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ODE’s-I-4 REVIEW OF THE STEPS IN SOLVING 
Handout #1 AN APPLIED MATH PROBLEM Professor Moseley

The need to develop a mathematical model begins with specific questions in a particular
application area that the solution of the mathematical model will answer.  Often the mathematical
model developed is a mathematical “find” problem such as a scalar equation, a system of linear
algebraic equations, or a differential equation.  Finding all solutions of an ODE is a “find”
problem.  We wish to find all functions in a particular function class that satisfy the ODE. 
Usually there are an infinite number of such solutions parameterized by an integration constant.
The function class we pick is the set E for the mathematical "find" problem where we look for
solutions.  Adding an initial condition gives an IVP with one solution so that this problem is well
posed.  We review the five steps to develop and solve any applied math or application
problem, add three more, and apply the process to a simple autonomous linear model (IVP). 

Step 1: UNDERSTAND THE CONCEPTS IN THE APPLICATION AREA.   In order to answer
specific questions, we wish to develop a mathematical model (or problem) whose solution will
answer the specific questions of interest.  Before we can build a mathematical model, we must
first understand the concepts needed from the application area where answers to specific
questions are desired.  Solution of the model should provide answers to these questions.  We start
with a description of the phenomenon to be modeled, including the “laws” it must follow (e.g.,
that are imposed by nature, by an entrepreneurial environment or by the modeler).  Recall that the
need to answer questions about a ball being thrown up drove us to Newton’s second law, F=MA. 
We also need to list all assumptions made.  Also a list of the nomenclature developed should be
given.  A sketch which helps you to visualize the process is very helpful.

Step 2: UNDERSTAND THE MATHEMATICAL CONCEPTS NEEDED.  In order to develop
and solve a mathematical model, we must first be sure we know the appropriate mathematics. 
For this course, you should have previously become reasonably proficient in high school algebra
including how to solve algebraic equations and calculus including how to compute derivatives
and antiderivatives.  We are developing the required techniques and understanding of
differential equations.  Our models will be initial value problems (IVP’s) which, as we have
said, are “find” problems.  Additional required mathematics after first order ODE’s (and solution
of second order ODE’s by first order techniques) is linear algebra.  All of these must be
mastered in order to understand the development and solution of mathematical models in science
and engineering.  

Step 3.  DEVELOP THE MATHEMATICAL MODEL.  The model must include those aspects
of the application so that its solution will provide answers to the questions of interest.  However, 
inclusion of too much complexity may make the model unsolvable and useless. To develop the
mathematical model we use laws that must be followed, diagrams we have drawn to understand
the process and notation and nomenclature we developed.  Investigation of these laws results in
a mathematical model.  In this chapter our models are Initial Value Problems (IVP’s) for a first
order ODE that is a rate equation (dynamical system).  This is indeed a mathematical “find”
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problem.  We wish to find a particular function in a prescribed set of functions with a common
domain that satisfies the ODE and the IC.  If the process evolves in time,  we choose t as our
independent variable and usually start it at t = 0.  For our generic one state variable problem, we
use u as our dependent variable (i.e., state variable).

MATHEMATICAL MODEL:  In mathematical language the general (possibly nonlinear)
model may be written as

ODE  =   f(t,u) (1)

IVP
IC  u(0) = u0 (2)

For specific applications, finding f(t,u) is a major part of the modeling process.  For many (but
not all) of the applications we investigate,  the model is the simple linear autonomous (time-
independent) model with one state variable given by

ODE   +  k u = r0 (3)

IVP
IC u(0) = u0. (4)

The parameters r0, k and y0 as well as the variables u and t are included in our nomenclature list.

Nomenclature
u = quantity of the state variable (the dependent variable),
t  = time (the independent variable)
r0 = the rate of flow for the source or sink (parameter number 1)
k = constant of proportionality (parameter number 2)
u0 = the initial amount of our state variable (parameter number 3)

The model is specific in that we have selected a form for f(t,u). It is general in that we have not
explicitly given the parameters r0, k or u0.  These parameters are either given or found using
specific (e.g., experimental) data.  However, their values need not be known to solve this linear
autonomous model.  The model is linear since f(t,u) =  k u + r0 with p(t) = k and g(t) = r0.  It is
autonomous since f(t,u) =  k u + r0 is not dependent on time t.  Thus if k�0, then u = !r0/k (the
zero of f(u) =  k u + r0)  is an equilibrium solution of the system.  (The constant solutions of the

autonomous equation  =  f(u) are the zeros of f(u). )
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Step 4: SOLVE THE MATHEMATICAL MODEL  Once correctly formulated, the solver of the
mathematical model can rely completely on mathematics and need not know where the model
came from or what the Nomenclature stands for.  Solution of the model requires both practical 
(“how to”) skills and theoretical (“why”) skills.

For the general linear model, we can obtain a general formula for its solution.  Since 
p(t) = k, we have Ip(t) dt = Ik dt = kt + c.  Letting c = 0, we obtain := e kt.   Assuming k � 0, we
obtain the following sequence of equivalent equations for the function u:

 ,   u e kt = Ir0 e
 ktdt   = e kt  +  c,    u  =   + c e! kt. (5)

  Applying the initial condition we obtain the following sequence of equivalent algebraic
equations for the scalar c:
 

u0 =   +  c,        c  = u0  ! . (6)

Hence

u  =   + ( u0  !  )  e! kt.  (7)

is the general solution (i.e., a formula) for the model.  If specific data is given, we can insert it
into our formula.  Note that if u0 = r0/k, then u is the equilibrium solution u = r0/k.  If k > 0, then
all solutions approach the equilibrium solution so that it is stable.  If k < 0, then all solutions
diverge from the equilibrium solution so that it is unstable.  We wish to extend this model to n
state variables and indeed to an abstract state space.

Step 5: INTERPRETATION OF RESULTS. Interpretation of results can involve lots of things
including the analysis for stability given above.  In the current context where the general model
has been solved, it usually means insert the specific data given in the problem into the formula
and answer the questions asked with regard to that specific data.  This may require additional
solution of algebraic equations, for example, the formula that you derived as the general
solution of the IVP.  However, some applications may involve other equations.  The term general
solution is used here since arbitrary values of k, r0, and y0 are used.   Recall that the term general
solution is also used to indicate the (infinite) family of functions which are solutions to an ODE
before a specific initial condition is imposed.  We could argue that since the initial condition is
arbitrary, we really have not imposed an initial condition, but again, general here means not only
an arbitrary initial condition, but also an arbitrary value of k and r0.

GENERAL AND SPECIFIC MODELS     Once a general model has been formulated and
solved, it can be applied using specific data.  Alternately, the model can be written directly in
terms of the specific data and then solved (again).  If a general solution of the model has been
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obtained, this is redundant.  However, writing a specific model and resolving provides much
needed practice in the process of formulating and solving models and hence is useful in
understanding these processes.  It is sometimes useful to remember a general model and its
solution (e.g. the quadratic formula as the solution of the general quadratic equation), but this
obviously can not be done for all general models.  However, solutions to general models can be
programmed for use by those not interested in their derivation.  On the other hand, specific data
may simplify the solution process and the formulas obtained.  It may be easier to solve a simple
problem with specific data rather than try to apply a complicated formula resulting from a
complicated model.  

Repeating, it is acceptable (and indeed desirable since it gives practice in formulating and 
solving models) to formulate and solve a model using specific data.  The advantage of 
formulating and solving a model in a general context is that the solutions can be recorded in 
textbooks in physics, biology, etc. and programed on personal computers for those not 
interested in learning to solve differential equations.  However, if the model assumptions change, 
a new model must be formulated and solved.   Practice in formulating and solving specific 
models will help you to know when a different model is needed and in what generality  a model 
can reasonably be developed.  General models are useful when their results can be easily 
recorded or can be easily programmed.  On the other hand, trying to use the results of a
complicated model can unduly complicate a simple problem.  

MORE STEPS IN MODELING.  For a complicated model, the above process generally
requires more that one person and is usually interdisciplinary in nature.  Three additional steps
are often needed to complete the process.  These can be iterated.

6.  Verification and Evaluation of the Model.  For example by comparison with experimental 
     results.
7.  Implementation of the Model.  For example, providing a user-friendly computer environment 
     for use by non-experts.
8.  Maintenance and Updating of the Model.  For example, extending the model to cases not 
     previously covered.
9.  Iteration of all of the previous steps.
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ODE’s-I-4 REVIEW OF PROBLEM SOLVING
Handout #2  IN MATHEMATICS Professor Moseley

Recall that in Chapter 0-2 we considered math problems that fall into three categories:
1. Problems with an established algorithm for solution (e.g. computational problems).  Such
    problems will be referred to as evaluation problems.  They ask the question “How to
    find?” or “How do we compute?”.  Students can be trained (or train themselves by doing 
    homework) to carry out these procedures.  However many of these can be programed on a 
   computer which can “get the answer” much faster and with far more accuracy then any human.
2. Problems defined by equations, inequalities or other properties.  Such problems will be 
    referred to as find or locate problems.  They ask the question “If any, which ones?”  There 
    may or may not be a “How to find” algorithm associated with the problem.  If there is, it can 
    be applied (or appropriate software used).  If not, the problem becomes developing such an 
   algorithm.  This may begin with showing that the problem is well posed, that is, showing that 
   there is exactly one solution.  If the solution algorithm requires an infinite number of steps, we 
   need the concept of an approximate solution.
3. Theory problems.  Such problems will be referred to as think problems.  They ask the 
   question “Why?”  Why does a particular algorithm work for one problem, but not for a similar 
   problem?  What is the set of problems that a particular algorithm does work for and why?   
How can we develop solution procedures for all problems of interest.  These results are often 
  given in the development of a mathematical theory using a definition/theorem/proof format.

Learning to solve evaluation problems means training oneself to apply known processes
or algorithms to particular examples.  This may mean knowing all steps in a complicated process
or simply substituting specific data into a known formula such as the quadratic formula.  At the
other extreme in problem solving is the development of a mathematical theory which may then
lead to the development of algorithms for solving find problems (which then become evaluation
problems).  Theory development requires an understanding of what is already known (i.e. what
has been proved) and hence an ability with proofs.  We are considering  problems (of the type
useful to engineers, scientist, and applied mathematicians) between these two extremes by
examining a framework which generalizes the problem of solving scalar equations; that is, we
consider find or locate problems.  This framework assumes in the problem formulation that you
understand what is meant by solving an evaluation problem (i.e., that you can train yourself to
carry out specific processes), but not that you can write proofs or develop a mathematical theory. 
Differential equations and initial value problems (IVP’s) fall into this framework.

We say that a problem, call it Prob, is well-formulated in a mathematical or set theoretic
sense if:
1. There is a clearly defined set, call it E, where, if there are any,  we will find all solutions

to the problem.  
2. There is a clearly defined property or condition, call it C, that the solution elements in E

and only the solution elements satisfy.  
There is some confusion as to what is meant by the solution of an evaluation problem.  The
solution process or algorithm is sometimes referred to as the solution whereas sometimes the
answer obtained is referred to as the solution.  In our framework, a solution is an element in G
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that satisfies the property C(s).  Thus the solution set is S = {s 0 E: C(s) } and the solution
process is whatever algorithm is used to obtain an explicit description of S.  Since G and C
define the problem Prob, we let Prob(G,C) = {s 0 E: C(s) } and think of Prob(G,C) as an implicit
description of the solution set.  We then use Soln(G,C) to mean the explicit description of the
solution set obtained by the solution process.  Since as sets we have Prob(G,C) = Soln(G,C), for
brevity in working examples we usually just let S = {s 0 E: C(s) }fE be the solution set during
the solution process.

If there is a clearly defined and implementable algorithm to check the condition C(s) for
any given element s0E so that we may determine if it is indeed a solution to the problem, we say
that solutions to the problem are testable (and that the problem Prob is testable).  We denote this
algorithm to test C(s) for possible solutions by T so that the operation T(s) results in a yes if s is a
solution and in a no if s is not a solution.  Thus the collection of elements s in E such that T(s)
results in a yes is the solution set S for the problem Prob defined by the set G and the property C. 
The need for clearly defining the set E is illustrated by the equation x2 + 1 = 0.  The existence of
a solution depends on whether we choose the real numbers R or the complex numbers C as the
set which must contain the solution.  Problems requiring the solution(s) to equations provide a
testable algorithm T that defines a property C.

Normally G is large or infinite (e.g. R and C) so that it is not possible to use the algorithm
T to test each element in E individually.  Problems where G is small enough so that a check of its
elements by hand is possible are considered to be trivial.  On the other hand, some problems
where E is large but not to large (e.g. Which students at a university have brown eyes?) yield to
the technique of testing each element in G by using computers and data bases.

Examples of “find” problems were given in Chapter 0-2.  We considered scalar algebraic
equations where we looked for the unknown variable in an algebraic field such as Q, R, or C.. 
We considered not just a single scalar equation, but a system of scalar equations.  For clarity, we
restricted our attention to linear systems of the form AxP = bP, where A is a matrix, xP and bP are
"column" vectors in a  vector space such as Qn, Rn, or Cn and AxP is defined by matrix
multiplication.  For example, for two equations in two unknowns, the set G is the set of ordered
pairs E = {xP = [x,y]T ; x,y 0 R}=R2.  (We use the transpose notation xP = [x,y]T to indicate that xP
is a "column" vector.)  Possible solutions are no longer numbers, but ordered pairs which we
refer to as (column) vectors.  The solution set is S = {xP = [x,y]T0R2: AxP = bP}.  The test algorithm
T(xP) is effected by multiplying the matrix A by xP and checking to see if this gives the vector bP. 
Similar to scalar equations, we define the operator FP(xP) = AxP - bP and reformulate our problem as
the "vector" equation FP(xP) = 0P so that S = {xP = [x,y]T0R2 : FP(xP) = 0}.  In addition to systems of
equalities, the framework also includes systems of inequalities (e.g. x+2y < 3, x -y < 5).  The
solution set, instead of being a portion of the real line, is a portion of the plane, or more
generally, a portion of Rn.  

Besides algebraic equations, differential equations also fit into our framework.  The
function  f or the operator FP is replaced by a differential operator, say L where 
L[y] = y" + 3y' + 2y.  Hence the "vector" equation L[y] = 0 is simply the differential equation  
y" + 3y' + 2y = 0.  The set E, instead of being a set of numbers or a set of ordered pairs, is now a
set of functions, say the set C2(R) of all functions with domain R whose second derivatives are
continuous.  The solution set S = { y 0 C2(R) ; L[y} = 0} is the set of all  functions in C2(R)
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which satisfy the differential equation.  We note that algebraically, functions can be viewed as
vectors and that our framework includes equations in any vector space or, for that matter, any
algebraic structure (e.g. groups, rings, fields, and vector spaces).  Hence we see that the
framework is quite extensive.

Although it does not encompass all problem types, the framework discussed here
provides a standard problem solving context for high school students and college undergraduates
at the freshman and sophomore level.  A clear understanding of this framework should help you
toward a better understanding of why problems may have no solution (e.g. 3x-1=(6x+2)/2 and the
simultaneous equations x+2y=3, 2x+4y=5), one solution (e.g. 3x-1 = 4x+2, and the simultaneous
equations  x+3y=3, x+4y =5), more than one solution (e.g. x2-4 = 0 and x5(x-2)(x-4) = 0), or even
an infinite number of solutions (e.g. 3x+1 = (6x+2)/2, the inequality*x-3*-4 < 0, the
simultaneous equations x+2y=3, 2x+4y=6, and the differential equation y"+3y'+2y = 0).  This
should help you to understand that not every math problem has exactly one solution.  It should
also help you to  begin to move from just focusing on learning algorithms for the solution of
evaluation problems to the more advanced view of, given a problem that is well formulated, how
does one find answers to the questions: Does a solution exist?  Is it unique?  How do we know? 
Can we develop algorithms to find all of the solutions?  What other problems will our algorithms
solve and why?.  Hopefully, this will encourage you to spend time trying to understand the
"why"s of solving problems in mathematics as well as the "how to"s.

We extend our discussion of the framework for find problems (FFP’s) by giving more
examples illustrating  the types of sets E and properties or conditions C that we can use, the
number of solutions that the problem might have and possible techniques for solution.  We have
seen that E can be a number system such as R or C.  Since a solution of two equations in two
unknowns, say x and y, is an ordered pair [x,y]T, E can also be the set {[x,y]T: x,y0R}=R2 of all
ordered pairs of real numbers.  Since solutions to problems could have any number of unknown
variables, E can also be the set Rn = {[x1,x2,...,xn]

T: xi0R for i = 1, 2, ... , n}.  For differential
equations, the solution is a function so that E could be a function space like C1(I) = {f:I 6 R: f(x)
and fN(x) are continuous on the interval I}.  All of the above are examples of vector spaces. 
Very often for science and engineering problems, E is a vector space. 

A problem Prob(E,C) is well-posed in a set theoretic sense if it has exactly one solution. 
We give examples to show that all problems are not well-posed.  Any number of solutions are
possible.  We use S = {x0E:C(x)} as the solution set for Prob(E,C).

EXAMPLES. S = {x0R: x + 3  =  2}= {!1}   well-posed
S = {x0R: x2 ! 4 = 0} = {2, !2} two solutions, not well-posed 
S = {x0Q: x2  ! 2 = 0} = i, no solution, not well-posed 

S = {x0R: x2 = 2} = { , ! } two solutions, not well-posed
S = {x0R: x2 + 1 = 0} = i no solution, not well-posed
S = {x0C: x2 + 1 = 0} = {i, !i} two solutions, not well-posed

S = {x0R: x + 3 <  2} =  {x0R: x < !1} an infinite number of solutions, 
definitely not well-posed.
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The solution process gets us from the implicit definition of S (which we call Prob(E,C)
on the left to the explicit description on the right (which we call Soln(E,C).  For equations this
process often (but not always) consists of a sequence of steps where we rewrite the given
equation as an equivalent equation with the same solution.  However, other processes such as
factoring and theorems such as “if the product of two numbers is zero, then one of the numbers
must be zero” can be of use.  Deciding exactly what we mean by an explicit solution to a problem
is really part of the problem.  If the problem is well posed, and the unique solution has a name,
we want to know it.  If we can show that there exists exactly one solution and and it does not
have a name, we can give it one.  If E = R and the problem is well-posed, we may want a
decimal approximation to the solution (i.e, the one element in the solution set).  Suppose 

S = {x0R: x2 = 2 and x>0} = { }.

We have given a name of the element that we claim is the only element in the solution set.  But
how do we know there is such a number and how can we find a decimal approximation to it.  If it
is a rational number, we want one of its “fraction” names.  We see that showing that a problem is
well-posed and finding its name or the name of a close by neighbor are in fact two different
processes and either task (or both) could be called the solution process.  We indicate how to
show that Prob(R, x2 = 2 and x>0} is well-posed so that there exists exactly one positive number

whose square is two and we may then call it  .  Obviously there is a process to obtain an

approximation of that your calculator has been programed to do when you punch the correct

buttons.  To show that Prob(R, x2 = 2 and x>0} is well-posed, we need the axiomatic properties
of R given in Chap 0-2.  We assume that those interested in proofs of existence and uniqueness
will reread these.  We can show that  

S = {x0R: x2 = 2 and x>0} = S1 1 S2  =  S3 1 S4 1 S2 where

S1 = {x0R: x2 = 2 }, S2 = {x0R: x>0}, S3 = {x0R: x2 $ 2 }, and S4 = {x0R: x2 # 2 }. 

We can show that S1 = S3 1 S4 by using the trichotomy property of R.  Since �x0S4, x#5 we
have that S4 has an upper bound.  Since 02 = 0 # 2, 00S4 so that S4 is not empty.  Hence by the
least upper bound axiom, S4 has a least upper bound (whether we can calculate it or not) and

we call it .  If we can show 0  S3 and  0 S2, we have existence of a solution.  If we

assume that there is another solution, say s 0 S and can show that s = , we have uniqueness. 

This is totally independent of having a process for computing an approximation for  .  But we

probably should show that  exists and is the unique solution to our problem before trying to
compute an approximation to it.
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ODE’s-I-4 PROBLEM SOLVING CONTEXTS FOR  
Handout #3 A FIRST ORDER INITIAL VALUE PROBLEM Professor Moseley

Recall the first order Initial Value Problem (IVP):

ODE dy/dx = f(x,y)
IVP

IC    y(x0) = y0

To emphasize that we are now considering the mathematical solution to a mathematical problem,
we choose to use y as a function of x and we allow the initial condition (IC) to be at an arbitrary
point.  It is perhaps better referred to as a side condition (SC) since an interpretation of x as time
is not required and may cause false conclusions.  We require that all of our logic must be
mathematical and not temporal or spacial.  

We discuss three fundamental mathematical problem solving contexts for an ODE or an
IVP: Calculus (or Engineering), Classical, and Modern and then branch out to include others.  It
is the Calculus or Engineering context that we are most concerned with at an undergraduate
level.  But if you go to graduate school and develop new models, you may be interested in the
others.

Calculus.  In this context, f(x,y) is specified explicitly in terms of elementary functions. 
Calculus is then used to obtain an (infinite) parametric family of solutions to the ODE, one for
each value of an (integration) constant, in terms of elementary functions  Then the particular
solution that satisfies the side condition is obtained by substituting these values into the formula. 
This context can be expanded to allow special functions and indeed to allow antiderivatives of
any elementary function.  This context can be further expanded to allow general forms where we
are assured that for any specific f(x,y) having this form, a particular algorithm to obtain an
infinite family of solutions will work.  An example is when f(x,y) has the linear form 
f(x,y) = !p(x) y + g(x) where p,g0C(I), then we know a procedure that will solve the problem. 
The solution process requires not only function algebra (addition, subtraction, multiplication and
division of functions and multiplication and division of a function by a scalar) but also requires
the operation of antiderivatives of functions that involve p and g.  We say that the linear problem
can be solved up to qradrature (i.e., up to finding antiderivatives of certain functions).  We refer
to this as solving in a General context..

A difficulty can result from the lack of consideration for the number of solutions.  If we
can guess a solution to a particular ODE, it can be checked by substituting into the ODE and
checking to see if the side condition is satisfied.  However, what about uniqueness?  Is this the
only solution or are there others?  The solution process itself  provides a proof of uniqueness
since it assumes that a solution exists and goes through a sequence of equivalent problems (or
properties) that the solution must satisfy, ending with one that actually gives the name of the
(parametric family of) solution(s).  

Another difficulty is that our solution processes (e.g., for nonlinear problems) often result
in implicit, rather than explicit descriptions of the functions (i.e., curves rather than functions). 
Thus the interval of validity (i.e., the domain of the function we seek) is not self evident.
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We might also add that there does not exist a procedure for all possible f(x,y)’s.  For all
these reasons and others, we need a second context.

 Classical.  Instead of specifying f(x,y) explicitly, we simply require it to satisfy certain
conditions and then show that there exist exactly one solution in a particular function class G. 
This can be further subdivided based on the function class.
Classical I : Sufficient conditions are given so that there is exactly one solution in G = C1(I)
where x00I = (a,b).
Classical II : Sufficient conditions are given so that there is exactly one solution in G = A(I)
where x00I=(a,b).

Modern.  This is the same as classical except that the problem is reformulated to allow “weak”
solutions, that is, things that, strictly speaking, are not functions.  For example, solutions may be
considered to be distributions, functionals, or equivalence classes of functions.  

In addition to the reasons sighted above, if the traditional context does not yield an
explicit solution in terms of elementary functions, it is very useful to know that exactly one
solution exist. Numerical techniques such as finite differences and finite elements can then be
used to find approximate solutions that can be shown to “close” to the actual solution.  If we do
not know that exactly one solution exists, there is no guarantee that the approximate solution
obtained has any relevance to the problem.
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ODE’s-I-4 A  FRAMEWORK FOR FIRST ORDER 
Handout #4             DYNAMICAL SYSTEM  MODELS Professor Moseley

Read Section 2.5. of Chapter 2 of text (Elem. Diff. Eqs. and BVPs by Boyce and Diprima,
seventh ed.).  Pay particular attention to the process of developing a mathematical model of a
physical phenomenon.  Also read Section 7.1.  Try to understand the difference and similarities
of a system of ODE’s (a vector equation) and a scalar (one dimensional vector) equation.

The primary focus in Part 1 of these notes is for you to learn the “how to” for solving first
order ODE’s and IVP’s.  However, you should also understand “why” any given technique
works.  Of course we will also spend time learning how to use first order ODE’s to develop
mathematical models for applications.  You will do much more of this in your engineering and
science courses where it will be expected that you have already learned the “how to” and the
“why” for solution techniques.  An introduction to mathematical modeling is given for first
order scalar equations in Chapter 1-5, for second order scalar equations in Chapter 3-4, for
discrete first order systems in Chapter 5-1, and for continuum first order systems  (the heat
equation in one space dimension) in Chapter 7-1. 

Not only do first order scalar ODE’s arise directly in science and engineering, but study
of these simply examples provides prerequisite understanding of the “how to” and “why” for
more complicated models. But before continuing with more theory and techniques for first order
ODE’s, we introduce a framework for applications.  Early exposure to this framework
emphasizes the importance of the concept of a mathematical vector space (see Chapter 2-3) in
understanding how to frame more complicated problems arising in science and engineering.  It is
hoped that this will inspire you to spend the time required to understand the concept of a vector
space as an abstract algebraic structure.   Not all application problems fall into this framework,
(a framework for all problems does not exist), but a substantial number do.

We begin with the nonlinear vector model given by the initial value problem (IVP):

ODE                  (Recall that for a one-dimensional or (1)

IVP    scalar equations where we have one

IC                      state variable, we used yN=f(x,y)  )           (2)

where  is the state vector containing all of the state variables for the system (e.g., positions 
velocities, voltages, currents, chemical concentrations, money, etc.) which vary with time t.  It is 
assumed that you have some knowledge of vectors.  (See Chapter 2-3 for the definition of a 
vector space as a mathematical structure.)  You should think of a mathematical vector as a 
collection of state variables that measure (physical) quantities and not as a directed line 
segment.  It is very important that you realize that the state variables may, but need not have any 
geometrical interpretation.  They are simply the measure of (physical) attributes such as voltage, 
temperature, and yes, position and velocity.  Since these measures are often real numbers or
scalars, examples of vector spaces of interest are Rn and the function spaces C(R,R) and A(R,R). 

If there are a finite number of state variables, we refer to the system as discrete.  Since the real
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world is considered to be a continuum, these are often lumped parameter systems (e.g., circuits,
springs, and trusses).  A continuum system (e.g., temperature in  a rod, plate or three-
dimensional object) has an infinite number of state variables, one for each point in space.  We

may think of the derivative as the collection of (partial) derivatives of all of the state

variables; that is, we compute the derivatives componentwise.  Thus we may think of (1) as a
collection of scalar equations.

For each t, the operator  (an operator is a mapping from one vector space to

another) maps the vector space in which  resides into itself.  It tells how the rate of change of
each state variable depends on the current values of all of the state variables.  That is, the ODE in
our model is a rate equation that describes how the state of the system will change in time based
on its current state.  There is no memory of how it got there.  In some cases, the model is a 

conservation law.  For example, for a specific model (i.e., choice of ) we may have

(3)

where gives the rate of increase of the state variables and  gives the rate of 

decrease.  Hence we assume  is conserved.  We discuss several special cases of the IVP 
(1) and (2).

Time Varying (Possibly Nonlinear) System

 (For a one-dimensional scalar equation with one state variable (4)

 we will use yN= f(x,y) + g(x)  )

Although similar to (1) above, this model separates out explicitly the vector  containing the 

external sources and sinks (e.g., voltage or current sources, external forces, or sources and sinks 
of chemicals).

Time Varying Discrete Linear System
      

P(t) is a square time (For a one-dimensional or scalar linear          (5)

varying matrix equation we used yN= !p(x)y + g(x). )

This model is linear and has a finite number of state variables.  Solution techniques for such 
systems where P is constant are considered in Part 5 of these notes.

Time Invariant (Autonomous) (Possibly Nonlinear) System
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(For a one-dimensional or scalar equation           (6)

               we will use yN + f(y) = b + g(x).  )

This is a very important model since it is still general enough to model many real-world  
phenomena, but specific enough to allow us to begin a more rigorous analysis.  Here the operator 
T (see Chapter 2-6) maps the (real or complex) vector space V back into itself,  T :V6V .  (the 
definition of a vector space is given in Chapter 2-3.)  Since a vector in V is a state of the system, 
the vector space V contains all possible states of the system.  For example, V may be any of the 

real vector spaces R, R2, Rn, C(R), C1(R), (R).

Since we wish to model the rate of change of  (i.e., the derivative of  ) we need the 
vector space V to have a topology.  However, we do not give V a topology directly.  The vector 
spaces of interest in this course all have inner products.  (The inner or scalar product in R3 is 
just the dot product with which you are familiar.)  A vector space with an inner product is called 
an inner product space (see Chapter 4-6).  If a vector space has an inner product, then a norm 
or length can be defined for each vector.  Thus every inner product space is a normed linear 
space.  (Mathematical vector spaces are often called linear spaces to emphasize that they are 
algebraic rather than geometric constructs.)  Your physics teacher probably taught you that all 
vectors have magnitude and direction.  Mathematical vectors in a vector space have direction 
but not magnitude (length).  However, vectors in a normed linear space do.  In addition, a norm 
generates a metric so that we can determine the distance between vectors (i.e., between states of 

the system.  If  is the length of a vector in V, then the metric  gives a

measure of the distance between  and .  ( In R3,  is the distance between the ends of 

the position vectors   and .)  A metric in turn generates a topology (called the metric 
topology).  Hence we can take limits and define a derivative.  Hence if V is a normed liner

space, the derivative of the vector  is defined using the norm topology.  If V is finite
dimensional, this will be equivalent to computing the derivative component wise.

We see from the model that the rate of change of (each variable in ) the state of the 
system depends only on the current state of the system through the operator T (see Chapter 

2-4).  Thus our system has no memory of how it came to be in the state  and the future depends 
only on the present state and not on the past.

Steady State or Equilibrium Problem for the 

Time Invariant (Autonomous) (Possibly Nonlinear) System

We now look for equilibrium (or static) or steady state solutions which do not depend on time. 

Hence we assume    and   (or    so that we are looking at

steady state).  Then we wish to solve
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.           (7)

This problem can be viewed as a mapping problem.  The solutions are those vectors that  

maps into the biasing vector .  If  is a one-to-one correspondence, we can solve this 

problem for any by finding the (compositional) inverse of the operator .  However, in
practice inverse operators are rarely ever actually computed.  On the other hand (OTOH) the
concept of an inverse operator provides an excellent theoretical tool if it is known that there
always exists a unique solution (i.e., that T is invertible).

Nonlinear Dynamical System

Now let  so that N:V(t)6V(t) where V(t) is the vector space of time-

varying vectors in V.  That is, V(t) = { :I6V} where I = (a,b) is an open interval in R to be

determined as the interval of validity of the solution .  As indicated, V(t) is also a vector

space.  Now let D = { (t)0V(t): (0) = } and N0 be the restriction of N to D so that

N0:D6V(t).  Theoretically, to solve the problem N0[u] = g(t), we simply wish to invert the
operator N0.  Thus the dynamics problem can also be viewed as a mapping problem.  However,
to solve this problem numerically we would discretize and solve using finite difference or finite
element methods as a “marching” problem.  (See Chapter 1.6.)

Time Invariant (Autonomous) Linear System

(For a linear one-dimensional or scalar equation           (8)

  we use yN + a y = b + g(x) )

Now assume that T:V6V is a linear operator.  (The definition of a linear operator is given in 
Chapter 2-6.)  V is the (real or complex) vector space of all possible states of the system.  For 

example, V may be any of the real vector spaces R, R2, Rn, C(R), C1(R), (R). 

Steady State or Equilibrium Problem for the Time Invariant (Autonomous) Linear System

Assume that  and that  so that the source is just the biasing vector . 

Again we have

. (9)

Again we wish the inverse of the operator  T where   T:V6V.  For discrete (lumped parameter)
linear problems  T becomes the operator defined by multiplication by the matrix A (see Chapter

2-6),  becomes the column vector , and we wish to solve .  (i.e., We wish to invert
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the square matrix A.  Numerically, we rarely actually invert A, but rather obtain its LU
decomposition.  (See Chapter 5-3.)  The point is that matrix algebra, solution to linear
algebraic equations, and abstract linear algebra all become important tools in our effort to
solve linear application problems.  We review these concepts in Part 2 of these notes.  More
development is done in Parts 4 and 5.

Linear Dynamical System

First let be the solution to the steady state problem.  Now replace  with so that  is

now the displacement from equilibrium.   Since T is linear we have T[ ]= T[ ] + T[ ]. 

Also  d( )/dt =d /dt.  Substituting we let  T( ) ! =   to obtain:

(For a one-dimensional or scalar equation           (10)

               we use yN= a y + g(x).  )

Now let   so that L:V(t)6V(t) where V(t) is the vector space of time-varying

vectors in V.  That is, V(t) = { (t): (t) : I6V} where I=(a,b) is an open interval in R to be
determined as the interval of validity of the solution (t).  Now let D = { (t)0V(t): (0) =

0}and L0 be the restriction of L to D so that L0:D6V(t).  Theoretically, to solve L0[ ] = ,

we simply wish to invert the operator L0.  However, numerically we would discretize and solve
using finite difference or finite element methods and solve as a marching problem.  An
introduction to numerical techniques for first order systems is given in Chapter 1-6 by using
Euler’s method on a scalar equation.  We also give an introduction to error analysis for the
mapping problem.  This is directly applicable to equilibrium or steady state problems.  For
dynamical systems, we wish to estimate the increase in the error in  as a function of time rather
than just obtaining an overall estimate.

EXERCISES on A Framework for First Order Dynamical System Models.
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ODE’s-I-4 THE NEED FOR THEORY IN
Handout #5        MATHEMATICAL PROBLEM SOLVING Professor Moseley

Our objective is to not just to simply learn known algorithms for solving differential
equations, but to also understand why we use the methods we choose.  That is, we not only
want to train ourselves in techniques and be able to apply them to problems where we are told
they work, but also to know what techniques apply to what problems and to understand why
these techniques work and when and how they can be extended to other problems.  That is, we
wish to understand the theory behind the methods.  We are motivated by the fact that
differential equations are used as mathematical models of scientific and other phenomena,
particularly systems that change with time and space.  To understand differential equations, we
must understand the theory behind the methods.  

After we finish first order scalar ODE’s (and second order ODE’s using first order
techniques), we will only be concerned with linear problems.  This means that it is very
important to understand linear theory.  One can understand the solution process for linear
algebraic equations using high school algebra without understanding linear theory.  Likewise,
one can understand the solution technique using an integrating factor that we learned for solving
scalar first order linear ODE’s using calculus, again without understanding linear theory.  But
to justify the solution techniques for scalar second and higher order linear ODE’s, first (and
second) order linear systems of ODE’s, and the heat equation (a linear PDE), an understanding
of linear theory is mandatory. 

Most, if not all, of the problems you have solved so far in mathematics have been of the
evaluate or locate (find) type.  For evaluation problems, you learned (i.e., trained yourself by
doing homework after seeing an example) a well defined algorithm or computational skill such
as addition,  multiplication, raising a number to a power, extraction of roots, and evaluation of
algebraic functions.  However, for locate problems you were asked to find all objects (e.g.,
numbers) satisfying a given property (e.g., an algebraic equation).  The fundamental “plan of
attack” or philosophy used for such problems is to reformulate the problem as an equivalent
problem (e.g., an equivalent algebraic equation) that has the same solution set.  This process is
repeated until an explicit description of the solution set is found.  However, the exact steps in the
solution process are not preordained, but are instead left up to the problem solver.  (The fun is to
see who can find the shortest route to the answer.)

For an algebraic equation such as 3x ! 2 = 7 that has exactly one solution, the “strategy”
is to use equivalent equation operations (EEO’s) to isolate, if possible,  the unknown (i.e., the
variable) on one side of the equation.  The value on the other side is then the solution.  If the
number of solutions is finite (and small), an explicit description of the solution set consisting
of the (names of) the solutions should be found.  This same idea of isolating the unknown was
used for solving first order linear ODE’s when we used the integrating factor (as well as
calculus) to isolate the unknown function on one side of the equation.  However, the solution
set for the ODE consisted of an infinite number of functions parameterized by an arbitrary
integration constant.

The fundamental philosophy of reformulating the problem not only applies to equations
where there is only one solution but extends to problems such as x2 + 3x + 2 =0 where there are
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two solutions and to inequalities such as 3x ! 2 < 7 where there are an infinite number of
solutions.  However, more theory (i.e., more properties of R) and/or a clearer definition of what
is meant by “an explicit description of the solution set” are needed to effect a solution
algorithm.  For the problem 3x ! 2 < 7 , the solution set is S = {x0R: 3x ! 2 < 7} = {x0R: x  <
3} so that x < 3 is a more explicit description of S then 3x ! 2 < 7 since the unknown has been
isolated.

The fundamental philosophy of reformulating the problem to get a more explicit
description of the solution set applies to any problem where it is not easy to precisely identify
all of the elements in a predetermined set E that satisfy a given property (e.g., an equation or an
inequality).  If the philosophy succeeds,  an explicit (or at least a more explicit) description of the
solution set is obtained.  If all steps are reversible, the solution process gives the solution set
exactly. However, some equation operations  such as “squaring both sides of the equation” can
introduce extraneous roots i.e., result in a new problem whose solution set includes other
elements in addition to solutions of the original problem.  However, if the new problem (and
hence the old problem) has only a finite number of solutions, these can be checked individually
to see which are solutions and which are extraneous.  (In fact, solutions to algebraic equations
should always be checked to determine if errors have been made.  Solutions to differential
equations should likewise be checked.)  

The process for solving differential equations studied so far as well as the process for
solving a system of linear algebraic equations follow this same fundamental  philosophy.  For a
system of linear algebraic equations, we start with the system and apply Elementary Equation
Operations (EEO’s) to reformulate the problem.  For a first order ODE, we start with the ODE
and apply ODE Operations to reformulate the equation.  For example, for separable ODE’s,
we start with the ODE, separate variables and integrate both sides.  However, since the equations
may be  nonlinear and the solutions obtained are implicit, care is required to make sure no
solutions are lost and no extraneous solutions appear.  When we studied exact equations  and
substitutions this same philosophy prevailed.  However, when we study second order linear
ODE’s, the philosophy changes dramatically.  We leave it to the theory to establish existence
and uniqueness for an IVP, and use the linear theory to develop a solution process.  

  For problems in dynamics modeled by a linear ODE (or a linear PDE), this means first
using the linear theory to find the general solution of the ODE parameterized by arbitrary
constants (or, in the case of PDE’s, at least a large family of solutions parameterized by arbitrary
constants or arbitrary functions) and then applying the initial condition(s) to determine these
constants (or functions) and hence obtaining the unique solution.  For linear equilibrium
systems with a finite number of state variables, this means solving a system of linear algebraic
equations.  However, continuum equilibrium problems defined as BVP’s for ODE’s or PDE’s
are solved similar to IVP’s by first using the linear theory to find the general solution of the
differential equation and then applying the boundary conditions.

The big difference in philosophy comes in finding the general solution of the ODE or
PDE.  We treat these problems as linear mapping problems and rely on the theory to tell us as
much as possible about the dimension of the null space of the linear operator.  (We explain
these terms later.)  For an nth order linear ODE’s where the null space is finite dimensional, we
try to guess the form of basis functions and then use algebra to compute parameters.  The linear
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theory then guarantees us that we have the general solution (i.e., all solutions).  For a linear
PDE’s where the null space is infinite dimensional (even when the boundary conditions are
included), we use the same approach, but whether we have all solutions is not as clear and
convergence of the infinite sum requires some additional consideration.
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