
Applied geostatistics

Lecture 4 – Spatial prediction from point samples
(Part 1)

D G Rossiter
University of Twente.

Faculty of Geo-information Science & Earth Observation (ITC)

January 7, 2014

Copyright © 2012–4 University of Twente, Faculty ITC.

All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original

copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly

prohibited. To adapt or translate please contact the author (http://www.itc.nl/personal/rossiter).

http://www.itc.nl/personal/rossiter


Applied geostatistics – Lecture 4 1

Topics for this lecture

1. A taxonomy of spatial prediction methods

2. Non-geostatistical prediction

3. Introduction to Ordinary Kriging

Note: the derivation of the kriging equations is deferred to the next lecture.
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Commentary

Spatial prediction from point samples is one of the main practical applications of geostatistics – we

know the value of some attribute at some observation points, but we need to know it over an entire area –

i.e. we want to map it.

Prior to the introduction of sound geostatistical methods, contour maps were drawn by hand, using the

intuition / local knowledge of the mapper. These maps are often beautiful, but how realistic are they? With

geostatistical methods we have a firm basis for both prediction and assessing the quality of the result.
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Topic 1: A taxonomy of spatial prediction methods

Objective: to predict of the value of some attribute at an unsampled point based on
the values of that attribute at sampled points.

Prediction can be at:

� Selected points of particular interest;

� All points on a grid; the result is a map of the spatial field at the grid resolution

In both cases the predictions can be of:

� the points themselves, always with some specified support ;

� average values in blocks centred on points.

D G Rossiter
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By the way . . .

Sometimes it’s enough to predict at some unknown point – we don’t have to map an entire area. For

example, consider the problem of a village that wants to deepen their village well to reach a more relaible

groundwater supply. They only need to know the predicted depth of the groundwater table at that one point,

not over the whole district – the village isn’t about to move! So, we can use groundwater measurements at

‘nearby’ deep wells to predict the depth to which the village will have to dig.

D G Rossiter
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Interpolation vs. Extrapolation

Spatial prediction is often referred to as spatial interpolation, but strictly speaking:

� Interpolation: prediction at points that are geographically inside the convex hull of
the sample set;

� Extrapolation: prediction at points outside this geographic area.

Note: Predicting “just outside” the convex hull is, strictly speaking, extrapolation; however,
within the distance of the closest separation of observation points, it is as reliable as
interpolation.

Note: Some prediction methods give an estimate of their prediction error (e.g., Ordinary
Kriging), so we can judge if the extrapolation is reliable.

D G Rossiter
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Interpolation vs. Extrapolation from point samples

Soil samples, Swiss Jura
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To check your understanding . . .

Q1 : Suppose we have climate records for several stations in the western Dominican Republic (DR), but

none that we can access for Haiti, adjacent on the same island of Hispaniola. Would it be interpolation or

extrapolation to use the DR records to make a climate map of eastern Haiti, adjacent to the DR? Jump to

A1 •

Q2 : Would it be justified to use the DR records to map the climate of the easternmost 10 km of Haiti,

immediately adjacent to the DR? Why or why not? Jump to A2 •

Q3 : Would it be justified to use the DR records to map the climate of all of Haiti? Why or why not?

Jump to A3 •

D G Rossiter
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Commentary

So, we want to predict at unsampled locations. But how do we do this? There are many methods; the only

thing they all have in common is that they use the available data in some way.

Before entering into a detailed description of the most common methods, we first classify them into a

taxonomy, based on how they use the available data.

D G Rossiter
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A taxomomy of spatial prediction methods

Strata: divide area to be mapped into ‘homogeneous’ strata; predict within each
stratum from all samples in that stratum

Global: predictors: use all samples to predict at all points; also called regional
predictors;

Local: predictors: use only ‘nearby’ samples to predict at each point

geostatistical with an explicit model of local spatial dependence
non-geostatistical with an implicit model (built into the method, not estimated from

data)

Mixed: predictors: some of structure is explained by strata or globally, the residuals from
this are explained locally

D G Rossiter
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Commentary

The question that is always asked at this point is . . .

Which method is best?

And the answer is, as for so many other things in the messy real world . . .

It depends!

The key point is that we believe that there is some order in nature; there is some reason data values are as

we observe them. We try to model this structure, then use this model to predict. If the model is correct,

the prediction should be good.

D G Rossiter
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Which prediction method is “best”?

� There is no theoretical answer

� Depends on how well the approach models the ‘true’ spatial structure, and this is
unknown (but we may have prior evidence)

� The method should correspond with what we know about the process that created the
spatial structure

D G Rossiter
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Which prediction method is “best”? (continued)

� Check against an independent evaluation (“validation” dataset

* Mean squared error (“precision”) of prediction vs. actual (residuals)
* Bias (“accuracy”) of predicted vs. actual mean

� With large datasets, model with one part and hold out the rest for evaluation

� Cross-validation for small datasets with a modelled structure

These measures will be defined later.

D G Rossiter
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Commentary

We begin our exploration of prediction methods with prediction by stratification. This take no account
of the location of the samples, just their classification into strata as given in a map legend.

This model may be realistic and appropriate in some situations.

The key assumption with prediction by stratification is that there is no spatial dependence.

D G Rossiter
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Approaches to prediction (1): Strata

Not really spatial analysis, since spatial position is not used, but it does predict in
space.

� Example: Nutrient content in a field, since fields are treated as units in management

1. Stratify the landscape (e.g. by land use, geological formation . . . )

� It is common to use an existing class map to identify the strata.

2. Sample within strata according to non-spatial sampling theory

3. Analyze with non-spatial techniques, e.g. ANOVA

4. Each location in stratum has the same expected value and variance, based on
the sample from that stratum

D G Rossiter
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Prediction from strata

Rock types, Jura

Argovian

Kimmeridgian

Sequanian

Portlandian

Quaternary

Predicted Co concentration in topsoils, Jura

5.39

9.37

9.6

9.98

11.05

Strata Predictions
(also have within-strata prediction variances)
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By the way . . .

This is also called design-based prediction, which is opposed to geostatistical or model-based prediction,

since there is no model of spatial dependence.

The“design” refers to the probability sampling design which is necessary to get correct inferences.

See the excellent discussion in Brus, D.J., and J.J. de Gruijter. 1997. Random sampling or geostatistical

modelling? Choosing between design-based and model-based sampling strategies for soil (with Discussion).

Geoderma 80(1-2): 1–59.

D G Rossiter
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To check your understanding . . .

Q4 : Give an example of a stratification in your application area. What attributes are expected to be related

to the strata? Jump to A4 •

D G Rossiter
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Commentary

Other approaches to spatial prediction do consider the spatial location of the sample and prediction points.

We begin with a prediction method that uses all sample points to calibrate a model of regional trend,

which is then used to predict at unsampled points.

D G Rossiter
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Approaches to prediction (2): Global (Regional) Predictors

� These are also called trend surfaces

� The derivation of their mathematical form was covered in a previous lecture;
recall that the general polynomial trend surface of order p is:

f(x,y) =
∑

r+s≤p
βr ,sxrys

� The trend surface formula is a function of the coördinates; since every location as
coördinates we can predict at any and all locations from the formula.

* Example: clay35 = −0.0000251− 0.651 · UTM E− 0.000045 · UTM N

� That is, with any known x and y we can apply the formula to get z.

* Example: (UTM E = 680000,UTM N = 330000) =⇒ clay35 = 43.97%

D G Rossiter
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To check your understanding . . .

Q5 : Give an example of a regional trend in your application area. What attributes are expected to be

related to the trend? Jump to A5 •

D G Rossiter



Applied geostatistics – Lecture 4 21

Prediction with a trend surface
Second−order trend surface, clay content %, 0−10~cm layer

Sample points overprinted as post−plot
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Commentary

Strata are suitable to model processes that depend on the stratifying classes, and which have no
spatial structure.

Trend surfaces are suitable to model regional spatial processes.

Another kind of process is local; that is, whatever is causing a certain attribute value at a location is also

operating “nearby”. We now investigate these.

D G Rossiter
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Approaches to prediction (3): Local predictors

� No strata

� No regional trend

� Value of the attribute is predicted from“nearby” samples

* Example: concentrations of soil constituents (e.g. salts, pollutants)
* Example: vegetation density

D G Rossiter
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To check your understanding . . .

Q6 : Give an example of an attribute in your application area that you expect to have local spatial

dependence. Jump to A6 •

D G Rossiter
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Local predictors: Model-based or not?

� A predictor is called model-based or geostatistical if it requires a model of spatial
structure.

* The most common is some form of kriging; the geostatistical basis is the variogram
model, which models the assumed random field.

� Otherwise it is based on untestable assumptions about spatial dependence

* Example: inverse-distance weighted average
* Example: moving-window average
* Example: thin-plate splines

D G Rossiter
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Commentary

We’ve seen stratified, regional and local predictors; these correspond to three classes of processes.

Of course, nature is never so simple! An attribute may owe its spatial distribution to a combination of

processes; we then need a mixed predictor that somehow combines the predictor types.

D G Rossiter
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Approaches to prediction (4): Mixed predictors

� For situations where there is both long-range structure (trend) or strata and local
structure

* Example: Particle size in the soil: strata (rock type), trend (distance from a river),
and local variation in depositional or weathering processes

� One approach: model strata or global trend, subtract from each value, then model
residuals → e.g. Regression Kriging.

� Another approach: model everything together → e.g. Universal Kriging or Kriging
with External Drift

D G Rossiter
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Topic 2: Non-geostatistical prediction

Before looking at so-called “optimal” weighting (⇒ kriging) we examine various
non-geostatistical prediction methods.

These were widely-used before kriging was developed, and still are in some circumstances.

The advantage of these methods, compared to kriging, is that no model of spatial
dependence is required; there is no need to compute or model variograms.

One disadvantage is that there is no theory behind them, only assumptions.

The major disadvantage is that they are often based on invalid assumptions, in
particular spatial independence of the samples. So, the prediction may be incorrect
even in the expected value.

D G Rossiter
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Non-geostatistical stratified predictors

This was explained above; recall:

1. Stratify the landscape into “homogeneous” units; this is often on the basis of an
existing class map;

2. Sample within strata according to non-spatial sampling theory; so each
observation is identified with one stratum;

3. Each location to be predicted is in some stratum; it has the same expected
value and variance, based on the observations from that stratum

4. No information from any other stratum is used, except that the variance may be pooled.

5. The geographic locations of the prediction and observation points are
irrelevant.

D G Rossiter
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Commentary

The following page shows a stratification of the Meuse floodplain by the three flood frequency classes, and

then the predicted value at each point, based on the observations from that class:

Class N Mean

”1” 84 2.218

”2” 48 1.983

”3” 23 1.946

Note that there is no variability of the predictions within a stratum. This is the best we can do with

design-based methods.

Also, there is no spatial dependence; the computed means and variances assume this. This assumption is

rarely met! which is why this method is rarely valid.

D G Rossiter
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Flood frequency classes, Meuse floodplain

1
2
3

Lead concentration in topsoils, Meuse river floodplain
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Non-geostatistical Local Predictors

� Nearest neighbour (Thiessen polygons)

� Average within a radius

� Average of the n nearest neighbours

� Distance-weighted average within a radius

� Distance-weighted average of n nearest neighbours

These all have an implicit model of spatial structure; these are assumptions which
can not be tested.

D G Rossiter
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Local predictor (1): Nearest neighbour (Thiessen polygons)

� also known as a Voronoi mosaic, computed by a Delaunay triangulation

� Predict each point from its single nearest sample point

� Assumption: process is the same within each polygon and changes abruptly at the
borders

� Conceptually-simple, makes the minimal assumptions about spatial structure

� No way to estimate variance of the prediction error

� Ignores other ‘nearby’ information

� Maps show abrupt discontinuities at boundaries, so don’t look very realistic

� But may be a more accurate predictor than poorly-modelled predictors

D G Rossiter
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Commentary

The following figure shows the Thiessen polygons for the Jura soil sample data set (259 calibration points).

Each point within a polygon is predicted by the value of the nearest point, i.e. the point within the

polygon. These are shown as a postplot proportional to the lead content.

(Figure produced with the tripack package of the R environment for statistical computing.)

D G Rossiter
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Nearest-neighbours

Thiessen polygons (Voronoi mosaic)

Jura soil samples (blue points)
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Local predictor (2): Average within a radius

� Use the set of all neighbouring sample points within some radius r

� Predict by averaging :

x̂0 =
1
n

n∑
i=1

xi, d(x0,xi) ≤ r

� Assumption: process is the same within the circle, but there is random variation due
to a noisy process

* This can’t be true of overlapping circles!

� Although we can calculate variances from the neighbours, these assume no spatial
structure closer than the radius

� Problem: How do we select a radius?

D G Rossiter
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Local predictors (3): Distance-weighted average

� Inverse of distance of the point to be predicted to some set of n nearest-neighbours,
to some power k = 1,2 . . .

x̂0 =
n∑
i=1

xi
d(x0,xi)k

/
k∑
i=1

1
d(x0,xi)k

� k = 1: “inverse distance”, k = 2: “inverse distance squared”, etc.

� Assumption: process is a power model where the spatial correlation depends
inversely on distance

* This is like kriging with a power variogram model – except the spatial dependence
among the neighbours (known points) is not accounted for!

� Can select all points within some limiting distance (radius), or some fixed number of
nearest points, or . . . so, how to select radius or number and power objectively?

D G Rossiter
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Inverse distance vs. Ordinary Kriging

In the following slide we compare inverse distance (linear) to Ordinary Kriging (OK) with a
spherical model (range = 1150 m), to predict the base-10 log Cd concentration in soils in
the Meuse river floodplain in the southern NL.

Notice:

� OK gives a smoother map;

� Inverse distance shows small “islands” or “spots”; the size of these is controlled by the
power to which the inverse distance is raised.

� The “spots” are controlled by the observation points.

D G Rossiter
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Locally-adapted surfaces

� Another approach is to fit a locally-smooth surface to the observations, and then
interpolate at unobserved locations.

* Recall: a trend surface is global, i.e., best-fit to all observations.
* By contrast, a locally-smooth surface is the best-fit within some neighbourhood.

� The most common is thin-plate smoothing splines. These have been used especially
for modelling topography and rainfall:

References:

Hutchinson, M. F. (1995). Interpolating mean rainfall using thin plate smoothing splines.
International Journal of Geographical Information Science, 9(4), 385-403.

Mitasova, H., & Hofierka, J. (1993). Interpolation by regularized spline with tension: II.
Application to terrain modeling and surface geometry analysis. Mathematical Geology,
25(6), 657-669. doi:10.1007/BF00893172
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Thin-plate splines (left) vs. OK (right) interpolation, Jura cobalt
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Splines adapt locally, OK uses one model of spatial structure to determine weights
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Exercise

At this point you should do the first two sections of Exercise 4: Predicting from
point samples (Part 1) which is provided on the module CD:

� §2 Trend surfaces

� §3 Design-based prediction

These are short exercises and should take less than an hour.

As in all exercises there are Tasks, followed by R code on how to complete the task, then
some Questions to test your understanding, and at the end of each section the Answers.
Make sure you understand all of these.
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Topic 3: Ordinary kriging

The theory of regionalised variables leads to an“optimal”prediction method, in the sense
that the kriging variance is minimized.

This is based on the theory of random fields which was presented in a previous lecture.
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Optimal local interpolation: motivation

� Problems with Theissen polygons:

1. Abrupt changes at boundaries are an artifact of the sample spatial distribution
2. Only uses one sample point for each prediction; inefficient use of information

� Problems with average-in-circle methods:

1. No objective way to select radius of circle or number of points
2. Obviously false underlying assumption

� Problems with inverse-distance methods:

1. How to choose power (inverse, inverse squared . . . )?
2. How to choose limiting radius?

� Problems with thin-plate splines:

1. Purely empirical, no theoretical basis

. . .
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. . .

� In all cases:

1. uneven distribution of samples: over– or under–emphasize some sample areas
2. prediction variance (uncertainty of the prediction) must be estimated from a

separate evaluation dataset
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Commentary

These deficiencies in existing local interpolations were well-known.

The aim was to develop a linear predictor as a weighted average of the observations, with an objectively

optimal method of assigning the weights.

The theory for this developed several times (Kolmogorov 1930’s, Wiener 1949) but current practise dates back

to Matheron (1963), formalizing the practical work of the mining engineer Danie G Krige (RSA, 1919–2013).

In Krige’s honour these methods are called kriging (now with a small “k”); it should really be written as

“krigeing” (French krigeage) but it’s too late for that.
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Introduction to Ordinary Kriging (OK)

1. In what sense is OK “optimal”?

2. Derivation of the OK system of equations

3. Interpolation by kriging
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An “optimal” local predictor would have these features:

� Prediction is made as a linear combination of known data values (a weighted
average).

� Prediction is unbiased and exact at known points

� The prediction variance should be as small as possible.
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Implications

Satisfying the above will bring some important benefits over non-geostatistical predictors:

� Points closer to the point to be predicted have larger weights, according to the
modelled spatial dependence

� Clusters of points“reduce to” single equivalent points, i.e., over-sampling in a small
area can’t bias result

* automatically de-clusters

� Closer sample points“mask” further ones in the same direction

* Intuitively, the masked point gives no useful information

� Error estimate is based only on the spatial configuration of the sample, not the
data values
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Kriging

� A“Best Linear Unbiased Predictor” (BLUP) that satisfies a certain optimality
criterion (so it’s “best” with respect to the criterion)

� It is only “optimal” with respect to the chosen model and the chosen optimality
criterion

� Based on the theory of random processes, with covariances depending only on
separation (i.e. a variogram model)
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What is so special about kriging?

� Predicts at any point as the weighted average of the values at sampled points

* as for inverse distance (to a power)

� Weights given to each sample point are optimal, given the spatial covariance
structure as revealed by the variogram model (in this sense it is “best”)

* Spatial structure between known points, as well as between known points
and each prediction point, is accounted for.

* So, the prediction is only as good as the model of spatial structure.

� The kriging variance at each point is automatically generated as part of the process
of computing the weights.

* because this variance is used as an optimality criterion, it must be computed during
the kriging process, and can be saved along with the BLUP.

D G Rossiter



Applied geostatistics – Lecture 4 52

How do we use Kriging in practice?

1. Sample, preferably at different resolutions

2. Calculate the experimental variogram

3. Model the variogram with one or more authorized functions

4. Apply the kriging system of equations, with the variogram model of spatial
dependence, at each point to be predicted

� Predictions are often at each point on a regular grid (e.g. a raster map)
� These ‘points’ are actually blocks the size of the sampling support
� Can also predict in blocks larger than the original support

5. As part of the solution of the kriging system, calculate the variance of each prediction;
this is based only on the sample point locations, not their data values.

6. Display maps of both the predictions and their variances.
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Commentary

Kriging makes strong assumptions about the process that produced the attribute values; namely, a theory of

random fields, which was discussed in a previous lecture.

Each variety of kriging has different assumptions, but they all require a spatially-correlated random field
that can be modelled by a variogram.

Major differences with inverse-distance weighted prediction are:

1. the model can be estimated by variogram analysis and thus is semi-objective, based on the evidence of the

samples;

2. the inter-relation between sample points is modelled.
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Prediction with Ordinary Kriging (OK)

The most common form of kriging is usually called “Ordinary”. In OK, we model the value
of variable z at location xi as the sum z(xi) =m+ e(xi) of:

1. a regional mean m and

2. a spatially-correlated random component e(xi)

The regional mean m is estimated from the sample, but not as the simple average,
because there is spatial dependence. It is implicit in the OK system. This mean is
constant across the field, i.e. the expected value is the same and unknown; this is the
“Ordinary” situation.

The spatially-correlated random component e(xi) is estimated from the spatial
covariance structure as revealed by the variogram model.
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Ordinary Kriging (OK)

� The estimated value ẑ at a point x0 is predicted as the weighted average of the
values at all sample points xi:

ẑ(x0) =
N∑
i=1

λiz(xi)

� The weights λi assigned to the sample points sum to 1:

N∑
i=1

λi = 1

� Therefore, the prediction is unbiased with respect to the underlying random function Z:

E[Ẑ(x0)− Z(x0)] = 0
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What makes it “Ordinary” Kriging?

� The expected value (mean) is unknown, and must be estimated from the sample

* If the mean is known we have Simple Kriging (SK)
* We will see this in Regression Kriging (known mean of residuals is zero)

� There is no regional trend

* If so we use Universal Kriging (UK), see next lecture.

� There is no feature-space predictor, i.e. another attribute that helps explain the
attribute of interest

* If so we use Kriging with External Drift (KED) or Regression Kriging (RK),
see next lecture.
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Commentary

We defer the derivation of the OK variance, and from that the kriging equations, to the next lecture.

The important point here is that the kriging equations minimize the kriging variance at each point to

be predicted, so that OK is in that sense optimal, of course if the variogram model is correct.
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Ordinary kriging (OK) predictions for Meuse log(Cd)
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Variance of the OK prediction for Meuse log(Cd)
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Use of the kriging variance

One of the major advantages of kriging is that it produces both a prediction and its
variance. This can be used to:

� construct confidence intervals around the predicted value, and to

� compute the probability of exceeding any given threshold

These are particularly useful in risk assessment.
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Confidence intervals

The two-sided interval which has probability (1−α) of containing the true value
z(x0) is:

(ẑ(x0)− ζα/2 · σ) ≤ ẑ(x0) ≤ (ẑ(x0)+ ζα/2 · σ)

where:

� ẑ is the estimated value from OK;

� ζα/2 is the value of the standard normal distribution at confidence level α/2;

� σ is the square root of the prediction variance from OK;
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How realistic are maps made by Ordinary Kriging?

� The resulting surface is smooth and shows no noise, no matter if there is a nugget
effect in the variogram model

� So the field is the best at each point taken separately, but taken as a whole is not
a realistic map

* See topic 5 “Spatial simulation” in lecture 6

� The sample points are predicted exactly; the observations are assumed to be
without error, again even if there is a nugget effect in the variogram model

* Predicting at a grid point near to, but not exactly identical to, a sample point, will
indeed result in smoothing and a positive kriging variance.

* Block kriging does not have this problem, even if the block is centred on a sample
point.
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OK in a local neighbourhood

� In practice, the nearest few points contribute most of the weight . . .

� . . . so we can set up the kriging system locally with only a few points; then the solution
is rapid.

� Furthermore, this allows a local 1st-order stationarity rather than a global one; a
much weaker assumption

� Note that the same covariance structure (i.e. variogram) is used, so we still assume
global 2nd-order stationarity.

This is advocated by Goovaerts:

Goovaerts, P., 1997. Geostatistics for natural resources evaluation. Oxford University
Press, Oxford and New York.
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Implementing OK in a local neighbourhood

� With modern computers there is no problem with fairly large kriging systems (several
100’s of points)

� But we want to avoid giving negative weights to distant points

� Rule of thumb: use points out to the variogram range.

� But use a sufficient number of points.
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Commentary

This concludes the taxonomy of spatial prediction methods. In the next lecture we will see:

1. how the kriging equations are derived from optimality conditions, and

2. mixed predictors that use kriging for residual spatial dependence after accounting for a trend or

feature-space predictor
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Exercise

At this point you should do the last sections of Exercise 4: Predicting from point
samples (Part 1) which is provided on the module CD:

� §4 Ordinary kriging

This should take about an hour.

As in all exercises there are Tasks, followed by R code on how to complete the task, then
some Questions to test your understanding, and at the end of each section the Answers.
Make sure you understand all of these.

Then do the self-test at the end of Exercise 4.
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Answers

Q1 : Suppose we have climate records for several stations in the western Dominican Republic (DR), but

none that we can access for Haiti, adjacent on the same island of Hispaniola. Would it be interpolation or

extrapolation to use the DR records to make a climate map of eastern Haiti, adjacent to the DR? •

A1 : This is extrapolation, because we don’t have any points in the area to be predicted. Return to Q1 •

Q2 : Would it be justified to use the DR records to map the climate of the easternmost 10 km of Haiti,

immediately adjacent to the DR? Why or why not? •

A2 : Yes, because we expect that climate does not change much in 10 km. However this is not true if we

reach a radically-different climate zone because of topographic factors. Return to Q2 •

Q3 : Would it be justified to use the DR records to map the climate of all of Haiti? Why or why not? •

A3 : No, because we don’t expect climate to be consistent over 100’s of km. Return to Q3 •
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Answers

Q4 : Give an example of a stratification in your application area. What attributes are expected to be related

to the strata? •

A4 : (Depends on application). An example from soil survey: a stratification by landscape position along a

hillslope (summit, shoulder, backslope, footslope, toeslope) may be related the attribute“soil depth”, since the

stable positions (summit) and positions with accumulation from erosion (toeslope) should have deeper soils.

Return to Q4 •
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Answers

Q5 : Give an example of a regional trend in your application area. What attributes are expected to be

related to the trend? •

A5 : (Depends on application). An example from soil survey: the trend from E to W and N to S in the

Great Plains of the USA and Canada; soil organic carbon (SOC) decreases along this gradient in both

directions: E to W because of decreasing rainfall (less vegetative matter to contribute to the SOC), N to S

because of increasing temperatures (faster decomposition of organic matter). Return to Q5 •
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Answers

Q6 : Give an example of an attribute in your application area that you expect to have local spatial

dependence. •

A6 : (Depends on application). An example from soil survey: most soil physical and chemical properties at

field (plot) scale. Return to Q6 •

D G Rossiter
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