
Applied Mathematical Sciences
Volume 90

Editors
S.S. Antman J.E. Marsden L. Sirovich

Advisors
J.K. Hale P. Holmes J. Keener
J. Keller B.J. Matkowsky A. Mielke
C.S. Peskin K.R. Sreenivasan

For further volumes:
http://www.springer.com/series/34



Kenneth R. Meyer
Glen R. Hall
Dan Offin

Introduction to Hamiltonian
Dynamical Systems
and the N-Body Problem

Second edition

123



Kenneth R. Meyer Glen R. Hall
Department of Mathematics Department of Mathematics and Statistics
University of Cincinnati Boston University
Cincinnati, OH 45221-0025 Boston, MA 02215
USA USA

Dan Offin
Department of Mathematics and Statistics
Queen’s University
Kingston, Ontario
Canada

Editors
S.S. Antman J.E. Marsden L. Sirovich
Department of Mathematics Control and Dynamical Laboratory of Applied
and Systems 107-81 Mathematics
Institute for Physical Science California Institute of Department of

and Technology Technology Biomathematical Sciences
University of Maryland Pasadena, CA 91125 Mount Sinai School
College Park, MD 20742-4015 USA of Medicine
USA marsden@cds.caltech.edu New York, NY 10029-6574
ssa@math.umd.edu USA

Lawrence.Sirovich@mssm.edu

ISBN 978-0-387-09723-7 e-ISBN 978-0-387-09724-4
DOI 10.1007/978-0-387-09724-4

Library of Congress Control Number: 2008940669

Mathematics Subject Classification (2000): 37N05, 70F15, 70Hxx

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

springer.com



Preface to the Second Edition

This new edition expands on some old material and introduces some new sub-
jects. The expanded topics include: parametric stability, logarithms of sym-
plectic matrices, normal forms for Hamiltonian matrices, spacial Delaunay el-
ements, pulsating coordinates, Lyapunov–Chetaev stability applications and
more. There is a new section on the Maslov index and a new chapter on
variational arguments as applied to the celebrated figure-eight orbit of the
3-body problem.

Still the beginning chapters can serve as a first graduate level course on
Hamiltonian dynamical systems, but there is far too much material for a sin-
gle course. Instructors will have to select chapters to meet their interests and
the needs of their class. It will also serve as a reference text and introduction
to the literature.

The authors wish to thank their wives and families for giving them the
time to work on this project. They acknowledge the support of their universi-
ties and various funding agencies including the National Science Foundation,
the Taft Foundation, the Sloan Foundation, and the Natural Sciences and
Engineering Research Council through the Discovery Grants Program.

This second edition in manuscript form was read by many individuals who
made many valuable suggestions and corrections. Our thanks go to Hildeberto
Cabral, Scott Dumas, Vadin Fitton, Clarissa Howison, Jesús Palacián, Dieter
Schmidt, Jaume Soler, Qiudong Wang, and Patricia Yanguas.

Nonetheless, it is the readers responsibility to inform us of additional er-
rors. Look for email addresses and an errata on MATH.UC.EDU/∼MEYER/.

Kenneth R. Meyer
Glen R. Hall
Daniel Offin



Preface to the First Edition

The theory of Hamiltonian systems is a vast subject that can be studied from
many different viewpoints. This book develops the basic theory of Hamilto-
nian differential equations from a dynamical systems point of view. That is,
the solutions of the differential equations are thought of as curves in a phase
space and it is the geometry of these curves that is the important object
of study. The analytic underpinnings of the subject are developed in detail.
The last chapter on twist maps has a more geometric flavor. It was written
by Glen R. Hall. The main example developed in the text is the classical
N -body problem; i.e., the Hamiltonian system of differential equations that
describes the motion of N point masses moving under the influence of their
mutual gravitational attraction. Many of the general concepts are applied to
this example. But this is not a book about the N -body problem for its own
sake. The N -body problem is a subject in its own right that would require a
sizable volume of its own. Very few of the special results that only apply to
the N -body problem are given.

This book is intended for a first course at the graduate level. It assumes
a basic knowledge of linear algebra, advanced calculus, and differential equa-
tions, but does not assume knowledge of advanced topics such as Lebesgue
integration, Banach spaces, or Lie algebras. Some theorems that require long
technical proofs are stated without proof, but only on rare occasions. The
first draft of the book was written in conjunction with a seminar that was
attended by engineering graduate students. The interest and background of
these students influenced what was included and excluded.

This book was read by many individuals who made valuable sugges-
tions and many corrections. The first draft was read and corrected by Ri-
cardo Moena, Alan Segerman, Charles Walker, Zhangyong Wan, and Qiudong
Wang while they were students in a seminar on Hamiltonian systems. Gregg
Buck, Konstantin Mischaikow, and Dieter Schmidt made several suggestions
for improvements to early versions of the manuscript. Dieter Schmidt wrote
the section on the linearization of the equation of the restricted problem at
the five libration points. Robin Vandivier found copious grammatical errors
by carefully reading the whole manuscript. Robin deserves a special thanks.
We hope that these readers absolve us of any responsibility.



viii Preface

The authors were supported by grants from the National Science Foun-
dation, Defense Advanced Research Project Agency administered by the Na-
tional Institute of Standards and Technology, the Taft Foundation, and the
Sloan Foundation. Both authors were visitors at the Institute for Mathemat-
ics and its Applications and the Institute for Dynamics.

Kenneth R. Meyer
Glen R. Hall
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9.3 Poincaré’s Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
9.4 Hill’s Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.5 Comets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.6 From the Restricted to the Full Problem . . . . . . . . . . . . . . . . . . 225



xii Contents

9.7 Some Elliptic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10. Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.1 Normal Form Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.1.1 Normal Form at an Equilibrium Point . . . . . . . . . . . . . . 231
10.1.2 Normal Form at a Fixed Point . . . . . . . . . . . . . . . . . . . . . 234

10.2 Forward Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.2.1 Near-Identity Symplectic Change of Variables . . . . . . . . 237
10.2.2 The Forward Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10.2.3 The Remainder Function . . . . . . . . . . . . . . . . . . . . . . . . . . 240

10.3 The Lie Transform Perturbation Algorithm . . . . . . . . . . . . . . . . 243
10.3.1 Example: Duffing’s Equation . . . . . . . . . . . . . . . . . . . . . . . 243
10.3.2 The General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
10.3.3 The General Perturbation Theorem . . . . . . . . . . . . . . . . . 245

10.4 Normal Form at an Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.5 Normal Form at L4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
10.6 Normal Forms for Periodic Systems . . . . . . . . . . . . . . . . . . . . . . . 259

11. Bifurcations of Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.1 Bifurcations of Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.1.1 Extremal Fixed Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.1.2 Period Doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.1.3 k-Bifurcation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

11.2 Duffing Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.2.1 k-Bifurcations in Duffing’s Equation . . . . . . . . . . . . . . . . 285

11.3 Schmidt’s Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
11.4 Bifurcations in the Restricted Problem . . . . . . . . . . . . . . . . . . . . 288
11.5 Bifurcation at L4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

12. Variational Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.1 The N -Body and the Kepler Problem Revisited . . . . . . . . . . . . 302
12.2 Symmetry Reduction for Planar 3-Body Problem . . . . . . . . . . . 305
12.3 Reduced Lagrangian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.4 Discrete Symmetry with Equal Masses . . . . . . . . . . . . . . . . . . . . 311
12.5 The Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.6 Isosceles 3-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.7 A Variational Problem for Symmetric Orbits . . . . . . . . . . . . . . . 317
12.8 Instability of the Orbits and the Maslov Index . . . . . . . . . . . . . 321
12.9 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

13. Stability and KAM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
13.1 Lyapunov and Chetaev’s Theorems . . . . . . . . . . . . . . . . . . . . . . . 331
13.2 Moser’s Invariant Curve Theorem . . . . . . . . . . . . . . . . . . . . . . . . 335
13.3 Arnold’s Stability Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
13.4 1:2 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342



Contents xiii

13.5 1:3 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
13.6 1:1 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
13.7 Stability of Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
13.8 Applications to the Restricted Problem. . . . . . . . . . . . . . . . . . . . 351

13.8.1 Invariant Curves for Small Mass . . . . . . . . . . . . . . . . . . . . 351
13.8.2 The Stability of Comet Orbits . . . . . . . . . . . . . . . . . . . . . 352

14. Twist Maps and Invariant Circle . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.2 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
14.3 Elementary Properties of Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 360
14.4 Existence of Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
14.5 The Aubry–Mather Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

14.5.1 A Fixed-Point Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
14.5.2 Subsets of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
14.5.3 Nonmonotone Orbits Imply Monotone Orbits . . . . . . . . 374

14.6 Invariant Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
14.6.1 Properties of Invariant Circles . . . . . . . . . . . . . . . . . . . . . 379
14.6.2 Invariant Circles and Periodic Orbits . . . . . . . . . . . . . . . 383
14.6.3 Relationship to the KAM Theorem . . . . . . . . . . . . . . . . . 385

14.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397



1. Hamiltonian Systems

This chapter defines a Hamiltonian system of ordinary differential equations,
gives some basic results about such systems, and presents several classical
examples. This discussion is informal. Some of the concepts introduced in
the setting of these examples are fully developed later. First, we set forth
basic notation and review some basic facts about the solutions of differential
equations.

1.1 Notation

R denotes the field of real numbers, C the complex field, and F either R or
C. F

n denotes the space of all n-dimensional vectors, and, unless otherwise
stated, all vectors are column vectors. However, vectors are written as row
vectors within the body of the text for typographical reasons. L(Fn,Fm) de-
notes the set of all linear transformations from F

n to F
m, which are sometimes

identified with the set of all m× n matrices.
Functions are real and smooth unless otherwise stated; smooth means C∞

or real analytic. If f(x) is a smooth function from an open set in R
n into R

m,
then ∂f/∂x denotes the m× n Jacobian matrix

∂f

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

· · · ∂f1
∂xn

· · ·

· · ·

∂fm

∂x1
· · · ∂fm

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If A is a matrix, then AT denotes its transpose, A−1 its inverse, and A−T

the inverse transpose. If f : R
n → R

1, then ∂f/∂x is a row vector; let ∇f or
∇xf or fx denote the column vector (∂f/∂x)T . Df denotes the derivative of
f thought of as a map from an open set in R into L(Rn,Rm). The variable t
denotes a real scalar variable called time, and the symbol . is used for d/dt.

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 1,
c© Springer Science+Business Media, LLC 2009
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1.2 Hamilton’s Equations

Newton’s second law gives rise to systems of second-order differential equa-
tions in R

n and so to a system of first-order equations in R
2n, an even-

dimensional space. If the forces are derived from a potential function, the
equations of motion of the mechanical system have many special properties,
most of which follow from the fact that the equations of motion can be written
as a Hamiltonian system. The Hamiltonian formalism is the natural mathe-
matical structure in which to develop the theory of conservative mechanical
systems.

A Hamiltonian system is a system of 2n ordinary differential equations of
the form

q̇ = Hp, ṗ = −Hq,

q̇i =
∂H

∂pi
(t, q, p), ṗi = −∂H

∂qi
(t, q, p), i = 1, . . . , n,

(1.1)

where H = H(t, q, p), called the Hamiltonian, is a smooth real-valued func-
tion defined for (t, q, p) ∈ O, an open set in R

1 × R
n × R

n. The vectors
q = (q1, . . . , qn) and p = (p1, . . . , pn) are traditionally called the position and
momentum vectors, respectively, and t is called time, because that is what
these variables represent in the classical examples. The variables q and p are
said to be conjugate variables: p is conjugate to q. The concept of conjugate
variable grows in importance as the theory develops. The integer n is the
number of degrees of freedom of the system.

For the general discussion, introduce the 2n vector z, the 2n × 2n skew
symmetric matrix J , and the gradient by

z =
[
q
p

]
, J = Jn =

[
0 I
−I 0

]
, ∇H =

⎡
⎢⎢⎢⎣

∂H

∂z1

∂H

∂z2n

⎤
⎥⎥⎥⎦ ,

where 0 is the n × n zero matrix and I is the n × n identity matrix. The
2× 2 case is special, so sometimes J2 is denoted by K. In this notation (1.1)
becomes

ż = J∇H(t, z). (1.2)

One of the basic results from the general theory of ordinary differential
equations is the existence and uniqueness theorem. This theorem states that
for each (t0, z0) ∈ O, there is a unique solution z = φ(t, t0, z0) of (1.2) defined
for t near t0 that satisfies the initial condition φ(t0, t0, z0) = z0. φ is defined
on an open neighborhood Q of (t0, t0, z0) ∈ R

2n+2 into R
2n. The function

φ(t, t0, z0) is smooth in all its displayed arguments, and so φ is C∞ if the
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equations are C∞, and it is analytic if the equations are analytic. φ(t, t0, z0)
is called the general solution. See Chicone (1999), Hubbard and West (1990),
or Hale (1972) for details of the theory of ordinary differential equations.

In the special case when H is independent of t, so that H : O → R
1

where O is some open set in R
2n, the differential equations (1.2) are au-

tonomous, and the Hamiltonian system is called conservative. It follows that
φ(t − t0, 0, z0) = φ(t, t0, z0) holds, because both sides satisfy Equation (1.2)
and the same initial conditions. Usually the t0 dependence is dropped and
only φ(t, z0) is considered, where φ(t, z0) is the solution of (1.2) satisfying
φ(0, z0) = z0. The solutions are pictured as parameterized curves in O ⊂ R

2n,
and the set O is called the phase space. By the existence and uniqueness the-
orem, there is a unique curve through each point in O; and by the uniqueness
theorem, two such solution curves cannot cross in O.

An integral for (1.2) is a smooth function F : O → R
1 which is constant

along the solutions of (1.2); i.e., F (φ(t, z0)) = F (z0) is constant. The classi-
cal conserved quantities of energy, momentum, etc. are integrals. The level
surfaces F−1(c) ⊂ R

2n, where c is a constant, are invariant sets; i.e., they are
sets such that if a solution starts in the set, it remains in the set. In general,
the level sets are manifolds of dimension 2n − 1, and so with an integral F ,
the solutions lie on the set F−1(c), which is of dimension 2n− 1. If you were
so lucky as to find 2n− 1 independent integrals, F1, . . . , F2n−1, then holding
all these integrals fixed would define a curve in R

2n, the solution curve. In
the classical sense, the problem has been integrated.

1.3 The Poisson Bracket

Many of the special properties of Hamiltonian systems are formulated in
terms of the Poisson bracket operator, so this operator plays a central role
in the theory developed here. Let H,F , and G be smooth functions from
O ⊂ R

1 × R
n × R

n into R
1, and define the Poisson bracket of F and G by

{F,G} = ∇FTJ∇G =
∂F

∂q

T ∂G

∂p
− ∂F
∂p

T ∂G

∂q

=
n∑

i=1

(
∂F

∂qi
(t, p, q)

∂G

∂pi
(t, q, p)− ∂F

∂pi
(t, q, p)

∂G

∂qi
(t, q, p)

)
.

(1.3)

Clearly {F,G} is a smooth map from O to R
1 as well, and one can easily

verify that {·, ·} is skew-symmetric and bilinear. A little tedious calculation
verifies Jacobi’s identity:

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0. (1.4)
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By a common abuse of notation, let F (t) = F (t, φ(t, t0, z0)), where φ is the
solution of (1.2) as above. By the chain rule,

d

dt
F (t) =

∂F

∂t
(t, φ(t, t0, z0)) + {F,H}(t, φ(t, t0, z0)). (1.5)

Hence dH/dt = ∂H/∂t.

Theorem 1.3.1. Let F,G, and H be as above and independent of time t.
Then

1. F is an integral for (1.2) if and only if {F,H} = 0.
2. H is an integral for (1.2).
3. If F and G are integrals for (1.2), then so is {F,G}.
4. {F,H} is the time rate of change of F along the solutions of (1.2).

Proof. (1) follows directly from the definition of an integral and from (1.5). (2)
follows from (i) and from the fact that the Poisson bracket is skew-symmetric,
so {H,H} = 0. (3) follows from the Jacobi identity (1.4). (4) follows from
(1.5).

In many of the examples given below, the Hamiltonian H is the total
energy of a physical system; when it is, the theorem says that energy is a
conserved quantity.

In the conservative case when H is independent of t, a critical point of H
as a function (i.e., a point where the gradient of H is zero) is an equilibrium
(or critical, rest, stationary) point of the system of differential equations (1.1)
or (1.2), i.e., a constant solution.

For the rest of this section, let H be independent of t. An equilibrium
point ζ of system (1.2) is stable if for every ε > 0, there is a δ > 0 such that
‖ζ − φ(t, z0)‖ < ε for all t whenever ‖ζ − z0‖ < δ. Note that “all t” means
both positive and negative t, and that stability is for both the future and the
past.

Theorem 1.3.2 (Dirichlet). If ζ is a strict local minimum or maximum
of H, then ζ is stable.

Proof. Without loss of generality, assume that ζ = 0 and H(0) = 0. Because
H(0) = 0 and 0 is a strict minimum for H, there is an η > 0 such that
H(z) is positive for 0 < ‖z‖ ≤ η. (In the classical literature, one says that
H is positive definite.) Let κ = min(ε, η) and M = min{H(z) : ‖z‖ = κ},
so M > 0. Because H(0) = 0 and H is continuous, there is a δ > 0 such
that H(z) < M for ‖z‖ < δ. If ‖z0‖ < δ, then H(z0) = H(φ(t, z0)) < M
for all t. ‖φ(t, z0)‖ < κ ≤ ε for all t, because if not, there is a time t′ when
‖φ(t′, z0)‖ = κ, and H(φ(t′, z0)) ≥M , a contradiction.
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1.4 The Harmonic Oscillator

The harmonic oscillator is the second-order, linear, autonomous, ordinary
differential equation

ẍ+ ω2x = 0, (1.6)

where ω is a positive constant. It can be written as a system of two first order
equations by introducing the conjugate variable u = ẋ/ω and as a Hamilto-
nian system by letting H = (ω/2)(x2 + u2) (energy in physical problems).
The equations become

ẋ = ωu =
∂H

∂u
,

u̇ = −ωx = −∂H
∂x
.

(1.7)

The variable u is a scaled velocity, and thus the x, u plane is essentially the
position-velocity plane, or the phase space of physics. The basic existence and
uniqueness theorem of differential equations asserts that through each point
(x0, u0) in the plane, there is a unique solution passing through this point at
any particular epoch t0. The general solutions are given by the formula

⎡
⎣
x(t, t0, x0, u0)

u(t, t0, x0, u0)

⎤
⎦ =

⎡
⎣

cosω(t− t0) − sinω(t− t0)

sinω(t− t0) cosω(t− t0)

⎤
⎦
[
x0

u0

]
. (1.8)

The solution curves are parameterized circles. The reason that one intro-
duces the scaled velocity instead of using the velocity itself, as is usually done,
is so that the solution curves become circles instead of ellipses. In dynamical
systems the geometry of this family of curves in the plane is of prime impor-
tance. Because the system is independent of time, it admits H as an integral
by Theorem 1.3.1 (or note Ḣ = ωxẋ + ωuu̇ = 0). Because a solution lies in
the set where H = constant, which is a circle in the x, u plane, the integral
alone gives the geometry of the solution curves in the plane. See Figure 1.1.
The origin is a local minimum for H and is stable.

Introduce polar coordinates, r2 = x2 + u2, θ = tan−1 u/x, so that equa-
tions (1.7) become

ṙ = 0, θ̇ = −ω. (1.9)

This shows again that the solutions lie on circles about the origin because,
ṙ = 0. The circles are swept out with constant angular velocity.
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Figure 1.1. Phase portrait of the harmonic oscillator.

1.5 The Forced Nonlinear Oscillator

Consider the system

ẍ+ f(x) = g(t), (1.10)

where x is a scalar and f and g are smooth real-valued functions of a scalar
variable. A mechanical system that gives rise to this equation is a spring-mass
system. Here, x is the displacement of a particle of mass 1. The particle is
connected to a nonlinear spring with restoring force −f(x) and is subject to
an external force g(t). One assumes that these are the only forces acting on
the particle and, in particular, that there are no velocity-dependent forces
acting such as a frictional force.

An electrical system that gives rise to this equation is an LC circuit with
an external voltage source. In this case, x represents the charge on a nonlinear
capacitor in a series circuit that contains a linear inductor and an external
electromotive force g(t). In this problem, assume that there is no resistance
in the circuit, and so there are no terms in ẋ .

This equation is equivalent to the system

ẋ = y =
∂H

∂y
, ẏ = −f(x) + g(t) = −∂H

∂x
, (1.11)

where

H =
1
2
y2 + F (x)− xg(t), F (x) =

∫ x

0

f(s)ds. (1.12)



1.6 The Elliptic Sine Function 7

Many named equations are of this form, for example: (i) the harmonic
oscillator: ẍ + ω2x = 0; (ii) the pendulum equation: θ̈ + sin θ = 0; (iii) the
forced Duffing’s equation: ẍ+ x+ αx3 = cosωt.

In the case when the forcing term g is absent, g ≡ 0, H is an integral, and
the solutions lie in the level curves of H. Therefore, the phase portrait is easily
obtained by plotting the level curves. In fact, these equations are integrable
in the classical sense that they can be solved “up to a quadrature;” i.e., they
are completely solved after one integration or quadrature. Let h = H(x0, y0).
Solve H = h for y and separate the variables to obtain

y =
dx

dt
= ±

√
2h− 2F (x),

t− t0 = ±
∫ x

x0

dτ√
2h− 2F (τ)

.

(1.13)

Thus, the solution is obtained by performing the integration in (1.13) and
then taking the inverse of the function so obtained. In general this is quite
difficult, but when f is linear, the integral in (1.13) is elementary, and when
f is quadratic or cubic, then the integral in (1.13) is elliptic.

1.6 The Elliptic Sine Function

The next example is an interesting classical example. In an effort to extend
the table of integrable functions, the elliptic functions were introduced in the
nineteenth century. Usually the properties of these functions are developed
in advanced texts on complex analysis, but much of the basic properties
follow from the elementary ideas in differential equations. Here one example
is presented.

Let k be a constant 0 < k < 1 and sn (t, k) the solution of

ẍ+ (1 + k2)x− 2k2x3 = 0, x(0) = 0, ẋ(0) = 1. (1.14)

The function sn (t, k) is called the Jacobi elliptic sine function. Let y = ẋ.
The Hamiltonian, or integral, is

2H = y2 + (1 + k2)x2 − k2x4 (1.15)

and on the solution curve sn (t, k), 2H = 1, so

˙sn2 = (1− sn2)(1− k2sn2). (1.16)

The phase portrait of (1.14) is the level line plot of H. To find this plot,
first graph

(x) = 2h− (1 + k2)x2 + k2x4 = (2h− 1) + (1− x2)(1− k2x2).
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Then take square roots by plotting y2 = (x) to obtain the phase portrait of
(1.14) as shown in Figure 1.2.

The solution curve sn (t, k) lies in the connected component of 2H = 1
which contains x = 0, y = ẋ = 1, i.e., the closed curve encircling the origin
illustrated by the darker oval in Figure 1.2. The solution sn (t, k) lies on a
closed level line that does not contain an equilibrium point, therefore it must
be a periodic function.

Figure 1.2. Phase portrait of the elliptic sine function.

Both sn (t, k) and −sn (−t, k) satisfy (1.14), and so by the uniqueness
theorem for ordinary differential equations, sn (t, k) = −sn (−t, k), i.e., sn is
odd in t. The curve defined by sn goes through the points x = ±1, y = 0
also. As t increases from zero, sn (t, k) increases from zero until it reaches its
maximum value of 1 after some time, say a time κ . (Classically, the constant
κ is denoted by K.) Because sn (±κ, k) = ±1 and ˙sn (±κ, k) = 0 and both
sn (t+κ, k) and −sn (t−κ, k) satisfy the equation in (1.14), by uniqueness of
the solutions of differential equations it follows that sn (t + κ, k) = −sn (t −
κ, k), or that sn is 4κ periodic and odd harmonic in t. Thus the Fourier series
expansion of sn only contains terms in sin(j2πt/4κ) where j is an odd integer.

It is clear that sn is increasing for −κ < t < κ. Equation (1.14) implies
s̈n > 0 (so sn is convex) for −κ < t < 0, and it also implies s̈n < 0 (so sn is
concave) for 0 < t < κ. Thus, sn has the same basic symmetry properties as
the sine function. It is also clear from the equations that sn (t, k) → sin t and
κ→ π/2 as k → 0. The graph of sn, (t, k) has the same general form as sin t
with 4κ playing the role of 2π.

The function κ(k) is investigated in the problems. Classical handbooks
contain tables of values of the sn function, and computer algebra systems such
as Maple have these functions. Thus one knows almost as much about sn (t, k)
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as about sin t. Your list of elementary functions should contain sn (t, k). In
the problems, you are asked to solve the pendulum equation with your new
elementary function.

There are two other Jacobi elliptic functions that satisfy equations similar
to (1.14). They were introduced in order to extend the number of functions
that can be integrated. In fact, with the three Jacobi elliptic functions, all
equations of the form (1.10) with g = 0 and f(x) a quadratic or cubic polyno-
mial can be solved explicitly. A different and slightly more detailed discussion
is found in Meyer (2001), and the classic text Modern Analysis by Whittaker
and Watson (1927) has a complete discussion of the Jacobi elliptic functions.
Many of the formulas will remind one of trigonometry.

1.7 General Newtonian System

The n-dimensional analog of (1.10) is

Mẍ+∇F (x) = g(t), (1.17)

where x is an n-vector, M is a nonsingular, symmetric n× n matrix, F is a
smooth function defined on an open domain O in R

n, ∇F is the gradient of
F , and g is a smooth n-vector valued function of t, for t in some open set in
R

1. Let y = Mẋ. Then (1.17) is equivalent to the Hamiltonian system

ẋ =
∂H

∂y
= M−1y, ẏ = −∂H

∂x
= −∇F (x) + g(t), (1.18)

where the Hamiltonian is

H =
1
2
yTM−1y + F (x)− xT g(t). (1.19)

If x represents the displacement of a particle of mass m, then M = mI where
I is the identity matrix, y is the linear momentum of the particle, 1

2y
TM−1y

is the kinetic energy, g(t) is an external force, and F is the potential energy.
If g(t) ≡ 0, then H is an integral and is total energy. This terminology is
used in reference to nonmechanical systems of the form (1.17) also. In order
to write (1.18) as a Hamiltonian system, the correct choice of the variable
conjugate to x is y = Mẋ, the linear momentum, and not ẋ, the velocity.

In the special case when g ≡ 0, a critical point of the potential is a
critical point of H and hence an equilibrium point of the Hamiltonian system
of equations (1.18). In many physical examples, M is positive definite. In
this case, if x′ is a local minimum for the potential F , then (x′, 0) is a local
minimum for H and therefore a stable equilibrium point by Theorem 1.3.2.

It is tempting to think that if x′ is a critical point of F and not a minimum
of the potential, then the point (x′, 0) is an unstable equilibrium point. This
is not true. See Laloy (1976) and Chapter 13 for a discussion of stability
questions for Hamiltonian systems.
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1.8 A Pair of Harmonic Oscillators

Consider a pair of harmonic oscillators

ẍ+ ω2x = 0, ÿ + μ2y = 0,

which as a system becomes the Hamiltonian system

ẋ = ωu =
∂H

∂u
, ẏ = μv =

∂H

∂v
,

u̇ = −ωx = −∂H
∂x
, v̇ = −μy = −∂H

∂y
,

(1.20)

where the Hamiltonian is

H =
ω

2
(x2 + u2) +

μ

2
(y2 + v2).

In polar coordinates

r2 =
ω

2
(x2 + u2), θ = tan−1 u/x,

ρ2 =
μ

2
(y2 + v2), φ = tan−1 v/y,

the equations become

ṙ = 0, θ̇ = −ω,

ρ̇ = 0, φ̇ = −μ,
(1.21)

and they admit the two integrals

I1 = r2 = (ω/2)(x2 + u2), I2 = ρ2 = (μ/2)(y2 + v2). (1.22)

In many physical problems, these equations are only the first approximation.
The full system does not admit the two individual integrals (energies), but
does admit H as an integral which is the sum of the individual integrals.
Think, for example, of a pea rolling around in a bowl; the linearized system
at the minimum would be of the form (1.20). In this case, H−1(1) is an
invariant set for the flow, which is an ellipsoid and topologically a 3-sphere.

Consider the general solution through r0, θ0, ρ0, φ0 at epoch t = 0. The
solutions with r0 = 0 and ρ0 > 0 or ρ0 = 0 and r0 > 0 lie on circles and
correspond to periodic solutions of period 2π/μ and 2π/ω, respectively. These
periodic solutions are special and are usually called the normal modes.

The set where r = r0 > 0 and ρ = ρ0 > 0 is an invariant torus for (1.20)
or (1.21). Angular coordinates on this torus are θ and φ, and the equations
are
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θ̇ = −ω, φ̇ = −μ, (1.23)

the standard linear equations on a torus. See Figure 1.3.
If ω/μ is rational, then ω = pτ and μ = qτ , where p and q are relatively

prime integers and τ is a nonzero real number. In this case the solution of
(1.23) through θ0, φ0 at epoch t = 0 is θ(t) = θ0 − ωt, φ(t) = φ0 − μt,
and so if T = 2π/τ , then θ(T ) = θ0 + p2π and φ(T ) = φ0 + q2π. That is,
the solution is periodic with period T on the torus, and this corresponds to
periodic solutions of (1.20).

If ω/μ is irrational, then none of the solutions is periodic. In fact, the
solutions of (1.23) are dense lines on the torus see Section 1.9), and this
corresponds to the fact that the solutions of (1.20) are quasiperiodic but not
periodic.

Figure 1.3. Linear flow on the torus.

We can use polar coordinates to introduce coordinates on the sphere,
provided we are careful to observe the conventions of polar coordinates: (i)
r ≥ 0, (ii) θ is defined modulo 2π, and (iii) r = 0 corresponds to a point.
That is, if we start with the rectilinear strip r ≥ 0, 0 ≤ θ ≤ 2π, then identify
the θ = 0 and θ = 2π edges to get a half-closed annulus, and finally if we
identify the circle r = 0 with a point, then we have a plane (Figure 1.4).

Starting with the polar coordinates r, θ, ρ, φ for R
4, we note that on the

3-sphere, E = r2 + ρ2 = 1, so we can discard ρ and have 0 ≤ r ≤ 1. We use
r, θ, φ as coordinates on S3. Now r, θ with 0 ≤ r ≤ 1 are just polar coordinates
for the closed unit disk. For each point of the open disk, there is a circle with
coordinate φ (defined mod 2π), but when r = 1, ρ = 0, so the circle collapses
to a point over the boundary of the disk. The geometric model of S3 is given
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Figure 1.4. The polar coordinate conventions.

by two solid cones with points on the boundary cones identified as shown
in Figure 1.5a. Through each point in the open unit disk with coordinates
r, θ there is a line segment (the dashed line) perpendicular to the disk. The
angular coordinate φ is measured on this segment: φ = 0 is the disk, φ = π
is the upper boundary cone, and φ = −π is the lower boundary cone. Each
point on the upper boundary cone with coordinates r, θ, φ = π is identified
with the point on the lower boundary cone with coordinates r, θ, φ = −π.
From this model follows a series of interesting geometric facts.

For α, 0 < α < 1, the set where r = α is a 2-torus in the 3-sphere,
and for α = 0 or 1, the set r = α is a circle. Because r is an integral for
the pair of oscillators, these tori and circles are invariant sets for the flow
defined by the harmonic oscillators. The two circles r = 0, 1 are periodic
solutions, called the normal modes. The two circles are linked in S3, i.e., one
of the circles intersects a disk bounded by the other circle in an algebraically
nontrivial way. The circle where r = 1 is the boundary of the shaded disk in
Figure 1.5b, and the circle r = 0 intersects this disk once. It turns out that
the number of intersections is independent of the bounding disk provided one
counts the intersections algebraically.

Consider the special case when ω = μ = 1. In this case every solution is
periodic, and so its orbit is a circle in the 3-sphere. Other than the two special
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(a) A model of S3 (b) An orbit on S3

Figure 1.5. S3 as a circle bundle over S2.

circles, on each orbit as θ increases by 2π, so does φ. Thus each such orbit
hits the open disk where φ = 0 (the shaded disk in Figure 1.5) in one point.
We can identify each such orbit with the unique point where it intersects the
disk. One special orbit meets the disk at the center, so we can identify it with
the center. The other special orbit is the outer boundary circle of the disk
which is a single orbit. When we identify this circle with a point, the closed
disk whose outer circle is identified with a point becomes a 2-sphere.

Theorem 1.8.1. The 3-sphere, S3, is the union of circles. Any two of these
circles are linked. The quotient space obtained by identifying a circle with a
point is a 2-sphere (the Hopf fibration of S3).

Let D be the open disk φ = 0, the shaded disk in Figure 1.5. The union
of all the orbits that meet D is a product of a circle and a 2-disk, so each
point not on the special circle r = 1 lies in an open set that is the product
of a 2-disk and a circle. By reversing r and ρ in the discussion given above,
the circle where r = 1 has a similar neighborhood. So locally the 3-sphere
is the product of a disk and a circle, but the sphere is not the product of
a 2-manifold and a circle. (The sphere has a trivial fundamental group, but
such a product would not.)

When ω = p and μ = q with p and q relatively prime integers, all solutions
are periodic, and the 3-sphere is again a union of circles, but it is not locally
a product near the special circles. The nonspecial circles are p, q-torus knots.
They link p times with one special circle and q times with the other.

These links follow by a slight extension of the ideas of the previous propo-
sition. A p, q-torus knot is a closed curve that wraps around the standard
torus in R

3 in the longitudinal direction p times and in the meridional direc-
tion q times. If p and q are different from 1, the knot is nontrivial.
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Figure 1.6. The trefoil as a toral knot.

Figure 1.6 shows that the 3,2 torus knot is the classical trefoil or clover-
leaf knot. The first diagram in Figure 1.6 is the standard model of a torus:
a square with opposite sides identified. The line with slope 3/2 is shown
wrapping three times around one way and twice around the other. Think of
folding the top half of the square back and around and then gluing the top
edge to the bottom to form a cylinder. Add two extra segments of curves
to connect the right and left ends of the curve to get the second diagram in
Figure 1.6. Smoothly deform this to get the last diagram in Figure 1.6, the
standard presentation of the trefoil. See Rolfsen (1976) for more information
on knots.

1.9 Linear Flow on the Torus

In order to show that the solutions of (1.23) on the torus are dense when ω/μ
is irrational, the following simple lemmas from number theory are needed.

Lemma 1.9.1. Let δ be any irrational number. Then for every ε > 0, there
exist integers q and p such that

| qδ − p |< ε. (1.24)

Proof. Case 1: 0 < δ < 1. Let N ≥ 2 be an integer and SN = {sδ − r : 1 ≤
s, r ≤ N}. For each element of this set we have | sδ − r |< N. Because δ
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is irrational, there are N2 distinct members in the set SN ; so at least one
pair is less than 4/N apart. (If not, the total length would be greater than
(N2 − 1)4/N > 2N .) Call this pair sδ − r and s′δ − r′. Thus

0 <| (s− s′)δ − (r − r′) |< 4
N
<

4
| s− s′ | . (1.25)

Take N > 4/ε, q = s − s′ and p = r′ − r to finish this case. The other cases
follow from the above. If −1 < δ < 0, then apply the above to −δ; and if
| δ |> 1, apply the above to 1/δ.

Lemma 1.9.2. Let δ be any irrational number and ξ any real number. Then
for every ε > 0 there exist integers p and q such that

| qδ − p− ξ |< ε. (1.26)

Proof. Let p′ and q′ be as given in Lemma 1.9.1, so η = q′δ − p′ satisfies
0 <| η |< ε. There is a integer m such that | mη− ξ |< ε. The lemma follows
by taking q = mq′ and p = mp′.

Theorem 1.9.1. Let ω/μ be irrational. Then the solution curves defined by
Equations (1.23) are dense on the torus.

Proof. Measure the angles in revolutions instead of radians so that the angles
θ and φ are defined modulo 1 instead of 2π. The solution of equations (1.23)
through θ = φ = 0 at t = 0 is θ(t) = ωt, φ(t) = μt. Let ε > 0 and ξ be given.
Then θ ≡ ξ and φ ≡ 0 mod 1 is an arbitrary point on the circle φ ≡ 0 mod 1
on the torus. Let δ = ω/μ and p, q be as given in Lemma 2. Let τ = q/μ, so
θ(τ) = δq, φ(τ) = q. Thus, | θ(τ)−p−ξ |< ε, but because p is an integer, this
means that θ(τ) is within ε of ξ; so the solution through the origin is dense
on the circle φ ≡ 0 mod 1. The remainder of the proof follows by translation.

1.10 Euler–Lagrange Equations

Many of the laws of physics can be given as minimizing principles and this
led the theologian-mathematician Leibniz to say that we live in the best of
all possible worlds. In more modern times and circumstances, the physicist
Richard Feynman once quoted that of all mathematical-physical principles,
the principle of least action is one that he has pondered most frequently.

Under mild smoothness conditions, one shows in the calculus of variations
that minimizing the curve functional with fixed boundary constraints

F (q) =
∫ β

α

L(q(t), q̇(t)) dt, q(α) = qα, q(β) = qβ

leads to a function q : [α, β] → R
n satisfying the Euler–Lagrange equations
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d

dt

∂L

∂q̇
− ∂L
∂q

= 0. (1.27)

These equations are also known as Euler’s equations.
Here we use the symbol q̇ with two meanings. The function L is a function

of two variables and these two variables are denoted by q, q̇, so ∂L/∂q̇ denotes
the partial derivative of L with respect to its second variable. A solution of
(1.27) is a smooth function of t, denoted by q(t), whose derivative with respect
to t is q̇(t).

In particular, if q, q̇ are the position-velocity of a mechanical system sub-
ject to a system of holonomic constraints and K(q̇) is its kinetic energy, P (q)
its potential energy, and L = K − P the Lagrangian then (1.27) is the equa-
tion of motion of the system — see Arnold (1978), Siegel and Moser (1971),
or almost any advanced texts on mechanics.

More generally, any critical point of the action functional F (·) leads to the
same conclusion concerning the critical function q(·). Moreover, the boundary
conditions for the variational problem may be much more general, including
the case of periodic boundary conditions, which would replace the fixed end-
point condition with the restriction on the class of functions

q(α) = q(β)

This is an important generalization, in as much as all the periodic solutions
of the N -body problem can be realized as critical points of the action, sub-
ject to the periodic boundary condition. In fact, this observation leads one to
look for such periodic solutions directly by finding appropriate critical points
of the action functional, rather than by solving the boundary value prob-
lem connected with the Euler equations. This is called the direct method
of the calculus of variations, which is a global method in that it does not
require nearby known solutions for its application. This method has recently
helped the discovery of some spectacular new periodic solutions of the N -
body problem that are far from any integrable cases and which are discussed
in subsequent chapters. We give a very simple example of this method be-
low, together with some extensions of this method to the question of global
stability of periodic solutions.

Here are the ingredients of the argument that relates the critical points
of F to the Euler–Lagrange equations. Suppose that qε is a one parameter
curve of functions through the critical function q that satisfies the boundary
constraints. That is, q0(t) = q(t), α ≤ t ≤ β, and qε(α) = qα, qε(β) = qβ
in the case of fixed boundary conditions, or qε(α) = qε(β) in the case of
periodic conditions. In either of these cases, one would naturally infer that
the composite function g(ε) = F (qε) has a critical point at ε = 0. Assuming
that we are able to differentiate under the integral sign, and that the variation
vector field

ξ(t) =
∂

∂ε
qε(t)

∣∣∣∣
ε=0
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is smooth, we find that

dF (q) · ξ =
∂

∂ε
F (qε)

∣∣∣∣
ε=0

=
∫ β

α

(
∂L

∂x
· ξ +

∂L

∂ẋ
· ξ̇
)
dt

=
∂L

∂ẋ
· ξ
∣∣∣∣
β

α

+
∫ β

α

(
− d
dt

∂L

∂ẋ
+
∂L

∂x

)
· ξ dt.

(1.28)

The last line of (1.28) is done using an integration by parts. It is not
difficult to see that if the function q is critical for the functional F with
either set of boundary conditions, then the boundary terms and the integral
expression must vanish independently for an arbitrary choice of the variation
vector field ξ(t). This leads to two conclusions: first, that the Euler–Lagrange
equations (1.27) must vanish identically on the interval α ≤ t ≤ β and second,
that the transversality conditions

∂L

∂ẋ
· ξ
∣∣∣∣
β

α

= 0 (1.29)

should also hold for the critical function q at the endpoints α, β. In the case
of fixed boundary conditions, these transversality conditions don’t give any
additional information because ξ(α) = ξ(β) = 0. In the case of periodic
boundary conditions, they imply that

∂L

∂q̇
(α) =

∂L

∂q̇
(β), (1.30)

because ξ(α) = ξ(β). As we show below, this guarantees that a critical point
of the action functional with periodic boundary conditions, is just the con-
figuration component of a periodic solution of Hamilton’s equations.

We have shown in (1.28) that we can identify critical points of the func-
tional F (·) with solutions of the Euler equations (1.27) subject to various
boundary constraints. One powerful and important application of this is that
the Euler–Lagrange equations are invariant under general coordinate trans-
formations.

Proposition 1.10.1. If the transformation (x, ẋ) → (q, q̇) is a local diffeo-
morphism with

q = q(x), q̇ =
∂q

∂x
(x) · ẋ,

then the Euler–Lagrange equations (1.27) transform into an equivalent set of
Euler–Lagrange equations

d

ds

∂L̃

∂ẋ
− ∂L̃
∂x

= 0,

where the new Lagrangian is defined by the coordinate transformation
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L̃(x, ẋ) = L(q(x),
∂q

∂x
(x) · ẋ).

Proof. The argument rests on two simple observations. First, the condition
that F (q) take a critical value is independent of coordinates; and second, the
functional F (q) transforms in a straightforward manner

F (q(t)) =
∫ β

α

L(q(t), q̇(t))dt

=
∫ β

α

L(q(x(t)),
∂q

∂x
(x(t)) · ẋ(t))dt

=
∫ β

α

L̃(x(t), ẋ(t))dt = F̃ (x(t)).

From this, we conclude that the critical points of F (·) correspond to critical
points of F̃ (·) under the coordinate transformation. The conclusion of the
proposition follows, because we have shown in (1.28) that critical points of
F (·) are solutions of the Euler equations for the Lagrangian L, and critical
points of F̃ (·) are solutions of the Euler equations for the Lagrangian L̃.

Sometimes L depends on t and we wish to change the time variable also.
By the same reasoning, if the transformation (x, x′, s) → (q, q̇, t) is

q = q(x, s), t = t(x, s), q̇ = q̇(x, x′, s) =
qx(x, s)x′ + qs(x, s)
tx(x, s)x′ + ts(x, s)

,

then the Euler–Lagrange equations (1.27) become

d

ds

∂L̃

∂x′
− ∂L̃
∂x

= 0,

where ′ = d/ds and

L̃(x, x′, s) = L(q(x, s), q̇(x, x′, s), t(x, s)).

We consider one interesting example here, whereby the variational structure
of certain solutions is directly tied to the stability type of these solutions.
We follow this thread of an idea in later examples, especially when we ap-
ply the variational method to finding symmetric periodic solutions of the
N -body problem. The mathematical pendulum is given by specifying a con-
strained mechanical system in the plane with Cartesian coordinates (x, y).
The gravitational potential energy is U(x, y) = mgy and the kinetic energy
K(ẋ, ẏ) = 1

2 (ẋ2 + ẏ2). The constraint requires the mass m to lie at a fixed
distance l from the point (0, l) so that x2 + (y− l)2 = l2. Introducing a local
angular coordinate θ mod 2π on the circle x2 + (y − l)2 = l2 and expressing
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the Lagrangian in these coordinates we find the Lagrangian and the resulting
Euler–Lagrange equations,

L(θ, θ̇) =
1
2
ml2θ̇2 +mgl(1 + cos(θ)), ml2θ̈ = −mgl sin(θ).

The equations in θ follow by the invariance of Euler–Lagrange equations
(1.27), see Proposition (1.10.1)) The factor mgl is subtracted from the po-
tential to make the action positive, and doesn’t affect the resulting differen-
tial equations. The action of the variational problem is the integral of the
Lagrangian, so we study the periodic problem

F (q) =
∫ T

0

(
1
2
ml2q̇2 +mgl(1 + cos(q))

)
dt, q(0) = q(T ).

We make the simple observation that the absolute minimizer of the action
corresponds to a global maximum of the potential, and the global minimum
of the potential corresponds to a mountain pass critical point of the action
functional

F (±π) ≤ F (q), F (0) = min max
deg q=1

F (q).

The first inequality may be easily verified, because the kinetic energy is pos-
itive and the potential takes a maximum value at ±π. In the second case,
the maximum is taken with respect to loops in the configuration variable,
which make one circuit of the point 0 before closing. This is described by
the topological degree = 1. The minimum is then taken over all such loops,
including the limit case when the loop is stationary at the origin.

It is interesting to observe here that the global minimum of the action
functional corresponds to a hyperbolic critical point, and the stable critical
point (see Dirichlet’s theorem (1.3.2)) corresponds to a mountain pass type
critical point. This fact is not isolated, and we discuss a theory to make this
kind of prediction concerning stability and instability in much more general
settings when we discuss the Maslov index in Section 4.5.

One could consider the forced pendulum equations, as was done in Section
1.5. Here the analysis and the results become essentially more interesting,
because there are no longer any equilibrium solutions; however, the direct
method of the calculus of variations leads to some very interesting global
results for this simple problem, which we describe briefly. The Euler equation
and the action functional become

ml2θ̈ = −mgl sin(θ) + f(t), f(t+ T ) = f(t),

F (q) =
∫ T

0

(
1
2
ml2q̇2 +mgl(1 + cos(q)) + qf(t)

)
dt, q(0) = q(T ).

In this problem, the question of stable and unstable periodic solutions be-
comes an interesting nonelementary research topic. The first question one


