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6 CHAPTER 1. AN INTRODUCTION TO LINEAR SYSTEMS

1.1 Linear systems and their solutions

You probably encountered the idea of a line quite a while ago in your mathe-
matical career. You might remember something like

2
= - 4.
Y 3x+

We used words like “slope” and “y-intercept” to glean information about how
these functions behaved. And since you’re interested in the applications of
mathematics to business, you probably used linear functions like the one above
to model things like total cost, total revenue, supply, demand, population or any
number of other quantities. Let’s remind ourselves how these models worked by
developing one from scratch.

Imagine you have a business selling t-shirts. You're a data-driven business
person, and your records tell you that when you sold each t-shirt for $20, you
sold 400 shirts a month, but when you increased the price to $25 per shirt, you
only sold 300 units. The line connecting these points is

q = —20p + 800,

where ¢ is the demand in units of t-shirts, and p is the price in units of dollars.
Let’s start by making a slight but important change to the way we’ve been
thinking about lines. We can rearrange the equation above to read

q + 20p = 800.

Here we call ¢ and p variables or unknowns exactly because we don’t yet know
exactly what they are. The numbers in front of the variables are known as
coefficients. And for one more bit of important terminology, we say that 800 is
a linear combination of ¢ and p. Notice that by rearranging the equation, we
haven’t fundamentally changed anything, we’ve just put the variables ¢ and p
on equal footing instead of thinking of ¢ as a function of p.

Any pair (gq,p) that satisfies the equation above is called a solution to the
equation. For instance, (20,400) and (25,300) are both solutions to our featured
equation. You can probably convince yourself that there are many, many more
solutions.

Reading question 1: What are some other solutions to ¢ + 20p = 8007 Try
drawing these points in the ¢g-p plane. How many solutions are there?

We can make things more interesting by adding another equation into the
mix. Your supplier isn’t willing to just give the shirts away. Even more, she’d
like to sell you more shirts at a higher price. The past two deals you’ve made
with her have been for 50 t-shirts for $15 each and 100 t-shirts for $20 each. If
you assume your supplier’s willingness to sell you t-shirts grows linearly with
the price, we could write a linear model of her behavior as

q = 10p — 100.
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We’d like to find a point where we’re selling just as many t-shirts as our supplier
is willing to provide, that is, where the supply equals the demand. So let’s
consider the system of linear equations (or linear system) defining the supply
and demand together.

q + 20p = 800
q — 10p = —100.

So our question about supply equalling demand becomes: does there exist at
least one pair (p,q) that satisfies both equations simultaneously? To get a
qualitative handle on the situation, let’s try graphing both lines. It’s a simple
but profound idea that the points lying on the graphical line we associate with
either of linear equations above are exactly the solutions to the linear equation
in question. It stands to reason then that if we plot the two lines and they have
an intersection, then the (p, ¢) pair representing the intersection simultaneously
satisfy both equations.

\ Demand

Supply

/ "\ Price

Figure 1.1: Our linear supply and demand models have a unique equilibrium
price.

This type of reasoning leads us to the first hint of a generalizable result: we
know from the old days of a pencil and a ruler that two lines either have no
intersection (if they are parallel), infinitely many intersection points (if the two
lines lie directly on one another) and exactly one intersection point in all other
cases. We will see that this type of reasoning generalizes to much more broad
circumstances.

When it comes to solving systems of linear equations, the words “elimina-
tion” and “substitution” might ring a bell. (We're going to focus on elimination
here, but substitution is just as valid.) The elimination technique involves scal-
ing one of the equations by multiplying both sides by a carefully chosen number
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7

o\
7 \

Figure 1.2: A system of two linear equations can have no solutions (parallel
lines), a unique solution (nonidentical nonparallel lines) or infinitely many so-
lutions (identical lines).

and adding two equations so that at least one variable is no longer present in
the sum. For instance, imagine that I scale the second equation in our example
by a factor of -1, so that the system now reads

q+ 20p = 800
—q + 10p = 100.

At this point, you might be thinking that something is a little fishy. After all,
maybe I've changed the solutions of this system in what I've just done. But
notice that the solutions to ¢ — 10p = —100 are the same as the solutions to
—(g — 10p) = —(—100). So everything really is OK.

I can now add the equations together and replace the second equation with
this new sum so that the linear system now reads

q + 20p = 800
30p = 900.

We've eliminated the unknown ¢ from the second equation. This allows us to
solve for p = 30. Let’s take the time to be really precise about what we’ve dis-
covered here: for there to be a solution (p, ¢) to this system of linear equations,
it must be the case that p = 30. We don’t know what the value or values of g
which would lead to a solution, but we definitely have pegged down the value
of p.

To finish off this example, we can first scale the second equation by -20, add
the two equations, and replace the first equation with the new sum so that the
system now takes the form

q = 200
p = 30.

So p = 30 and ¢ = 200 is the unique solution to this system of linear equations.
In terms of our original model, we should sell each t-shirt in our inventory for
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$30 dollars in order to match supply to demand. When we do this, we’ll sell
exactly $200.

1.1.1 From systems to matrices

It may seem sort of weird that as we solved for z and y, we never really did
anything with them. Sure, we manipulated their coefficients by scaling equa-
tions, and adding two equations together, but to be honest, the unknowns =
and y were really just taking up space. We can leverage this fact to represent
the system of linear equations we’ve been working on in a compact form:

q+20p =800 1 20
q¢—10p = —100 1 —10

800
—100

We call the object on the right side the augmented matriz of the linear system.
In general, an r X ¢ matrix is just a rectangular array of numbers having r rows
and ¢ columns. Nothing too special there. But why the “augmented” part?
Well, we could also think about what a matrix containing only the coefficients
of the unknowns would tell us about the system. (We’d call this, not shockingly,
the coefficient matriz). So the augmented matrix of the system is just the
coefficient matrix of the system with an additional column representing the
right side of the linear system tacked on. It’s important to remember that rows
represent equations and columns represent unknowns.

The good news is that all the same calculations we performed to solve linear
systems when the unknowns x and y were present still work in the new matrix
context. But instead of adding and subtracting equations of the linear system,
we add and subtract rows of the matrix.

800 1 201800 1 20 | 800 1 201800 1
— — — —
—100 —1 10 | 100 0 30 | 900 0 1130 0
It’s a useful exercise to translate an augmented matrix back into a linear system.
Often seeing the linear system makes a result make more sense that just staring
at a matrix. Let’s take the last matrix for an example. Remember that the
first column represents the coefficient of the unknown ¢ and the second column
represents the coefficient of the unknown p. Reading off the first row gives

1g 4+ Op = 200, and reading off the second row gives Og + 1p = 30. These are
exactly the values that we found using the full equations.

1 20
1 -10

1.1.2 Reduced row echelon form

These days no one solves systems of linear equations by hand; we use a computer.
Both elimination and substitution involve quite a few simple calculations. These
are time-consuming to do by hand, and it’s easy to make minor arithmetic
mistakes that ultimately invalidate any subsequent results. Fortunately for us,

200
30
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computers are both faster and more accurate than we are. The formal procedure
used to solve systems of linear equations is known as Gaussian elimination in
honor of Carl Gauss, a famous mathematician living in the 1800s, though “his”
method had been used by Chinese mathematicians over 1000 years earlier. (Yes,
that’s three zeros after the one.)

The industry tool of choice for type of thing is Matlab. Defining a matrix
in Matlab is pretty easy. Let’s use our running example as our first try. Before
we discuss the exact syntax, let’s just see it.

EDU>> M = [1 20 800; -1 10 100]

1 20 800
-1 10 100

Square brackets start and stop the matrix, entries are listed across the row,
and a semicolon denotes a new row. Here we’ve set the matrix to the new
variable M, but we could’ve called it almost anything or even nothing at all.
We could also put commas between the entries of the matrix without changing
the output

So now that we have our matrix M, how do we find the solutions of the
system of liner equations it represents? Well, it’s good to know that the final
form of the matrix we’re looking for is call reduced row echelon form (for reasons
we’ll talk about in a minute). This gives us a convenient way to remember the
command: take the first letter from each word and you get rref. Let’s try
taking rref (M) in Matlab.

EDU>> rref (M)

1 0 200
1 30

So rref takes a matrix as an input and returns to us a matrix as an output.
Let’s convert the output matrix back into the notation of a linear system.

1 0

rref(M) = [O )

200 . lg+0p =200
30 Og+1p =30

So the matrix that rref (M) spits out represents the solution we found earlier!
This brings us to the first big idea of the course: If you want to solve a
linear system, no matter what kind, no matter where you see it,
seriously. .. any linear system, just rref its augmented matrix.
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1.1.3 Free variables

You may have notice in the previous two reading questions that all of the rows
contain a 1 which has only 0 entries to its left. These 1 entries are known as
pivots, and every row will either have a pivot or contain only 0 entries.

But why are pivots important? Well, let’s see what happens in an example
in which there aren’t as many pivots as we might expect. Let’s consider the
system

2%1 + 3%2 =6
41 + 629 = 12.

The corresponding reduced row echelon form is

EDU>> rref([2 3 6; 4 6 12])
ans =

1.0000 1.5000 3.0000
0 0 0

But, wait. Something’s strange here. To get a better handle on what’s going
on here, let’s convert this matrix back into a system of linear equations.

1 15

0 0
The second equation of the system is satisfied for any choice of x; and zs, so
that’s not much help. For the first equation there are an infinite number of
solutions, namely all the points that lie on the line xy + 1.5z5 = 3 in the x1—x2
plane. In other words, this system does not have a unique solution. The really
interesting fact is that we could infer this from the reduced row echelon form
of the matrix. A column (except the rightmost column) without a pivot in the
reduced row echelon form of an augmented matrix represents a free variable,
and any system with a free variable has infinitely many solutions.

0 0 =0

31 21 +152, =3
<

1.1.4 Inconsistencies

From our general discussion earlier, we know that a system of linear equations
has either infinitely many solutions, a unique solution, or no solution. We’ve
dealt with the first two, so it shouldn’t surprise us that we have one more case
to deal with. Let’s consider the linear system

0.04z1 4+ 0.81z9 = 0.65 0.04 0.81|0.65
0.07z1 +0.81zo =0.51 <« [0.07 0.81 | 0.51
0.52z1 +0.72zo = 0.97 0.52 0.72 | 0.97

A quick Matlab computation gives us the reduced row echelon form of the system
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EDU>> rref([0.04 0.81 0.65; 0.07 0.81 0.51; 0.52 0.72 0.97])

ans =
1 0 0
1 0
0 0 1

Let’s convert the reduced form back into a system of equations to see what’s
going on. (Hopefully this methodology is starting to feel natural by now; we’ll
soon stop pointing out this conversion explicitly.)

1 0]0 zy =0
0 10| ¢ zo0 =
0 011 0 =1

At first glance, this is probably the weirdest of all the cases. Every column
contains a pivot, so there are definitely no free variables. So what’s this linear
system trying to tell us? Well, the last equation, namely 0 = 1, is never true,
no matter how we pick x; and x2. In other words, this linear system has no
solutions! And again the positioning of the pivots was key in alerting us to
the fact. If the reduced row echelon form of the augmented matrix of a linear
system has a row in which the pivot occurs in the rightmost column, then the
system has no solutions.

1.1.5 Generalization

Any system of r linear equations in ¢ unknowns can be written as

1121 + a12%s + ... + a1 = by a1 a2 ... Qi | b1

ag1x1 + a9 + ...+ aA2cT e = b2 a1 a99 N ¢ B Xes b2
<~

ar1%1 + AroZo + ... + Apete = by Ar1 Ap2 ... Gpe | by

We’ve learned that computing the reduced row echelon form of the augmented
matrix on the right side will tell us how many solutions this system of linear
equations will have. If every column but the rightmost column in the output of
rref has a pivot, then the system has a unique solution. If some column other
than the rightmost column has no pivot, then the system has a free variable
and has infinitely many solutions. If the rightmost column has a pivot, then the
system has no solution.
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1.2 Matrix arithmetic

Now that we have a good handle on the solutions to linear systems, let’s take
some time to develop a sense of how to manipulate linear systems. Let’s start
with the most fundamental concept: matrix-vector multiplication. In some
sense, this idea is just a repackaging of a linear system into a more compact
form. Rather than discuss all the details right away, let’s first see an example.

0.7z1 +0.23z2 + 0.11z3 = 0.27 0.7 023 0.11] [z 0.27
0.5721 +0.77z9 + 0.762z3 =0.92 <« |0.57 0.77 0.76| [z2]| = [0.92
0.42x1 + 0.03z2 + 0.982z3 = 0.74 0.42 0.03 0.98| |z3 0.74

So what happened in the conversion here? Well, the right side of the linear
system got packaged up into a 3 x 1 matrix. We call a r x 1 matrix a column
vector (because it only has one column); similarly, a 1 x ¢ matrix is a row
vector. We also grouped the variables x1, x5 and x3 into a column vector. The
coefficients of the linear system were placed into a matrix in much the same
way we formed the augmented matrix, with the coefficient of the j** unknown
in the 7*" equation being placed in the (4, 5) position in the matrix.

Here’s a completely natural series of questions: Why in the world would we
want to do this? Aren’t we making things more complicated? What benefit are
we going to get out of all of this? To convince ourselves that this is a really,
really useful abstraction to make, let’s see the concept in action.

1.2.1 Three Industries

Let’s try a slightly more interesting application.! Suppose that a model of an
the manufacturing sector of an economy consists of just three industries: coal,
electricity and steel production. Define p., p. and ps to be the total annual
output of the coal, electricity and steel industries, respectively. In this model,
we’ll assume that all output is consumed. A natural question that should come
up any time you’re dealing with a real world application is “what are the units?”
And it’s a great question here, too. For our purposes, we’ll think of our annual
production in terms of their currency value; let’s use dollars in this example.
But as you might suspect, these industries don’t operate in isolation. The
coal industry buys steel to build new mines, the steel industry buys electricity
to power its plants, and so on. We can capture these interrelated rates of
consumption in Table 1.2.1. Here the intersection of row i and column j is the
fraction of industry i’s output that was sold to industry j. So, for instance,
the electricity buys 72% of the coal industry’s annual output (as measured in
dollars).

One question we might ask about a system like this is how much each indus-
try should produce so that every industry exactly breaks even. Remember that
the break-even point is where revenue equals cost. Let’s start with cost. How

LAdapted from Lay’s Linear Algebra and Its Applications, third edition, section 1.6
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Coal Electricity Steel

Coal 0 0.56 0.43
Electricity 0.72  0.11 0.40
Steel 0.28 0.33 0.17

Table 1.1: Consumptions (in percent) in our manufacturing sector economic
model. The intersection of row 7 and column j is the fraction of industry i’s
output that was sold to industry j. Notice that this implies that the column
should each sum to 1.

much does the coal industry spend every every? Well, it busy 0% of its own
output, 56% of the electricity industries output, and 43% of the steel industries
output. Using symbols instead of words, this sentence reads

Op. + 0.56p, + 0.43p;.

We could perform the same conversion for the other two industries. Let’s think
about forming a cost vector that we’ll call ¢. (A variable in bold font is a
vector.) We typically think about vectors in terms of their entries, also called
components, which we order from top to bottom so that the top entry is the first
component and the bottom entry is the last component. Here, the components
of our cost vector will be, in order, the cost incurred by the coal, electricity and
steel industries, respectively.

cost of coal industry _0.00pc + 0.56p, + 0.43p,
c = |[cost of electricity industry | = [0.72p, + 0.11p, + 0.40p,
cost of steel industry 10.28p, + 0.33pe + 0.17ps

[0.00 0.56 0.43] [p.
= 1072 0.11 0.40] |p.
0.28 0.33 0.17] |ps

= Cp,

where C' is the matrix and p is the vector of annual outputs. To see why this
matrix-vector product expression is powerful, we need to discuss the revenue
vector. By the definition of the problem statement, the total annual revenue of
the coal industry is just p., and similarly for the remaining two industries. Let’s
think about defining a revenue vector r in a similar way to the cost vector, so
that the first component of r is the revenue of the coal industry, the second of
the electricity industry, and the third of the steel industry. Replacing the words
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with symbols,

revenue of coal industry Pe
r = [revenue of electricity industry | = |pe
revenue of steel industry | Ds
[1 0 o] [pe
= (0 1 0| [pe
0 0 1] |ps
= Rp.
When all industries break-even simultaneously, we have
cost of coal industry revenue of coal industry
c = |[cost of electricity industry | = |revenue of electricity industry | = r.
cost of steel industry revenue of steel industry

But how do we actually solve for this case? How can we determine what value(s)
or pe, pe and pg lead to all industries breaking even? Well, we have matrix-vector
product expressions for both r and ¢, both of which contain the variables p., p.
and ps that we're after. Maybe substituting these matrix-vector products is a
good place to start.

0.00 0.56 0.43] [p. 100
0.72 0.11 040| |[p.| =10 1 0] |p.
0.28 0.33 0.17| |ps 00 1

For this to be a useful, we need to note that matrix-vector multiplication dis-
tributes. You might be a little rusty on these old terms, and for good reason;
we take these properties for granted all the time. Distributivity is the property
that says, for instance, that 3z — 5z = (3 — 5)x. We say that the multiplication
by x is distributed across the terms. So what does that have to do with our
situation here? Well, moving both matrix-vector products to the left side of the
equation gives

0.00 0.56 0.43| |p. 1 0 0] |pe 0
0.72 011 040| |p.| =10 1 0] |p.| = |0
0.28 0.33 0.17| |ps 0 0 1| |ps 0

Cp—Rp=0

This is equivalent to saying that at the break even point, the cost minus the
revenue is equal to zero for each industry independently. But, since matrix-
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vector multiplication distributes, we can write

Cp—Rp=(C—-R)p
0.00 0.56 0.43 100 Pe
=11072 011 040/ —-1]0 1 0O Pe
0.28 0.33 0.17 00 1 Ds

But this brings to another new topic: how do we add and subtract matrices?
Well, if you had to define how to add or subtract two matrices of the same
size, how would you do it? Seriously, take a second and think about it. Got an
idea? Good. If you thought, “I’d line up the matrices and add or subtract the
equivalent positions in each matrix”, you're on the right track. If you thought
something else, let me know; I’d love to hear your idea.

So let’s see how to do this matrix subtraction.

[0.00—1  0.56 0.43 De
072 0.11—1  0.40 Pe
Ds 0.28 033 0.17—1] |ps

(-1 056 043 ] [pe
= 1072 —0.89 0.40 | |p.
028 0.33  —0.83] |ps

0.00 0.56 0.43 1 00
0.72 0.11 040 —|(0 1 O
0.28 0.33 0.17 0 01

bR~
& o
Il

But remember, the reason we started down this trail was to figure out the
solutions to Cp = Rp. Now we know that these solutions are the same as the
solutions to (C'— R)p = 0. We can easily do this computation in Matlab.

EDU>> C = [0.00 0.56 0.43; 0.72 0.11 0.40; 0.28 0.33 0.17]
C =
0 0.5600 0.4300
0.7200 0.1100 0.4000
0.2800 0.3300 0.1700

EDU>> R =[100; 010; 00 1]

R =
1 0 0
0 1 0
0 0 1

Now that we have the matrices C' and R in Matlab, we can confirm that we
didn’t make any arithmetic mistakes earlier in our subtraction C — R.
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EDU>> C-R
ans =

-1.0000 0.5600 0.4300
0.7200 -0.8900 0.4000
0.2800 0.3300 -0.8300

But how do we make the augmented matrix of the linear system (C'— R)p = 0.
We know from the previous section that we want the matrix (C' — R) the the
column vector 0 append on the right side. On straightforward option is to type
this all in manually.

EDU>> M = [-1.00 0.56 0.43 0.00; 0.72 -0.89 0.48 0.00; 0.28 0.33 -0.83 0.00]

M =
-1.0000 0.5600 0.4300 0
0.7200 -0.8900 0.4800 0
0.2800 0.3300 -0.8300 0

But as you might imagine, this can be really cumbersome for large matrices. A
much faster and more direct way is to make a new matrix with C — R placed
next to 0.

EDU>> M = [C-R [0;0;0]]

M =
-1.0000 0.5600 0.4300 0
0.7200 -0.8900 0.4000 0
0.2800 0.3300 -0.8300 0

Regardless of how we computed the matrix M, we know what we have to do to
find the solutions to the linear system: rref it!

EDU>> rref (M)

ans =
1.0000 0 -1.2463 0
0 1.0000 -1.4577 0
0 0 0 0

So what does this mean? Well, the third column does not have a pivot, so the
linear system has a free variable, and so there are infinitely many solutions to
this system of equations. But let’s try to be more specific. We can convert the
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reduced row echelon form of the augmented matrix back into a system of linear
equations.

1 0 —1.2463 |0 1 0 —1.2463]| |p. 0
0 1 —14577|0| < |0 1 —14577| |pe| = |0
0 0 0 0 0 0 0 Ds 0

pe — 1.2463ps =0
& pe—1.457Tp, =0
0 =0

The value of py is not constrained by any of the equations from the reduced row
echelon form, and so it is a free variable. Only once we have chosen a particular
value for ps can the values of p. and p. be computed. In general, though,
rref (M) tells us some interesting things about the nature of the solutions to this
system. For instance, regardless of the annual output from the steel industry,
for all industries to break even, the coal industry’s output must be 124.63% that
of the steel industry. Similarly, the electricity industry’s annual output must be
145.77% of the steel industries output. Even if there is not a unique solution to
a system of linear equations, we can often still tell quite a bit about what the
solution space looks like.

The key idea here is that knowing the rules of matrix arithmetic allowed us
to solve a problem that at first seemed intractable. We had to leverage several
different properties, including matrix addition and distributivity, in order to
arrive at system which is both equivalent to the original and solvable. In short:
while pushing symbols around can seem boring at best and a huge pain at worst,
it is sometimes a very useful technique for making headway on a problem. And
in order to know that what we’re during is legal in the linear algebraic world,
we have to know the rules.

1.2.2 Matrix arithmetic rules

We encountered some matrix arithmetic rules over the course of the preceding
example. Let’s go through and more systematically deal with the topic. I know
it may seem silly to be pointing out simple things like this, but before too long
we’ll see examples where properties that we normally assume to be true do not
in fact hold.

Throughout this section, we’ll use the matrices M and N defined below for
our calculations. This choice is arbitrary, as seen in their random constructions;
any matrices would do.

EDU>> M = round(5*rand(3,3))

M =
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EDU>> N = round(5*rand(3,3))

N =
2 4 1
1 2 1
3 0 1

A useful Matlab command will appear throughout. We can grab matrix entries
using the row and column notation we’ve been developing. For instance M(2,3)
returns the entry in row 2 and column 3.

EDU>> M(2,3)
ans =

2

We can also grab an entire row or column at once by using the : symbol which
you can read as “all.” For instance, the command M(:,1) will return all row
entries that are in column 1.

EDU>> M(:,1)

Similarly, the command M(2, :) will return all column entries that are in row 2.

EDU>> M(2,:)
ans =

5 3 2

Notice that this command returns a row vector.

Scalar multiplication

In the context of linear algebra, a scalar is just a “normal” number, like 2, -7,
m, ete. If k is any scalar and M is any matrix (including vectors), then scalar-
matrix multiplication is done component-wise so that if m;; is the entry in row
¢ and column j of M, then the entry in row 7 and column j of kM is just kmy;.
Notice this means that kM = Mk.
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EDU>> -2%M

ans =
-4 -8 -2
-10 -6 -4
-2 -4 -4

EDU>> Mx*-2

ans =
-4 -8 -2
-10 -6 -4
-2 -4 -4

Matrix addition

As we discussed in the example, matrix-matrix addition is component-wise, so
that if a;; and b;; are the entries in row ¢ and column j of matrices A and B
respectively, then the entry in row 4 and column j in their sum A + B is just
aij + bij.

EDU>> M + N

ans =
4 8 2
6 5 3
4 2 3

Matrix-vector multiplication

Suppose we have a rxc matrix M with rows ry,ro,...,r,. and columns cq, cs, ..., C..
If x is a ¢x 1 column vector, the matrix-vector multiplication Mx can be thought

of in two ways. In the first, we think of Mx as a linear combination of the
columns of M with the coeflicients being the corresponding entries of x.

T

T2
Mx=M/| | =x1¢c1+TaCo+ ...+ TcCe.

EDU>> Mx[1;2;3]

ans =
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13
17
11

EDU>> 1#M(:,1) + 2%M(:,2) + 3*M(:,3)
ans =

13
17
11

In the second, we think of Mx as a vector whose components are the dot
product of x with the corresponding row of M.

Xorg

X O0Tr9

Mx =

XOor,

For a refresher, the dot product of two vectors x and y is just the sum of the
products of the components ), z;y;. You might have seen a similar concept in
the formula for correlation in an introductory statistics course. In Matlab, we
accomplish this using the dot command. To learn about this function, enter
doc dot or help dot in the command line.

EDU>> [dot([1;2;3],M(1,:)); dot([1;2;3],M(2,:)); dot([1;2;3],M(3,:))]
ans =

13
17
11

Notice that both definitions imply that if M is r X ¢, then x must be ¢ x 1
for the computation Mx to make sense. Matlab will always let you know if you
make a dimension mistake. It’s nothing to worry about, and here’s what the
error will look like.

EDU>> rand(4,3) * rand(2,1)
7?77 Error using ==> mtimes
Inner matrix dimensions must agree.

We’ll see over and over again that being able to think in terms of both of
these definitions will make problems much more approachable. Some problems
are easier to think about in terms of a linear combination of the columns of a
matrix, and others are easier to think about in terms of dot products of the
rOwS.
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Matrix-matrix multiplication

Multiplying two matrices is a lot like matrix-vector multiplication. Roughly
speaking, “stack up” a bunch of matrix-vector multiplications in order to make
the product matrix. More formally, let A be a r X ¢ matrix and let B be acxr
matrix with columns by, bs,...,b,. Then the product AB can be defined in
terms of r distinct matrix-vector products between A and the columns of B.

In our running example, we have

EDU>> MxN

ans =
11 16 7
19 26 10
10 8 5

EDU>> [M#N(:,1) M*N(:,2) M*xN(:,3)]

ans =
11 16 7
19 26 10
10 8 5

There are several really important things to note here. First, if A is r X ¢
then for AB to make sense, B must be ¢ x r. (A quick way to remember this
is to think of the product as (r x ¢) X (¢ x r) and make sure that the “inner”
and “outer” dimensions match.) Second, even if r = ¢ so that both AB and BA
make sense, it is almost never the case that AB = BA. For instance,

EDU>> M*N

ans =
11 16 7
19 26 10
10 8 5

EDU>> N*M

ans =
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25 22 12
13 12 7
7 14 5

This is probably completely outside of your experience in arithmetic. After all,
for real or complex number a and b, we always have ab = ba. But this is not
the case in the linear algebraic universe. We’ll see later that both AB and BA
have interesting conceptual interpretations, even if they aren’t the same.

The identity matrix

In the real numbers, there is a very special number x such that any other
number y multiplied with x returns xy = yx = y. This special number, called
the multiplicative identity, is x = 1, and the preceding sentence is just a precise
way to say “any number multiplied by 1 is itself.” There is a similar concept in
linear algebra. Here we have the identity matriz, a square matrix with 1 along
the main diagonal (i.e., entries at row 7 and column i) and zero everywhere else.
When used as an identity, we will always call this matrix I.

1 0 0
1
]:O
0
0 0 1

If an identity matrix has n rows (and so also n columns), we call it the identity
matriz of order n. To make an identity matrix of order n in Matlab, we use the
command eye(n).

EDU>> Mxeye(3)

ans =
2 4 1

3
1 2 2

EDU>> eye(3)*M

ans =

w
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Powers of matrices

We can take powers of a square matrix A, and they’re defined in much the
same way that powers of a real number are defined. For instance A2 = AA,
A3 = A?(A) = AAA. In general, we can define powers recursively using A" =
A""1A. Remember, it only makes to talk about powers of a matrix if the matrix
is square.

All the rest

All the rest of the properties that we’ve used for years in the real number context
also hold in the linear algebraic world. These include distributivity of matrix-
vector multiplication, so that (A + B)x = Ax + Bx and A(x +y) = Ax + Ay.
By the relationship between matrix-vector multiplication and matrix-matrix
multiplication, this also means that if A,B, and C are matrices, then (A+B)C =
AC + BC. Addition of matrices commutes, so that A + B = B + A and both
addition and multiplication are associative so that (A+ B)+C = A+ (B+C)
and (AB)C = A(BC). These are properties we’ve taken for granted for a long
time. But the most important thing to remember is that matrix multiplication
does not commute; generally speaking AB # BA.
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2.1 Leontief Input-Output Model

We've already seen examples of supply networks in which product A is both used
to make product B and is sold itself directly to the consumer. We can formalize
these notions by calling the former intermediate demand and the latter final
demand. Let’s investigate systems featuring intermediate and final demands in
a slightly different context than supply chain networks.

Imagine we have two industries, manufacturing and services, and suppose
that in order to make 1 unit of output, the manufacturing sector must consume
0.4 units of its own output, and 0.2 units of service industry output. (Here
“units of output” could be measured in whatever way we want so long as the
measurement method is consistent across the industries.) Similarly, suppose
that in order to make 1 unit of output, the services industry must consume 0.7
units of the manufacturing industries output, and 0.1 units of its own output.
Let z1, x2 be the number of units produced by the manufacturing and services
industries, respectively. Then the intermediate demand necessary to create these

units out production is
0.4 0.7 X1
0.2 0.1f |2

Suppose now that we introduce a final demand vector d representing the number
of units of production of both the manufacturing and services industry that are
demanded not by other industries, but by the public at large. Ideally, the total
number of units produced by both industries must be equal to the sum of the
intermediate and final demands; this is just the familiar idea of supply equaling
demand in equilibrium. Mathematically, we can express this idea as follows

Ty _ 0.4 0.7 T + d1
| 0.2 0.1 |2 do
x=Cx+d

Suppose that we have somehow measured of estimated the demands contained
in d, and we’re trying to determine our ideal production levels x. Rearranging
the equation a little bit gives

x=Cx+d
(I -C)x=d.

This type of linear system is called a Leontief input-output model.

In the past, we’ve solved systems of linear equations like this input-output
model using a rref in Matlab. We know how to interpret the results of this
computation in terms of unique solutions, free variables and all the rest. But
rref isn’t an ideal solution generally for a couple of reasons. First, an individual
rref computation doesn’t help us do another rref computation more efficiently;
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for a different demand vector d’, we would simply repeat the entire process.
Second, rref is almost useless in a theoretic context; sometimes, like it or
not, pushing symbols around leads to serious discoveries about fundamental
properties of a given system. Here’s my claim: it would be great if we could
find a matrix A such that

A(I - C)x = Ad
Ix =x = Ad.

If you think about it, this is exactly what’s happening every time you solve for
Z in an equation involving only real numbers. For instance when solving the
equation 7x = 14, you find a number a such that a - 7x = lx = z, namely
a = 1/7. While it’s true that such an inverse element a will exist over the real
numbers, it’s not the case that an inverse element will always exist when we’re
dealing with matrices. If the inverse of a matrix C exists, we denote it C 1.
Just as if real numbers, the matrix C~! satisfies C~'C =1 = CC~L.

Ezample 1: Consider the matrices

C:

5 3
3 2

p-[% ]

Reading question 2: Verify the previous claim.

Then D = C~1.

2.1.1 The matrix inverse

Before we dive into computing the inverse of a matrix, let’s gather up some
preliminary results. For now, let’s consider an arbitrary r X ¢ matrix C. Gen-
erally speaking, the matrix C' takes a vector of length ¢ and produces a vector
of length r. Another way of saying this is that the domain of C' is R¢ and the
range is R". Remember, for an inverse of C' to exist, we need a one-to-one and
onto correspondence between the elements of the domain and the elements of
the range. If r > ¢, then there are more elements in the range than in the
domain. But then it’s impossible that every element in the range is of the form
Cx for some x, exactly because there are more elements in the range than there
are x’s in the domain. Another way of saying this is that C is not an onto
mapping in this case. On the other hand, if ¢ > r, then there are more elements
in the domain than there are elements in the range, and so some element y in
the range such that Cx; =y and Cxy = y. Another way of saying this it that
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C is not a one-to-one mapping in this case. Since neither r» > ¢ nor ¢ > r are
suitable situations, for C' to have any chance of having an inverse, it must be
the case that r = ¢ so that C' is a square matrix.

But even if C' is square, we can still run into problems. For a ridiculous
case, imagine that C is a square matrix containing all zeros. Then C maps
every input vector x to the output vector y = 0. So clearly C' is not a one-to-
one mapping in this case. We’ve seen that in general if the columns of C' are
not linearly independent, then rref (C) contains a free variable, and so there
are some y in the range of C' which have infinitely many solutions x satisfying
Cx =y. Hence, if the columns of C are linearly dependent, then C' is not an
one-to-one mapping, and hence there can be no inverse for C'.

So suppose that the columns of C are linearly independent. In this case,
rref (C) can have no free variables, and since C is square, this implies that
rref (C) is an identity matrix. Therefore, for every y in the range of C, there
is a unique solution x such that Cx = y. This is exactly what we want in order
for the inverse of C' to exist!

Reading question 3: Prove that if C' is square and rref (C) has no free vari-
able, then rref (C) is an identity matrix.

Reading question 4: Prove that if rref (C) is the identity matrix, then the
equation Cx =y has a unique solution for every y in the range of C.

So we can add the existence of a matrix inverse to our list of equivalent
conditions concerning linear independence of the columns of a matrix. (Here we
assume that A is square.)

e The equation Ax =y has a unique solution x for every y.
e The equation Ax = 0 has only the trivial solution x = 0.
e The columns of a A are linearly independent.

e rref (A) contains no free variables.

e rank(A) = ¢, the number of columns of A.

e The inverse A~1 exists.

2.1.2 Building intuition

Before we get into the nitty gritty, let’s try to form a hypothesis about what a
matrix inverse of a 2 x 2 matrix A will look like. In Matlab, try

EDU>> A = [5 3; 3 2]

A =
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5 3
3 2
EDU>> A~ (-1)

What do you see? How are the entries of A~! related to the entries of A?
Next try

EDU>> A = [3 1; 5 2]

EDU>> A~ (-1)

Does your hypothesis from the first example fit the second example?
One last example:

EDU>> A = [4 7; 2 4]

A =
4 7
2 4
EDU>> A~ (-1)

How is your hypothesis holding up now? If it failed, can you revise it to make
sense of all three examples?

2.1.3 A first matrix inverse

So far we know that a matrix inverse of A exists if and only if A is square and
has linearly independent columns. But this doesn’t help much with the actual
computation. Consider the general 2 x 2 matrix

A:_“ b].
c d

Let’s make two observations:
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We know A~! must exist, and so applying A~! to both sides of both equations
is totally legal.

Ata |t == 4 H
0 c
a4l =% =4t ]
1 1 d

To find out what A~! actually is, let’s first define its components and then solve
for them using the relations we just found. Let

A_lze'f
g h|

Remember, we're given A, so we know exactly the values of a,b,c and d. We
don’t know e, f, g or h; these are variables. Our relations from above become

NIERE

A71

aet+cf| |1
ag + ch o
and
a1 e fle] |0
el lg n||d] |1
be+df | |0
bg+dh| |1

We have 4 equations in the variables e, f, g and h. We can gather these up in
to a single system of linear equations.

ae—l—cf_ B 1

ag +ch o

be+df] o

bg+dh| |1

a c 0 0] [e] [1
N 0 0 a c||f _ 0
b d 0 0f |g 0

0 0 b d| [h] |1
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We can use a tool like WolframAlpha to solve this system. We find

d
e =
ad — be
—b
f_adfbc
. —c
g_ad—bc
a
h = .
ad — be

But remember, the whole point of this exercise was to find the components of
the inverse matrix A~'. We can now just read them off.

A_lz € f
g h
1 [a -
Cad—bec |—c a |’

Reading question 5: Show that we’ve found is accurate by computing AA~!
and A7LA.

The scalar outside the matrix portion of A~ is really interesting. We say
something similar when we considered eigenvalues and eigenvectors. In partic-
ular, we showed (in our current notation) that if ad — bec = 0, then the columns
of A are scalar multiples of each other, and hence linearly dependent.

Reading question 6: Remind yourself why the preceding statements are true.
Notice that the same type of reasoning used in computing the inverse of a

given 2 x 2 matrix could be used to explicitly construct the inverse of any n X n
matrix!

Reading question 7: Find the inverse of the arbitrary 3 x 3 matrix

C
A:

Q@ Q. 2
C =

b
e
h i

2.1.4 Computing production

Now that we have the inverse of an arbitrary 2 x 2 matrix, computing the total
production necessary to satisfy the demand in a Leontief input-output model
should be a piece of cake. For instance, imagine that the total demand is 200



32 CHAPTER 2. THE MATRIX INVERSE

units from the manufacturing industry and 100 units from the services industry.
Then our matrix equation looks like

1 0] |04 07 | |200
01 0.2 01|/ |za| |100
Ax=d
So we first need to compute A~! and then multiply by d. Since we’ve already

done the tough stuff, we can literally just substitute values in order for find the
inverse.

P 1 09 —0.7
= (0.6)(0.9) — (0.7)(0.2) |-0.2 0.6

_ 95 0.9 -0.7
—-0.2 0.6
{225 175
105 15
Not so bad, right? But a lot of times, things don’t work out so neatly. In those

cases, it’s usually better just to use Matlab. We can compute the inverse of A
using Matlab in a couple different ways.

EDU>> A = eye(2) - [0.4 0.7; 0.2 0.1]

0.6000 -0.7000
-0.2000 0.9000

EDU>> inv(A)
ans =

2.2500 1.7500
0.5000 1.5000

EDU>> A~ (-1)
ans =

2.2500 1.7500
0.5000 1.5000

All three methods agree, so we know we’re doing everything correctly. So to
compute the number of units needed to satisfy demand [200, 100}, we just need
to multiply.
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EDU>> 4 = [200;100]
d =

200
100

EDU>> inv(A) * d
ans =

625.0000
250.0000

So the manufacturing industry and service industry must produce 625 units and
100 units, respectively, in order to satisfy both intermediate and final demand
exactly. This type of operation comes up so frequently that Matlab has provided
an even easier way to compute x = A~ 'd.

EDU>> A \ d
ans =

625
250

Notice that this is a backslash, not forward slash as we typically use in division!
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2.2 Parameterized Leontief Input-Output

The Leontief input-output model that we considered previously took the form

X1 o 04 0.7 X1 + d1
ol 02 0.1 |2 do

x=Cx+d,

where x represented the number of units produced of each good, and d repre-
sented the final demand. Just so we have some terminology to throw around,
remember that we called Cx the intermediate demand.

We reframed the idea of finding a specific production level x that would
perfectly satisfy demand as a matrix inverse problem, in particular the problem
of finding the inverse of the matrix I — C.

Reading question 8: Remind yourself why we care about the inverse of the
matrix I — C.

Just as in our investigations of eigenvalues and eigenvectors, it is often a
productive exercise to think of one of the entries of C' as a tunable parameter.
This serves two functions: first, it let’s us represent uncertainty as to the exact
values of the matrix C. Remember, the (i, j) entry of C represents the number
of units of product i that are necessary to produce 1 unit of product j.

Reading question 9: Remind yourself why the preceding statement is true.

We could easily imagine that this value fluctuates or is not known defini-
tively, and so having some control over the value of the (7, ) entry of C could
give us some information about how the system behaves as various intermedi-
ates demands change. Another reason to introduce tunable parameters is more
mathematical: generalizing the matrix C' will help us build intuition about when
and how inverses exist or fail to exist.

Let’s consider an input-output model where the number of units of product
1 necessary to make 1 unit of product 2 is represented by the variable k. Since
an industry should be adding value by creating a new product, it’s safe to
assume that & < 1, and since it doesn’t make sense to have negative values of
production, we can also feel good about bounding & > 0. Our model now takes

the form
| |04 K
zo| 0.2 0.1

x = Cipx +d,

dq
do

1
+
T2

Here’s a natural question: for what values of k does there exist a unique pro-
duction level that satisfies final demand exactly? Mathematically, we’re asking
ourselves the following question: for what values of k£ does an inverse of I — C},
exist.
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We have many different and equivalent ways that characterize whether the
inverse of a particular matrix exists. In some ways, the only real mathematics
involved in the process of determining whether an inverse exists or not is having
some insight into which formulation will give use the easiest route to determin-
ing the existence of the inverse. For instance, we could try to prove that the
determinant of the matrix is nonzero. Or, alternatively and equivalently, we
could try to prove that the columns of the matrix are linearly independent. Or
we could try to prove that the kernel of the matrix contains only the zero vector.
All of these (and more) and perfectly valid, but one or more will usually prove
to be easier than the others.

Since computing the determinant of a 2 X 2 matrix is easy, let’s start there.
Remember, we’re trying to investigate the matrix I — Cj, not just Cy itself. So
the question becomes this: for what values of k does the following statement

hold:
1 0] [o4 &
det ([0 1] N lo.z 0.1D 70

Simplifying the matrices first and then taking the determinant gives
det(I — Cy) = (0.6)(0.9) — (0.2)k.
Reading question 10: Verify the previous claim.

Notice that the determinant is linear in k, and hence there will be one and only
one value of k for which det(I—C}) equals any given value, and in particular only
one value of k for which the determinant is zero. A little bit of mathematical
elbow grease will give us our answer.

0= .54 — 2k

k=2.T.
Bringing this result back to the context of the problem, there will exist a unique
production level which uniquely satisfies any final demand vector d so long as

k # 2.7. This is a really good thing, because we’ve already decided that for the
model to make any kind of physical sense, it must be the case that k € [0,1).

Reading question 11: Repeat the following procedure assuming that the (2,1)
entry of C' is unknown.

It’s not much of a stretch to imagine that a different entry in the matrix C'
is unknown. For instance, let’s imagine that entry (2,2) of C is unknown. In
terms of our model, this means that we’re unsure how many units of product 2
will be recycled to make a single unit of product 2. Our model now takes the

form
x| |04 0.7 |1 n dy
xZ9 N 0.2 k Z2 d2

x = Bpx +d,
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(Note: I'm using By, here just to clearly denote that the matrix we’re considering
here is not exactly the same as the Cj considered before.) Again, let’s deter-
mine when the inverse of I — By, by using determinants. Here the determinant
condition for invertability takes the form

ally 3oz %)) o

Simplifying and performing the determinant computation gives
det(I — By) = (0.6)(1 — k) — (0.7)(0.2)

Again, the determinant is linear in &, and so there is one and only one value of
k for which I — B}, is not invertible:

0= (0.6)(1— k) — (0.7)(0.2)

Reading question 12: Verify the previous computation.

Here, the computed value of k certainly does lie within the bounds we set
up earlier. In other words, this value of k could conceivably come up in the
real world. But what would it mean if it would? Remember, systems of linear
equations either have a unique solution, no solution or infinitely many solutions.
We'’ve just proved that if k& in this situation has a particular value, then it is
definitely the case that the a unique solution to the Leontief input-output model
does not exist. Therefore, we can conclude that there are either infinitely many
production levels that perfectly satisfy a given final demand, or no production
level that perfectly satisfies a given final demand. Which situation actually
occurs completely depends on the given final demand.

Now, for the grain of salt. We’ve shown that a matrix inverse of I — By
fails to exist if and only if £ is one particular value. In the real world, such a
narrow window of badness is very rarely realized. That being said, sometimes
very weird things can happen if a matrix is “close” to be non-invertible. In
other words, we could see strange behavior of our production levels if k is very
near the point at which a matrix inverse fails to exist. The point here is that
we as mathematically oriented business people need to be aware of the failures
of our models and do our best to mitigate those failures.
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2.2.1 A larger example

How about a more difficult example? Consider a 3 industry Leontief input-
output model of the form

1 0.3 0.2 04| |z dy

xo| = 10.3 0.5 04| |x2| + [do

T3 03 02 k T3 ds
x=Cirx+d.

As with the previous example, there are a lot of different ways that we could
determine when I — Cj. It’s tough to say which is going to be the easiest, but
let’s try to start with analyzing the determinant condition. But we’ve never
talked about how to take the determinant of a 3 x 3 matrix by hand! Have no
fear! WolframAlpha eats problems like this for breakfast. Let’s try entering the
following statement into WolframAlpha:

det IdentityMatirx[3]-{{0.3, 0.2, 0.4},{0.3, 0.5, 0.4},{0.3, 0.2, k}}
Now, we could’ve used the statement
det {{1-0.3, -0.2, -0.4},{-0.3, 1-0.5,-0.4},{-0.3, -0.2, 1-k}}

You might think one or the other is a little better. Regardless of which one we
end up choosing, the result is

det(I — Cj) = 0.126 — 0.29k.

Then the determinant condition of invertibility tells us that I — Cj is non-
invertible if and only if

0=0.126 — 0.29k
k=~ 0.434.
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2.3 Leontief Price Equation

The Leontief input-output model we’'ve been investigating also has another in-
teresting application. To give this application justice, we need a simple but
powerful operation: the matriz transpose. Given a matrix A, the matrix trans-
pose AT is formed by taking the first column of A as the first row of AT, the
second column of A as the second row of AT and so on. Here’re some examples:

1
s |2
A:[1234],A:
3
4
L 2] 1 3 5
A= 1|3 4|, AT =
2 4 6
5 6] L
A:127AT:13
3 4 2 4
1 0 0]
r= | It =1
S .0
O 01_

The transpose has all sorts of interesting properties. Let’s start with some
simpler ones. For instance, (A7) = A. If A and B are matrices (or vectors) of
the same size, then (A + B)T = AT + BT. Scalar multiplication also works well
with the transpose, in the sense that (cA4)T = cA” for any scalar c.

Reading question 13: Verify that the preceding properties of the transpose
hold.

There are some more complicated properties that are also immensely useful.
For instance, det(AT) = det(A).

Reading question 1/4: Verify the preceding statement for the arbitrary 2 x 2
matrix.

But why should we care about a property like this? Well, we know that an
inverse of A exists if and only if det(A) # 0. If we believe the property above,
then the matrix A has an inverse if and only if the matrix A7 has an inverse.

Another interesting property is that for suitably sized matrices A and B, we
have (AB)T = BT AT

Reading question 15: Verify that the preceding statement is true for an ar-
bitrary 2 x 2 matrix A and an arbitrary 2 x 3 matrix B.
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Using the previous two properties, we can actually determine the exact form
of the inverse of A” provided that it exists. To see how this works, let’s first
assume that a matrix A has an inverse A~!. From the determinant property of
the matrix transpose, we can claim there exists a matrix B such that BAT =
AT B = I, namely that B is in the inverse of A”. Then

BAT =1
(BAT) =17
ABT =1
BT = A7'T
B=(A"HT

In other words, the inverse of the transpose is the transpose of the inverse of
A. In symbols, (AT)=t = (A=HT. At this point, I have a feeling that you're
wondering why this is important. So let’s get on with the application.

Let’s imagine that industry ¢ charges p; dollars (or other unit of currency) for
each unit of its output. Considering a Leontief system with 2 different industries,
we can bundle these prices into a price vector p, where the it component
of p is p;, the price charged by industry ¢ for 1 unit of its output. For a
concrete example, let’s go back to the manufacturing and services example that
we investigated previously. Remember, this model took the form

I 04 0.7 I d1
+
T2 0.2 0.1 X9 d2

x=Cx+d
Imagine now that industry 1 (manufacturing) charges $200 per unit of its output,
and industry 2 (services) charges $100 per unit of its output, so that our price
vector has the form p = [200, 100]7". Since industry 1 requires 0.4 units of output
from industry 1 and 0.2 units of output from industry 2, industry 1 incurs a
total cost of (0.4)(200) + (0.2)(100) in order to make one unit of output. We

can write this in symbols, too.
200
0.4 02]
100

T
:Clpa

(0.4)(200) + (0.2)(100)

where here c; is the first column of the consumption matrix C. Similarly, we
could write the cost incurred to make a single unit of output from industry 2 as

(0.7)(200) + (0.1)(100) = [0.7 0.1] ﬁggl

T
:c2p
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In fact, we can bundle up these costs into a single matrix-vector quantity using
the matrix-vector quantity C7p.

Reading question 16: Run through the matrix arithmetic to prove that the
preceding statement is true.

Now, cost is only part of any economic equation. What we’re really interested
in is what price each industry needs to charge in order to cover depreciation, the
wages of its employees, etc. and also make a fixed amount of profit. We'll be
measuring all of these quantities per unit of output. (This is important, because
it allows us to make fair comparisons.) All together, the wages, depreciation,
profit, etc. can be summed into a single number: the added value v; of industry
1. Bundling up the added values of every industry, we can form an added value
vector v. Then given a consumption matrix C and a value added vector v, we
would like to find at price vector p such that

p=Clp+v.

How does this equation mean? Well, here the prices of 1 unit of output from
each industry have been set so that every industry exactly covers both its costs
incurred from buying other industries’ goods, represented by C”?'p, and its added
value. But how can we find such a special price vector? We can follow a similar
path as we did in the original Leontief model.

(I-Chp=v.
If the matrix (I — C7) is invertible, then
p=(I-C")"tv.

Let’s revisit our two industry example, but this time, rather than using a
fixed price vector, let’s imagine having a fixed value added vector v = [50, 25]7.

Reading question 17: Describe in words what v means in terms of quantities
from our two industry model.

Then our price equation takes the form

p=Clp+v
0.4 02| . [50
0.7 01| |25

(RIS

Just as a refresher, let’s remind ourselves how to solve this system of linear
equations the old way, that is, the way we solved systems of linear equations
before we knew about the concept of inversion. Short story: rref the augmented
matrix.
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EDU>> rref([.6 -.2 50; -.7 .9 25])

1 0 125
1 125

But if we had a bigger matrix, this might be a little bit of a pain. If we’re sure
that I — CT has an inverse, we can compute the solution price vector p using
matrix inversion. But before we do, we need to learn how to take the transpose
of a matrix in Matlab. Fortunately for everyone involved, this is pretty easy

EDU>> C = [0.4 0.7; 0.2 0.1]

C =
0.4000 0.7000
0.2000 0.1000

EDU>> C’

ans =

0.4000 0.2000
0.7000 0.1000

The symbol to do the transpose, in case it’s unclear, is the single quote. You
can also type help transpose in Matlab to learn more about the syntax.

Now we’re ready to actually do our matrix inversion. Remember that there
are two ways to do this in Matlab. The first way looks a lot like what we would
write analytically:

EDU>> inv(eye(2) - C’) * [50;25]
ans =

125
125

The second looks a little bit different, and more like division notation than
inverse notation.

EDU>> (eye(2) - C’) \ [50;25]
ans =

125.0000
125.0000
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Regardless of how you get to this point, we’ve concluded that for the manufac-
turing and service industries to have added values of $50 and $25 per unit of
output, respectively, then both should charge $125 dollars per unit of output.



2.4. SENSITIVITY IN LEONTIEF MODELS 43

2.4 Sensitivity in Leontief Models

We've seen that the entries of the consumption matrix C of a Leontief input-
output have an useful physical interpretation: the (7, ) entry of C represents
the number of units of output from industry ¢ necessary for industry j to create
1 unit of output. Let’s try to develop similar intuition about what the entries
of the matrix (I — CT)~! and (I — C)~ L.

The method through which we’ll try to gain this intuition is the same one
we’ve used previously: in order to understand the conceptual meaning of the
entries of a matrix A, pick a test vector x which has some known meaning, and
interpret the results of Ax in terms of the model under consideration. Probably
the best way to get a handle on this strategy is to see an implementation.

2.4.1 Price Equation
Remember that the Leontief price equation is given by
p=C'p+v,

where p is the price vector, C is the consumption matriz and v is the value
added vector. All quantities are measured per unit of output of each industry.
If the matrix I — C7 is invertible, then we can uniquely determine appropriate
prices for any value added vector v via

p=T-C" v,
Remember that in the particular example we had been dealing with, we had
-1
pi| _ (|1 O] (04 0.2 V1
pa|  \|0 1 0.7 0.1 vy
-1
106 =07 vy
~|-02 09 vy
Reading question 18: Verify that the matrix in the previous equation is ac-
tually invertible.
Let’s imagine that the value added per unit in industry 1 is v; = 17 and the

value added per unit in industry 2 is vo = 24. What are the appropriate prices
given all of our assumptions? Matlab can crunch this type of thing, no problem:

EDU>> C = [0.4 0.7; 0.2 0.1]
C =

0.4000 0.7000
0.2000 0.1000
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EDU>> (eye(2) - C’) \ [17;24]
ans =

50.2500
65.7500

So for all industries to be simultaneously satisfied, industry 1 should sell 1 unit
of its output for $50.25 and industry 2 should sell 1 unit of its output for $65.75.
(Side note: If you're more comfortable simplifying the matrix expression before
you put it into Matlab, that’s totally fine. Myself, I'm pretty bad at arithmetic,
so when there’s a chance, I let Matlab do it for me.)

Now, what happens to the price solution if the value added per unit of
industry 1 changes slightly from v; = 17 to v; = 18 while the value added per
unit in industry 2 remains constant at vy, = 247

EDU>> (eye(2) - C’) \ [18;24]
ans =

52.5000
67.5000

So for all industries to be simultaneously satisfied, industry 1 should sell 1 unit
of its output for $52.25, and industry 2 should sell 1 unit of its output for $67.50.
Combining the previous results, we can write an expression for the change in
prices when the value added of industry 1 is increased by 1.

_ —1 —1
0.6 —0.7 18 0.6 —0.7 17
Ap; = -
-02 09 24 0.2 0.9 24
~ [52.50]  [50.25
~|67.50 65.75

[225
R WG]

We can think of this vector as the sensitivity of the prices of each industry to
changes in the value added per unit of industry 1. The larger the absolute values
of the entries of this vector Apy, the bigger the changes in price when industry
1 changes its value added just a little bit.

The really surprising thing is the this price change information is encoded
in the matrix (I — CT)~!! To see this, let’s start with the identical first line
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above and follow a different mathematical course:

- 1-1 -1
0.6 —0.7 18 0.6 —0.7 17
Ap; = —

-0.2 0.9 24 -02 09 24
- 1-1

106 -07 18| |17

=02 009 24 24
- - -1

06 —o07 1

=02 09 ol

But for any matrix A, the matrix multiplication A[1,0,...,0]” returns the first
column of A. And so Ap; is the first column of the matrix (I — CT)~1.

Reading question 19: Convince yourself that for any r x ¢ matrix A, the
matrix multiplication A[0,...,0,1,0,...,0]7, where the single 1 is located in
the j*"component, 1 < j < ¢, returns the j** column of A.

Simply computing the inverse of I —C7T shows us that our analysis is correct.

EDU>> inv(eye(2) - C?)
ans =
2.2500 0.5000
1.7500 1.5000

This is a good place to note that only the difference of the value added vectors
mattered in the preceding computations; their absolute levels make absolutely
no impact.

Reading question 20: Repeat the preceding steps using the value added vec-
tors v = [1,2000]7 and v/ = [1,2001]7 in order to show that the second column
of (I —CT)~! represents the sensitivity of prices to changes in the value added
per unit of industry 2.

2.4.2 Production Equation
Remember that the Leontief production equation is given by
x=Cx+d,

where x is the production vector, C is the consumption matriz, and d is the
final demand vector. If the matrix I — C is invertible, then the appropriate
production for a given final demand can be computed directly via

x=(I-C)"'d
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In the particular case we had been considering, this read

-1
I - 1 0 _ 04 0.7 dl
zo|  \ |0 1 0.2 0.1 ds
-1
106 -0.7 dy
~|-02 09 da|
The appropriate production level for the final demand vector d = [100, 200]”
can be computed in Matlab.
EDU>> C = [0.4 0.7; 0.2 0.1]

C =

0.4000 0.7000
0.2000 0.1000

EDU>> (eye(2) - C) \ [100;200]
ans =
575

350

In words, to satisfy final demand of 100 units from industry 1 and 200 units from
industry 2, industry 1 should manufacture 575 total units, and industry 2 should
manufacture 350 total units. But how does the production solution change if
the final demand from industry 2 changes by 1 unit so that d = [100,201]%.
Well,

EDU>> (eye(2) - C) \ [100;201]

ans =

576.7500
351.5000

In words, we need 576.75 total units from industry 1 and 351.5 total units from
industry 2. Combining the two preceding results, we can write a numerical form
of the change in production associated with an increase in final demand from
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industry 2 of 1 unit:

- —1 —1

06 —0.7 100 0.6 —0.7 100
sz = —

-0.2 09 201 -0.2 0.9 200
[s76.75]  [575
| 3515 350
_[ums
15|
We can think of Axs as the sensitivity of production to changes in final demand
of output from industry 2. But this sensitivity information is contained within

the inverse of I — C. We can see this by developing the original expression for
Axs along a different track.

- 4 -1 —1
0.6 —07 [100} [ 0.6 —0.71 [100]
AXQ = —

-0.2 09 201 -0.2 0.9 200

- Q-1
|06 —07 100{  [100
=02 09 201 200

- 1-1
o6 —o07 0
=02 09 N

But for any matrix A, the matrix multiplication A[0,0,...,1]7 returns the last
column of A. So Axs, the change in production associated with an increase of 1
unit of final demand of product 2, is the second column of the matrix (I —C)~L.

A simple Matlab computation of (I — C)~! confirms that the two interpre-
tations are identical.

EDU>> inv(eye(2) - C)

ans =

N

.2500 1.7500
.5000 1.5000

(]

Reading question 21: Repeat the preceding steps using the final demand vectors
d = [75,1]7 and d = [76,1]7 in order to show that the first column of (I —C)~?
represents the sensitivity of production to changes in the final demand of prod-
uct 1.
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3.1 Converting Customers

Imagine that we model our business based on two types of customers: one-time
customers and repeat customers. Say that the number of one-time and repeat
customers in month ¢ are o; and r, respectively. These populations are disjoint,
so that every customer is either a one-time or a repeat, but no customer is both.
Naturally, a one-time customer can become a repeat customer. From data
you've gathered, you know that each month 40% of your one-time customers
remain one-time customers. You also know that each month around 10% of your
repeat customers refer a new customer. Using these two ideas, we can write an
expression for the number of one-time customers we expect to have in month
t 4+ 1 in terms of the number of one-time and repeat customers in month ¢.

Ot41 = O.40t + 0.17}.

You also know that there’s a 95% chance that repeat customers continue to buy
your goods. (A common metric that I've heard is that if a repeat customer has
not bought something from you in 3 months then they are removed from the
repeat customer group.) Since 40% of your one-time customers remain one-time
customers, we can claim that the other 60% have become repeat customers. We
can combine these two facts to write an expression for the number of repeat
customers we expect to have in month ¢ 4+ 1 in terms o the number of one-time
and repeat customers in month t.

Tt4+1 = 0.60,5 + 0.95’/}.

We can combine the two previous equations into a single matrix-vector equation
which describes how our customer populations change from month to month.

Ot41 o 0.4 0.1 O¢
rear| 0.6 0.95] |
Ot4+1 —C
Tt+1

3.1.1 One-time or repeat?

Ot

Tt

Here’s the question we're going to set out to answer. In the long term, what
will the ratio of one-time to repeat customers be for the business modeled by
the matrix C? This is a serious question that a lot of industries have to deal
with. High end industries in particular often decide that repeat customers
are the segment on which they want to focus. After all, the pool containing
their potential clientele is small, so it makes sense to work hard to keep any
customers you have. Cheap products often rely on the fact that they will have
a large number of constantly changing one-time customers, known as customer
churn, to support their business. Whatever your strategy, it’s important make
sure that you know what you’re getting yourself into. And eigenvectors and
eigenvalues can help us make data-based predictions.
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An eigenvalue, eigenvector pair A\, v of a matrix A satisfy the equation

Av = )v.

Why in the world would we care about such a thing? Well, imagine that we’'ve
found an eigenvalue, eigenvector pair A\, v of our customer transition matrix C.
If we start with v customers in month ¢, then we have Cv = Av customers
in month t + 1. There are two things going on here. One, the total number
of customers has grown by a factor of A. In other words, A is the growth rate
of our customer base, provided that our initial population was described by
an eigenvector. Second, if we started with o; one-time customers and r; repeat
customers in month ¢, then in month ¢+1 we have 0,11 = Ao; one-time customers
and 741 = Ary repeat customers. Both populations have grown (or shrank) by

our
For

growth factor A\, but they have remained constant relative to each other.
instance, if one-time customers represented 67% of our total customer base

in month ¢, then they continue to represent 67% of our customer base in time

t+

1. We'll see later that we can say interesting things about the long term

behavior of the system even if our initial condition does not line on the span of
an eigenvector.

Now, there are a lot of different ways to get the eigenvalues and eigenvectors

of a matrix. Probably the easiest is to have Matlab do it for us. First we need
to enter the matrix:

EDU>> C = [0.4 0.1; 0.6 0.95]

C =

0.4000 0.1000
0.6000 0.9500

Now, to be honest, I never remember exactly how to use the eig function in

Matlab; I have to check every time:

EDU>> help eig

EI

G Eigenvalues and eigenvectors.
E = EIG(X) is a vector containing the eigenvalues of a square
matrix X.

[V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a
full matrix V whose columns are the corresponding eigenvectors so
that X*V = VxD.

So if we simply type eig(C), Matlab thinks that we just want the eigenvalues:

EDU>> eig(C)

ans
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0.3067
1.0433

That’s pretty handy. We know that the eigenvalues of our matrix are A\; =
0.3067 and Ao = 1.0433. So we know our growth rates, but we don’t know the
customer bases to which they correspond. To get these, we need to give Matlab
a little more guidance:

EDU>> [V,D] = eig(C)

V =
-0.7313 -0.1536
0.6821 -0.9881

D =
0.3067 0
0 1.0433

Notice that the main diagonal of D contains exactly the eigenvalues that we
found using our first guess at eig(C). The columns of the matrix V are the
corresponding eigenvectors. For instance, the first column of V is the eigenvector
v1 corresponding to the eigenvalue A\; = 0.3067. How could we check this? Well,
we know that

Cvy = A\1vy.
In Matlab notation, the left side of the equation becomes
Cx[-.7313; .6821]
ans =

-0.2243
0.2092

and the right side becomes
EDU>> 0.3067 * [-0.7313; 0.6821]
ans =

-0.2243
0.2092
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They're equal! We've actually seen eigenvalues and eigenvectors in action nu-
merically! Think about what just happened: somehow, magically, the matrix-
vector multiplication Cvy acted to just shrink both components of v to 30.67%
of their original value.

Before we go on, we should clear up a few things related to these eigenvectors.
First, you might think that we shouldn’t have a fractional number of customers.
And you’d certainly be right. Is there any way we can turn these into some that
actually represent realistic numbers of people? Sure! Let’s think about the
vector w = 10,000v;. Let’s convince ourselves that w is an eigenvector of C
with eigenvector Ap:

Cw = 10,000(Cv)
= 10, 000/\1V1

= )\1W.

So we’ve shown that w is an eigenvector of C with eigenvalue A;. And you
might have already guessed that there’s nothing special about the factor of
10,000 outside; we can scale an eigenvector by any scalar and still have an
eigenvector.

You might also be worried about the fact the first eigenvector predicts that
the number of one-time customers will be negative. This is a correct interpre-
tation of the eigenvector’s meaning, but we’ll see in a little while a context in
which this idea makes more sense. We’ll table the idea for now.

3.1.2 Simulation

But let’s get back to our original question: after a large number of months,
what is the ratio of one-time customers to repeat customers? A natural place
to start is to simulate the system over time and plot the results. The following
code computes the customer populations over time and plots the results.

%% define our customer transition matrix
C=1[0.40.1; 0.6 0.95];

%% set our maximum time frame
t = 50;

%% we’ll store the populations as the columns of the matrix X

% if you’re not familiar with the function zeros(r,c), check out the
% documentation using the command ’doc zeros’

X = zeros(2,t+1);

%% set the initial populations
% remember X(:,1) means ’column 1, all rows of matrix X’
X(:,1) = [200;100];
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%% iterate over time
for j = 1:t

X(:,j+1) = C * X(:,j);
end

%% plot the results
plot(X(1,:),X(2,:),’b.%);

xlabel (’One-time customers’);

ylabel (’Repeat customers’);
title(’Customer populations over time’);

Customer populations over time
2500 T T

2000+

1500

Repeat customers
i
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o
o
T

500+

| | | | |
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One-time customers

Figure 3.1: Customers over time with time progressing in the same direction as
the black arrow.

Figure 2.1 shows the result of executing the code exactly as it’s featured here.
How do we interpret these results? Well, most pertinent to our question of what
will be the ratio of one-time customers to repeat customers, it seems that as
time goes on, the customer populations seem to begin to lie on a line which
pass through the origin. This is an interesting idea, because all points on a line
passing through the origin represent a constant ratio of one-time customers to
repeat customers.

The only real question left is this: what is the ratio that we’re observing?
One easy way to get this value is to print the population at ¢ = 50 from the
code above. This can be easily accomplished by adding the line X(:,50) after
the completion of the for loop in our code. If we run the code again and the

350
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look in our main Matlab window, we should see something like
ans =
1.0e+03 *

0.3101
1.9948

Remember that 1.0e03 means, to normal people, 1000, so the model predicts
310.1 one-time customers and 1,994.8 repeat customers in month 50. Not too
shabby considering we started with a total of 300 customers in month 1. But
getting back to the point, what is our ratio of one-time customers to repeat
customers? Well, we can do some simple division to find out

310.1
1,994.8
1555.

In words, we have 15.55% percent as many one-time customers as we have
repeat customers. This seems to be implying that our business gets customers
and keeps them. Another interesting metric is the percent of our customer base
that is composed of one-time customers. A simple calculation shows that only
13.45% of our customers in month 50 are one-time customers.

Completely out of the blue, let me make an observation. Consider the eigen-
value vy of C, and let’s compute the ratio of the first component (the number of
one-time customers) to the second component (the number of repeat-customers):

—0.1536
Vo =
—0.9881
:T__—owaa
T —0.9881
= 0.1554.

This is conspicuously close to the ratio we found from our simulation. In other
words, the data point representing month is very, very close to a scaled version
of the eigenvector vo. Figure 2.2 shows this graphically.

But we can clearly see from Figure 2.2 that we don’t start near the span
of the eigenvector. So what’s going on here? Let’s trying investigating this
phenomenon algebraically.

Remember that our initial population vector was

200
X1 =
100
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Customer populations over time
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Figure 3.2: Customer populations over time. Red line indicates the span of the
eigenvector associated with eigenvalue Ay = 1.0236.

We can represent this as a linear combination of our eigenvectors vi and va:

X1 = C1V] + C2Vy
_ . |omsis] 01536
~ 7 0.6821 > [ —0.9881

= —220.2946 —0.7313 — 253.2649
0.6821

—0.1536
—0.9881

Since we’re sure that we can represent x; as a linear combination of the eigen-
vectors, let’s switch back to symbolic notation to make things a little cleaner.
Keep in mind that we could go back to numerical notation any time we wanted.

Now, think about what happens we compute x5. We have

X9 = CX1
= C(clvl + CQVQ)
=C CV1 + CQCVQ

= C1A\1V] + A9V,

All we’ve done here is use the fact that v; and v, are eigenvectors with associ-
ated eigenvalues \; and ), respectively. But what have we done in qualitative
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terms? We’ve scaled each eigenvector component independently by its associ-
ated growth factor. So the vi; component of x; was shrunk to 30.67% of its
original length, and the vy component of x; was stretched to 104.33% of its
original length. What happens if we move from the populations in month 2 to
the populations in month 37

x3 = Cxs
= C(cl)\lvl + CQ)\QVQ)
= 01/\10v1 —+ CQ)\QCVQ

2 2
= CIA]V1 + C2A5Va.

The independent stretching and shrinking have happened again! Now the v
component of x3 is 9.41% of its original length (in %) and the vo component
of x3 is 108.85% of its original length.

We can generalize this idea to deal with month ¢:

t t
Xt = 1A} V1 + caA5va.

Notice that in our case, \; = .3067, for for large ¢, the v; component of
x; is nearly nonexistent, because (.3067)" ~ 0 for large t. On the other hand,
the vo component continues to grow and grow as time passes, exactly because
Ao = 1.0433 so that A grows without bound as ¢ marches along. What we are
observing in the “hook” shape of Figure 2.2 is exactly this phenomenon: the
v1 component of x; shrinks to zero exponentially while the vy component of x;
grows exponentially.

3.1.3 Dominate eigenvectors

Imagine now that we have a much more detailed model of our customer base.
After all, breaking our customers into only two groups doesn’t give us much
of a chance to market to specific groups. Suppose that we are modeling our
customer base with n different types of customer, with number of customers of
type 7 during month ¢ contained in a vector x;. The probability that a customer
of type i becomes a customer of type j over the course of a month is contained
in the (¢, 7) entry of a matrix C. (This is exactly how things worked in our two
customer model.) Just as we have been doing all along, we can forecast the
number of users of all n types in month ¢+ 1 by using the populations in month
t:

x¢41 = Cxy.

Suppose that C has n distinct eigenvectors vy, va, ..., v, with associated eigen-
values A1, Ag, ..., Ay with |A1] > |A2] > ... > |A\y|. Furthermore, let’s assume
that the n eigenvectors span R”, so that any initial condition x; can be written
as

X1 =C1V] +CoVo + ...+ CpVp.
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We can ask ourselves the same question we did in the two customer type case:
in the long term, what does the distribution of customer types look like? Let’s
first look at the populations in month 2:

xo = C(c1vy + cava + ... + ¢y vy)

X9 = Cl>\1V1 + CQ)\ZVQ + ...+ C?’L)\nvn

Just as in the two customer type case, by apply C, and hence update our pop-
ulations from month 1 to month 2, we have effectively scaled the v; component
of x; by A; for each ¢ = 1,2,...,n in order to form x;;. Imagine we keep doing
this for to compute the populations in month ¢:

Xt = CXt_l

t t t
Xt = C1A]V1 + C2A5Va + ...+ cp AL Vg

Here’s the crucial idea: for large ¢, A! is much, much bigger than \! for any
i=2,3,...,n. So only the first term in the summation describing x; actually
matters. Mathematically, we can say

Xp R cl)\ﬁvl.

So regardless of how big and/or complicated our matrix C is, if we can represent
any initial condition x; as a linear combination of n distinct eigenvectors of C,
then the long term distribution of customer types is very close to the distribu-
tion described by the eigenvector corresponding to the eigenvalue with largest
absolute value! For reasons that should now be clear, this eigenvector is called
the dominant eigenvector.



3.2. CRITICAL PARAMETERS 59

3.2 Critical Parameters

Using the concept of dominant eigenvectors, we can make forecasts about the
long term distribution of one-time and repeat customers. But how do the param-
eters of our model affect the dominant eigenvector? In the following sections,
we’ll step through many of the underlying assumptions of our two customer.
By considering these rates related to these assumptions as tunable parameters
rather than constants, we’l be able to investigate the affect of changing the un-
derlying assumptions of our two customer model on the long term behavior of
the system.

3.2.1 Referral Rate

Imagine that our business launches a campaign which incentivizes repeat cus-
tomers referring new one-time customers. (We’ve all seen this type of thing:
“Refer a friend, get a month of free cable!”) Instead of thinking of our referral
rate as being a constant 10% as we did in the previous sections, let’s instead
think of the referral rate as a tunable parameter r so that our system takes the

form
Ot 41 o 0.4 r Ot
Tt4+1 0.6 0.95 Tt
0
o,
Tt+1
Here’s a natural question: what is the minimal referral rate that leads to our
business remaining solvent in the long term? Like so many other examples, the
first thing we need to do here is to turn this qualitative question into a quanti-

tative one. The idea of dominant eigenvectors and their associated eigenvalues
allows us to do this.

We learned in the previous sections that an eigenvalue A corresponds to
the growth rate of a particular eigenvector. If |A\| > 1, then the associated
eigenvector component of our initial conniption grows exponentially over time,
and if |\| < 1, then the associated eigenvector component of our initial condition
shrinks exponentially over time. So in order for our business to not shrink over
time, it must be the case that the dominant eigenvector A must satisfy |A| > 1.
Notice that the limiting case here is |A| = 1.

The concept of characteristic equations may have started to seem a little
useless once we found out that we can compute the eigenvalues of a matrix
using Matlab. But when we allow one of the entries of a matrix be a parameter
instead of a fixed value, Matlab can no longer help us. We have to turn back to
the characteristic equation.

Take for instance our matrix C,.. The characteristic equation of this matrix
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is
(0.4 —X)(0.95—X) —0.6r =0

A2 — (0.4 +0.95)\ + ((0.4)(0.95) — 0.67) = 0
A2 — 135\ + (0.38 — 0.67) = 0.

Reading question 22: Verify that the preceding statement is true.

Rearranging the equation, we can think of the referral rate as a function of

the eigenvalue A.
! (A% — 1.35)\ + 0.38)
r=—(\ -1 .
0.6

Notice that for a given A, there is exactly one corresponding referral rate r.
So to find the referral rate r which leads to A = 1, we just need evaluate the
characteristic equation at A = 1.

1
=~ (1-1.35+0.38
=06 +038)

= 0.05.

So every month we need a minimal referral rate of one new one-time per 20
repeat customers in order for our business to say afloat.

There’s an altogether different method we could have used in order to find
the value of the referral rate r which would lead to an eigenvalue of A = 1, and
using this method will help us hone some of our skills concerning free variables
and linear dependence. Just like the characteristic equation, these ideas keep
coming back in different guises in many different linear algebraic problems.

In order for A = 1 to be an eigenvalue of C,., it must be the case that the
matrix equation

(CT — /\12)V =0.

has some nontrivial solution v, and this solution v is exactly the eigenvector
associated with eigenvalue A = 1. We know from our previous work that for
there to be a nontrivial solution to the matrix equation Ax = 0, it must be
the case that the columns of A are linearly dependent. Let’s take a took at our
matrix C,, — A\Iy when \ = 1.

Co—1, = 0.4—1 r
06 095—1
_ —0.6 r
106 —0.05|"

Remember that a collection of vectors cy,co,...,c, are linearly dependent if
there exists a nontrivial linear combination of these vectors which equals the
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zero vector. In symbols, there must exist z1, s, ..., z,, not all zero, such that
1€, + x2C2 + ...+ x,c,, = 0. What does this mean in the case at hand? Well,
if ¢; and co are the first and second columns of C,. — I, respectively, then

r1¢1 +T2co =0

T
——C=2¢C2

T2
kCl = Ca.

that is, the second column of C, — I, must be a multiple of the first column.
What would our referral rate r need to be to make this be the case? Well, notice
that the first and second components of the first column of C,. —I5 are negatives
of one another. For ¢y to be a multiple of ¢y, it must be the case that the first
and second entries of ¢y are negatives of one another, too. In other words, it
must be the case that r = 0.05.

We can use Matlab to verify our analysis.

EDU>> C = [0.4 0.05; 0.6 0.95];
EDU>> [V,D] = eig(C)

vV =
-0.7071 -0.0830
0.7071 -0.9965

D =
0.3500 0
0 1.0000

An interesting note here is that with a referral rate of 5%, our customer base
in the long term is composed almost entirely of repeat customers.

Reading question 23: Explain the preceding claim in terms of the eigenval-
ues and eigenvectors of C,—q.o5-

3.2.2 Customer attrition rate

No matter how hard you try, some of your repeat customers are going to jump
ship and go to a competitor. The probability of this happening over the a certain
period of time is known as the customer attrition rate, or churn rate. In our basic
example, 95% of our repeat customers remain repeat customers from month to
month. So the attrition rate in the basic example is 5%. Let’s investigate our
business model when we represent the attrition rate as a parameter a. Our
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04 0.1 0t
06 1—al |r

Ot

system of equations now looks like

Ot+1|
Tt+1

Ot+4+1
Tt+1
We can ask ourselves a similar set of questions as we did when investigated
how changing the referral rate affected our long term customer distribution.
Probably the most important problem is to determine the minimum value of
the attrition rate a at which our customer base will not go to zero in the long
term. In the previous section, we saw two different methods for finding this

special parameter value. For this particular case, let’s think about the nontrivial
solutions of C, — I.

:Ca
Tt

4-1 1
C,—I,= 0 0
0.6 (I1—a)—1
_|-06 01
106 —al’

For A =1 to be an eigenvector of C,, the systems of equations (C, — Is)v =0
must have a nontrivial solution, and this happens only if the first and second
columns of C, — Iy are multiples of one another. Piecing all of this together,
for A = 1 it must be the case that a = 0.1. Stated differently, no less than 90%
of our repeat customers must remain repeat customers month after month in
order for our business to survive.

Again, a couple quick Matlab commands can confirm what we’ve found
symbolically.

EDU>> C = [0.4 0.1; 0.6 1-.1];
EDU>> [V,D] = eig(C)

vV =
-0.7071 -0.1644
0.7071 -0.9864

D =
0.3000 0
0 1.0000

Reading question 24: Discuss the distribution of our customer base in the
long term using the eigenvalues and eigenvectors of C,—g.1
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3.2.3 Customer conversion rate

I literally can’t imagine a more reasonable goal than to convert one-time cus-
tomers into repeat customers. The percentage of a one-time customers than
become repeat customer over the course of a month is called the conversion
rate. We'll keep assuming, as we did in the basic model, that a one-time cus-
tomer either remains a one-time customer or becomes a repeat customer over
the course of a month. Let’s represent our conversion rate with a parameter c.

Then our model becomes
Ot41 o 1—c 0.1 O¢
Ti+1 (& 095 Tt
Ot41 —C,
Tt4+1

Again, let’s consider whether there exist nontrivial solutions to (C. —I3)v = 0.

We know that the columns of

c_1, [(1—0)—1 0.1]

c 0.95—-1
_|—¢ 01
e —0.05
What’s happening here? There’s no way to choose ¢ # 0 such that the first
column is a multiple of the second column! If we choose ¢ = 0, then obviously

the first column c¢; and the second column cy are multiples of each, namely
through c¢; = Ocs.



