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Computer Science and Statistics

• Separated in the 40’s and 50’s, but merging in the 90’s and 00’s

• What computer science has done well: data structures and algorithms for
manipulating data structures

• What statistics has done well: managing uncertainty and justification of
algorithms for making decisions under uncertainty

• What machine learning attempts to do: hasten the merger along
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Nonparametric Bayesian Inference (Theme I)

• At the core of Bayesian inference lies Bayes’ theorem:

posterior ∝ likelihood × prior

• For parametric models, we let θ be a Euclidean parameter and write:

p(θ|x) ∝ p(x|θ)p(θ)

• For nonparametric models, we let G be a general stochastic process (an
“infinite-dimensional random variable”) and write:

p(G|x) ∝ p(x|G)p(G)

which frees us to work with flexible data structures
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Nonparametric Bayesian Inference (cont)

• Examples of stochastic processes we’ll mention today include distributions
on:

– directed trees of unbounded depth and unbounded fan-out
– partitions
– sparse binary infinite-dimensional matrices
– copulae
– distributions

• A general mathematical tool: Lévy processes
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Hierarchical Bayesian Modeling (Theme II)

• Hierarchical modeling is a key idea in Bayesian inference

• It’s essentially a form of recursion

– in the parametric setting, it just means that priors on parameters can
themselves be parameterized

– in our nonparametric setting, it means that a stochastic process can have
as a parameter another stochastic process

• We’ll use hierarchical modeling to build structured objects that are
reminiscent of graphical models—but are nonparametric!

– statistical justification—the freedom inherent in using nonparametrics
needs the extra control of the hierarchy
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What are “Parameters”?

• Exchangeability : invariance to permutation of the joint probability
distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If (x1, x2, . . .) are infinitely exchangeable,

then the joint probability p(x1, x2, . . . , xN) has a representation as a mixture:

p(x1, x2, . . . , xN) =

∫

(

N
∏

i=1

p(xi |G)

)

dP (G)

for some random element G.

• The theorem would be false if we restricted ourselves to finite-dimensional
G
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Stick-Breaking

• A general way to obtain distributions on countably-infinite spaces

• A canonical example: Define an infinite sequence of beta random variables:

βk ∼ Beta(1, α0) k = 1, 2, . . .

• And then define an infinite random sequence as follows:

π1 = β1, πk = βk

k−1
Y

l=1

(1 − βl) k = 2, 3, . . .

• This can be viewed as breaking off portions of a stick:

1 2
...

1β β (1−β  )
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Constructing Random Measures

• It’s not hard to see that
∑∞

k=1 πk = 1

• Now define the following object:

G =
∞
∑

k=1

πkδφk
,

where φk are independent draws from a distribution G0 on some space

• Because
∑∞

k=1 πk = 1, G is a probability measure—it is a random measure

• The distribution of G is known as a Dirichlet process: G ∼ DP(α0, G0)

• What exchangeable marginal distribution does this yield when integrated
against in the De Finetti setup?
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Chinese Restaurant Process (CRP)

• A random process in which n customers sit down in a Chinese restaurant
with an infinite number of tables

– first customer sits at the first table
– mth subsequent customer sits at a table drawn from the following

distribution:

P (previously occupied table i | Fm−1) ∝ ni

P (the next unoccupied table | Fm−1) ∝ α0
(1)

where ni is the number of customers currently at table i and where Fm−1

denotes the state of the restaurant after m − 1 customers have been
seated
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The CRP and Clustering

• Data points are customers; tables are clusters

– the CRP defines a prior distribution on the partitioning of the data and
on the number of tables

• This prior can be completed with:

– a likelihood—e.g., associate a parameterized probability distribution with
each table

– a prior for the parameters—the first customer to sit at table k chooses
the parameter vector for that table (φk) from a prior G0
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• So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting
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CRP Prior, Gaussian Likelihood, Conjugate Prior

φk = (µk, Σk) ∼ N(a, b) ⊗ IW (α, β)

xi ∼ N(φk) for a data point i sitting at table k
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Exchangeability

• As a prior on the partition of the data, the CRP is exchangeable

• The prior on the parameter vectors associated with the tables is also
exchangeable

• The latter probability model is generally called the Pólya urn model. Letting
θi denote the parameter vector associated with the ith data point, we have:

θi | θ1, . . . , θi−1 ∼ α0G0 +

i−1
∑

j=1

δθj

• From these conditionals, a short calculation shows that the joint distribution
for (θ1, . . . , θn) is invariant to order (this is the exchangeability proof)

• As a prior on the number of tables, the CRP is nonparametric—the number
of occupied tables grows (roughly) as O(log n)—we’re in the world of
nonparametric Bayes
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Dirichlet Process Mixture Models

Gα 0

G0

θi

xi

G ∼ DP(α0G0)

θi |G ∼ G i ∈ 1, . . . , n

xi | θi ∼ F (xi | θi) i ∈ 1, . . . , n
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Marginal Probabilities

• To obtain the marginal probability of the parameters θ1, θ2, . . ., we need to
integrate out G

Gα 0

G0

θi

xi

α 0

G0

θi

xi

• This marginal distribution turns out to be the Chinese restaurant process
(more precisely, it’s the Pólya urn model)

14



Protein Folding

• A protein is a folded chain of amino acids

• The backbone of the chain has two degrees of freedom per amino acid (phi
and psi angles)

• Empirical plots of phi and psi angles are called Ramachandran diagrams
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Protein Folding (cont.)

• We want to model the density in the Ramachandran diagram to provide an
energy term for protein folding algorithms

• We actually have a linked set of Ramachandran diagrams, one for each
amino acid neighborhood

• We thus have a linked set of clustering problems

– note that the data are partially exchangeable
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Haplotype Modeling

• Consider M binary markers in a genomic region

• There are 2M possible haplotypes—i.e., states of a single chromosome

– but in fact, far fewer are seen in human populations

• A genotype is a set of unordered pairs of markers (from one individual)

A B c

b Ca

{A, a}
{B, b}
{C, c}

• Given a set of genotypes (multiple individuals), estimate the underlying
haplotypes

• This is a clustering problem
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Haplotype Modeling (cont.)

• A key problem is inference for the number of clusters

• Consider now the case of multiple groups of genotype data (e.g., ethnic
groups)

• Geneticists would like to find clusters within each group but they would also
like to share clusters between the groups

18



Natural Language Parsing

• Given a corpus of sentences, some of which have been parsed by humans,
find a grammar that can be used to parse future sentences

a Romavado

S

NP VP

PP

Io

• Much progress over the past decade; state-of-the-art methods are statistical
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Natural Language Parsing (cont.)

• Key idea: lexicalization of context-free grammars

– the grammatical rules (S → NP VP) are conditioned on the specific
lexical items (words) that they derive

• This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the counts

• Need to control the numbers of clusters (model selection) in a setting in
which many tens of thousands of clusters are needed

• Need to consider related groups of clustering problems (one group for each
grammatical context)
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Nonparametric Hidden Markov Models

xTx2x1

z zT2z1

• An open problem—how to work with HMMs and state space models that
have an unknown and unbounded number of states?

• Each row of a transition matrix is a probability distribution across “next
states”

• We need to estimation these transitions in a way that links them across rows
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Image Segmentation

• Image segmentation can be viewed as inference over partitions

– clearly we want to be nonparametric in modeling such partitions

• Standard approach—use relatively simple (parametric) local models and
relatively complex spatial coupling

• Our approach—use a relatively rich (nonparametric) local model and
relatively simple spatial coupling

– for this to work we need to combine information across images; this brings
in the hierarchy
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Hierarchical Nonparametrics—A First Try

• Idea: Dirichlet processes for each group, linked by an underlying G0:

x

G

ij

ij

i

θ

0α

G 0

• Problem: the atoms generated by the random measures Gi will be distinct

– i.e., the atoms in one group will be distinct from the atoms in the other
groups—no sharing of clusters!

• Sometimes ideas that are fine in the parametric context fail (completely) in
the nonparametric context... :-(
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Hierarchical Dirichlet Processes

(Teh, Jordan, Beal & Blei, 2006)

• We need to have the base measure G0 be discrete

– but also need it to be flexible and random

24



Hierarchical Dirichlet Processes

(Teh, Jordan, Beal & Blei, 2006)

• We need to have the base measure G0 be discrete

– but also need it to be flexible and random

• The fix: Let G0 itself be distributed according to a DP:

G0 | γ,H ∼ DP(γH)

• Then
Gj |α, G0 ∼ DP(α0G0)

has as its base measure a (random) atomic distribution—samples of Gj will
resample from these atoms
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Hierarchical Dirichlet Process Mixtures

Gα 0

G0

θ

x

i

ij

ij

γ

H

G0 | γ, H ∼ DP(γH)

Gi |α, G0 ∼ DP(α0G0)

θij |Gi ∼ Gi

xij | θij ∼ F (xij, θij)
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Chinese Restaurant Franchise (CRF)

• First integrate out the Gi, then integrate out G0

Gα 0

G0

θ

x

i

ij

ij

γ

H

α 0

θ

x

ij

ij

γ

H
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Chinese Restaurant Franchise (CRF)
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• To each group there corresponds a restaurant, with an unbounded number
of tables in each restaurant

• There is a global menu with an unbounded number of dishes on the menu

• The first customer at a table selects a dish for that table from the global
menu

• Reinforcement effects—customers prefer to sit at tables with many other
customers, and prefer to choose dishes that are chosen by many other
customers
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Protein Folding (cont.)

• We have a linked set of Ramachandran diagrams, one for each amino acid
neighborhood
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Protein Folding (cont.)

Marginal improvement over finite mixture
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Natural Language Parsing

• Key idea: lexicalization of context-free grammars

– the grammatical rules (S → NP VP) are conditioned on the specific
lexical items (words) that they derive

• This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the choice of rules
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HDP-PCFG

(Liang, Petrov, Jordan & Klein, 2007)

• Based on a training corpus, we build a lexicalized grammar in which the
rules are based on word clusters

• Each grammatical context defines a clustering problem, and we link the
clustering problems via the HDP

T PCFG HDP-PCFG
F1 Size F1 Size

1 60.4 2558 60.5 2557
4 76.0 3141 77.2 9710
8 74.3 4262 79.1 50629
16 66.9 19616 78.2 151377
20 64.4 27593 77.8 202767

32



Nonparametric Hidden Markov models

xTx2x1

z zT2z1

• A perennial problem—how to work with HMMs that have an unknown and
unbounded number of states?

• A straightforward application of the HDP framework

– multiple mixture models—one for each value of the “current state”
– the DP creates new states, and the HDP approach links the transition

distributions
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Nonparametric Hidden Markov Trees

(Kivinen, Sudderth & Jordan, 2007)

• Hidden Markov trees in which the cardinality of the states is unknown a
priori

• We need to tie the parent-child transitions across the parent states; this is
done with the HDP
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Nonparametric Hidden Markov Trees (cont.)

• Local Gaussian Scale Mixture (31.84 dB)
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Nonparametric Hidden Markov Trees (cont.)

• Hierarchical Dirichlet Process Hidden Markov Tree (32.10 dB)
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Image Segmentation

(Sudderth & Jordan, 2008)

• Image segmentation can be viewed as inference over partitions

– clearly we want to be nonparametric in modeling such partitions

• Image statistics are better captured by the Pitman-Yor stick-breaking
processes than by the Dirichlet process
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Image Segmentation (cont)

(Sudderth & Jordan, 2008)

• So we want Pitman-Yor marginals at each site in an image

• The (perennial) problem is how to couple these marginals spatially

– to solve this problem, we again go nonparametric—we couple the PY
marginals using Gaussian process copulae
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Image Segmentation (cont)

(Sudderth & Jordan, 2008)

• A sample from the coupled HPY prior:
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Image Segmentation (cont)

(Sudderth & Jordan, 2008)

• Comparing the HPY prior to a Markov random field prior
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Image Segmentation (cont)

(Sudderth & Jordan, 2008)
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Beta Processes

• The Dirichlet process yields a multinomial random variable (which table is
the customer sitting at?)

• Problem: in many problem domains we have a very large (combinatorial)
number of possible tables

– it becomes difficult to control this with the Dirichlet process

• What if instead we want to characterize objects as collections of attributes
(“sparse features”)?

• Indeed, instead of working with the sample paths of the Dirichlet process,
which sum to one, let’s instead consider a stochastic process—the beta
process—which removes this constraint

• And then we will go on to consider hierarchical beta processes, which will
allow features to be shared among multiple related objects
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Lévy Processes

• Stochastic processes with independent increments

– e.g., Gaussian increments (Brownian motion)
– e.g., gamma increments (gamma processes)
– in general, (limits of) compound Poisson processes

• The Dirichlet process is not a Lévy process

– but it’s a normalized gamma process

• The beta process assigns beta measure to small regions

• Can then sample to yield (sparse) collections of Bernoulli variables

43



Beta Processes
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Examples of Beta Process Sample Paths

• Effect of the two parameters c and γ on samples from a beta process.
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Beta Processes

• The marginals of the Dirichlet process are characterized by the Chinese
restaurant process

• What about the beta process?

46



Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many dishes in a buffet line

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes

47



Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many infinite dishes

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes
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Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many infinite dishes

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes
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Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many infinite dishes

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes
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Hierarchical Beta Process
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• A hierarchical beta process is a beta process whose base measure is itself
random and drawn from a beta process.
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Fixing Naive Bayes

11000Topic C
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Graphical model:

• A hierarchical Bayesian model correctly takes the weight of the evidence into
account and matches our intuition regarding which topic should be favored
when observing this word.

• This can be done nonparametrically with the hierarchical beta process.

52



The Phylogenetic IBP

(Miller, Griffiths & Jordan, 2008)

• We don’t always want objects to be exchangeable; sometimes we have side
information to distinguish objects

– but if we lose exchangeability, we risk losing computational tractability

• In the phylo-IBP we use a tree to represent various forms of partial
exchangeability

• The process stays tractable (belief propagation to the rescue!)
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Conclusions

• The underlying principle in this talk: exchangeability

• Leads to nonparametric Bayesian models that can be fit with computationally
efficient algorithms

• Leads to architectural and algorithmic building blocks that can be adapted
to many problems

• For more details (including tutorial slides):

http://www.cs.berkeley.edu/∼jordan
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