Applied Nonparametric Bayes

Michael I. Jordan

Department of Electrical Engineering and Computer Science Department of Statistics
University of California, Berkeley
http://www.cs.berkeley.edu/~jordan
Acknowledgments: Yee Whye Teh, Romain Thibaux

Computer Science and Statistics

- Separated in the 40 's and 50 's, but merging in the 90 's and 00 's
- What computer science has done well: data structures and algorithms for manipulating data structures
- What statistics has done well: managing uncertainty and justification of algorithms for making decisions under uncertainty
- What machine learning attempts to do: hasten the merger along

Nonparametric Bayesian Inference (Theme I)

- At the core of Bayesian inference lies Bayes' theorem:

$$
\text { posterior } \propto \text { likelihood } \times \text { prior }
$$

- For parametric models, we let θ be a Euclidean parameter and write:

$$
p(\theta \mid x) \propto p(x \mid \theta) p(\theta)
$$

- For nonparametric models, we let G be a general stochastic process (an "infinite-dimensional random variable") and write:

$$
p(G \mid x) \propto p(x \mid G) p(G)
$$

which frees us to work with flexible data structures

Nonparametric Bayesian Inference (cont)

- Examples of stochastic processes we'll mention today include distributions on:
- directed trees of unbounded depth and unbounded fan-out
- partitions
- sparse binary infinite-dimensional matrices
- copulae
- distributions
- A general mathematical tool: Lévy processes

Hierarchical Bayesian Modeling (Theme II)

- Hierarchical modeling is a key idea in Bayesian inference
- It's essentially a form of recursion
- in the parametric setting, it just means that priors on parameters can themselves be parameterized
- in our nonparametric setting, it means that a stochastic process can have as a parameter another stochastic process
- We'll use hierarchical modeling to build structured objects that are reminiscent of graphical models-but are nonparametric!
- statistical justification-the freedom inherent in using nonparametrics needs the extra control of the hierarchy

What are "Parameters"?

- Exchangeability: invariance to permutation of the joint probability distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If $\left(x_{1}, x_{2}, \ldots\right)$ are infinitely exchangeable, then the joint probability $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ has a representation as a mixture:

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int\left(\prod_{i=1}^{N} p\left(x_{i} \mid G\right)\right) d P(G)
$$

for some random element G.

- The theorem would be false if we restricted ourselves to finite-dimensional G

Stick-Breaking

- A general way to obtain distributions on countably-infinite spaces
- A canonical example: Define an infinite sequence of beta random variables:

$$
\beta_{k} \sim \operatorname{Beta}\left(1, \alpha_{0}\right) \quad k=1,2, \ldots
$$

- And then define an infinite random sequence as follows:

$$
\pi_{1}=\beta_{1}, \quad \pi_{k}=\beta_{k} \prod_{l=1}^{k-1}\left(1-\beta_{l}\right) \quad k=2,3, \ldots
$$

- This can be viewed as breaking off portions of a stick:

Constructing Random Measures

- It's not hard to see that $\sum_{k=1}^{\infty} \pi_{k}=1$
- Now define the following object:

$$
G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}
$$

where ϕ_{k} are independent draws from a distribution G_{0} on some space

- Because $\sum_{k=1}^{\infty} \pi_{k}=1, G$ is a probability measure-it is a random measure
- The distribution of G is known as a Dirichlet process: $G \sim \operatorname{DP}\left(\alpha_{0}, G_{0}\right)$
- What exchangeable marginal distribution does this yield when integrated against in the De Finetti setup?

Chinese Restaurant Process (CRP)

- A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
- first customer sits at the first table
- m th subsequent customer sits at a table drawn from the following distribution:

$$
\begin{array}{rlll}
P\left(\text { previously occupied table } i \mid \mathcal{F}_{m-1}\right) & \propto & n_{i} \tag{1}\\
P\left(\text { the next unoccupied table } \mid \mathcal{F}_{m-1}\right) & \propto & \alpha_{0}
\end{array}
$$

where n_{i} is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after $m-1$ customers have been seated

The CRP and Clustering

- Data points are customers; tables are clusters
- the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
- a likelihood-e.g., associate a parameterized probability distribution with each table
- a prior for the parameters-the first customer to sit at table k chooses the parameter vector for that table $\left(\phi_{k}\right)$ from a prior G_{0}

- So we now have a distribution-or can obtain one-for any quantity that we might care about in the clustering setting

CRP Prior, Gaussian Likelihood, Conjugate Prior

$$
\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right) \sim N(a, b) \otimes I W(\alpha, \beta)
$$

$x_{i} \sim N\left(\phi_{k}\right) \quad$ for a data point i sitting at table k

Exchangeability

- As a prior on the partition of the data, the CRP is exchangeable
- The prior on the parameter vectors associated with the tables is also exchangeable
- The latter probability model is generally called the Pólya urn model. Letting θ_{i} denote the parameter vector associated with the i th data point, we have:

$$
\theta_{i} \mid \theta_{1}, \ldots, \theta_{i-1} \sim \alpha_{0} G_{0}+\sum_{j=1}^{i-1} \delta_{\theta_{j}}
$$

- From these conditionals, a short calculation shows that the joint distribution for $\left(\theta_{1}, \ldots, \theta_{n}\right)$ is invariant to order (this is the exchangeability proof)
- As a prior on the number of tables, the CRP is nonparametric-the number of occupied tables grows (roughly) as $O(\log n)$-we're in the world of nonparametric Bayes

Dirichlet Process Mixture Models

$$
\begin{array}{rlrl}
G & \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right) & \\
\theta_{i} \mid G & \sim G & i \in 1, \ldots, n \\
x_{i} \mid \theta_{i} & \sim F\left(x_{i} \mid \theta_{i}\right) & i \in 1, \ldots, n
\end{array}
$$

Marginal Probabilities

- To obtain the marginal probability of the parameters $\theta_{1}, \theta_{2}, \ldots$, we need to integrate out G

- This marginal distribution turns out to be the Chinese restaurant process (more precisely, it's the Pólya urn model)

Protein Folding

- A protein is a folded chain of amino acids
- The backbone of the chain has two degrees of freedom per amino acid (phi and psi angles)
- Empirical plots of phi and psi angles are called Ramachandran diagrams

Protein Folding (cont.)

- We want to model the density in the Ramachandran diagram to provide an energy term for protein folding algorithms
- We actually have a linked set of Ramachandran diagrams, one for each amino acid neighborhood
- We thus have a linked set of clustering problems
- note that the data are partially exchangeable

Haplotype Modeling

- Consider M binary markers in a genomic region
- There are 2^{M} possible haplotypes-i.e., states of a single chromosome
- but in fact, far fewer are seen in human populations
- A genotype is a set of unordered pairs of markers (from one individual)

- Given a set of genotypes (multiple individuals), estimate the underlying haplotypes
- This is a clustering problem

Haplotype Modeling (cont.)

- A key problem is inference for the number of clusters
- Consider now the case of multiple groups of genotype data (e.g., ethnic groups)
- Geneticists would like to find clusters within each group but they would also like to share clusters between the groups

Natural Language Parsing

- Given a corpus of sentences, some of which have been parsed by humans, find a grammar that can be used to parse future sentences

- Much progress over the past decade; state-of-the-art methods are statistical

Natural Language Parsing (cont.)

- Key idea: lexicalization of context-free grammars
- the grammatical rules ($\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$) are conditioned on the specific lexical items (words) that they derive
- This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the counts
- Need to control the numbers of clusters (model selection) in a setting in which many tens of thousands of clusters are needed
- Need to consider related groups of clustering problems (one group for each grammatical context)

Nonparametric Hidden Markov Models

- An open problem-how to work with HMMs and state space models that have an unknown and unbounded number of states?
- Each row of a transition matrix is a probability distribution across "next states"
- We need to estimation these transitions in a way that links them across rows

Image Segmentation

- Image segmentation can be viewed as inference over partitions
- clearly we want to be nonparametric in modeling such partitions
- Standard approach—use relatively simple (parametric) local models and relatively complex spatial coupling
- Our approach—use a relatively rich (nonparametric) local model and relatively simple spatial coupling
- for this to work we need to combine information across images; this brings in the hierarchy

Hierarchical Nonparametrics-A First Try

- Idea: Dirichlet processes for each group, linked by an underlying G_{0} :

- Problem: the atoms generated by the random measures G_{i} will be distinct
- i.e., the atoms in one group will be distinct from the atoms in the other groups-no sharing of clusters!
- Sometimes ideas that are fine in the parametric context fail (completely) in the nonparametric context... :-(

Hierarchical Dirichlet Processes

(Teh, Jordan, Beal \& Blei, 2006)

- We need to have the base measure G_{0} be discrete
- but also need it to be flexible and random

Hierarchical Dirichlet Processes

(Teh, Jordan, Beal \& Blei, 2006)

- We need to have the base measure G_{0} be discrete
- but also need it to be flexible and random
- The fix: Let G_{0} itself be distributed according to a DP:

$$
G_{0} \mid \gamma, H \sim \mathrm{DP}(\gamma H)
$$

- Then

$$
G_{j} \mid \alpha, G_{0} \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right)
$$

has as its base measure a (random) atomic distribution-samples of G_{j} will resample from these atoms

Hierarchical Dirichlet Process Mixtures

$$
\begin{aligned}
G_{0} \mid \gamma, H & \sim \operatorname{DP}(\gamma H) \\
G_{i} \mid \alpha, G_{0} & \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right) \\
\theta_{i j} \mid G_{i} & \sim G_{i} \\
x_{i j} \mid \theta_{i j} & \sim F\left(x_{i j}, \theta_{i j}\right)
\end{aligned}
$$

Chinese Restaurant Franchise (CRF)

- First integrate out the G_{i}, then integrate out G_{0}

Chinese Restaurant Franchise (CRF)

- To each group there corresponds a restaurant, with an unbounded number of tables in each restaurant
- There is a global menu with an unbounded number of dishes on the menu
- The first customer at a table selects a dish for that table from the global menu
- Reinforcement effects-customers prefer to sit at tables with many other customers, and prefer to choose dishes that are chosen by many other customers

Protein Folding (cont.)

- We have a linked set of Ramachandran diagrams, one for each amino acid neighborhood

Protein Folding (cont.)

Marginal improvement over finite mixture

Natural Language Parsing

- Key idea: lexicalization of context-free grammars
- the grammatical rules ($\mathrm{S} \rightarrow \mathrm{NP} V P$) are conditioned on the specific lexical items (words) that they derive
- This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the choice of rules

HDP-PCFG

(Liang, Petrov, Jordan \& Klein, 2007)

- Based on a training corpus, we build a lexicalized grammar in which the rules are based on word clusters
- Each grammatical context defines a clustering problem, and we link the clustering problems via the HDP

T	PCFG	HDP-PCFG		
	F_{1}	Size	F_{1}	Size
1	60.4	2558	60.5	2557
4	76.0	3141	77.2	9710
8	74.3	4262	79.1	50629
16	66.9	19616	78.2	151377
20	64.4	27593	77.8	202767

Nonparametric Hidden Markov models

- A perennial problem—how to work with HMMs that have an unknown and unbounded number of states?
- A straightforward application of the HDP framework
- multiple mixture models-one for each value of the "current state"
- the DP creates new states, and the HDP approach links the transition distributions

Nonparametric Hidden Markov Trees

(Kivinen, Sudderth \& Jordan, 2007)

- Hidden Markov trees in which the cardinality of the states is unknown a priori
- We need to tie the parent-child transitions across the parent states; this is done with the HDP

Nonparametric Hidden Markov Trees (cont.)

- Local Gaussian Scale Mixture (31.84 dB)

Nonparametric Hidden Markov Trees (cont.)

- Hierarchical Dirichlet Process Hidden Markov Tree (32.10 dB)

Image Segmentation

(Sudderth \& Jordan, 2008)

- Image segmentation can be viewed as inference over partitions
- clearly we want to be nonparametric in modeling such partitions
- Image statistics are better captured by the Pitman-Yor stick-breaking processes than by the Dirichlet process

Image Segmentation (cont)

(Sudderth \& Jordan, 2008)

- So we want Pitman-Yor marginals at each site in an image
- The (perennial) problem is how to couple these marginals spatially
- to solve this problem, we again go nonparametric-we couple the PY marginals using Gaussian process copulae

Image Segmentation (cont)

(Sudderth \& Jordan, 2008)

- A sample from the coupled HPY prior:

Image Segmentation (cont)

(Sudderth \& Jordan, 2008)

- Comparing the HPY prior to a Markov random field prior

Image Segmentation (cont)

(Sudderth \& Jordan, 2008)

Beta Processes

- The Dirichlet process yields a multinomial random variable (which table is the customer sitting at?)
- Problem: in many problem domains we have a very large (combinatorial) number of possible tables
- it becomes difficult to control this with the Dirichlet process
- What if instead we want to characterize objects as collections of attributes ("sparse features")?
- Indeed, instead of working with the sample paths of the Dirichlet process, which sum to one, let's instead consider a stochastic process-the beta process-which removes this constraint
- And then we will go on to consider hierarchical beta processes, which will allow features to be shared among multiple related objects

Lévy Processes

- Stochastic processes with independent increments
- e.g., Gaussian increments (Brownian motion)
- e.g., gamma increments (gamma processes)
- in general, (limits of) compound Poisson processes
- The Dirichlet process is not a Lévy process
- but it's a normalized gamma process
- The beta process assigns beta measure to small regions
- Can then sample to yield (sparse) collections of Bernoulli variables

Beta Processes

Examples of Beta Process Sample Paths

- Effect of the two parameters c and γ on samples from a beta process.

Beta Processes

- The marginals of the Dirichlet process are characterized by the Chinese restaurant process
- What about the beta process?

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many dishes in a buffet line
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Hierarchical Beta Process

- A hierarchical beta process is a beta process whose base measure is itself random and drawn from a beta process.

Fixing Naive Bayes

	\#Documents	\#Documents with the word "epilepsy"
Topic A	1	1
Topic B	100	30
Topic C	1000	1
Topic D	1000	0

Topic of which "epilepsy" is most indicative:

A

Graphical model:

A

B

- A hierarchical Bayesian model correctly takes the weight of the evidence into account and matches our intuition regarding which topic should be favored when observing this word.
- This can be done nonparametrically with the hierarchical beta process.

The Phylogenetic IBP

(Miller, Griffiths \& Jordan, 2008)

- We don't always want objects to be exchangeable; sometimes we have side information to distinguish objects
- but if we lose exchangeability, we risk losing computational tractability
- In the phylo-IBP we use a tree to represent various forms of partial exchangeability

- The process stays tractable (belief propagation to the rescue!)

Conclusions

- The underlying principle in this talk: exchangeability
- Leads to nonparametric Bayesian models that can be fit with computationally efficient algorithms
- Leads to architectural and algorithmic building blocks that can be adapted to many problems
- For more details (including tutorial slides):
http://www.cs.berkeley.edu/~jordan

