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Joseph Fourier (1768-1830):  “... the first among the European scientists ...”
wote of him Giuseppe Lodovico Lagrangia (Joseph-Louis Lagrange).



Fourier's memoir on the theory of heat (1807)



Salution of the heat equation
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Fourier's idea

Every 27-periodic function f(t) (such as sin and cos) can be
represented as superposition of fundamental waves of different

frequency

f(t) L+ Z(an cos(nt) + bpsin(nt)),

where
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Complex Fourier series
From Euler's formula

et = cos(t) + isin(t),

we deduce
» for a 2m-periodic function f(t) its Fourier series is

2 1 =<,
f()=o- D fe™

» with Fourier coefficients

2w .
fy = / f(t)e M dt
0

» The functions {e : n € Z} are orthonormal (we will see in a
moment ...) with respect to the scalar product

2 -
(f.e) = 5 | ot



Scalar product

Let H be a vector space. A scalar product (u, v) is a map from
H x H and values in C such that
(i) (au+ bv,z) = a(u,z) + b(v,z) for all u,v,z € H and
a,beC.

(ii) (u,v) = (v, u) for all u,v € H.
(i) (u,u) € R, (u,u) >0 forall u € H and (u,u) #0if u#0.

A Hilbert space is a vector space H endowed with the scalar

product (u, v), which is also complete w.r.t. the norm
lullo == (u, u)!/2.



Examples

> Let Q C R". The vector space
L2(Q) = {f: Q — C| [, |f|?dx < oo} is a Hilbert space with
the scalar product

> Let Q4 C Z". The vector space
2(Qq) = {f : Qq — C| > keq, |f(k)[> < oo} is a Hilbert
space with the scalar product

(u,v) = Y u(k)v(k).

keQy

In particular if |Q4] = d < oo then £2(Qy) = C¢.



Spazi di Hilbert e basi ortonormali

A set {uq}aca is orthonormal in H if (uq, ug) = 04,3 where 4. . is
the Kronecker symbol.
Theorem (Fourier)
Let {un}aca be an orthonormal set. Then the following conditions
are equivalent:
(i) x = qealX, Ua)uq for all x € H.
(i) (Parseval identity) (x,y) = > cal{X, Ua){y, Ua) for all
x,y € H.
If x =y then it holds ||x||3, = 3" ,ca l(X, ta)|?
(iii) (Completeness) If x € H and if (x, u,) = 0 for all «, then
x = 0.
Zorn's lemma implies:

Theorem
Every Hilbert space has an orthonormal basis.



Again on the trigonometric series

The set {%e%"”tﬁ : n € Z} is an orthonormal basis for the
Hilbert space = L?(0,7) for any 7 > 0. Orthogonality:

1 2mint/T 1 2wimt/T 1 /T 2mint/T 2mimt/T
il il = = ! dt
<ﬁe , ﬁe ) =5 e e
_ 1 /T eZﬂi(nfm)t/Tdt
T Jo

1
_ / e27ri(n—m)tdt _ 5m,n‘
0



0.5 1 1.5 2 2.5
Partial Fourier series of f(t) =t — [¢].



1873: Paul du Bois-Reymond (1831-1889) constructed (discovered?) a
continuous function whose Fourier series diverges in a point: it has form
f(t) = A(t) sin(w(t)t) for a certain A(t) — oo e w(t) — co.



1903: Lipét Fejér (1880-1959) proved the convergence of the sum in the
Cesaro sense (convergence of the means of the partial sums) of the Fourier
series of continuous functions.



Henri Lebesgue (1875-1941) establishs the convergence in the square (mean)
norm L? of the Fourier series of square summable/integrable functions on
[0, 27].



1923/1926: Andrey Kolmogorov (1903-1987), at age 21 (!), constructs a
summable/integrable function, i.e., it belongs to the Lebesgue space L!, whose
Fourier series diverges almost everywhere!



1966: Lennart Carleson (1928-, Abel Prize 2006) proved that the series of a
square summable function, i.e. it belongs to the Lebesgue space L2, converges
almost everywhere!



Time-invariant linear operators

» We consider a function u — g(u) for u € R.

» Define a time-invariant linear operator L : g — Lg by means
of the convolution product

—+00

Le(u) = (F * g)(u) = / F(1)g(u — t)dt.

—0o0

» Here the function f = Ldg is also called impulse response of L
to the Dirac dp.



Fourier transform

» g(t) = et is an eigenfunction (gen. eigenvector) of L

Lg(u) = / o f(t)eW=dt = F(w)g(u).

—0o0
» The eigenvalue

Flw) = /+OO f(t)e “tdt,

—0o0

is the so-called Fourier transform of f in w € R.

» The value 7(w) is larger f(t) the more similar f is to the
complex wave e'“t = cos(wt) + isin(wt) on a (of) large
(measure) set.



Inverse Fourier transform and the convolution
» A reconstruction formula for f from its Fourier transform is

? 1 too iwt
f(t) = 5 f(w)e'“ dw.

» Exercise: prove under suitable condition of summability of f
and g that one has
fxg(w) = F(w)g(w),
per ogni w € R.
Hint: use (the formula of the inverse Fourier transformation
for g and) Fubini-Tonelli theorem, which allows for
exchanging sequence of integrals (just give it for granted).

» Exercise: prove the (new) Parseval's identity

o= [ fog@a= 5 [

dw.

0q>



Fourier transform as a limit from the interval

Let f € L?(—wm,wr) a square summable/integrable function on
(—wm,wr). By the Fourier theorem

1 in /T 1 int/w 1 wm —inw/w int/w
f= (f, 7m=e"'") ——=e"" ZEZU e dw)e o

nez 20m 20m nez, \Y —wm

What happens (formally) if we let @ — c0? The last sum is in
fact a Riemann sum. This makes us thinking that if f is
summable/integrable over R then we could in fact write something
like

f(t) = lim f(t)X[wrr,—wn](t)

w—00

emt/w

1 .
lim f, /@
W—00 nEZZ< v 2wm ) 2w

2 1 —itw >itw
= 5 R</Rf(§)e d¢ | e"™dw.



What's the meaning of the Fourier transform?

What's the meaning of the Fourier transform? For what is it
useful?

» The Fourier transform represents the frequency content of a
function/signal. It tells us which are the important oscillatory
constituents of a signal and their distinctive frequencies of
oscillation.

» The “fortune” of Fourier analysis relies essentially on the fact
that it is able to describe one of the fundamental and most
frequent phenomena in nature: the oscillatory phenomena,
many of which are rules by superpositions of laws of the type:

efcyte27risot7 t>0
Yaso() =1 o ¢ <o,

» The Fourier transform of y, s, (t) is called Lorentzian.



Significato della trasformata di Fourier

» For examples, when molecules are hit by an electromagnetic
radiation, some damped overlapping oscillations are induced
as described by the law y, ¢ (t).

» Each molecule constituent has its own distinctive and unique
oscillation. the Lorentzians are then called molecular
spectrum.

» From these observations comes the idea which led to the
Nobel prize to Richard Ernst! for chemistry (1991) for the
development of a powerful tool for determining the molecular
structure of complex organic molecules.

"He holds a Honorary Doctorate from the Technical University of Munich



1949: Claude Elwood Shannon (1916-2001) proves that a band-limited
function can be recostructed from its samples and this observation is at the
basis of our modern digital technology.



Analog and digital: Shannon's sampling theorem

Perhaps one of the most relevant applications of the Fourier
transform is the analog<>digital conversion. A function f is called
w-band-limited if its Fourier transform 7 has compact support
contained in the interval [, wn| for @ > 0.

Theorem (Whittacker-Shannon). If f € L%(R) is
w-band-limited, then for all 0 < 7 < w1

fF(t) =Y f(rn)sinc(r~'t — n),

n€eZ

ove

sin(7rt).

sinc(t) = "
™



Analog and digital: Shannon's sampling theorem

Proof. Since supp(f) C [~@m, @], for the Fourier Theorem

?(W) = %(W)X[—wn,mr] (w)
1

= o <?X[7§7r@7r]7 ein./w>ein0‘)/wx[*wﬂ’:wﬂ](w)
neZ

By applying the inverse Fourier transform

w 1 <4 —inw/w
<fX[ wr,wn]) € m/w> = f(w)e /dw

2wur J_ o

- ()
w w
The characteristic function x[_y 1] of the interval [-1,1] has
Fourier transform

2w

sin(t)'
t

X-1(t) =2



Analog and digital: Shannon's sampling theorem

Proof continues ...
The inverse Fourier transform of e’”w/wx[_wmw,r](w) is given by

1 (w)ei(tJrn/w)wdw

ein'/wX[—mr,ww] (t) = oy X[—wm wn]
womme W[ in@(t+n/w
s 2/ X[—1,1](f)e (t+n/ )Sdf
_sin(nw(t + n/w))
7w(t 4+ n/w)

Hence, we have

f(t) = Zf(

nez

c

nez

) sin(mw(t + n/w))
7w (t + n/w)

sinc(wt — n)

N——" EH:



Analog and digital scalar product

With similar techniques to prove Shannon’s sampling theorem, one
can prove (difficult exercise!):

Theorem (“Plancherel” for band-limited frunctions). /f
f,g € L2(R) are both w-band-limited, then for all 0 < 7 <@ ! we
have the identities

/ f(t)g(t)dt =7y f(rn)g(rn) 217T / h F(w)g(w)dt.

nez

Meta-Corollary (“Plancherel” for nearly band-limited
frunctions). if f,g € L?(R) N C(R) are both functions which are
NEARLY ©-band-limited, then for 0 < 7 <w~! we have the
approximations

/ f(t)g(t)dt ~ > f(rn)g(rn) 21 / F(w)g(w)dt.
N T

nez

The entity of the (a//asmg) approximation depends on the “tails”

of the Fourier transforms #, & out of the compact [—77~ !, 77~ 1].



Operators of traslation, modulation and dilation

From the proof of Shannon's sampling theorem, we learned that
there are fundamental operators, which are in a sort of duality
(commutation rules) with respect to the Fourier transform. We
define the operators of translation and modulation

Tiof(t) = f(t — to), My f(t)=f(t)e™", to,wo€R,

and the dilation

1
Daf(t) = Wf(t/a), 3€R+.

They satisfy the commutation rules:

Tof(@) = M_oF(©), Muf(w) = TuF(w), Daf(w) = DyrF(w)



The discrete Fourier transform (DFT)

> In the space (?(Z,) = C" (of the signals/vectors of n complex
values) (%(e%'ké/")zezn)kezn is an orthonormal basis,

Zn =Z/nZ
» In fact, one can prove (exercise by induction!) that

n, z=1

2 n—1 __
l1+z42z4+---+2z —{ (z" —1)/(z — 1), otherwise.

But then it is not hard to show that for z = e27i(k=1)/n \ye

have
1 2mikl/n 1 27ilm/n 1 = 2wim(k—1)/n
<\ﬁ(e )iz \ﬁ(e Ymezn) = " Z € = Ok,



The discrete Fourier transform (DFT)

» For the Fourier Theorem any signal/vector f of length n can

be written:
1 n—1 R ]
f= - f(k)(e%'ke/n)eezn,
n k=0
where
1 1 n—1
i_‘-(k) _ —<f, (e27rikE/n)£ Z,,) - = f(g)ef27riké/n’
vn © vn %

define the components of the signal /vector discrete Fourier

A

transform (DFT) f of f.



Complexity of a “naive” computation of DFT

» Assuming that an operation equals a sum or a multiplication,
then the number of ops of a DFT is 2n sums and
multiplications for n times, i.e., 2n2.

» Each complex operation costs double of a single real, the total
computational cost is C(DFT)(n) = 4n?.

» Today a PC is able to execute 3 x 10° ops/sec and therefore
it's able to produce a DFT of a signal of length n = 1000 in

410007 - — 0.0013 sec.

3 x 109
Already for a signal of length n = 1024 x 1024 = 20 the cost
is 1466.02 sec.

» A simple digital image can be larger than n = 220 without
difficulty.



U ‘%
1805: Carl Friedrich Gauss (1777-1855) invents the Fast Fourier Transform in
its study of the interpolation of the trajectories of the asteorids 2

Pallas/Pallade and 3 Juno/Giunone; James Cooley and John Tukey
re-invent/discolver the algorithm in 1965.

=
)



Operators of traslation, modulation, upsampling,

duplication
Given a signal/vector f € C" of length n, we define the operator of

translation
Tmf(k) =f(k—m), meZp,.

and the modulation operator
Mnf(k) = e>™mkI"E(k),  m € Z,.

Moreover we define also the upsampling and duplication operators
by

UF(h) = { f(h/2), mod(h,2) =0

1
0, altrimenti, Df(h) = E(fvf)(h)a

for h € Zy,. The action of the DFT on these operators yields new
commutator rules

— ~ — ~

Tmf(K) = M_mf(K), Mnf(k) = Tmf(k), Uf(h) = Df(h).



Synthesis of a signal

Let's consider a signal of legnth n = 22 = 4 given by
f = (f, f1,h, ). Let us see how to assemble f from the single f;

fo f2 f f3
U LU U LU
(.0)  (5,0) (f.0)  (5,0)
\y LT . b T
(fb,O) (Oaf—2) (f]_,O) (Oaf}))
N TR
(0 5) (5. )
LU LU
(f,0,6,0)  (£,0,5,0)
. 1T
(f0,0,%,0) (0,1,0,%)
N\ e



The algorithm of the Fast Fourier Transform (FFT)
Noted that f; = £ for all i =0, ...f,_1 by applying the DFTto the
previous diagram and substituting U, T_1, resp. D, My as given by
the commutator rules, we generate a recursive algorithm to

compute the DFT:

fo fa
+D I D
(, ) (¢, %)
L L My
(, %) (, %)
N\ U
(3, %)
I D
(, *, *, *)
31
(¢, *, *, *)
N\

fi f3
D D
(, ) (¢, %)
L L My
(, %) (¢, %)
I e
(*, %)
D
(¢, *, *, %)
4 M
(¢, *, *, %)
vd

-n)



Complexity of the Fast Fourier Transform (FFT)
Assume C(l) = C(D) =0 . The cost of M; on a vector of length ¢
is £ — 1. We assume n = 2™. Starting from the bottom of the
diagram, we execute only one M; and therefore a cost of
2%(4 —1). This cost has to be summed up with that of the higher
level, where we need to execute 2(5 — 1) operations corresponding

to 2 times Mj on vectors of half length. And so on, for a total cost
of

3
-

C(FFTY(m) = Y 2(5 — 1)

x-
o

3
-

= Z (2’"—2") =m2™ — 2" +1=nlog,(n) —n+ 1.
k=0
Hence a modern PC is able to produce an FFT of a signal of
length n = 220 in

(22020 — 2% - 1) - 5 = 0.0066 sec,

3x 10
versus the 1466.02 sec which we would expect from the DFT!
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A digital image and its Fourier Transform



Smothness in time = decay in frequency (and vice versa)

A function f(t) is many times differentiable if 7(w) tends rapidly
to 0 for |w| — 0.

Theorem. Let r > 0. If
+oo "
/ ()1 + ] )dw < oo,
—00

then f(t) is differentiable r times.

Since a flipped function is essentially the Fourier transform of its
Fourier transform
1 [t , 2
0=y [ Fle ™du = (o)
T

—0o0

then the theorem can be re-formulated for f ¢ 7.



Singularity in time and loss of localization in frequency
(and vice versa)

» The decay of f depends on the worst singular behavior of f
» The characteristic function [—1,1]

f(t):{ 1 te[-1,1]

0 otherwise.

has Fourier transform

which has a slow decay (because of the “jumps” of f at
t=—1,1).




Time-frequency localization

» e“t has “morally” the Dirac impulse 6, as Fourier transform,
hence it's very localized in frequency (an impulse is totally
localized in w) but it's not localized in time.

> A time delay of f is not perceived by |f(w)]

> In order to study transients, time-dependent phenomena, it
would be better to substitute et with functions g(t) better
localized both in time and frequency

» Can g(t) and g(w) have simultaneously small support or
decay rapidly?



Heisenberg uncertainty principle |

v

Assume ||g[|3 = /7% |g(t)|2dt = 1, so that |g(t)|? is a
probability density

v

Plancherel: ||g]|3 = f+°° g(w)|?dw = 27 (one gets it from
Parseval)

v

The mean value at t

+oo )
pe= [ tle(e)Par

—00

v

The variance around p;

“+oo

= [ (- nPle(oPet

—00



Heisenberg uncertainty principle |

» The mean value in w

1 [t 5
My = g w‘g(w” dt
» The variance around g,
2 I
T om | (W — Hw)?g (W) Pdt.

Theorem. (Heisenberg (1927))
1

Ot 0y 2 =

2
Theoretical limit of simultaneous localization in time and frequency.



Heisenberg uncertainty principle Il

Proposition (Heisenberg uncertainty principle for compactly
supported functions).

If0 # f € C.(R) then its Fourier transform f cannot have
compact support as well.

Proof. If f € C.(R) then f is an analytic function (as it has
infinitely many derivatives suitably bounded). But a nonzero
analytic function has at most countable number of zeros, hence it
cannot have compact support.



Werner Heisenberg (1901-1976, Nobel prize in physics 1932)



Gabor atoms

The minimal uncertainty o; - 0, = % is obtain only for so-called

Gabor atoms .
g(t) = ae™™

for a, b € C and their time-frequency shifts
8towo(t) = g(t — to) - eiWOta

obtained translating in time of ty and modulating in frequency of
wo.

u= Reg(1)

,.,%N\/(\\/\mvcﬁ o




SRR 1 1

Dennis Gabor (1900-1979, Nobel prize in physics 1971)



Time-frequency support

The correlation of f and g

(f.g) = / +Oof(t)ﬁdt L +Oo?(w)g(w)dw.

oo 21 J_

depends on f and f in (t,w) where g and g are not too small.

A o S ‘
19(w)| 2t , Heisenberg box

-l




Short-time Fourier Transform (STFT)

» Gabor introduced in 1946 the short-time Fourier transform
oo

VelP)tow) = [ F0ig(E— 1) e et

—00

and proves the reconstruction of (audio signals) f by means of
the inversion formula

- 1 “+o0o +o0o .
f(t) = 2/ / Vg (f)(to, w)g(t — to) - €'“°* dtodwo,
lgllz /-0 /-0
it is in relationship with our way of perceiving sounds.
» He further conjectured that for a = At, b= Aw > 0
Sk be(t) = g(t — ak)e™t, kL€ Z, (a-b<2r(?))

can build an orthonormal basis for L2(R), for which, by the
Fourier Theorem, we would have

f= Z (f, ak,bt)8ak,be-
k,leZ



Time-Frequency Analysis




Balian and Low theorem

» Such an orthonormal basis would produce morally a covering
of the time-frequency plane for translations g congruent with
the “Heinsenberg box" of by integer multiples of
a=At,b=Aw > 0.

» Roger Balian and Francis Low proved independently (around
1981) that an orthonormal basis cannot be obtained in this
way by a function which is both localized and smooth.

w
wo + Aw
wo {----f--- -k
|
wp — Aw !
i
\ t

o — At ty @+ At



Roger Balian (1933-) and Francis Low (1921-2007)



Heisenberg uncertainty principle Il

Proposition (Weak uncertainty principle). Let
IflI3=llgl5=1, UCR xR and C >0, such that

/ LV, (F)(t,w) 2 dtdw > C.
U

Then |U| > C.
Proof. By Cauchy-Schwarz | V,f(a, b) |[< 1. Hence

cs// | Vef(t,w) ? didew < || Vi IR U] < |U].
U

» Because of uncertainty principle, if we use a “window”
function g with large support, then V,(f) will have a good
resolution in high frequency. In fact g will be highly localized.

> Vice versa if g is very localized, Vg(f) will be have a good
resolution in time and at low frequencies, but it would be
blurred at high frequencies.



Jean Morlet (1931-2007)



Jean Morlet

> He worked in the '70s as geophysicist at the French company
Elf-Aquitaine.

» He dealt with numerical processing of seismic signals in order
to get information on geological layers.

» He found that the resolution at high frequency of the STFT is
too rough to resolve the thin interfaces between layers.

» In 1981 he proposed to dilate (shorten the length) of a factor
ap > 1 to translate of tg a mother window function 1)

w<t—m>7
ao

of constance shape of a wavelet.

» Balian suggested to Morlet the collaboration with Alexandre
Grossmann of Marseille.



Alexandre Grossmann (1930-)



Again operators of translation, modulation, and dilation

We already introduced
Tioof(t) == f(t — to), My f(t) = f(t)e™t, to,wo € R.

With these operators we can define the STFT
+o0 -
V(P 0) = (F, Moy Tog) = [ F(eYML, Trg(D)e.

—0o0

Morlet proposed to introduce the dilation

D.f(t) := ||1/2 f(t/a), acRi.



Continuous Wavelet Transform (CWT) - Time-Scale
Analysis
So it was born the continuous wavelet transform

+o0 -

Wy (F)(to, a0) = (f, Day T, ) = / f(t)Day Ty t)(t)dt.
Theorem (Grossmann-Morlet (1984)). One has the reproducing
formula

d
(0= [ W) 20)Da Tat ()22 ke

» Grossmann recognized that the transformation proposed by
Morlet as a‘“coherent state” of Lie group of affine motions
t — agt + to, for ag > 0.

» The transformation was experimentally studied by Erik W.
Aslaksen and John R. Klauder (1968/1969) also in quantum
mechanics!



Continuous Wavelet Transform (CWT) - Time-Scale

Analysis

SLAM I MATH. ANAL. = 1984 Sociery fow Taderarial snd Applisd MMathamstics
Yol. 15, Mo 4, Jaly 1934 s

lormmaé
DECOMPOSITION OF HARDY FUNCTIONS INTO
SQUARE INTEGRABLE WAVYELETS OF CONSTANT SHAPE®

A GROSSMANNT anp 7, MORLET?

Abstract. An arbitrary squase integrable real-valued Function (or, equivalently, the associated Hardy
[unction) can be conveniently analyzed inte a saitable family of square invegrable wavelets of constant shape,
(1.2, obtained by shifts and dilations from any one of them.) The resulting integral transform s tsemeenic and
self-reciprocal if the wavelets satisfy an “admissibility condition™ given here. Explicit expressions are ob-
(ained in the case of a particular analyzing family that plays a role analogous to that of coherent states
(Gabor wavelets) in the usual [-thesry They are weitten in terms of a medified I-function that is
introduced and studied. From the point of wiew of group theory, this paper is concerned with square
integrable coefficients of an irreducible representation of the nonuaimodular ex + b-group.

1. Introduction.

1.1 It is well known that an arbitrary complex-valued square integrable function
¢(r) admits a representation by Gaussians, shifted in direct and Fourier transformed
space. If g(1)=27"2g=3% "2 and r,, &, are arbitrary real, consider

(1.1} gitemnl () = gt Tginatgl g —¢ )

Grossmann-Morlet, SIAM J. MATH. ANAL., 1984)



Series of wavelets

» For a dilation factor s > 1, Morlet searches ways of
approximating the double integral R x R by means of
Riemann series of the type

F(£) 2 D7 wi()s/ ot — k),
J,k€eZ
where Dy /¢y /ith = $//20(s/t — k).
» How to determine wji(f) numerically?

» How large can s be taken? Can the Shannon limit s = 2 be
possibile?



Dyadic covering of the time-frequency(scale) plane

» s = 2 corresponds to a dyadic covering of the time-frequency
plabe by dilation and translations cof the Heisenberg box of ;

» one considers “shorter” times for higher frequencies.
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Yves Meyer (1939-, Abel Prize 2017)



Calderén identity

» Yves Meyer recognizes that the reproducing identity by
Grossmann-Morlet is the reproducing formula by Alberto
Calderdn (1964) studied in the context of singular integral
operators:

o da
= | e@n?
0 a
valid for all f € L2(R).
» Here 1) € L?(R) and one assumes

| e =1

a

for almost every w.

» The operator Q, : f — 1, * f is a convolution of f with
Ya(t) = %w(ﬁ), and QI is its adjoint operator.

a



The intuition

Yves Meyer:

“l recognized Calderdén’s reproducing identity and | could not
believe that it had something to do with signal processing.

| took the first train to Marseilles where | met Ingrid Daubechies,
Alex Grossmann, and Jean Morlet. It was like a fairy tale.

This happened in 1984. | fell in love with signal processing. | felt |
had found my homeland, something | always wanted to do”



h!
The Marseille group: Ingrid Daubechies, Alex Grossmann, and Jean Morlet
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In a Hilbert space #°, dlscml:famlhuufvectm{h,}lﬂthth:pmpﬁtythﬂf Z,{hy| £}y for

ly true if the family is an

every fin #° are i This
orthonormal basis of #°, but also can hold in si

formula is ob

h th l-mnm

orthogonal

and are “overcomplete.” The two classes of examples studied hmm (i) appropriate sets of
‘Weyl-Heisenberg coherent states, based on certain (non-Gaussian) fiducial vectors, and (ii)
analogous families of affine coherent states. It is believed, that such “quasiorthogonal
expansions” will be a useful tool in many areas of theoretical physics and applied mathematics.

1. INTRODUCTION

A classical proced f applied is to store
some incoming information, given by a function f{x) (where
x is a continuous variable, which may be, e.g., the time) asa
discrete table of numbers {(g;| /) = fdx g, (x)f(x) rather
than in its original (sampled ) form. In order to have a math-
ematical framework for all this, we shall assume that the
possible functions f are elements of a Hilbert space #° [we
take here # = L *(R)]; the functions g are also assumed to

be elements of this Hilbert space.
One can, of course, choose the functions g; so that lh:
family {g,} (jef, Ja ble set) is an orth

basis of #°. The decomposition of finto the g; is then quite
straightforward: one has

J={(mm); n,meZ, the set of integers),

B (x—ma), for ma<x<(m+1)a,
otherwise.
lfnnwth:fumh.onfumingns:loulchans:,cﬂnﬁnﬁdm
the interval [kaa], only the numbers {g,.|f) with
k<m<!— 1 will be affected, reflecting the locality of the
change. This n:hmc:fonh:g_,a]mhns however, its draw-

backs: some of the g are likely to be di i
mtheedguufth:mmnh,thmhymuodumsdm!md-
ties in the analysis of f, which need not have been present in f
itself. This is particularly noticeable if one takes the follow-
ing natural choice for the k,:

h,(x) =a2eRmre

Bam (%)=




Frames in Hilbert spaces
Let H be a separable Hilbert space.

Definition. A set {gn}nen C H is a frame for H if there exist
A, B > 0 such that

A-FIZP <D I(Fenl? < B-|IfI°, VfeH.
neN

An orthonormal basis is a frame with A = B = 1 by Parseval

identity:
IF12 =D KK, gn) .
neN

By the Fourier Theorem the operator f — ) _«(f,gn)gn is the
identity, i.e., f = _~(f,&n)&n-

Exercise. If {g,}nen is a thight frame with A= B =1 and if
llgnll = 1 for all n then {gn}nen is an orthonormal basis.

In general a frame is not orthonormal and in general its subsets are
not linearly independent.



Frame operator

The frame operator is defined by S : H — H

Sf = (f,gn)&n

neN

It does not coincide with the identity, but the frame condition
implies that S is positive, self-adjoint, and invertible. Hence, one
has the identities

F=SS =Y (f,S'g)gn=S"1SF = (f.gn)S 'gn

neN neN

The set {&, = S~'gn}nen is again a frame, the so-called canonical
dual frame of {g,}nen with corresponding frame operator S71.



Example pf frame in in finite dimensions

Consider H = R?, f = (—1,3) and go = (1, 1), g1 = (0,1),

g2 = (1,1). The frame coefficients ¢, = (f, g,) are given by
{entn=012=1{-4,3,2}

and its canonical dual is & = {(3,-3),(0,3),(3,3)} which gives

the reconstruction of f as:

2 4 2
f= Z; Cnin = (—2, 5) +(0,1) + (1, 5) = (-1,3).



Do you remember Balian and Low?

Given g € L?(R), let a, b > 0, and we say (g,a,b) that generates a
Gabor frame for L?(R) if {Mpm Tang}mnez is a frame for L2(R).

The function g is called Gabor atom.

Balian and Low proved (1981) that there does not exist Gabor
frames which are orthonormal basis if the Gabor atom is localized
and smooth.



Gabor Frames

Theorem (Necessary condition). For g € [?(R), a,b > 0, if
(g, a, b) generates a Gabor frame for L?(R), then ab < 2.

Teorema (Sufficient condition). Let g € L?(R) and a,b > 0
such that:
(i) there exists ABs.t. 0 < A< >, ., |g(t—na)|?< B < oo
g.o.
(i) g has compact support, with supp(g) C | C R, with | interval
of length 1/b

Then (g, a, b) generates a Gabor frame for L2(R) with frame
bounds b='A, b~1B.



Gabor Frames

Proof. Fixed n, we note that the function 7(t) Tp.g(t) has support
inly,=1—na={t—na:tel}, of length 1/b. From (i) g in
bounded, hence fT,,,g € L?(I,). The set

(b1/2e2mimbxiny = (B2 Mexs Ymez

is an orthonormal basis for L?(1,), hence by the Fourier Theorem

S 1T M) P= 570 [ £(2) Pl (e~ na) [ o

meZ
Hence :
Z | <f, Mmbenag> |2 = Z | naga mbXI,,> |2
m,n€Z m,n€Z
= 5 [ ) Pl na) P o
neZ

= /\f >> | g(t—na) | dt.

nez



Finite dimensional Gabor frames

Let us consider a, b, L € N such that a|L e b|L and a- b < L. Set
N=L/aeM=L/b.

Then one defines the discrete Gabor frame
gmn=MmTsg, m=0,..M-1 n=0,..,N-1, (1)
L
where g € Z;. Notice that N- M > L.

Frames for ¢?(7Z,) of the type

G(g,a,b) = {8mn}m=0,..M—1,n=0,.. N—1-
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Dual Gabor atoms. On the top the Gaussian with corresponding dual for

L =132, a= b =11, and redundancy L/(ab) = 1.09. On the bottom the

cadinal sin and respective dual for L = 240, a = b = 15, and redundancy
L/(ab) = 1.06.



Frame frames?

Let us consider sets of the type

(¢, a0, bo) := {aam/2¢(3[)_mx — nbg) : m,n € 7}

where 1) € L2(R) and ag, by > 0.

As a notation

Ym,n(x) = ao_m/zz/z(ag’"x — nbo) = Dap Thont)-



Necessary condition: to be wave-like!!

Theorem, If (1, ag, by) defines a frame for L?(R) with constants
A,B > 0 then

bo |
0 n5'087

by | 00 n
On%AS/\M*WWWwS
27[' 0

and
bg In
o IN dg B,

0
““%As/ o (w) P <

27 oo



Sufficient condition

Theorem. If1 and ay are such that

o0
inf h(amw)|?2 > 0
N LRI
o0

sup Y [¥(afw)? < oo,
1<|wl<a0 = _ oo

and if
) = sup S [+ 9)

m=—0oo

decays at least as (1 + |s|)' 12, with € > 0, then there exists b® > 0
such that (v, ao, bo) is a frame for L2(R) for all 0 < by < b°.

The conditions are fulfilled as soon as |i)(w)| < Clw|*(1 + |w|)™7
witha >0, v > a+ 1.



Orthonormal wavelets

» Let ¥ € L2(R). The functions
vj(t) = 2129 (2'1)

are dilated of ¢ of a factor a = 1/2/, and normalized.
» The functions
wjk(t) = v;(t = 277k),
are translated 27k of ;.
» We say v is properly a wavelet if

bik(t) =222t — k), j ke,

is an orthonormal basis for L?(RR).



Haar basis

» The most simple wavelet was proposed by Alfréd Haar (1909):

+1, 0<t<1/2
P(t)=< -1, 1/2<t<1
0, otherwise .

» Discontinuous. Localized in time but not in frequency

+1




Alfred Haar (1885-1933)



Against Balian and Low: localized and smooth Meyer
wavelets

1985: Yves Meyer constructed (discovered?) a C* wavelet with
fast decay




Translation ...




. and dilations

21/2(21)

¥(1)




Orthonormal Bases of Compactly Supported Wavelets

INGRID DAUBECHIES
AT&T Bell Laboratories

Abstract

‘We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regular.
ity. The order of regularity increases lincarly with the support width, We start by reviewing the
concept of multiresolution analysis as well as several algorithms in vision d position and
reconstruction. The construction then follows from a synthesis of these differemt approaches,

L. Introduction
In recent years, families of functions k&, ,,

(1.1) ha‘b{x)=|n|‘1/’h[xa;b), a,beER, a#0,

generated from one single function h by the operation of dilations and transla-
tions, have turned out to be a useful tool in many different fields of mathematics,
pure as well as applied. Following Grossmann and Morlet [1], we shall call such
families “ wavelets”.

Techniques based on the use of translations and dilations are certainly not
new. They can be traced back to the work of A, Calderén [2] on singular integral
operators, or to renormalization group ideas (see [3]) in quantum field theory and
statistical mechanics. Even in these two disciplines, however, the explicit intro-
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Applications of wavelets

» Generally the DWT is used for coding and compression
(JPEG2000), while the CWT is used for signal analysis.

» Wavelet transform used (instead of Fourier transform):
molecular dynamics, calculus ab initio, astrophysics,
geophysics, optics, turbolence, quantum mechanics ....

» Applications: image processing, blood pressure, heart beat
and ECG, DNA analysis, protein analysis, climatology, speach
recognition, computational graphics, multifractal analysis ...

» Wavelets are playing a crucial role in the work of the Fields
medalist Martin Hairer in this work on “regularity of
structure”, that provides an algebraic framework allowing to
describe functions and/or distributions via a kind of “jet” or
local Taylor expansion around each point. In particular, this
allows to describe the local behaviour not only of functions
but also of large classes of distributions.
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