 > 0 and ⟨�', '⟩ ≥
−∣�∣∞∣'∣2H , then we have

Re �(',') ≥ c1∣'∣2V −
∣�∣2∞

4� ∣'∣
2
H − �∣'∣2V − ∣�∣∞∣'∣2H

= (c1 − �)∣'∣2V − ( ∣�∣
2
∞

4� + ∣�∣∞)∣'∣2H

Hence, setting � = c1
2 , we have

Re �(',') ≥ c1

2
∣'∣2V − �0∣'∣2H

for some �0 = ∣�∣2∞
2c1

+ ∣�∣∞. Thus we see that �̃ given by

�̃(', ) = �(', ) + �0⟨', ⟩
= ⟨−A', ⟩+ �0⟨', ⟩
= ⟨−(A− �0)', ⟩

is V -elliptic (indeed it is V coercive). We thus find that A− �0, and hence
A, is the generator of an analytic semigroup in H = X = L2(0, l).
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9.3 Example 6

We return to the beam equation. Recall the system is given by

�ytt + 
yt + ∂2M = f 0 < � < l

with

y(t, 0) = 0 =
∂y

∂�
(t, 0)

M(t, l) = 0 = ∂M(t, l)

where M(t, �) = EI∂2y + cDI∂
2yt. We choose as our basic space H =

L2(0, l) with the weighted inner product ⟨', ⟩H = ⟨�',  ⟩L2(0,l). Then the
weak form becomes

⟨ytt +



�
yt, '⟩H + ⟨EI

�
∂2y, ∂2'⟩H + ⟨cDI

�
∂2yt, ∂

2'⟩H = ⟨1
�
f, '⟩H

for all ' ∈ V = H2
L(0, l). We choose the weighted inner product for V given

by ⟨', ⟩V =
∫ l

0 EI'
′′ ′′.

We define the sesquilinear forms �1 and �2 on V × V → C by

�1(', ) = ⟨EI
�
'′′,  ′′⟩H =

∫ l

0
EI'′′ ′′

�2(', ) = ⟨cD
I

�
'′′,  ′′⟩H + ⟨


�
',  ⟩H .

The weak form of the equation is then

⟨ytt, '⟩H + �1(y, ') + �2(yt, ') = ⟨f
�
, '⟩H

for ' ∈ V . To write this in first order vector form, we use the state space
XE = ℋ = V ×H with the space V = V × V , noting that V ↪→ H ↪→ V ∗

and V ↪→ ℋ ↪→ V∗ form Gelfand triples.

Homework Exercises

∙ Ex. 9 : Explain why we have V∗ = V ×V ∗ in the Gelfand triple instead
of V∗ = V ∗ × V ∗.
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We define the sesquilinear form � : V × V → C by (for � = (', ), � =
(g, ℎ) in V)

�(�, �) = �((', ), (g, ℎ)) = −⟨ , g⟩V + �1(', ℎ) + �2( , ℎ).

Using the state variable w(t) = (y(t, ⋅), yt(t, ⋅)) in XE = ℋ, we can rewrite
the equation as

⟨ẇ(t), �⟩ℋ + �(w(t), �) = ⟨F (t), �⟩ℋ

for � ∈ V, where F (t) = (0, 1
�f(t)).

We readily argue that � is bounded (continuous) and V-elliptic (actually,
� − �0∣ ⋅ ∣2XE is V-elliptic). Consider first the boundedness argument:

∣�(�, �)∣ = ∣�((', ), (g, ℎ))∣ = ∣ − ⟨ , g⟩V + �1(', ℎ) + �2( , ℎ)∣

≤ ∣ ∣V ∣g∣V + 
1∣'∣V ∣ℎ∣V + 
2∣ ∣V ∣ℎ∣V
≤ ∣�∣V ∣�∣V + 
1∣�∣V ∣�∣V + 
2∣�∣V ∣�∣V

= (1 + 
1 + 
2)∣�∣V ∣�∣V

for �, � ∈ V. The arguments for V-ellipticity are also simple: for � =
(', ) ∈ V we find

Re �(�, �) = Re {−⟨ ,'⟩V + �1(', ) + �2( , )}

= Re {−⟨', ⟩V + ⟨', ⟩V + �2( , )}

= Re �2( , )

≥ �2∣ ∣2V

= �2(∣'∣2V + ∣ ∣2V )− �2∣'∣2V

≥ �2(∣'∣2V + ∣ ∣2V )− �2(∣'∣2V + ∣ ∣2H)

= �2∣�∣2V − �2∣�∣2ℋ.

We thus find that �(�, �) = ⟨Ã�, �⟩V,V∗ gives rise to the infinitesimal
generator A of a C0 (indeed, analytic) semigroup on XE = ℋ. It is readily
argued that �(�, �) = ⟨−A�, �⟩ℋ for � ∈ D(A) = {� = (', ) ∈ ℋ∣ ∈ V =
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H2
L(0, l), A1'+A2 ∈ H, (EI'′′ + cDI 

′′)(l) = 0, (EI'′′ + cDI 
′′)′(l) = 0}

where

A =

(
0 I
−A1 −A2

)
with A1' = �2(EI� �

2') and A2' = �2( cDI� �2').

Homework Exercises

∙ Ex. 10 : Some books define D(A) by

D̃(A) = (H4(0, l) ∩H2
L(0, l))× (H4(0, l) ∩H2

L(0, l))

plus boundary conditions. We know A∣D(A) is an infinitesimal gen-
erator of a C0 semigroup which, in turn, implies A∣D(A) is a closed
operator. You can show A∣D̃(A) is not closed. Therefore, we claim

that D(A) ∕= D̃(A) . Is this true? Look at both the damped and
undamped cases.
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10 Examples in Applying the Previous Theorems

10.1 Example 1

The system is given by

∂y

∂t
=

∂

∂�

(
D(�)

∂y

∂�

)
y(t, 0) = 0

∂y
∂� (t, l) = 0

y(0, �) = Φ(�).

We choose the state space X = L2(0, l) as before. To obtain the weak
variational form and the space V , we work backwards by multiplying the
equation by a ”test” function ' and integrating.∫ l

0 ẏ' =
∫ l

0(Dy′)′'

=
∫ l

0 −Dy
′'′ +Dy′'∣l0

Therefore we have

⟨ẏ(t), '⟩+ ⟨Dy′(t), '′⟩ −Dy′(t)'∣l0 = 0 (36)

However, equation 36 is equivalent to

⟨ẏ(t), '⟩+ ⟨Dy′(t), '⟩ = 0

if ' ∈ H1
L(0, l) = {' ∈ H1(0, l)∣'(0) = 0} and Dy′(t, l) = 0.

Defining V = H1
L(0, l) and � on V × V by

�(', ) = ⟨D'′,  ⟩,

we may write the equation in weak form as: find y(t) ∈ V satisfying

⟨ẏ(t), '⟩+ �(y(t), ') = 0

for all ' ∈ V . This equation is equivalent to the original system whenever
y(t) ∈ V

∩
H2(0, l) by using the reverse of the above arguments.
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What about the flux boundary condition of the original problem? Sup-
pose y(t) is a weak solution, i.e.,

⟨ẏ(t), '⟩+ �(y(t), ') = 0 ∀ ' ∈ V

y(0) = Φ(�)

and y in H2(0, l). Then

⟨ẏ(t), '⟩+

∫ l

0
Dy′'′ = 0

Integrating by parts, the above equation is equivalent to∫ l

0
(ẏ − (Dy′)′)'+Dy′(t, l)'(l) = 0 (37)

for all ' ∈ H1
L. However, H1

0 ⊂ H1
L; therefore,∫ l

0
(ẏ − (Dy′)′)' = 0 (38)

for all ' ∈ H1
0 . Since, H1

0 is dense in L2(0, l), equation 38 implies ẏ =
(Dy′)′ = 0. However, if we choose ' ∈ H1

L such that '(l) ∕= 0, then equation
37 implies Dy′(t, l) = 0, i.e., the flux boundary condition is satisfied.

If we define the V -inner product as

⟨', ⟩V =

∫ l

0
'′ ′,

and set H = X = L2(0, l), then we readily see V ↪→ H ↪→ V ∗. Note that
the V norm is equivalent to the usual H1 norm on H1

L(0, l). Furthermore,
we have

∣�(', )∣ = ∣⟨D'′,  ′⟩∣

≤ ∣D∣∞∣'′∣L2 ∣ ′∣L2

= ∣D∣∞∣'∣V ∣ ∣V .

Also,
Re �(',') = Re ⟨D'′, '′⟩ ≥ �∣'′∣2L2 = �∣'∣2V

so that � is bounded and V -elliptic.
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We can define A : V → V ∗ by

⟨A', ⟩V ∗,V = �(', ) = ⟨D'′,  ′⟩

Note that A' ∈ H ↪→ V ∗ if and only if ⟨D'′,  ′⟩ = ⟨w, ⟩ for all  ∈ V for
some w ∈ H. However, integrating by parts we have∫ l

0 D'
′ ′ = −

∫ l
0(D'′)′ +D'′ ∣l0

= ⟨−(D'′)′,  ⟩+D(l)'′(l) (l)

= ⟨−(D'′)′,  ⟩

if '′(l) = 0 and (D'′)′ ∈ L2(0, l). Thus we may define

A' = (D'′)′

on
D(A) = {' ∈ H1

L(0, l)∣(D'′)′ ∈ L2(0, l), '′(l) = 0}

and obtain A' = −A' ∈ H exactly whenever ' ∈ D(A).
The above results hence guarantee that A generates a C0-semigroup

(actually an analytic semigroup) T (t) on H = X = L2(0, l).

10.2 Example 2

Let’s consider the transport equation given by

∂y

∂t
+

∂

∂�
(�y) =

∂

∂�
(D

∂y

∂�
)− �y

y(t, 0) = 0

(D ∂y
∂� − �y)∣�=l = 0

y(0, �) = Φ(�).

We can rewrite the transport equation by

yt = (Dy′ − �y)′ − �y.

Multiplying by a test function and integrating from 0 to l, we have

⟨yt, '⟩ =
∫ l

0 ((Dy′ − �y)′'− �y') d�

= −⟨Dy′ − �y, '′⟩+ (Dy′ − �y)'∣l0 − ⟨�y, '⟩.
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If we choose H = X = L2(0, l) and V = H1
L(0, l) as in Example 1, with the

same V - inner product, we have

⟨yt, '⟩ = −⟨Dy′ − �y, '′⟩ − ⟨�y, '⟩.

As before, we have V ↪→ H ↪→ V ∗. Then we can define the sesquilinear form
� : V × V → C by

�(', ) = ⟨D'′ − �',  ′⟩+ ⟨�',  ⟩.

Therefore, we have the equation

⟨ẏ, '⟩+ �(y, ') = 0.

Briefly, we’ll discuss the various possibilities for boundary conditions and
the effects on the choice of V . If we had a no flux boundary condition at
� = 0, we would choose V = H1

R(0, l). On the other hand, if we had essential
boundary conditions at both boundaries, i.e, y = 0 at � = 0 and � = l, we
would need to choose V = H1

0 (0, l). A third possibility is if we had the no
flux boundary conditions at both boundaries, � = 0 and � = l. In that case,
as both boundary conditions were natural, we would choose V = H1(0, l).

The V -continuity of � is established by arguing

∣�(', )∣ ≤ ∣D∣∞∣'′∣H ∣ ′∣H + ∣�∣∞∣'∣H ∣ ′∣H + ∣�∣∞∣'∣H ∣ ∣H

≤ ∣D∣∞∣'∣V ∣ ∣V + ∣�∣∞k∣'∣V ∣ ∣V + ∣�∣∞k2∣'∣V ∣ ∣V

= (∣D∣∞ + k∣�∣∞ + k2∣�∣∞)∣'∣V ∣ ∣V .

As � is V -continuous, we have

�(', ) = ⟨A', ⟩V ∗,V ' ∈ V
= ⟨−A', ⟩H ' ∈ D(A)

where D(A) is defined by

D(A) = {' ∈ H2(0, l)∣'(0) = 0, (D'′ − �') ∈ H1(0, l), (D'′ − �')(l) = 0}.

Make a note that V carries the essential boundary conditions, while the
natural boundary conditions are found in D(A).

To show that � is V -coercive, if we assume D ≥ c1 > 0 and ⟨�', '⟩ ≥
−∣�∣∞∣'∣2H , then we have

Re �(',') ≥ c1∣'′∣2V −
∣�∣2∞

4� ∣'∣
2
H − �∣'∣2V − ∣�∣∞∣'∣2H

= (c1 − �)∣'∣2V − ( ∣�∣
2
∞

4� + ∣�∣∞)∣'∣2H
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Hence, setting � = c1
2 , we have

Re �(',') ≥ c1

2
∣'∣2V − �0∣'∣2H

for some �0. Thus we see that �̃ given by

�̃(', ) = �(', ) + �0⟨', ⟩
= ⟨−A', ⟩+ �0⟨', ⟩
= ⟨−(A− �0)', ⟩

is V -elliptic (indeed it is V coercive). We thus find that A− �0, and hence
A, is the generator of an analytic semigroup in H = X = L2(0, l).

10.3 Example 6

We return to the beam equation. Recall the system is given by

�ytt + 
yt + ∂2M = f 0 < � < l

with

y(t, 0) = 0 =
∂y

∂�
(t, 0)

M(t, l) = 0 = ∂M(t, l)

where M(t, �) = EI∂2y + cDI∂
2yt. We choose as our basic space H =

L2(0, l) with the weighted inner product ⟨', ⟩H = ⟨�',  ⟩L2(0,l). Then the
weak form becomes

⟨ytt +



�
yt, '⟩H + ⟨EI

�
∂2y, ∂2'⟩H + ⟨cDI

�
∂2yt, ∂

2'⟩H = ⟨1
�
f, '⟩H

for all ' ∈ V = H2
L(0, l). We choose the weighted inner product for V given

by ⟨', ⟩V =
∫ l

0 EI'
′′ ′′.

We define the sesquilinear forms �1 and �2 on V × V → C by

�1(', ) = ⟨EI
�
'′′,  ′′⟩H =

∫ l

0
EI'′′ ′′

�2(', ) = ⟨cD
I

�
'′′,  ′′⟩H + ⟨


�
',  ⟩H .

The weak form of the equation is then

⟨ytt, '⟩H + �1(y, ') + �2(yt, ') = ⟨f
�
, '⟩H

for ' ∈ V . To write this in first order vector form, we use the state space
XE = ℋ = V ×H with the space V = V × V , noting that V ↪→ H ↪→ V ∗

and V ↪→ ℋ ↪→ V∗ form Gelfand triples.

54



Homework Exercises

∙ Ex. 9 : Explain why we have V∗ = V ×V ∗ in the Gelfand triple instead
of V∗ = V ∗ × V ∗.

We define the sesquilinear form � : V × V → C by (for � = (', ), � =
(g, ℎ) in V)

�(�, �) = �((', ), (g, ℎ)) = −⟨ , g⟩V + �1(', ℎ) + �2( , ℎ).

Using the state variable w(t) = (y(t, ⋅), yt(t, ⋅)) in XE = ℋ, we can rewrite
the equation as

⟨ẇ(t), �⟩ℋ + �(w(t), �) = ⟨F (t), �⟩ℋ

for � ∈ V, where F (t) = (0, 1
�f(t)).

We readily argue that � is bounded (continuous) and V-elliptic (actually,
� − �0∣ ⋅ ∣2XE is V-elliptic). Consider first the boundedness argument:

∣�(�, �)∣ = ∣�((', ), (g, ℎ))∣ = ∣ − ⟨ , g⟩V + �1(', ℎ) + �2( , ℎ)∣

≤ ∣ ∣V ∣g∣V + 
1∣'∣V ∣ℎ∣V + 
2∣ ∣V ∣ℎ∣V

≤ ∣�∣V ∣�∣V + 
1∣�∣V ∣�∣V + gamma2∣�∣V ∣�∣V

= (1 + 
1 + 
2)∣�∣V ∣�∣V

for �, � ∈ V. The arguments for V-ellipticity are also simple: for � =
(', ) ∈ V we find

Re �(�, �) = Re {−⟨ ,'⟩V + �1(', ) + �2( , )}

= Re {−⟨', ⟩V + ⟨', ⟩V + �2( , )}

= Re �2( , )

≥ �2∣ ∣2V

= �2(∣'∣2V + ∣ ∣2V )− �2∣'∣2V

≥ �2(∣'∣2V + ∣ ∣2V )− �2(∣'∣2V + ∣ ∣2H)

= �2∣�∣2V − �2∣�∣2ℋ
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We thus find that �(�, �) = ⟨Ã�, �⟩V,V∗ gives rise to the infinitesimal
generator A of a C0 (indeed, analytic) semigroup on XE = ℋ. It is readily
argued that �(�, �) = ⟨−A�, �⟩ℋ for � ∈ D(A) = {� = (', ) ∈ ℋ∣ ∈ V =
H2
L(0, l), A1'+A2 ∈ H, (EI'′′ + cDI 

′′)(l) = 0, (EI'′′ + cDI 
′′)′(l) = 0}

where

A =

(
0 I
−A1 −A2

)
with A1' = �2(EI� �

2') and A2' = �2( cDI� �2').

Homework Exercises

∙ Ex. 10 : Some books define D(A) by

D̃(A) = (H4(0, l) ∩H2
L(0, l))× (H4(0, l) ∩H2

L(0, l))

plus boundary conditions. We know A∣D(A) is an infinitesimal gen-
erator of a C0 semigroup which, in turn, implies A∣D(A) is a closed
operator. You can show A∣D̃(A) is not closed. Therefore, we claim

that D(A) ∕= D̃(A) . Is this true? Look at both the damped and
undamped cases.

56



11 Summary of Results on Analytic Semigroup
Generation by Sesquilinear Forms

Let V and H be complex Hilbert spaces with the Gelfand triple V ↪→ H ↪→
V ∗. Let ⟨⋅, ⋅⟩V ∗,V be the duality product, and � : V×V → C be a sesquilinear
form such that � is

1. V continuous, i.e., ∣�(', )∣ ≤ 
∣'∣V ∣ ∣V .

2. V -elliptic, i.e., Re �(',') ≥ �∣'∣2V . (We can replace this by a shift:
Re �(',') + �0∣'∣2H ≥ �∣'∣2V .)

As before, let Â ∈ ℒ(V, V ∗) (note that this is −A in our old notation)
and A : DA ⊂ H → H be defined such that

�(', ) = ⟨−Â',  ⟩V ∗,V ∀ ', ∈ V
= ⟨−A', ⟩H ' ∈ DA,  ∈ V.

Then we have ℛ(Â) = V ∗, ℛ(A) = H, and 0 ∈ �(Â). We can also note

Re �(',') = Re ⟨−Â', '⟩V ∗,V ≥ �∣'∣2V .

for all ' ∈ V . In other words, Re⟨Â', '⟩ ≤ −�∣'∣2V ≤ 0. Similarly, for
' ∈ DA, Re ⟨A','⟩H ≤ 0 which implies A is dissipative. By Lumer Phillips,
as A is dissipative and ℛ(A) = H, A is an infinitesimal generator of a C0

semigroup of contractions S(t) on H.
Recall the definition of dissipativeness in a Banach space X. An operator

B ∈ D ⊂ X → X is dissipative if for each x ∈ D(B) there exists x∗ ∈ F (x) ⊂
X∗ such that Re⟨x∗, Bx⟩X∗,X ≤ 0 where F (x) is the duality set. Let’s apply
this definition to X = V ∗, which is a reflexive Banach space in its own right,
with the operator B = Â, Â : V ⊂ V ∗ → V ∗. We have Â being dissipative
in the Banach space V ∗ means for x ∈ V there exists x∗ ∈ F (X) ⊂ X∗ =
V ∗∗ = V such that Re⟨x∗, Âx⟩V,V ∗ ≤ 0 or Re⟨Âx, x∗⟩V ∗,V ≤ 0. However, we
have this holding for every x∗ ∈ V ⊂ V ∗. (In particular, we can find such a
x∗ in the duality set.) Therefore, Â : V = D(Â) ⊂ V ∗ → V ∗ is dissipative.
Using Lumer Phillips again we have Â is an infinitesimal generator of a C0

semigroup of contractions Ŝ(t) on V ∗ where Ŝ(t)∣H = S(t).

Recall, DA = {x ∈ V ∣Âx ∈ H}. Let’s define
ˆ̂
DA = {x ∈ V ∣Âx ∈ V }

and look at the operator
ˆ̂
A = A∣ ˆ̂

DA
. We have ℛ(

ˆ̂
A) = V ; therefore the

range statement needed for Lumer Phillips holds for
ˆ̂
A. However, for

ˆ̂
A
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to be dissipative in V , we must have for each x ∈ ˆ̂
DA ⊂ V there exists

x∗ ∈ F (x) ⊂ V ∗ such that Re⟨x∗, ˆ̂
Ax⟩V ∗,V ≤ 0. We do not directly have

that
ˆ̂
A is dissipative in V . We need to first look at the Tanabe estimates.

11.1 Tanabe Estimates
(on “Regular Dissipative Operators”)

Suppose a sesquilinear form �(∼ Â) is V continuous and V -elliptic. Then
for Re� ≥ 0 and � ∕= 0, R�(Â) = (�I − Â)−1 ∈ ℒ(V ∗, V ), and

1. ∣R�(Â)'∣V ≤ 1
� ∣'∣V ∗ for ' ∈ V ∗. (In other words, ∣R�(Â)∣ℒ(V ∗,V ) ≤

1
� .)

2. ∣R�(Â)'∣H ≤ M0
∣�∣ ∣'∣H for ' ∈ H where M0 = 1 + 


� . (In other words,

∣R�(Â)∣ℒ(H) ≤ M0
∣�∣ .)

3. ∣R�(Â)'∣V ∗ ≤ M0
∣�∣ ∣'∣V ∗ for ' ∈ V ∗. (In other words, ∣R�(Â)∣ℒ(V ∗) ≤

M0
∣�∣ .)

4. ∣R�(Â)'∣V ≤ M0
∣�∣ ∣'∣V for ' ∈ V . (In other words, ∣R�(Â)∣ℒ(V ) ≤ M0

∣�∣ .)

Proof of 4
Define the dual or adjoint operator in the usual manner: define Â∗ ∈
ℒ(V, V ∗) by �(', ) = ⟨',−Â∗ ⟩V,V ∗ for ', ∈ V . Then

�∗(', ) = �(', )

and
�∗(', ) = ⟨',−Â∗ ⟩V,V ∗

implies

⟨',−Â∗ ⟩V,V ∗ = ⟨',−Â∗ ⟩V,V ∗ .

Therefore, Â∗ also satisfies 1-3 as �∗ is V continuous and V -elliptic. Apply-
ing 3 to Â∗ gives us for Re� ≥ 0, � ∕= 0, ',  ∈ V

∣⟨R�(Â)', ⟩V,V ∗ ∣ = ∣⟨',R�(Â∗) ⟩V,V ∗ ∣

≤ ∣'∣V ∣R�(Â∗) ∣V ∗

≤ ∣'∣V M0
∣�∣ ∣ ∣V ∗ .

Therefore, ∣R�(Â)'∣V ≤ M0
∣�∣ ∣'∣V .
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11.2 Infinitesimal Generators in a General Banach Space

Recall that if A is an infinitesmal generator of a C0 semigroup T (t) in a
Hilbert space X, then S(t) = T ∗(t) is a C0 semigroup in X with infinitesimal
generator A∗. Thus, if A is an infinitesimal generator, D(A) is dense in X.
Similarly, if A∗ is an infinitesimal generator, D(A∗) is also dense in X. We
can generalize this result in a general Banach space.

Theorem 11 If X is a reflexive Banach space and A is an infinitesimal
generator of a C0 semigroup T (t) in X, then A∗ is an infinitesimal generator
of a C0 semigroup S(t) in X∗ and S(t) = T ∗(t) = (T (t))∗. In other words,
(eA

∗t on X∗)∗ = eAt on X.

Corollary 5 If Â is an infinitesimal generator of a C0 semigroup on V ∗,
then Â∗ is an infinitesimal generator on V ∗∗ = V .

We know Â ∈ ℒ(V, V ∗) and Â∗ ∈ ℒ(V ∗∗, V ∗) = ℒ(V, V ∗) are infinites-
imal generators of C0 semigroups of contractions on V ∗. In other words,

Ŝ∗(t) = eÂ
∗(t) is a C0 semigroup of contractions on V ∗. Applying the pre-

vious corollary, we have (Ŝ∗(t) on V ∗)∗ = Ŝ(t) on V . However, Ŝ∗(t) ∈
ℒ(V ∗, V ∗) implies (Ŝ∗(t))∗ ∈ ℒ(V ∗∗, V ∗∗) = ℒ(V, V ). Since V is a reflexive

Hilbert space,
ˆ̂
S(t) is exactly Ŝ(t)∣V .

We can show that the C0 semigroups from above are actually analytic.
The theorem below gives the condition for analyticity.

Theorem 12 Let T (t) be a C0 semigroup on X with infinitesimal generator
A, 0 ∈ �(A). Then a semigroup is analytic on X if there exists a constant
c such that

∣R�+i� (A)∣ℒ(X) ≤
c

∣� ∣
for � > 0, � ∕= 0 where � = �+ i� .

See Pazy - Theorem II.5.2(b).

From the Tanabe estimates, we have ∣R�(A)∣ℒ(X) ≤ c
∣�∣ = c√

�2+�2
≤

c
∣� ∣ . Therefore, our estimates suffice to give analyticity. Thus we have the
following theorem.
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Theorem 13 Let V ↪→ H ↪→ V ∗ be a Gelfand triple. Assume the sesquilin-

ear form � is V continuous and V -elliptic. Let Â, A, and
ˆ̂
A be defined as

above. Then

∙ Â is an infinitesimal generator of an analytic semigroup Ŝ(t) of con-
tractions on V ∗.

∙ A is an infinitesimal generator of an analytic semigroup S(t) of con-
tractions on H.

∙ ˆ̂
A is an infinitesimal generator of an analytic semigroup

ˆ̂
S(t) of con-

tractions on V .

We also have

∙ domV ∗(Â) = V .

∙ domH(Â) = DA = {x ∈ V ∣Âx ∈ H}.

∙ domV (Â) =
ˆ̂
DA = {x ∈ V ∣Âx ∈ V }.

This is usually stated as A or Â generate an analytic semigroup of contrac-
tions on V ,H, V ∗.
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12 General Second Order Systems

12.1 Introduction to Second Order Systems

The ideas in Example 6 can be used to treat general second order systems.
Consider the general abstract second order system

ÿ(t) +A2ẏ(t) +A1y(t) = f(t)

or, in variational form

⟨ÿ(t), '⟩H + �1(y(t), ') + �2(ẏ(t), ') = ⟨f(t), '⟩H (39)

where H is a complex Hilbert space. As usual, we assume that �1 and �2 are
sesquilinear forms on V where V ↪→ H ↪→ V ∗ is a Gelfand triple. We also as-
sume that �1 is continuous, V -elliptic and symmetric (�1(', ) = �1( ,')).
We assume that �2 is continuous and satisfies a weakened ellipticity condi-
tion which we formally call H-semiellipticity.

Definition 13 A sesquilinear form � on V is H-semielliptic if there is a
constant b ≥ 0 such that

Re �(',') ≥ b∣'∣2H for all v ∈ V.

Note that b = 0 is allowed in this definition.

Since �1 and �2 are continuous, we have that there exists Ai ∈ ℒ(V, V ∗),
i = 1, 2, such that

�i(', ) = ⟨Ai', ⟩V ∗,V for all ', ∈ V, i = 1, 2.

Following the ideas of Example 6, we define spaces V = V × V and
ℋ = V × H and rewrite our second order system as a first order vector
system. Defining, for � = (', ), � = (g, ℎ) ∈ V, the sesquilinear form

�(�, �) = �((', ), (g, ℎ)) = −⟨ , g⟩V + �1(', ℎ) + �2( , ℎ),

we can write our system for x(t) = (y(t), ẏ(t)) as

⟨ẋ(t), �⟩ℋ + �(x(t), �) = ⟨F (t), �⟩ℋ � ∈ V

where F (t) = (0, f(t)). This is formally equivalent to the system

ẋ(t) = Ax(t) + F (t)
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where A is given by

D(A) = {x = (', ) ∈ ℋ∣ ∈ V and A1'+A2 ∈ H} (40)

A =

(
0 I
−A1 A2

)
. (41)

We first note that � is V continuous. To see this, we observe that �1 and
�2 being V continuous implies

�1(', ℎ) ≤ 
1∣'∣V ∣ℎ∣V

and
�2(', ℎ) ≤ 
2∣ ∣V ∣ℎ∣V .

We also have ∣�∣2V = ∣'∣2V + ∣ ∣2V and ∣�∣2V = ∣g∣2V + ∣ℎ∣2V . Putting all of this
together, we have

∣�((', ), (g, ℎ))∣ ≤ ∣ ∣V ∣g∣V + 
1∣'∣V ∣ℎ∣V + 
2∣ ∣V ∣ℎ∣V
≤ ∣�∣V ∣�∣V + 
1∣�∣V ∣�∣V + 
2∣�∣V ∣�∣V
= (1 + 
1 + 
2)∣�∣V ∣�∣V .

This indeed implies that � is V continuous.
As � is V continuous, A is the negative of the restriction to D(A) of the

operator Ã ∈ ℒ(V,V∗) defined by �(�, �) = ⟨Ã�, �⟩V∗,V so that �(�, �) =
⟨−A�, �⟩ℋ for � ∈ D(A), � ∈ V.

12.2 Results for �2 V -elliptic

If both �1 and �2 are V -elliptic and �1 is the same as the V inner product,
then we have exactly the case of Kelvin-Voigt damping in Example 3. We
proved with these assumptions, � is V-elliptic. ( Actually, we proved �(⋅, ⋅)+
�0⟨⋅, ⋅⟩ℋ is V-elliptic.) Therefore, we have A is the infinitesimal generator
of an analytic semigroup (not of contractions) on ℋ.

Even if the V inner product and �1 are not the same, this result is true.
Since �1 is continuous, we have ∣�1(',')∣ ≤ 
1∣'∣2V while �1 is symmetric

(i.e. �1(', ) = �1( ,')) implies Re �1(',') = �1(','). Thus, �1 being
V -elliptic is equivalent to �1 is V -coercive: �1(',') ≥ �∣'∣2V . Hence, �1 and
the inner product are equivalent. We may thus define V1 as the space V with
�1 as inner product, obtaining a space that is setwise equal and topologically
equivalent to V . In the space ℋ1 = V1×H the operator A is now associated
with the V1 = V1 × V1-elliptic form �(1)(�, �) = ⟨−A�, �⟩ℋ1 that (as we
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argued in Example 6) satisfies the conditions of our theorem. Hence, A
generates an analytic semigroup in ℋ1 and hence an analytic semigroup in
the equivalent space ℋ.

Theorem 14 Let V ↪→ H ↪→ V ∗ and suppose that �1 and �2 of (39) are V
continuous and V -elliptic sesquilinear forms on V and that �1 is symmetric.
Then the operator A defined in (40) and (41) is the infinitesimal generator
of an analytic semigroup in ℋ = V ×H.

12.3 Results for �2 H-semielliptic

If �2 is not V -elliptic, then we will not, in general, obtain an analytic solution
semigroup for our system. We will obtain a C0 semigroup, but must work a
little more to obtain such. So assume that �2 is only H-semielliptic. Then
we have A defined in (40) and (41) is dissipative in ℋ1 since

Re ⟨Ax, x⟩ℋ1 = Re {�1( ,')− �1(', )− �2( , )}

= Re {�1(', )− �1(', )− �2( , )}

= −Re �2( , )

≤ −b∣ ∣2H

≤ 0.

To argue that A is a generator, we use the Lumer Phillips theorem; thus we
need to argue that for some � > 0, the range of �I −A is ℋ1. Thus, given
� = (g, ℎ) ∈ ℋ1, we wish to solve (�−A)� = � for � = (', ) ∈ D(A).

So we consider the equation

(�−A)(', ) = (g, ℎ) for (g, ℎ) ∈ V1 ×H.

This is equivalent to {
�'−  = g

� +A1'+A2 = ℎ.
(42)

If we formally solve the first equation for  = �' − g and substitute this
into the second equation, we obtain

�2'− �g +A1'+A2(�'− g) = ℎ
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or
�2'+A1'+ �A2' = ℎ+ �g +A2g. (43)

This equation must be solved for ' ∈ V1 ( and then  defined by  = �'−g
will also be in V1).

These formal calculations suggest that we define for � > 0 the associated
sesquilinear form on V × V → C

��(', ) = �2⟨', ⟩H + �1(', ) + ��2(', ).

Since �1 is V -elliptic and �2 is H-semielliptic we have

Re ��(',') = �2∣'∣2H + Re �1(',') + � Re �2(',')

≥ �2∣'∣2H + c1∣'∣2V + �b∣'∣2H

= �(�+ b)∣'∣2H + c1∣'∣2V

> c1∣'∣2V

for �̃ = �(� + b) > 0. Hence �� is V -elliptic and (43) is solvable for ' ∈ V
by Lax-Milgram. It follows that (42) is solvable for (', ) ∈ D(A), i.e.
ℛ(�−A) = ℋ1. Thus we have that A generates a contraction semigroup in
ℋ1 and a C0 semigroup in ℋ.

Theorem 15 Let V ↪→ H ↪→ V ∗ and suppose that �1 and �2 of (39) satisfy:
�1 is V -elliptic, V continuous and symmetric, �2 is V continuous and H-
semielliptic. Then A defined by (40) and (41) generates a C0 semigroup in
ℋ.

12.4 Stronger Assumptions for �2

If we strengthen the assumption on the damping form, we can obtain a
stronger result.

Theorem 16 Suppose �1 is V -elliptic, V continuous, and symmetric and
�2 is H-elliptic, V continuous, and symmetric.Then A is the infinitesimal
generator of a C0 semigroup T (t) in ℋ = V ×H that is exponentially stable,
i.e. ∣T (t)�∣ℋ ≤Me−!t∣�∣ℋ for ! > 0.
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To motivate the arguments used to establish this result, we consider for
! > 0 the change of dependent variable y(t)− e!tr(t) in the equation

ÿ +A2ẏ(t) +A1y(t) = 0. (44)

Upon substitution, we obtain

r̈(t) + Â2ṙ(t) + Â1r(t) = 0 (45)

where
Â1 = A1 − !A2 + !2I

Â2 = A2 − 2!I.

This suggests that we define the sesquilinear forms

�̂1(', ) = �1(', )− !�2(', ) + !2⟨', ⟩H

�̂2(', ) = �2(', )− 2!⟨', ⟩H

so that �̂i(', ) = ⟨Âi', ⟩V ∗,V , i = 1, 2, and the transformed variational
form of (44) is

⟨r̈(t), '⟩H + �̂1(r(t), ') + �̂2(ṙ(t), ') = 0

for ' ∈ V .
We observe that �̂1, �̂2 are continuous and �̂1 is symmetric since both �1

and �2 are. Since �2 is symmetric (hence �2(',') is real) and continuous
with �2(',') ≤ k2∣'∣2V , we have for ' ∈ V

Re �̂1(',') = �̂1(',')
= �1(',')− !�2(',') + !2∣'∣2H
≥ c1∣'∣2V − !
2∣'∣2V + !2∣'∣2H
≥ (c1 − !
2)∣'∣2V .

Hence �̂1 is V -elliptic if ! > 0 is chosen so that ! < c1

2

.
Moreover, we find that �̂2 is H-semielliptic if ! is chosen properly since

Re �̂2(',') = Re �2(',')− 2!∣'∣2H ≥ (b− 2!)∣'∣2H .

Therefore, �̂2 is H-semielliptic if ! < b
2 .

Thus, if we choose ! > 0 as ! = 1
2 min { b2 ,

c1

2
}, we find that �̂1 and �̂2

satisfy the assumptions of Theorem 15. By the arguments preceding that
theorem, we see that

Â =

(
o I

−Â1 −Â2

)
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(see 40 and 41) generates a contraction semigroup T̂ (t) on ℋ̂1 = V̂1 × H
where V̂1 is V taken with �̂1 as inner product (V̂1 is equivalent to V ).

Now let T (t) be the C0-semigroup generated by A (see (40), (41) and

Theorem 15). If x(t) =

(
y(t)
ẏ(t)

)
and w(t) =

(
r(t)
ṙ(t)

)
are solutions of

(44) and (45) respectively, we have x(t) = T (t)x0 where x0 =

(
y0

w0

)
and

w(t) = T̂ (t)w0. Since y(t) = e−wtr(t) and ẏ(t) = −wewtr(t) + ewtṙ(t), we
see that x(t) = ewtΓw(t) where

Γ =

(
1 0
−w 1

)
and w0 = Γ−1x0. It follows since ∣T̂ (t)∣ℋ̂1

≤ 1 that

∣T (t)x0∣ℋ̂1
≤ e−wt∣ΓT̂ (t)Γ−1x0∣ℋ̂1

≤ Me−wt∣x0∣ℋ̂1
.

Since ℋ̂1 and ℋ = V ×H are norm equivalent, we thus find that the semi-
group T (t) is exponentially stable in ℋ.
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13 Abstract Cauchy Problem

It is of interest to know when, and in what sense, solutions of the abstract
equations

ẋ(t) = Ax(t) + f(t)

x(0) = x0

(46)

exist. Moreover, representations of such solutions in terms of a variation
of parameters formula and the semigroup generated by A will play a fun-
damental role. We begin by summarizing results available in the standard
literature on linear semigroups and abstract Cauchy problems.

Consider the abstract Cauchy problem (ACP) given by(46) where A is
the infinitesimal generator of a C0-semigroup T (t) in a Hilbert space H. We
define a mild solution xm of (46) as functions given by

xm(t) = T (t)x0 +

∫ t

0
T (t− s)f(s)ds (47)

whenever this entity is well defined (i.e., f is sufficiently smooth).
We say that x : [0, T ] → H is a strong solution of (ACP) if x ∈

C([0, T ], H)
∩
C1((0, T ], H), x(t) ∈ D(A) for t ∈ (0, T ], and x satisfies (46)

on [0, T ].
We have the following series of results.

Theorem 17 If f ∈ L1((0, T ), H) and x0 ∈ H, there is at most one strong
solution of (46). If a strong solution exists, it is given by (47).

Theorem 18 If x0 ∈ D(A) and f ∈ C1([0, T ], H), then xm given by (47)
provides the unique strong solution of (46).

Theorem 19 If x0 ∈ D(A), f ∈ C([0, T ], H), f(t) ∈ D(A) for each t ∈
[0, T ] and Af ∈ C([0, T ], H), then (47) provides the unique strong solution
of (46).

Theorem 20 Suppose A is the infinitesimal generator of an analytic semi-
group T (t) on H. Then if x0 ∈ H and f is Hölder continuous (i.e. ∣f(t)−
f(s)∣ ≤ k∣t−s∣
 for some 
 ≤ 1), then xm of (47) provides the unique strong
solution of (46).

Unfortunately, all of these powerful results are too restrictive for use in
many applications, including control theory, where typically f(t) = Bu(t) is
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not continuous, let alone Hölder continuous on C1. For this reason, a weaker
formulation is more appropriate. For this, we follow the presentations of
Lions, Wolka, and Tanabe which are developed in the context of sesquilinear
forms and Gelfand triples, V ↪→ H ↪→ V ∗, where V,H, V ∗ are Hilbert spaces.

We define the solution space W(0, T ) by

W(0, T ) = {g ∈ L2((0, T ), V ) :
dg

dt
∈ L2((0, T ), V ∗)}

with scalar product

⟨g, ℎ⟩W =

∫ T

0
⟨g(t), ℎ(t)⟩V dt+

∫ T

0
⟨dg
dt

(t),
dℎ

dt
(t)⟩V ∗dt.

Then it can be shown that W(0, T ) is a Hilbert space which embeds contin-
uously into C([0, T ], H).

Assume � : V × V → C satisfies for ', ∈ V

Re �(',') ≥ c1∣'∣2V − �0∣'∣2H c1 ≥ 0, �0 real, for all ' ∈ V,

∣�(', )∣ ≤ 
∣'∣V ∣ ∣V for all ', ∈ V.

Then, as usual, we have A ∈ ℒ(V, V ∗) such that �(', ) = ⟨A', ⟩V ∗,V =
⟨−A', ⟩H where A is the densely defined restriction of −A to the set DA =
{' ∈ V ∣A' ∈ H}. We have moreover, that A is the infinitesimal generator
of an analytic semigroup T (t) on H. In fact, it turns out that −A is the
generator of an analytic semigroup T (t) in V,H and V ∗ and T (t) agrees
with T (t) on V and H.

We may consider solutions of (46) in the sense of V ∗, i.e., in the sense

⟨ẋ(t),  ⟩+ �(x(t),  ) = ⟨f(t),  ⟩V ∗,V for  ∈ V,
x(0) = x0.

(48)

By a strong solution of (46) in the V ∗ sense (weak or variational sense),
we shall mean a function x ∈ L2((0, T ), V ) such that ẋ ∈ L2((0, T ), V ∗) and
(48) (or equivalently ẋ(t)+Ax(t) = f(t)) holds almost everywhere on (0, T ).
Similarily, mild solutions xm ∈ V ∗ are given by the analogue of (47)

xm(t) = T (t)x0 +

∫ t

0
T (t− s)f(s)ds. (49)

We then have the fundamental existence and uniqueness theorem.

Theorem 21 Suppose x0 ∈ H and f ∈ L2((0, T ), V ∗). Then (48) has a
unique strong solution and this is given by the mild solution (49).
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Proof

Let {�i}∞1 ⊂ V be a linearly independent total subset of V . We define

the “Galerkin” approximations by xk(t) =
k∑
i=1

wi(t)'i where the coefficients

{wi} are chosen so that

⟨ẋk(t), 'j⟩H + �(xk(t), 'j) = ⟨f(t), 'j⟩V ∗,V (50)

for j = 1, . . . , k, satisfying the intial condition

xk(0) = xk0

where

xk0 =
k∑
i=1

wi0'i → x0

in H as k →∞. Equivalently, (50) can be written as

k∑
i=1

ẇi(t)⟨'i, 'j⟩+

k∑
i=1

wi(t)�('i, 'j) = Fj(t)

where Fj(t) = ⟨f(t), 'j⟩V ∗,V for j = 1, . . . , k. Therefore, w1, . . . , wk are
unique solutions to a vector ordinary differential equation system.

Now, multiplying (50) by wj and summing over j = 1, . . . , k, we obtain

⟨ẋk(t), xk(t)⟩H + �(xk(t), xk(t)) = ⟨f(t), xk(t)⟩V ∗,V

with xk(0) = xk0 → x0 in H. Therefore,

1

2

d

dt
∣xk(t)∣2H + �(xk(t), xk(t)) = ⟨f(t), xk(t)⟩V ∗,V . (51)

Integrating (51), we obtain

1

2
∣xk(t)∣2H −

1

2
∣xk(0)∣2H +

∫ t

0
�(xk(s), xk(s))ds =

∫ t

0
⟨f(s), xk(s)⟩V ∗,V ds.

Using the fact that � is V -elliptic, we have

1

2
∣xk(t)∣2H + c1

∫ t

0
∣xk(s)∣2V ds ≤

1

2
∣xk(0)∣2H +

∫ t

0
∣⟨f(s), xk(s)⟩V ∗,V ∣ds

≤ 1

2
∣xk(0)∣2H +

∫ t

0
(

1

4�
∣f(s)∣2V ∗ + �∣xk(s)∣2V )ds.
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Therefore,

1

2
∣xk(t)∣2H + (c1 − �)

∫ t

0
∣xk(s)∣2V ds ≤

1

2
∣xk(0)∣2H +

∫ t

0

1

4�
∣f(s)∣2V ∗ds (52)

or

1

2
∣xk(t)∣2H + (c1 − �)

∫ t

0
∣xk(s)∣2V ds ≤

1

2
∣xk(0)∣2H +

1

4�
∣f ∣2L2((0,t),V ∗).

This implies we have {xk} bounded in C((0, T );H) and in L2((0, T ), V ).
Since L2((0, T ), V ) is a Hilbert space, we can choose {xkn ∣xkn ⇀ x̃ ∈
L2(0, T )} to be a convergent subsequence of xk. Without loss of gener-
ality, we denote xkn by xk. Then x̃ is our candidate for a solution where
xk ⇀ x̃ in L2((0, T ), V ).

Now, let �(t) ∈ C1(0, T ) with �(T ) = 0 and �(0) = 0 and Ψj(t, ⋅) is
defined by Ψj(t, ⋅) = �(t)'j . Multiplying (50) by �(t) and integrating, we
have∫ T

0
(⟨ẋk(t), 'j⟩H�(t) + �(xk(t), 'j)�(t)− ⟨f(t), 'j⟩V ∗,V �(t)) dt = 0. (53)

Integrating by parts, we find that (53) becomes

−
∫ T

0
⟨xk(t), 'j⟩�̇(t)dt+

∫ T

0
�(xk(t), 'j)�(t)−

∫ T

0
⟨f(t), 'j⟩V ∗,V �(t)dt = 0.

We can now let k → ∞ and pass the limit through term by term to
obtain∫ T

0
−⟨x̃(t), 'j⟩�̇(t)dt+

∫ T

0
�(x̃(t), 'j⟩�(t)dt−

∫ T

0
⟨f(t), 'j⟩V ∗,V �(t)dt = 0,

(54)
holding for all 'j ∈ V . We can rewrite �(x̃(t), ')�(t) as Ax̃(t)Ψ and
⟨f(t), '⟩V ∗,V �(t) as f(Ψ).

Therefore, (54) becomes

⟨ d
dt
x̃(t),Ψ⟩V ∗,V + (Ax̃− f)Ψ = 0

where Ψ ∈ L2((0, T ), V ). We can also write dx̃
dt + Ax̃ − f = 0 in the

L2((0, T ), V )∗ sense. However, we have the following theorem.
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Theorem 22 Let X be a reflexive Banach space. Then

Lp((0, T ), X)∗ ∼= Lq((0, T ), X∗)

where 1
p + 1

q = 1, 1 < p <∞.

Relevant material can be found in [E].
Therefore, the solution exists in the L2((0, T ), V ∗) sense. To obtain

x̃(0) = x0, we may use the same arguments with � ∈ C1(0, T ), �(T ) = 0,
but �(0) ∕= 0.

To prove uniqueness of the solution, it suffices to argue that the solution
corresponding to x0 = 0, f = 0 is identically zero. With these specific values
for f and x0, (48) can be written as

⟨ẋ(t), '⟩V ∗,V + �(x(t), ') = 0, (55)

x(0) = 0.

Let ' = x(t). Then (55) becomes

1

2

d

dt
∣x(t)∣2H + �(x(t), x(t)) = 0.

Integrating by parts and using the V -ellipticity of �, we obtain

1

2
∣x(t)∣2H +

∫ t

0
c1∣x(s)∣2V ds ≤ 0.

Therefore, x(t) = 0. In other words, the solution is unique.
To show continuous dependence of the solution, define

x(⋅;x0, f) : (x0, f) ∈ H×L2((0, T ), V ∗)→ x ∈ L2((0, T ), V )
∩
C((0, T ), H).

Therefore, x ∈ L2((0, T ), V ∗).Taking the limits in (52) and using the prop-
erty that the norms are weakly lower semi-continuous, we obtain the follow-
ing relation:

1

2
∣x(t)∣2H + (c1 − �)

∫ t

0
∣x(s)∣2V ds ≤

1

2
∣x0∣2 +

1

4�

∫ t

0
∣f(s)∣2V ∗ds.

Recall (x0, f) → x is a linear map. Suppose (x0, f) → (0, 0) in the H ×
L2((0, T ), V ∗) sense. Then

sup
t

1

2
∣x(t)∣2H + (c1 − �)

∫ T

0
∣x(s)∣2V ds ≤

1

2
∣x0∣2H +

1

4�

∫ T

0
∣f(s)∣2V ∗ds
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where the right side (and hence the left side) goes to zero as (x0, f) → 0.
Therefore, x is continuous in C((0, T ), H), L2((0, T ), V ∗) and L2((0, T ), V ).

Finally, we want to prove the equivalence between this solution and the
mild solution given by (49). Claim: (x0, f)→ x(⋅, x0, f) is continuous from
H × L2((0, T ), V ∗) → L2((0, T ), V ∗). Let x(⋅, x0, f) be a weak solution.
Then x and xm are both continuous in the above sense. If two functions
agree on a dense subset of the whole set, then the solutions will agree on
the whole set. Therefore, if there is a dense subset of H × L2((0, T ), V ∗) in
which x and xm agree, then they will agree on the whole set.

Choose x0 ∈ DA and f ∈ C1((0, T ), H). Then Theorem 18 guaran-
tees that xm is the unique solution in the H sense. However, if xm is a
strong solution in the H sense, then it must also be a weak solution (i.e. a
strong solution in the V ∗ sense). However, the mild solution being unique
means xm(⋅, x0, f) = xvar(⋅, x0, f) for (x0, f) ∈ DA × C1((0, T ), H). But
DA × C1((0, T ), H) is dense in H × L2((0, T ), V ∗). Therefore, we have the
equivalence between the solutions.
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14 “Weak” or “Variational Form”

We consider the origin of the terms “weak or variational form” as opposed
to strong or closed form of PDE’s. We use the beam equation (Example 3)
to illustrate ideas.

Recall Example 6, the cantilever beam. This example, given in classical
form (which can be derived in a straight forward manner using force and
moment balance) is

�
∂2y

∂t2
+ 


∂y

∂t
+

∂2

∂�2

(
EI

∂2y

∂�2
+ cDI

∂3y

∂�2∂t

)
= f(t, �)

with boundary conditions

y(t, 0) = 0
∂y
∂� (t, 0) = 0

(56)

(
EI ∂

2y
∂�2

+ cDI
∂3y
∂�2∂t

)
∣�=l = 0

∂
∂�

[(
EI ∂

2y
∂�2

+ cDI
∂3y
∂�2∂t

)]
∣�=l = 0

(57)

and initial conditions
y(0, �) = Φ(�)
∂y
∂t (0, �) = Ψ(�)

To facilitate our discussions, we consider an undamped and unforced
version (i.e. 
 = cDI = 0, f = 0) of the above system. Rather than force
and moment balance, we consider energy formulations for the beam. For a
segment of the beam in [�, � + Δ�], one can argue that the kinetic energy
(at a given time t) is given by

KE = T =
1

2

∫ �+Δ�

�
�(
∂y

∂t
(t, s))2ds,

and hence the kinetic energy of the entire beam is given by

T =
1

2

∫ l

0
�ẏ2d�.

Similarly, the potential (or strain) energy U of the beam at any given time
t is given by

PE = U =
1

2

∫ l

0
EI(

∂2y

∂�2
)2d�.
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A fundamental tenant of the mechanics of rigid or elastic bodies is Hamil-
ton’s “Principle of Stationary Action” (often, in a misnomer, referred to as
Hamilton’s principle of “least action”) which postulates that any system
undergoing motion during a period [t0, t1] will exhibit motion y(t, �) that
provides the “least action” for the system with a stationary value. The
“Action” is defined by

A =
∫ t1
t0

(KE − PE)dt

=
∫ t1
t0

[T − U ]dt.

For the beam of Example 6, this means that the vibrations y(t, �) must
provide a stationary value to the action

A[y] =

∫ t1

t0

∫ l

0
[
1

2
�ẏ2 − 1

2
EI(y′′)2]d�dt.

Through the calculus of variations (a field of mathematics that was the
precursor to modern control theory), this leads to an equation of motion for
the vibrations y that the beam motion must satisfy.

To further explore this, we consider y(t, �) as the motion of the beam
and consider a family of variations y(t, �)+ ��(t, �) where � is chosen so that
y + �� is an “admissible variation”, i.e., y + �� must satisfy the essential
boundary conditions (56).

We define V = H2
L(0, l) = {' ∈ H2(0, l)∣'(0) = '′(0) = 0}. Let  ∈

C2(t0, t1) with  (t0) =  (t1) = 0. Then � ∈ N = {�∣� =  ',' ∈ V }
satisfies � is C2 in t, H2 in � with �(t0, �) = �(t1, �) = 0 and �(t, 0) =
�′(t, 0) = 0. Then by Hamilton’s principle, we must have that A[y + ��] for
� > 0, � ∈ N , must have a stationary value at � = 0. That is,

d

d�
A[y + ��]∣�=0 = 0.

Since

A[y + ��] =

∫ t1

t0

∫ l

0
[
1

2
�(ẏ + ��̇)2 − 1

2
EI(y′′ + ��′′)2]d�dt,

we find

0 =

∫ t1

t0

∫ l

0
[�ẏ�̇ − EIy′′�′′]d�dt (58)
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for all � ∈ N . We integrate by parts in the first term (with respect to t) to
obtain ∫ t1

t0

∫ l
0 �ẏ�̇d�dt = −

∫ t1
t0

∫ l
0 �ÿ�d�dt+

∫ l
0 �ẏ�d�∣

t=t1
t=t0

= −
∫ t1
t0

∫ l
0 �ÿ�d�dt

since �(t0, �) = �(t1, �) = 0. Since � has the form � =  ', equation (58) has
the form ∫ t1

t0

∫ l

0
[�ÿ'+ EIy′′'′′] d�dt = 0 (59)

for all  ∈ C2[t0, t1] with  (t0) =  (t1) = 0, and all ' ∈ V . Since this holds
for arbitrary  , we must have in the L2(t0, t1) sense∫ l

0
[�ÿ'+ EIy′′'′′]d� = 0 for all ' ∈ V.

In our former notation of Gelfand triples with V = H2
L(0, l) and H =

L2(0, l), this may be written

⟨�ÿ, '⟩V ∗,V + ⟨EIy′′, '′′⟩H = 0 for all ' ∈ V

in the L2(t0, t1) sense, which is exactly the “weak” or “variational” form of
the beam equation we have encountered previously. Note that in fact the
true variational form was given in (58); that is,∫ t1

t0

[−⟨�ẏ, '⟩ ̇ + ⟨EIy′′, '′′⟩ ]dt = 0

for all ' ∈ V and  ∈ C2[t0, t1] with  (t0) =  (t1) = 0. (See the proofs and
our remarks concerning solutions in the L2(t0, t1;V )∗ ∼= L2(t0, t1;V ∗) sense
in the well posedness (existence) results above.

We note that if the variational solution y has additional smoothness
so that y ∈ V

∩
H4(0, l) (more precisely EIy′′ ∈ H2(0, l)), then we can

integrate by parts twice (with respect to �) in the second term of (59) to
obtain in place of (59):∫ t1

t0

∫ l

0
[�ÿ'+ (EIy′′)′′'] d�dt+

∫ t1

t0

−(EIy′′)'′∣�=l�=0 dt

+

∫ t1

t0

(EIy′′)′'∣�=l�=0 dt = 0
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for ' ∈ V,  ∈ C2[t0, t1] with  (t0) =  (t1) = 0. This can be written∫ t1

t0

[∫ l

0
[�ÿ'+ (EIy′′)′′']d� +−EIy′′'′∣�=l + (EIy′′)′'∣�=l

]
 dt = 0

for arbitrary ' ∈ V . We note once again that this results in the strong or
classical form of the equations

�
∂2y

∂t2
+

∂2

∂�2
(EI

∂2y

∂�2
) = 0

with the essential boundary conditions

y(t, 0) = y′(t, 0) = 0

as well as the natural boundary conditions

EI
∂2y

∂�2
(t, l) =

∂

∂�
(EI

∂2y

∂�2
)(t, l) = 0

holding.

The weak or variational form may be thought of as Euler’s equations in
calculus of variations. If

J(y) =

∫
F (t, y, ẏ)dt,

then the condition
d

d�
J(y + ��)∣�=0 = 0

implies ∫
(Fy� + Fẏ�̇)dt = 0

which is the “true” Euler’s equation. If we assume enough smoothness and
integrate by parts, we obtain the strong form of Euler’s equation:

− d

dt
Fẏ(t, y, ẏ) + Fy(t, y, ẏ) = 0.

In other words,
∂F

dy
=

d

dt

∂F

dẏ

by applying duBois Raymond’s lemma given below.
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Lemma 1 (duBois Raymond’s Lemma)
If ∫

(f1� + f2�̇) = 0

for all �, then
d

dt
f2 = f1.

In other words, f1 is the distibutional derivative of f2.

In the derivation above, we assumed the undamped and unforced version
of the equation. In the case of the forced beam, we can add a conservative
force term W = fy in our derivation, and we will obtain the desired ⟨f, '⟩
term in our result. However, there is no known way to derive the weak
form with damping. In other words, Hamilton’s principle is essentially valid
for conservative forces, but it doesn’t conveniently handle nonconservative
forces (damping).
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15 Finite Element Approximations

We will now consider finite element approximations or Galerkin approxima-
tions for parabolic systems. Consider{

ẋ(t) = Ax+ F in V ∗ (H if possible)
x(0) = x0

(60)

where V ↪→ H ↪→ V ∗ is the usual gelfand triple. We can write the above
system in the weak or variational form as{

⟨ẋ(t), '⟩V ∗,V + �(x(t), ') = ⟨F (t), '⟩V ∗,V
x(0) = x0

for ' ∈ V . If � is V continuous and V -elliptic, and T (t) ∼ eAt, we can write

x(t) = T (t)x0 +

∫ t

0
T (t− �)F (�)d� (61)

where x ∈ L2(0, T ;V )
∩
C(0, T ;H) and ẋ ∈ L2(0, T ;V ∗). We can use this

formulation to give a nice treatment of finite element approximations of
Galerkin type.

In general, this is an infinite dimensional space; therefore, we want to
project the system into a finite dimensional space in which we can compute.
Let HN = span{BN

1 , B
N
2 , ..., B

N
N } ⊂ V be the approximation of H. The

idea is to replace (60) by{
ẋN (t) = ANxN (t) + FN (t) in HN

xN (0) = xN0

or equivalenty, replace (61) by

xN (t) = TN (t)xN0 +

∫ t

0
TN (t− �)FN (�)d�

where TN (t) ∼ eAN t.
One of the key constructs we need is PN : H → HN which is called the

orthogonal projection of H onto HN . In other words, PN is defined by

⟨PN'− ', ⟩ = 0 ∀ ∈ HN

or
∣PN'− '∣H = inf

 ∈HN
∣ − '∣H .
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We would like FN → F and xN0 → x0, so let’s take xN0 = PNx0 and
FN (t) = PNF (t). We also want AN ∈ ℒ(HN ) and AN ≈ A. However, we

have defined TN (t) = eA
N t and T (t) = eAt; therefore, if we had TN (t) →

T (t), then we would be done. This is considered in the Trotter-Kato theorem
which will be discussed later.

Now, to relate this to finite elements, let’s restrict

⟨ẋ(t), '⟩+ �1(x(t), ') = ⟨F (t), '⟩ ∀' ∈ V (62)

to HN ×HN . In other words, let

xN (t) =

N∑
j=1

wNj B
N
j

be a trial solution with

xN (0) =
N∑
j=1

wN0jB
N
j .

Plugging this into (62), we have

⟨
N∑
j=1

ẇNj (t)BN
j , '⟩+ �1(

N∑
j=1

wNj (t)BN
j , ') = ⟨F (t), '⟩ (63)

for ' ∈ HN . Let ' = BN
1 , B

N
2 , ...B

N
N . From this we obtain an N ×N vector

system for wN (t) = (wN1 , .., w
N
N )T given by

N∑
j=1

ẇN (t)⟨BN
j , B

N
i ⟩+

N∑
j=1

wNj (t)�(BN
j , B

N
i ) = ⟨F (t), BN

i ⟩ (64)

for i = 1, 2, ..., N .
Let’s define the mass matrix MN = (⟨BN

i , B
N
j ⟩), the stiffness matrix

KN = (�(BN
i , B

N
j )), and the column vector FN (t) = (⟨F (t), BN

i ⟩). Then
(64) becomes {

MN ẇN (t) +KNwN (t) = FN (t)
wN (0) = wN0

(65)

or {
ẇN (t) = −(MN )−1KNwN (t) + (MN )−1FN (t)
wN (0) = wN0

.
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Now considering wN0 , we have xN (0) = PNx0 which implies ⟨PNx0 −
x0, B

N
i ⟩ = 0 for i = 1, ..., N . However, xN0 =

∑N
j=1w

N
0jB

N
j . Therefore,

⟨
N∑
j=1

wN0jB
N
j − x0, B

N
i ⟩ = 0

for i = 1, ..., N which gives

N∑
j=1

wN0j⟨BN
j , B

N
i ⟩ = ⟨x0, B

N
i ⟩.

Let’s define wN0 = col(wN01, ..., w
N
0N ). Then we have

wN0 = (MN )−1col(⟨x0, B
N
i ⟩).

From this, our system for w becomes{
ẇN (t) = −(MN )−1KNwN (t) + (MN )−1FN (t)
wN0 = (MN )−1col(⟨x0, B

N
i ⟩)

However, we normally do not solve the system in this form. If ⟨Bi, Bj⟩ = 0
for i ∕= j, then MN is diagonal and the system of the form (65) is an easier
system with which to work. More generally, the (finite element) system is
solved in the form

MN ẇN (t) = −KNwN (t) + FN (t)

MNwN0 = col(⟨x0, B
N
i ⟩).
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16 Trotter-Kato Approximation Theorem

The Trotter-Kato Approximation Theorem is the functional analysis version
of the Lax Equivalence Principle used in finite difference approximation for
PDE’s which dates back to the 1960’s. The ideas of the Lax Equivalence
Principle is that “consistency” and “stability” are achieved if and only if we
have “convergence” of our system. If we have a PDE

utt = Au

and an approximation
uNtt = ANuN

then consistency refers to AN → A in some sense. Stability refers to ∣eAN t∣ ≤
Me!t, and convergence means eA

N t → eAt in some sense.
For relevant material, see [RM].
There are two different versions of the Trotter-Kato theorem which will

be considered. We will first consider the Operator Convergence form of the
Trotter-Kato theorem.

Theorem 23 Let X and XN be Hilbert spaces such that XN ⊂ X. Let
PN : X → XN be an orthogonal projection of X onto XN . Assume PNx→
x for all x ∈ X. Let AN , A be infinitesimal generators of C0 semigroups
SN (t), S(t) on XN , X respectively satisfying

(i) there exists M,! such that ∣SN (t)∣ ≤Me!t for each N

(ii) there exists D dense in X such that for some �, (�I − A)D is dense
in X and ANPNx→ Ax for all x ∈ D.

Then for each x ∈ X, SN (t)PNx→ S(t)x uniformly in t on compact inter-
vals [0, T ].

See Theorem 4.5 in Chapter 3 of Pazy.
Next, we will examine the Resolvent Convergence Form of the Trotter-

Kato theorem. This form is a modification of the previous form.

Theorem 24 Replace (ii) in the above theorem by (ĩi).

(ĩi) There exists � ∈ �(A)
∞∩
N=1

�(AN ) with Re(�) > ! so that R�(AN )PNx

→ R�(A)x for each x ∈ X.
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See Theorem 4.2,4.3,4.4 in Chapter 3 of Pazy. See also Theorem 1.14 of
[BK]. For convergence rates, see Theorem 1.16 of [BK].

For certain problems, it is not necessary for HN ⊂ dom(A) which carries
both the essential and natural boundary conditions. We may need to only
choose an appropriate approximation HN such that HN ⊂ V which carries
just the essential boundary conditions. If we restrict ourselves to first order
systems in the Gelfand triple V ↪→ H ↪→ V ∗ with HN ≈ V , then we have a
special case of the Trotter-Kato theorem.

Let the condition (C1) be denoted by
(C1) For each z ∈ V , there exists ẑN ∈ HN such that ∣z − ẑN ∣V → 0 as
N →∞.

Suppose � is V -elliptic, i.e. Re�(',') ≥ �∣'∣2V . Also assume � is V
continuous, i.e. ∣�(', )∣ ≤ 
∣'∣V ∣ ∣V . Let PN : H → HN be an orthogonal
projection. Then

∣PNz − z∣ = inf{∣zN − z∣H ∣zN ∈ HN}.

Under (C1), we have ∣PNz − z∣H ≤ ∣ẑN − z∣H ≤ ∣ẑN − z∣V → 0 as N →∞.
Therefore, under (C1), PNz → z for z ∈ H.

Now, we need to define AN . We have �(', ) = ⟨−A', ⟩H for ' ∈
dom(A) = { ∈ V ∣A ∈ H},  ∈ V where A is an infinitesimal generator
of a C0 semigroup of contractions on H, i.e. ∣eAt∣ ≤ 1. Let’s define AN

through the restriction of � to HN × HN . Therefore, AN : HN → HN is
defined by

�('N ,  N ) = ⟨−AN'N ,  N ⟩H 'N ,  N ∈ HN

= ⟨−A'N ,  N ⟩V ∗,V .

By V -ellipticity, we obtain AN is an infinitesimal generator of a contraction
semigroup on HN , i.e. ∣eAN t∣ ≤ 1.

Theorem 25 If � is V -elliptic, V continuous and (C1) holds, then

R�(AN )PNz → R�(A)z

in the V norm for z ∈ H and � = 0.

See [BI] for relevant material.
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Proof

Let z ∈ H, and take � = 0. Now define wN = R�(AN )PNz and w = R�(A)z
where �(', ) = ⟨−A', ⟩H , ' ∈ dom(A),  ∈ V . By definition, we have
w ∈ dom(A).

By (C1), there exists ŵN ∈ HN such that ∣ŵN − w∣V → 0 as N → ∞.
Let zN = wN − ŵN . We need to show zN → 0 in V .

Since R�(A) = (�I −A)−1,

�(w, zN ) = ⟨−AR�(A)z, zN ⟩H
= ⟨z, zN ⟩

and
�(wN , zN ) = ⟨−ANR�(AN )z, zN ⟩H

= ⟨z, zN ⟩.

Thus,
�∣zN ∣2V ≤ �(zN , zN )

≤ �(wN , zN )− �(ŵN , zN )
= �(w, zN )− �(ŵN , zN )
= �(w − ŵN , zN )
≤ 
∣w − ŵN ∣V ∣zN ∣V .

Therefore, we have �∣zN ∣V ≤ 
∣w− ŵN ∣V . However, ∣ŵN −w∣V → 0 implies
∣zN ∣V → 0.

Remark: Theorem 2.2 of [BI] is a parameter dependent version of this,
i.e. A = A(q), AN = AN (qN ), q, qN ∈ Q.

Theorem 26 Suppose � is V -elliptic, V continuous, and (C1) holds. Then
TN (t)PNz → T (t)z in the V norm for each z ∈ H uniformly in t on compact
intervals.

Proof

Let X = H,XN = HN , PN : H → HN be an orthogonal projection. Then
PNz → z for all z ∈ H by (C1). To obtain V convergence is a little more
work and more delicate (see Theorem 2.3 of [BI]).
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