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Joseph Fourier (1768-1830): “... the first among the European scientists ...”
wote of him Giuseppe Lodovico Lagrangia (Joseph-Louis Lagrange).



Fourier’s memoir on the theory of heat (1807)



Solution of the heat equation ∂u
∂t

= ∂2u
∂x2 + ∂2u

∂y2



Fourier’s idea

Every 2π-periodic function f (t) (such as sin and cos) can be
represented as superposition of fundamental waves of different
frequency

f (t)
?
= a0 +

∞∑
n=1

(an cos(nt) + bn sin(nt)),

where

a0 =
1

2π

∫ 2π

0
f (t)dt,

an =
1

π

∫ 2π

0
f (t) cos(nt)dt,

ab =
1

π

∫ 2π

0
f (t) sin(nt)dt.



Complex Fourier series
From Euler’s formula

e it = cos(t) + i sin(t),

we deduce
I for a 2π-periodic function f (t) its Fourier series is

f (t)
?
=

1

2π

+∞∑
n=−∞

f̂ne int

I with Fourier coefficients

f̂n =

∫ 2π

0
f (t)e−intdt

I The functions {e int : n ∈ Z} are orthonormal (we will see in a
moment ...) with respect to the scalar product

〈f , g〉 =
1

2π

∫ 2π

0
f (t)g(t)dt.



Scalar product

Let H be a vector space. A scalar product 〈u, v〉 is a map from
H×H and values in C such that

(i) 〈au + bv , z〉 = a〈u, z〉+ b〈v , z〉 for all u, v , z ∈ H and
a, b ∈ C.

(ii) 〈u, v〉 = 〈v , u〉 for all u, v ∈ H.

(iii) 〈u, u〉 ∈ R, 〈u, u〉 ≥ 0 for all u ∈ H and 〈u, u〉 6= 0 if u 6= 0.

A Hilbert space is a vector space H endowed with the scalar
product 〈u, v〉, which is also complete w.r.t. the norm
‖u‖H := 〈u, u〉1/2.



Examples

I Let Ω ⊂ Rn. The vector space
L2(Ω) = {f : Ω→ C|

∫
Ω |f |

2dx <∞} is a Hilbert space with
the scalar product

〈u, v〉 =

∫
Ω

u(x)v(x)dx .

I Let Ωd ⊂ Zn. The vector space
`2(Ωd) = {f : Ωd → C|

∑
k∈Ωd

|f (k)|2 <∞} is a Hilbert
space with the scalar product

〈u, v〉 =
∑
k∈Ωd

u(k)v(k).

In particular if |Ωd | = d <∞ then `2(Ωd) = Cd .



Spazi di Hilbert e basi ortonormali

A set {uα}α∈A is orthonormal in H if 〈uα, uβ〉 = δα,β where δ·,· is
the Kronecker symbol.

Theorem (Fourier)

Let {uα}α∈A be an orthonormal set. Then the following conditions
are equivalent:

(i) x =
∑

α∈A〈x , uα〉uα for all x ∈ H.

(ii) (Parseval identity) 〈x , y〉 =
∑

α∈A〈x , uα〉〈y , uα〉 for all
x , y ∈ H.
If x = y then it holds ‖x‖2

H =
∑

α∈A |〈x , uα〉|2

(iii) (Completeness) If x ∈ H and if 〈x , uα〉 = 0 for all α, then
x = 0.

Zorn’s lemma implies:

Theorem
Every Hilbert space has an orthonormal basis.



Again on the trigonometric series

The set { 1√
τ

e2πint/τ : n ∈ Z} is an orthonormal basis for the

Hilbert space H = L2(0, τ) for any τ > 0. Orthogonality:

〈 1√
τ

e2πint/τ ,
1√
τ

e2πimt/τ 〉 =
1

τ

∫ τ

0
e2πint/τe2πimt/τdt

=
1

τ

∫ τ

0
e2πi(n−m)t/τdt

=

∫ 1

0
e2πi(n−m)tdt = δm,n.
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Partial Fourier series of f (t) = t − btc.



1873: Paul du Bois-Reymond (1831-1889) constructed (discovered?) a
continuous function whose Fourier series diverges in a point: it has form

f (t) = A(t) sin(ω(t)t) for a certain A(t)→∞ e ω(t)→∞.



1903: Lipót Fejér (1880-1959) proved the convergence of the sum in the
Cesàro sense (convergence of the means of the partial sums) of the Fourier

series of continuous functions.



Henri Lebesgue (1875-1941) establishs the convergence in the square (mean)
norm L2 of the Fourier series of square summable/integrable functions on

[0, 2π].



1923/1926: Andrey Kolmogorov (1903-1987), at age 21 (!), constructs a
summable/integrable function, i.e., it belongs to the Lebesgue space L1, whose

Fourier series diverges almost everywhere!



1966: Lennart Carleson (1928-, Abel Prize 2006) proved that the series of a
square summable function, i.e. it belongs to the Lebesgue space L2, converges

almost everywhere!



Time-invariant linear operators

I We consider a function u → g(u) for u ∈ R.

I Define a time-invariant linear operator L : g → Lg by means
of the convolution product

Lg(u) = (f ∗ g)(u) =

∫ +∞

−∞
f (t)g(u − t)dt.

I Here the function f = Lδ0 is also called impulse response of L
to the Dirac δ0.



Fourier transform

I g(t) = e iωt is an eigenfunction (gen. eigenvector) of L

Lg(u) =

∫ +∞

−∞
f (t)e iω(u−t)dt = f̂ (ω)g(u).

I The eigenvalue

f̂ (ω) =

∫ +∞

−∞
f (t)e−iωtdt,

is the so-called Fourier transform of f in ω ∈ R.

I The value f̂ (ω) is larger f (t) the more similar f is to the
complex wave e iωt = cos(ωt) + i sin(ωt) on a (of) large
(measure) set.



Inverse Fourier transform and the convolution

I A reconstruction formula for f from its Fourier transform is

f (t)
?
=

1

2π

∫ +∞

−∞
f̂ (ω)e iωtdω.

I Exercise: prove under suitable condition of summability of f
and g that one has

f̂ ∗ g(ω) = f̂ (ω)ĝ(ω),

per ogni ω ∈ R.
Hint: use (the formula of the inverse Fourier transformation
for g and) Fubini-Tonelli theorem, which allows for
exchanging sequence of integrals (just give it for granted).

I Exercise: prove the (new) Parseval’s identity

〈f , g〉 =

∫ +∞

−∞
f (t)g(t)dt =

1

2π

∫ +∞

−∞
f̂ (ω)ĝ(ω)dω.



Fourier transform as a limit from the interval

Let f ∈ L2(−ωπ, ωπ) a square summable/integrable function on
(−ωπ, ωπ). By the Fourier theorem

f =
∑
n∈Z

〈f , 1√
2ωπ

e in·/ω〉 1√
2ωπ

e int/ω =
1

2ωπ

∑
n∈Z

(∫ ωπ

−ωπ
f (ω)e−inω/ωdω

)
e int/ω.

What happens (formally) if we let ω →∞? The last sum is in
fact a Riemann sum. This makes us thinking that if f is
summable/integrable over R then we could in fact write something
like

f (t) = lim
ω→∞

f (t)χ[ωπ,−ωπ](t)

?
= lim

ω→∞

∑
n∈Z
〈f , 1√

2ωπ
e in·/ω〉 1√

2ωπ
e int/ω

?
=

1

2π

∫
R

(∫
R

f (ξ)e−iξωdξ

)
e itωdω.



What’s the meaning of the Fourier transform?

What’s the meaning of the Fourier transform? For what is it
useful?

I The Fourier transform represents the frequency content of a
function/signal. It tells us which are the important oscillatory
constituents of a signal and their distinctive frequencies of
oscillation.

I The “fortune” of Fourier analysis relies essentially on the fact
that it is able to describe one of the fundamental and most
frequent phenomena in nature: the oscillatory phenomena,
many of which are rules by superpositions of laws of the type:

yα,s0(t) =

{
e−αte2πis0t , t > 0
0, t < 0.

I The Fourier transform of yα,s0(t) is called Lorentzian.



Significato della trasformata di Fourier

I For examples, when molecules are hit by an electromagnetic
radiation, some damped overlapping oscillations are induced
as described by the law yα,s0(t).

I Each molecule constituent has its own distinctive and unique
oscillation. the Lorentzians are then called molecular
spectrum.

I From these observations comes the idea which led to the
Nobel prize to Richard Ernst1 for chemistry (1991) for the
development of a powerful tool for determining the molecular
structure of complex organic molecules.

1He holds a Honorary Doctorate from the Technical University of Munich



1949: Claude Elwood Shannon (1916-2001) proves that a band-limited
function can be recostructed from its samples and this observation is at the

basis of our modern digital technology.



Analog and digital: Shannon’s sampling theorem

Perhaps one of the most relevant applications of the Fourier
transform is the analog↔digital conversion. A function f is called
ω-band-limited if its Fourier transform f̂ has compact support
contained in the interval [−ωπ, ωπ] for ω > 0.

Theorem (Whittacker-Shannon). If f ∈ L2(R) is
ω-band-limited, then for all 0 < τ ≤ ω−1

f (t) =
∑
n∈Z

f (τn) sinc(τ−1t − n),

ove

sinc(t) =
sin(πt)

πt
.



Analog and digital: Shannon’s sampling theorem

Proof. Since supp(f̂ ) ⊂ [−ωπ, ωπ], for the Fourier Theorem

f̂ (ω) = f̂ (ω)χ[−ωπ,ωπ](ω)

=
1

2ωπ

∑
n∈Z
〈f̂ χ[−ωπ,ωπ], e

in·/ω〉e inω/ωχ[−ωπ,ωπ](ω)

By applying the inverse Fourier transform

1

2ωπ
〈f̂ χ[−ωπ,ωπ], e

in·/ω〉 =
1

2ωπ

∫ ∞
−∞

f̂ (ω)e−inω/ωdω

=
1

ω
f
(
− n

ω

)
.

The characteristic function χ[−1,1] of the interval [−1, 1] has
Fourier transform

χ̂[−1,1](t) = 2
sin(t)

t
.



Analog and digital: Shannon’s sampling theorem

Proof continues ...
The inverse Fourier transform of e inω/ωχ[−ωπ,ωπ](ω) is given by

ˇe in·/ωχ[−ωπ,ωπ](t) =
1

2π

∫ ∞
−∞

χ[−ωπ,ωπ](ω)e i(t+n/ω)ωdω

ω↔πωξ
=

ω

2

∫ ∞
−∞

χ[−1,1](ξ)e iπω(t+n/ω)ξdξ

= ω
sin(πω(t + n/ω))

πω(t + n/ω)

Hence, we have

f (t) =
∑
n∈Z

f
(
− n

ω

) sin(πω(t + n/ω))

πω(t + n/ω)

=
∑
n∈Z

f
( n

ω

)
sinc(ωt − n)



Analog and digital scalar product
With similar techniques to prove Shannon’s sampling theorem, one
can prove (difficult exercise!):

Theorem (“Plancherel” for band-limited frunctions). If
f , g ∈ L2(R) are both ω-band-limited, then for all 0 < τ ≤ ω−1 we
have the identities∫ ∞

−∞
f (t)g(t)dt = τ

∑
n∈Z

f (τn)g(τn) =
1

2π

∫ ∞
−∞

f̂ (ω)ĝ(ω)dt.

Meta-Corollary (“Plancherel” for nearly band-limited
frunctions). if f , g ∈ L2(R) ∩ C (R) are both functions which are
NEARLY ω-band-limited, then for 0 < τ ≤ ω−1 we have the
approximations∫ ∞

−∞
f (t)g(t)dt ≈ τ

∑
n∈Z

f (τn)g(τn) ≈ 1

2π

∫ ∞
−∞

f̂ (ω)ĝ(ω)dt.

The entity of the (aliasing) approximation depends on the “tails”
of the Fourier transforms f̂ , ĝ out of the compact [−πτ−1, πτ−1].



Operators of traslation, modulation and dilation

From the proof of Shannon’s sampling theorem, we learned that
there are fundamental operators, which are in a sort of duality
(commutation rules) with respect to the Fourier transform. We
define the operators of translation and modulation

Tt0f (t) := f (t − t0), Mω0f (t) = f (t)e iωt , t0, ω0 ∈ R,

and the dilation

Daf (t) :=
1

|a|1/2
f (t/a), a ∈ R+.

They satisfy the commutation rules:

T̂t0f (ω) = M−t0 f̂ (ω), M̂ω0f (ω) = Tω0 f̂ (ω), D̂af (ω) = Da−1 f̂ (ω)



The discrete Fourier transform (DFT)

I In the space `2(Zn) = Cn (of the signals/vectors of n complex
values) ( 1√

n
(e2πik`/n)`∈Zn)k∈Zn is an orthonormal basis,

Zn = Z/nZ
I In fact, one can prove (exercise by induction!) that

1 + z + z2 + · · ·+ zn−1 =

{
n, z = 1
(zn − 1)/(z − 1), otherwise.

But then it is not hard to show that for z = e2πi(k−l)/n we
have

〈 1√
n

(e2πikl/n)l∈Zn ,
1√
n

(e2πilm/n)m∈Zn〉 =
1

n

n−1∑
m=0

e2πim(k−l)/n = δk,l .



The discrete Fourier transform (DFT)

I For the Fourier Theorem any signal/vector f of length n can
be written:

f =
1

n

n−1∑
k=0

f̂(k)(e2πik`/n)`∈Zn ,

where

f̂(k) =
1√
n
〈f, (e2πik`/n)`∈Zn〉 =

1√
n

n−1∑
`=0

f(`)e−2πik`/n,

define the components of the signal/vector discrete Fourier
transform (DFT) f̂ of f.



Complexity of a “naive” computation of DFT

I Assuming that an operation equals a sum or a multiplication,
then the number of ops of a DFT is 2n sums and
multiplications for n times, i.e., 2n2.

I Each complex operation costs double of a single real, the total
computational cost is C(DFT )(n) = 4n2.

I Today a PC is able to execute 3× 109 ops/sec and therefore
it’s able to produce a DFT of a signal of length n = 1000 in

4 · 10002 · 1

3× 109
= 0.0013 sec .

Already for a signal of length n = 1024× 1024 = 220 the cost
is 1466.02 sec.

I A simple digital image can be larger than n = 220 without
difficulty.



1805: Carl Friedrich Gauss (1777-1855) invents the Fast Fourier Transform in
its study of the interpolation of the trajectories of the asteorids 2

Pallas/Pallade and 3 Juno/Giunone; James Cooley and John Tukey
re-invent/discolver the algorithm in 1965.



Operators of traslation, modulation, upsampling,
duplication

Given a signal/vector f ∈ Cn of length n, we define the operator of
translation

Tmf(k) = f(k −m), m ∈ Zn.

and the modulation operator

Mmf(k) = e2πimk/nf(k), m ∈ Zn.

Moreover we define also the upsampling and duplication operators
by

Uf(h) =

{
f(h/2), mod(h, 2) = 0
0, altrimenti,

Df(h) =
1

2
(f, f)(h),

for h ∈ Z2n. The action of the DFT on these operators yields new
commutator rules

T̂mf(k) = M−m f̂(k), M̂mf(k) = Tm f̂(k), Ûf(h) = D f̂(h).



Synthesis of a signal

Let’s consider a signal of legnth n = 22 = 4 given by
f = (f0, f1, f2, f3). Let us see how to assemble f from the single fi

f0 f2 f1 f3

↓ U ↓ U ↓ U ↓ U
(f0, 0) (f2, 0) (f1, 0) (f3, 0)
↓ I ↓ T−1 ↓ I ↓ T−1

(f0, 0) (0, f2) (f1, 0) (0, f3)
↘ ↓ ↓ ↙

(f0, f2) (f1, f3)
↓ U ↓ U

(f0, 0, f2, 0) (f1, 0, f3, 0)
↓ I ↓ T−1

(f0, 0, f2, 0) (0, f1, 0, f3)
↘ ↙

f



The algorithm of the Fast Fourier Transform (FFT)
Noted that f̂i = fi for all i = 0, ...fn−1 by applying the DFTto the
previous diagram and substituting U,T−1, resp. D,M1 as given by
the commutator rules, we generate a recursive algorithm to
compute the DFT:

f0 f2 f1 f3

↓ D ↓ D ↓ D ↓ D
(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)
↓ I ↓ M1 ↓ I ↓ M1

(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗)
↘ ↓ ↓ ↙

(∗, ∗) (∗, ∗)
↓ D ↓ D

(∗, ∗, ∗, ∗) (∗, ∗, ∗, ∗)
↓ I ↓ M1

(∗, ∗, ∗, ∗) (∗, ∗, ∗, ∗)
↘ ↙

f̂



Complexity of the Fast Fourier Transform (FFT)
Assume C(I ) = C(D) = 0 . The cost of M1 on a vector of length `
is `− 1. We assume n = 2m. Starting from the bottom of the
diagram, we execute only one M1 and therefore a cost of
20( n

20 − 1). This cost has to be summed up with that of the higher
level, where we need to execute 2(n2 − 1) operations corresponding
to 2 times M1 on vectors of half length. And so on, for a total cost
of

C(FFT )(n) =
m−1∑
k=0

2k(
n

2k
− 1)

=
m−1∑
k=0

(
2m − 2k

)
= m2m − 2m + 1 = n log2(n)− n + 1.

Hence a modern PC is able to produce an FFT of a signal of
length n = 220 in

(22020− 220 + 1) · 1

3× 109
= 0.0066 sec,

versus the 1466.02 sec which we would expect from the DFT!
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Noisy sinusoidal signal and its Fourier Transform
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A digital image and its Fourier Transform



Smothness in time = decay in frequency (and vice versa)
A function f (t) is many times differentiable if f̂ (ω) tends rapidly
to 0 for |ω| → ∞.

Theorem. Let r ≥ 0. If∫ +∞

−∞
|f̂ (ω)|(1 + |ω|r )dω <∞,

then f (t) is differentiable r times.

Since a flipped function is essentially the Fourier transform of its
Fourier transform

f (−t)=
1

2π

∫ +∞

−∞
f̂ (ω)e−iωtdω = ˆ̂f (t).

then the theorem can be re-formulated for f ↔ f̂ .



Singularity in time and loss of localization in frequency
(and vice versa)

I The decay of f̂ depends on the worst singular behavior of f
I The characteristic function [−1, 1]

f (t) =

{
1 t ∈ [−1, 1]
0 otherwise.

has Fourier transform

f̂ (ω) = 2
sin(ω)

ω
,

which has a slow decay (because of the “jumps” of f at
t = −1, 1).



Time-frequency localization

I e iωt has “morally” the Dirac impulse δω as Fourier transform,
hence it’s very localized in frequency (an impulse is totally
localized in ω) but it’s not localized in time.

I A time delay of f is not perceived by |f̂ (ω)|
I In order to study transients, time-dependent phenomena, it

would be better to substitute e iωt with functions g(t) better
localized both in time and frequency

I Can g(t) and ĝ(ω) have simultaneously small support or
decay rapidly?



Heisenberg uncertainty principle I

I Assume ‖g‖2
2 =

∫ +∞
−∞ |g(t)|2dt = 1, so that |g(t)|2 is a

probability density

I Plancherel: ‖ĝ‖2
2 =

∫ +∞
−∞ |ĝ(ω)|2dω = 2π (one gets it from

Parseval)

I The mean value at t

µt =

∫ +∞

−∞
t|g(t)|2dt

I The variance around µt

σ2
t =

∫ +∞

−∞
(t − µt)2|g(t)|2dt.



Heisenberg uncertainty principle I

I The mean value in ω

µω =
1

2π

∫ +∞

−∞
ω|ĝ(ω)|2dt

I The variance around µω

σ2
ω =

1

2π

∫ +∞

−∞
(ω − µω)2|ĝ(ω)|2dt.

Theorem. (Heisenberg (1927))

σt · σω ≥
1

2

Theoretical limit of simultaneous localization in time and frequency.



Heisenberg uncertainty principle II

Proposition (Heisenberg uncertainty principle for compactly
supported functions).
If 0 6= f ∈ Cc(R) then its Fourier transform f̂ cannot have
compact support as well.

Proof. If f ∈ Cc(R) then f̂ is an analytic function (as it has
infinitely many derivatives suitably bounded). But a nonzero
analytic function has at most countable number of zeros, hence it
cannot have compact support.



Werner Heisenberg (1901-1976, Nobel prize in physics 1932)



Gabor atoms

The minimal uncertainty σt · σω = 1
2 is obtain only for so-called

Gabor atoms
g(t) = ae−bt

2

for a, b ∈ C and their time-frequency shifts

gt0,ω0(t) = g(t − t0) · e iω0t ,

obtained translating in time of t0 and modulating in frequency of
ω0.



Dennis Gabor (1900-1979, Nobel prize in physics 1971)



Time-frequency support
The correlation of f and g

〈f , g〉 =

∫ +∞

−∞
f (t)g(t)dt =

1

2π

∫ +∞

−∞
f̂ (ω)ĝ(ω)dω.

depends on f and f̂ in (t, ω) where g and ĝ are not too small.



Short-time Fourier Transform (STFT)
I Gabor introduced in 1946 the short-time Fourier transform

Vg (f )(t0, ω) =

∫ +∞

−∞
f (t)g(t − t0) · e−iω0tdt

and proves the reconstruction of (audio signals) f by means of
the inversion formula

f (t)
?
=

1

‖g‖2
2

∫ +∞

−∞

∫ +∞

−∞
Vg (f )(t0, ω)g(t − t0) · e iω0tdt0dω0,

it is in relationship with our way of perceiving sounds.
I He further conjectured that for a = ∆t, b = ∆ω > 0

gak,b`(t) = g(t − ak)e ib`t , k , ` ∈ Z, (a · b ≤ 2π(?))

can build an orthonormal basis for L2(R), for which, by the
Fourier Theorem, we would have

f =
∑
k,`∈Z
〈f , gak,b`〉gak,b`.



Time-Frequency Analysis



Balian and Low theorem
I Such an orthonormal basis would produce morally a covering

of the time-frequency plane for translations g congruent with
the “Heinsenberg box” of by integer multiples of
a = ∆t, b = ∆ω > 0.

I Roger Balian and Francis Low proved independently (around
1981) that an orthonormal basis cannot be obtained in this
way by a function which is both localized and smooth.



Roger Balian (1933-) and Francis Low (1921-2007)



Heisenberg uncertainty principle III
Proposition (Weak uncertainty principle). Let
‖f ‖2

2 = ‖g‖2
2 = 1, U ⊂ R× R and C > 0, such that∫

U
| Vg (f )(t, ω) |2 dtdω ≥ C .

Then |U| ≥ C .
Proof. By Cauchy-Schwarz | Vg f (a, b) |≤ 1. Hence

C ≤
∫ ∫

U
| Vg f (t, ω) |2 dtdω ≤ ‖Vg f ‖2

∞|U| ≤ |U|. .

I Because of uncertainty principle, if we use a “window”
function g with large support, then Vg (f ) will have a good
resolution in high frequency. In fact ĝ will be highly localized.

I Vice versa if g is very localized, Vg (f ) will be have a good
resolution in time and at low frequencies, but it would be
blurred at high frequencies.



Jean Morlet (1931-2007)



Jean Morlet

I He worked in the ‘70s as geophysicist at the French company
Elf-Aquitaine.

I He dealt with numerical processing of seismic signals in order
to get information on geological layers.

I He found that the resolution at high frequency of the STFT is
too rough to resolve the thin interfaces between layers.

I In 1981 he proposed to dilate (shorten the length) of a factor
a0 > 1 to translate of t0 a mother window function ψ

ψ

(
t − t0

a0

)
,

of constance shape of a wavelet.

I Balian suggested to Morlet the collaboration with Alexandre
Grossmann of Marseille.



Alexandre Grossmann (1930-)



Again operators of translation, modulation, and dilation

We already introduced

Tt0f (t) := f (t − t0), Mω0f (t) = f (t)e iωt , t0, ω0 ∈ R.

With these operators we can define the STFT

Vg (f )(t0, ω0) = 〈f ,Mω0Tt0g〉 =

∫ +∞

−∞
f (t)Mω0Tt0g(t)dt.

Morlet proposed to introduce the dilation

Daf (t) :=
1

|a|1/2
f (t/a), a ∈ R+.



Continuous Wavelet Transform (CWT) - Time-Scale
Analysis

So it was born the continuous wavelet transform

Wψ(f )(t0, a0) = 〈f ,Da0Tt0ψ〉 =

∫ +∞

−∞
f (t)Da0Tt0ψ(t)dt.

Theorem (Grossmann-Morlet (1984)). One has the reproducing
formula

f (t) =

∫
R+×R

Wψ(f )(t0, a0)Da0Tt0ψ(t)
da0

a0
dt0.

I Grossmann recognized that the transformation proposed by
Morlet as a“coherent state” of Lie group of affine motions
t → a0t + t0, for a0 > 0.

I The transformation was experimentally studied by Erik W.
Aslaksen and John R. Klauder (1968/1969) also in quantum
mechanics!



Continuous Wavelet Transform (CWT) - Time-Scale
Analysis



Series of wavelets

I For a dilation factor s > 1, Morlet searches ways of
approximating the double integral R+ × R by means of
Riemann series of the type

f (t)
?
=
∑
j ,k∈Z

wjk(f )s j/2ψ(s j t − k),

where D1/s,k/s jψ = s j/2ψ(s j t − k).

I How to determine wjk(f ) numerically?

I How large can s be taken? Can the Shannon limit s = 2 be
possibile?



Dyadic covering of the time-frequency(scale) plane

I s = 2 corresponds to a dyadic covering of the time-frequency
plabe by dilation and translations cof the Heisenberg box of ψ;

I one considers “shorter” times for higher frequencies.



Yves Meyer (1939-, Abel Prize 2017)



Calderón identity

I Yves Meyer recognizes that the reproducing identity by
Grossmann-Morlet is the reproducing formula by Alberto
Calderón (1964) studied in the context of singular integral
operators:

f =

∫ ∞
0

Qa(Q∗a f )
da

a

valid for all f ∈ L2(R).

I Here ψ ∈ L2(R) and one assumes∫ ∞
0
|ψ̂(aω)|2 da

a
= 1

for almost every ω.

I The operator Qa : f → ψa ∗ f is a convolution of f with
ψa(t) = 1

aψ( t
a), and Q∗a is its adjoint operator.



The intuition

Yves Meyer:

“I recognized Calderón’s reproducing identity and I could not
believe that it had something to do with signal processing.

I took the first train to Marseilles where I met Ingrid Daubechies,
Alex Grossmann, and Jean Morlet. It was like a fairy tale.

This happened in 1984. I fell in love with signal processing. I felt I
had found my homeland, something I always wanted to do”



The Marseille group: Ingrid Daubechies, Alex Grossmann, and Jean Morlet



The Marseille group: Ingrid Daubechies, Alex Grossmann, and Yves Meyer,
Painless nonorthogonal expansions Journal of Mathematical Physics 27, 1271

(1986)



Frames in Hilbert spaces
Let H be a separable Hilbert space.

Definition. A set {gn}n∈N ⊂ H is a frame for H if there exist
A,B > 0 such that

A · ‖f ‖2 ≤
∑
n∈N
|〈f , gn〉|2 ≤ B · ‖f ‖2, ∀f ∈ H.

An orthonormal basis is a frame with A = B = 1 by Parseval
identity:

‖f ‖2 =
∑
n∈N
|〈f , gn〉|2.

By the Fourier Theorem the operator f →
∑

n∈N〈f , gn〉gn is the
identity, i.e., f =

∑
n∈N〈f , gn〉gn.

Exercise. If {gn}n∈N is a thight frame with A = B = 1 and if
‖gn‖ = 1 for all n then {gn}n∈N is an orthonormal basis.
In general a frame is not orthonormal and in general its subsets are
not linearly independent.



Frame operator

The frame operator is defined by S : H → H

Sf =
∑
n∈N
〈f , gn〉gn.

It does not coincide with the identity, but the frame condition
implies that S is positive, self-adjoint, and invertible. Hence, one
has the identities

f = SS−1f =
∑
n∈N
〈f , S−1gn〉gn = S−1Sf =

∑
n∈N
〈f , gn〉S−1gn.

The set {g̃n = S−1gn}n∈N is again a frame, the so-called canonical
dual frame of {gn}n∈N with corresponding frame operator S−1.



Example pf frame in in finite dimensions

Consider H = R2, f = (−1, 3) and g0 = (1,−1), g1 = (0, 1),
g2 = (1, 1). The frame coefficients cn = 〈f , gn〉 are given by

{cn}n=0,1,2 = {−4, 3, 2}

and its canonical dual is g̃ = {( 1
2 ,−

1
3 ), (0, 1

3 ), ( 1
2 ,

1
3 )} which gives

the reconstruction of f as:

f =
2∑

i=0

cng̃n = (−2,
4

3
) + (0, 1) + (1,

2

3
) = (−1, 3).



Do you remember Balian and Low?

Given g ∈ L2(R), let a, b > 0, and we say (g,a,b) that generates a
Gabor frame for L2(R) if {MbmTang}m,n∈Z is a frame for L2(R).

The function g is called Gabor atom.

Balian and Low proved (1981) that there does not exist Gabor
frames which are orthonormal basis if the Gabor atom is localized
and smooth.



Gabor Frames

Theorem (Necessary condition). For g ∈ L2(R), a, b > 0, if
(g , a, b) generates a Gabor frame for L2(R), then ab ≤ 2π.

Teorema (Sufficient condition). Let g ∈ L2(R) and a, b > 0
such that:

(i) there exists A,B s.t. 0 < A ≤
∑

n∈Z | g(t − na) |2≤ B <∞
q.o.

(ii) g has compact support, with supp(g) ⊂ I ⊂ R, with I interval
of length 1/b

Then (g , a, b) generates a Gabor frame for L2(R) with frame
bounds b−1A, b−1B.



Gabor Frames
Proof. Fixed n, we note that the function f (t)Tnaḡ(t) has support
in In = I − na = {t − na : t ∈ I}, of length 1/b. From (i) g in
bounded, hence fTnaḡ ∈ L2(In). The set

{b1/2e2πimbχIn}m∈Z = {b1/2MmbχIn}m∈Z
is an orthonormal basis for L2(In), hence by the Fourier Theorem∑

m∈Z
| 〈fTnaḡ ,MmbχIn〉 |2= b−1

∫
| f (t) |2| g(t − na) |2 dt.

Hence :∑
m,n∈Z

| 〈f ,MmbT−nag〉 |2 =
∑

m,n∈Z
| 〈fTnaḡ ,MmbχIn〉 |2

= b−1
∑
n∈Z

∫
R
| f (t) |2| g(t − na) |2 dt

= b−1

∫
R
| f (t) |2

∑
n∈Z
| g(t − na) |2 dt.



Finite dimensional Gabor frames

Let us consider a, b, L ∈ N such that a|L e b|L and a · b ≤ L. Set
N = L/a e M = L/b.

Then one defines the discrete Gabor frame

gm,n = Mmb
L

Tang, m = 0, ...,M − 1, n = 0, ...,N − 1, (1)

where g ∈ ZL. Notice that N ·M ≥ L.

Frames for `2(ZL) of the type

G(g, a, b) = {gm,n}m=0,...,M−1,n=0,...,N−1.
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Dual Gabor atoms. On the top the Gaussian with corresponding dual for
L = 132, a = b = 11, and redundancy L/(ab) = 1.09. On the bottom the
cadinal sin and respective dual for L = 240, a = b = 15, and redundancy

L/(ab) = 1.06.



Frame frames?

Let us consider sets of the type

(ψ, a0, b0) := {a−m/2
0 ψ(a−m0 x − nb0) : m, n ∈ Z}

where ψ ∈ L2(R) and a0, b0 > 0.

As a notation

ψm,n(x) := a
−m/2
0 ψ(a−m0 x − nb0) = Dam0

Tb0nψ.



Necessary condition: to be wave-like!!

Theorem, If (ψ, a0, b0) defines a frame for L2(R) with constants
A,B > 0 then

b0 ln a0

2π
A ≤

∫ ∞
0
|ω|−1|ψ̂(ω)|2dω ≤ b0 ln a0

2π
B,

and
b0 ln a0

2π
A ≤

∫ 0

−∞
|ω|−1|ψ̂(ω)|2dω ≤ b0 ln a0

2π
B,



Sufficient condition

Theorem. If ψ and a0 are such that

inf
1≤|ω|≤a0

∞∑
m=−∞

|ψ̂(am0 ω)|2 > 0,

sup
1≤|ω|≤a0

∞∑
m=−∞

|ψ̂(am0 ω)|2 <∞,

and if

β(s) = sup
ω

∞∑
m=−∞

|ψ̂(am0 ω)||ψ̂(am0 ω + s)|

decays at least as (1 + |s|)1+ε, with ε > 0, then there exists b0 > 0
such that (ψ, a0, b0) is a frame for L2(R) for all 0 < b0 ≤ b0.

The conditions are fulfilled as soon as |ψ̂(ω)| ≤ C |ω|α(1 + |ω|)−γ
with α > 0, γ > α + 1.



Orthonormal wavelets

I Let ψ ∈ L2(R). The functions

ψj(t) = 2j/2ψ(2j t)

are dilated of ψ of a factor a = 1/2j , and normalized.

I The functions
ψj ,k(t) = ψj(t − 2−jk),

are translated 2−jk of ψj .

I We say ψ is properly a wavelet if

ψj ,k(t) = 2j/2ψ(2j t − k), j , k ∈ Z,

is an orthonormal basis for L2(R).



Haar basis

I The most simple wavelet was proposed by Alfréd Haar (1909):

ψ(t) =


+1, 0 ≤ t < 1/2
−1, 1/2 ≤ t < 1
0, otherwise .

I Discontinuous. Localized in time but not in frequency



Alfred Haar (1885-1933)



Against Balian and Low: localized and smooth Meyer
wavelets

1985: Yves Meyer constructed (discovered?) a C∞ wavelet with
fast decay



Translation ...



... and dilations





Scaling function φ and Daubechies wavelet ψ.



Applications of wavelets

I Generally the DWT is used for coding and compression
(JPEG2000), while the CWT is used for signal analysis.

I Wavelet transform used (instead of Fourier transform):
molecular dynamics, calculus ab initio, astrophysics,
geophysics, optics, turbolence, quantum mechanics ....

I Applications: image processing, blood pressure, heart beat
and ECG, DNA analysis, protein analysis, climatology, speach
recognition, computational graphics, multifractal analysis ...

I Wavelets are playing a crucial role in the work of the Fields
medalist Martin Hairer in this work on “regularity of
structure”, that provides an algebraic framework allowing to
describe functions and/or distributions via a kind of “jet” or
local Taylor expansion around each point. In particular, this
allows to describe the local behaviour not only of functions
but also of large classes of distributions.
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