Applied Nonparametric Bayes

Michael I. Jordan

Department of Electrical Engineering and Computer Science Department of Statistics University of California, Berkeley

http://www.cs.berkeley.edu/~jordan

Acknowledgments: Yee Whye Teh, Romain Thibaux

Computer Science and Statistics

- Separated in the 40's and 50's, but merging in the 90's and 00's
- What computer science has done well: data structures and algorithms for manipulating data structures
- What statistics has done well: managing uncertainty and justification of algorithms for making decisions under uncertainty
- What machine learning attempts to do: hasten the merger along

Nonparametric Bayesian Inference (Theme I)

• At the core of Bayesian inference lies Bayes' theorem:

 $posterior \propto likelihood \times prior$

• For parametric models, we let θ be a Euclidean parameter and write:

 $p(\theta|x) \propto p(x|\theta)p(\theta)$

• For nonparametric models, we let G be a general stochastic process (an "infinite-dimensional random variable") and write:

 $p(G|x) \propto p(x|G)p(G)$

which frees us to work with flexible data structures

Nonparametric Bayesian Inference (cont)

- Examples of stochastic processes we'll mention today include distributions on:
 - directed trees of unbounded depth and unbounded fan-out
 - partitions
 - sparse binary infinite-dimensional matrices
 - copulae
 - distributions
- A general mathematical tool: Lévy processes

Hierarchical Bayesian Modeling (Theme II)

- Hierarchical modeling is a key idea in Bayesian inference
- It's essentially a form of recursion
 - in the parametric setting, it just means that priors on parameters can themselves be parameterized
 - in our nonparametric setting, it means that a stochastic process can have as a parameter another stochastic process
- We'll use hierarchical modeling to build structured objects that are reminiscent of graphical models—but are nonparametric!
 - statistical justification—the freedom inherent in using nonparametrics needs the extra control of the hierarchy

What are "Parameters"?

• *Exchangeability*: invariance to permutation of the joint probability distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If $(x_1, x_2, ...)$ are infinitely exchangeable, then the joint probability $p(x_1, x_2, ..., x_N)$ has a representation as a mixture:

$$p(x_1, x_2, \dots, x_N) = \int \left(\prod_{i=1}^N p(x_i \mid G)\right) dP(G)$$

for some random element G.

 \bullet The theorem would be false if we restricted ourselves to finite-dimensional G

Stick-Breaking

- A general way to obtain distributions on countably-infinite spaces
- A canonical example: Define an infinite sequence of beta random variables:

$$\beta_k \sim \text{Beta}(1, \alpha_0) \qquad \qquad k = 1, 2, \dots$$

• And then define an infinite random sequence as follows:

$$\pi_1 = \beta_1, \qquad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \qquad \qquad k = 2, 3, \dots$$

• This can be viewed as breaking off portions of a stick:

Constructing Random Measures

- It's not hard to see that $\sum_{k=1}^{\infty} \pi_k = 1$
- Now define the following object:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k},$$

where ϕ_k are independent draws from a distribution G_0 on some space

- Because $\sum_{k=1}^{\infty} \pi_k = 1$, G is a probability measure—it is a random measure
- The distribution of G is known as a Dirichlet process: $G \sim DP(\alpha_0, G_0)$
- What exchangeable marginal distribution does this yield when integrated against in the De Finetti setup?

Chinese Restaurant Process (CRP)

- \bullet A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - mth subsequent customer sits at a table drawn from the following distribution:

$$\begin{array}{ll}
P(\text{previously occupied table } i | \mathcal{F}_{m-1}) & \propto & n_i \\
P(\text{the next unoccupied table} | \mathcal{F}_{m-1}) & \propto & \alpha_0
\end{array} \tag{1}$$

where n_i is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after m-1 customers have been seated

The CRP and Clustering

- Data points are customers; tables are clusters
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood—e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters—the first customer to sit at table k chooses the parameter vector for that table (ϕ_k) from a prior G_0

• So we now have a distribution—or can obtain one—for any quantity that we might care about in the clustering setting

CRP Prior, Gaussian Likelihood, Conjugate Prior

$$\begin{split} \phi_k &= (\mu_k, \Sigma_k) \sim N(a, b) \otimes IW(\alpha, \beta) \\ x_i &\sim N(\phi_k) \qquad \text{for a data point } i \text{ sitting at table } k \end{split}$$

Exchangeability

- As a prior on the partition of the data, the CRP is exchangeable
- The prior on the parameter vectors associated with the tables is also exchangeable
- The latter probability model is generally called the Pólya urn model. Letting θ_i denote the parameter vector associated with the *i*th data point, we have:

$$\theta_i | \theta_1, \dots, \theta_{i-1} \sim \alpha_0 G_0 + \sum_{j=1}^{i-1} \delta_{\theta_j}$$

- From these conditionals, a short calculation shows that the joint distribution for $(\theta_1, \ldots, \theta_n)$ is invariant to order (this is the exchangeability proof)
- As a prior on the number of tables, the CRP is nonparametric—the number of occupied tables grows (roughly) as O(log n)—we're in the world of nonparametric Bayes

Dirichlet Process Mixture Models

 $G \sim DP(\alpha_0 G_0)$ $\theta_i | G \sim G \qquad i \in 1, \dots, n$ $x_i | \theta_i \sim F(x_i | \theta_i) \qquad i \in 1, \dots, n$

Marginal Probabilities

• To obtain the marginal probability of the parameters $\theta_1, \theta_2, \ldots$, we need to integrate out G

• This marginal distribution turns out to be the Chinese restaurant process (more precisely, it's the Pólya urn model)

Protein Folding

- A protein is a folded chain of amino acids
- The backbone of the chain has two degrees of freedom per amino acid (phi and psi angles)
- Empirical plots of phi and psi angles are called *Ramachandran diagrams*

raw ALA data

Protein Folding (cont.)

- We want to model the density in the Ramachandran diagram to provide an energy term for protein folding algorithms
- We actually have a linked set of Ramachandran diagrams, one for each amino acid neighborhood
- We thus have a linked set of clustering problems
 - note that the data are *partially exchangeable*

Haplotype Modeling

- Consider M binary markers in a genomic region
- There are 2^M possible haplotypes—i.e., states of a single chromosome
 but in fact, far fewer are seen in human populations
- A genotype is a set of unordered pairs of markers (from one individual)

- Given a set of genotypes (multiple individuals), estimate the underlying haplotypes
- This is a clustering problem

Haplotype Modeling (cont.)

- A key problem is inference for the number of clusters
- Consider now the case of multiple groups of genotype data (e.g., ethnic groups)
- Geneticists would like to find clusters within each group but they would also like to share clusters between the groups

Natural Language Parsing

• Given a corpus of sentences, some of which have been parsed by humans, find a grammar that can be used to parse future sentences

• Much progress over the past decade; state-of-the-art methods are statistical

Natural Language Parsing (cont.)

- Key idea: *lexicalization* of context-free grammars
 - the grammatical rules (S \rightarrow NP VP) are conditioned on the specific lexical items (words) that they derive
- This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the counts
- Need to control the numbers of clusters (model selection) in a setting in which many tens of thousands of clusters are needed
- Need to consider related groups of clustering problems (one group for each grammatical context)

Nonparametric Hidden Markov Models

- An open problem—how to work with HMMs and state space models that have an unknown and unbounded number of states?
- Each row of a transition matrix is a probability distribution across "next states"
- We need to estimation these transitions in a way that links them across rows

Image Segmentation

- Image segmentation can be viewed as inference over partitions
 - clearly we want to be nonparametric in modeling such partitions
- Standard approach—use relatively simple (parametric) local models and relatively complex spatial coupling
- Our approach—use a relatively rich (nonparametric) local model and relatively simple spatial coupling
 - for this to work we need to combine information across images; this brings in the hierarchy

Hierarchical Nonparametrics—A First Try

• Idea: Dirichlet processes for each group, linked by an underlying G_0 :

- Problem: the atoms generated by the random measures G_i will be distinct
 - i.e., the atoms in one group will be distinct from the atoms in the other groups—no sharing of clusters!
- Sometimes ideas that are fine in the parametric context fail (completely) in the nonparametric context... :-(

Hierarchical Dirichlet Processes

(Teh, Jordan, Beal & Blei, 2006)

- We need to have the base measure G_0 be discrete
 - but also need it to be flexible and random

Hierarchical Dirichlet Processes

(Teh, Jordan, Beal & Blei, 2006)

• We need to have the base measure G_0 be discrete

- but also need it to be flexible and random

• The fix: Let G_0 itself be distributed according to a DP:

 $G_0 | \gamma, H \sim \mathrm{DP}(\gamma H)$

• Then

$$G_j \mid \alpha, G_0 \sim \mathrm{DP}(\alpha_0 G_0)$$

has as its base measure a (random) atomic distribution—samples of G_j will resample from these atoms

Hierarchical Dirichlet Process Mixtures

$G_0 \gamma, H$	\sim	$\mathrm{DP}(\gamma H)$
$G_i lpha, G_0$	\sim	$\mathrm{DP}(lpha_0 G_0)$
$ heta_{ij} G_i$	\sim	G_i
$x_{ij} heta_{ij}$	\sim	$F(x_{ij}, heta_{ij})$

Chinese Restaurant Franchise (CRF)

• First integrate out the G_i , then integrate out G_0

Chinese Restaurant Franchise (CRF)

- To each group there corresponds a *restaurant*, with an unbounded number of *tables* in each restaurant
- There is a global *menu* with an unbounded number of *dishes* on the menu
- The first customer at a table selects a dish for that table from the global menu
- Reinforcement effects—customers prefer to sit at tables with many other customers, and prefer to choose dishes that are chosen by many other customers

Protein Folding (cont.)

• We have a linked set of Ramachandran diagrams, one for each amino acid neighborhood

Protein Folding (cont.)

Marginal improvement over finite mixture

Natural Language Parsing

- Key idea: *lexicalization* of context-free grammars
 - the grammatical rules (S \rightarrow NP VP) are conditioned on the specific lexical items (words) that they derive
- This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the choice of rules

HDP-PCFG

(Liang, Petrov, Jordan & Klein, 2007)

- Based on a training corpus, we build a lexicalized grammar in which the rules are based on word clusters
- Each grammatical context defines a clustering problem, and we link the clustering problems via the HDP

Т	PCFG		HDP-PCFG	
	F_1	Size	F_1	Size
1	60.4	2558	60.5	2557
4	76.0	3141	77.2	9710
8	74.3	4262	79.1	50629
16	66.9	19616	78.2	151377
20	64.4	27593	77.8	202767

Nonparametric Hidden Markov models

- A perennial problem—how to work with HMMs that have an unknown and unbounded number of states?
- A straightforward application of the HDP framework
 - multiple mixture models—one for each value of the "current state"
 - the DP creates new states, and the HDP approach links the transition distributions

Nonparametric Hidden Markov Trees

(Kivinen, Sudderth & Jordan, 2007)

- Hidden Markov trees in which the cardinality of the states is unknown a priori
- We need to tie the parent-child transitions across the parent states; this is done with the HDP

Nonparametric Hidden Markov Trees (cont.)

• Local Gaussian Scale Mixture (31.84 dB)

Nonparametric Hidden Markov Trees (cont.)

• Hierarchical Dirichlet Process Hidden Markov Tree (32.10 dB)

Image Segmentation

(Sudderth & Jordan, 2008)

- Image segmentation can be viewed as inference over partitions
 - clearly we want to be nonparametric in modeling such partitions
- Image statistics are better captured by the Pitman-Yor stick-breaking processes than by the Dirichlet process

(Sudderth & Jordan, 2008)

- So we want Pitman-Yor marginals at each site in an image
- The (perennial) problem is how to couple these marginals spatially
 - to solve this problem, we again go nonparametric—we couple the PY marginals using Gaussian process copulae

(Sudderth & Jordan, 2008)

• A sample from the coupled HPY prior:

(Sudderth & Jordan, 2008)

• Comparing the HPY prior to a Markov random field prior

(Sudderth & Jordan, 2008)

Beta Processes

- The Dirichlet process yields a multinomial random variable (which table is the customer sitting at?)
- *Problem*: in many problem domains we have a very large (combinatorial) number of possible tables
 - it becomes difficult to control this with the Dirichlet process
- What if instead we want to characterize objects as collections of attributes ("sparse features")?
- Indeed, instead of working with the sample paths of the Dirichlet process, which sum to one, let's instead consider a stochastic process—the beta process—which removes this constraint
- And then we will go on to consider hierarchical beta processes, which will allow features to be shared among multiple related objects

Lévy Processes

- Stochastic processes with independent increments
 - e.g., Gaussian increments (Brownian motion)
 - e.g., gamma increments (gamma processes)
 - in general, (limits of) compound Poisson processes
- The Dirichlet process is not a Lévy process
 - but it's a normalized gamma process
- The beta process assigns beta measure to small regions
- Can then sample to yield (sparse) collections of Bernoulli variables

Beta Processes

Examples of Beta Process Sample Paths

• Effect of the two parameters c and γ on samples from a beta process.

Beta Processes

- The marginals of the Dirichlet process are characterized by the Chinese restaurant process
- What about the beta process?

- Indian restaurant with infinitely many dishes in a buffet line
- $\bullet~N$ customers serve themselves
 - the first customer samples $Poisson(\alpha)$ dishes
 - the *i*th customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$ then samples $Poisson(\frac{\alpha}{i})$ new dishes

- Indian restaurant with infinitely many infinite dishes
- $\bullet~N$ customers serve themselves
 - the first customer samples $Poisson(\alpha)$ dishes
 - the *i*th customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$ then samples $\operatorname{Poisson}(\frac{\alpha}{i})$ new dishes

- Indian restaurant with infinitely many infinite dishes
- $\bullet~N$ customers serve themselves
 - the first customer samples $Poisson(\alpha)$ dishes
 - the *i*th customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$ then samples $Poisson(\frac{\alpha}{i})$ new dishes

- Indian restaurant with infinitely many infinite dishes
- $\bullet~N$ customers serve themselves
 - the first customer samples $Poisson(\alpha)$ dishes
 - the *i*th customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$ then samples $Poisson(\frac{\alpha}{i})$ new dishes

Hierarchical Beta Process

• A hierarchical beta process is a beta process whose base measure is itself random and drawn from a beta process.

Fixing Naive Bayes

	#Documents	#Documents with the word "epilepsy"	Maximum Likelihood 1 ●	Laplace smoothing ¹	Hierarchical Bayesian ¹
Topic A	1	1			
Topic B	100	30			
Topic C	1000	1			•
Topic D	1000	0	0	o	0
Topic of which "epilepsy" is most indicative:			А	А	В
		Graphical model:		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	

- A hierarchical Bayesian model correctly takes the weight of the evidence into account and matches our intuition regarding which topic should be favored when observing this word.
- This can be done nonparametrically with the hierarchical beta process.

The Phylogenetic IBP

(Miller, Griffiths & Jordan, 2008)

- We don't always want objects to be exchangeable; sometimes we have side information to distinguish objects
 - but if we lose exchangeability, we risk losing computational tractability
- In the phylo-IBP we use a tree to represent various forms of partial exchangeability

• The process stays tractable (belief propagation to the rescue!)

Conclusions

- The underlying principle in this talk: exchangeability
- Leads to nonparametric Bayesian models that can be fit with computationally efficient algorithms
- Leads to architectural and algorithmic building blocks that can be adapted to many problems
- For more details (including tutorial slides):

http://www.cs.berkeley.edu/~jordan