A PowerPoint Presentation Package to Accompany

Applied Statistics in Business & Economics, 5th edition

David P. Doane and Lori E. Seward

Prepared by Lloyd R. Jaisingh

Copyright © 2015 by The McGraw-Hill Companies, Inc. All rights reserved.

Data Collection

Chapter Contents

- 2.1 Variables and Data
- 2.2 Level of Measurement
- 2.3 Sampling Concepts
- 2.4 Sampling Methods
- 2.5 Data Sources
- 2.6 Surveys

Data Collection

Chapter Learning Objectives

LO2-1: Use basic terminology for describing data and samples.

- LO2-2: Explain the difference between numerical and categorical data.
- LO2-3: Explain the difference between time series and crosssectional data.
- LO2-4: Recognize levels of measurement in data and ways of coding data.

LO2-5: Recognize a Likert scale and know how to use it.

Chapter 2

Data Collection

Chapter Learning Objectives LO2-6: Use the correct terminology for samples and populations. LO2-7: Explain the common sampling methods and how to implement them. LO2-8: Find everyday print or electronic data sources. LO2-9: Describe basic elements of survey types, survey designs, and response scales.

LO2-1 2.1 Variables and Data

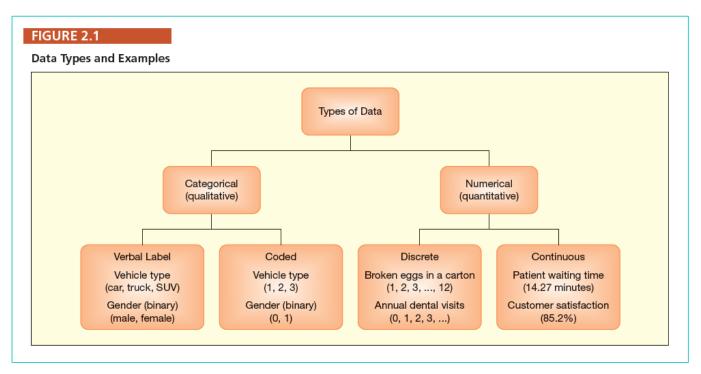
LO2-1: Use basic terminology for describing data and samples.

Data Terminology: Observations, Variables, Data Sets

- Observation: a single member of a collection of items that we want to study, such as a person, firm, or region.
- <u>Variable</u>: a characteristic of the subject or individual, such as an employee's income or an invoice amount
- <u>Data Set</u>: consists of all the values of all of the variables for all of the observations we have chosen to observe.

2.1 Variables and Data

Table 2.2: Number of Variables and Typical Tasks


TABLE 2.2

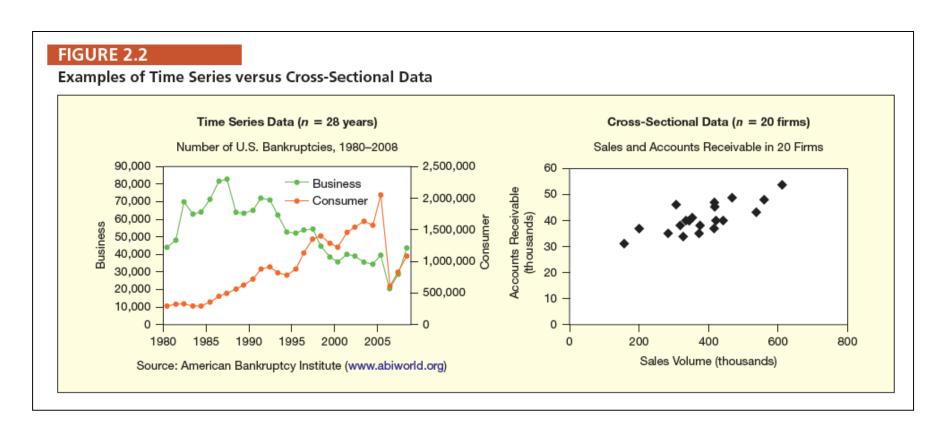
Number of Variables and Typical Tasks

Data Set	Variables	Example	Typical Tasks
Univariate	One	Income	Histograms, basic statistics
Bivariate	Two	Income, Age	Scatter plots, correlation
Multivariate	More than two	Income, Age, Gender	Regression modeling

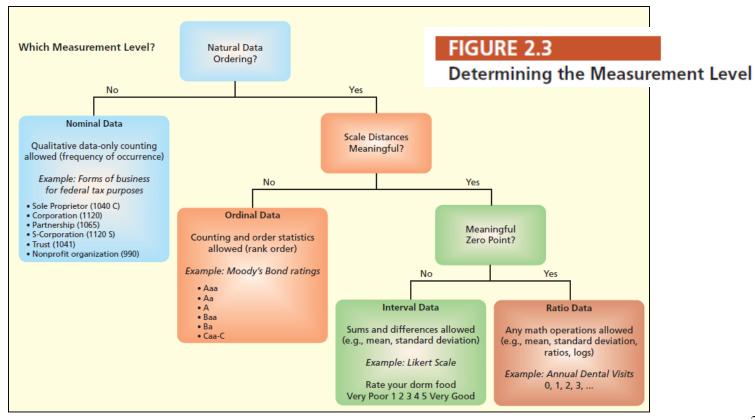
LO2-2: Explain the difference between numerical and categorical data.

 Note: Ambiguity is introduced when continuous data are rounded to whole numbers. Be cautious. LO2-3: Explain the difference between time series and cross-sectional data.

Time Series Data and Cross-Sectional Data


- Each observation in the sample represents a different equally spaced point in time (e.g., years, months, days).
- Periodicity may be annual, quarterly, monthly, weekly, daily, hourly, etc.
- We are interested in *trends and patterns over time* (e.g., personal bankruptcies from 1980 to 2008 as shown in Figure 2.2).

LO2-3 Variables and Data


Cross Sectional Data

- Each observation represents a different individual unit (e.g., person) at the same point in time (e.g., monthly VISA balances).
- We are interested in:
 - *variation among observations* (e.g. accounts receivable in 20 Subway franchises) or in
 - relationships (e.g. whether accounts receivable are related to sales volume in 20 Subway franchises as shown in Figure 2.2).
- We can combine the two data types to get *pooled cross*sectional and time series data.

LO2-3 Variables and Data

LO2-4: Recognize levels of measurement in data and ways of coding data.

hapter

LO2-4: Recognize levels of measurement in data and ways of coding data.

Levels of Measurement

Level of Measurement	Characteristics	Example
Nominal	Categories only	Eye color (blue, brown, green, etc.)
Ordinal	Rank has meaning. No clear meaning to distance	Rarely, never
Interval	Distance has meaning	Temperature (57° Celsius)
Ratio	Meaningful zero exists	Accounts payable (\$21.7 million)

Nominal Measurement

- Nominal data merely identify a *category*.
- Nominal data are qualitative, attribute, categorical or classification data and can be coded numerically (e.g., 1 = Apple, 2 = Compaq, 3 = Dell, 4 = HP).
- Only mathematical operations are counting (e.g., frequencies) and simple statistics.

Ordinal Measurement

Ordinal data codes can be *ranked* (e.g., 1 = Frequently, 2 = Sometimes, 3 = Rarely, 4 = Never).

Ordinal Measurement

- Distance between codes is not meaningful (e.g., distance between 1 and 2, or between 2 and 3, or between 3 and 4 lacks meaning).
- Many useful statistical tests exist for ordinal data.
 Especially useful in social science, marketing and human resource research.

Interval Measurement

 Data can not only be ranked, but also have meaningful intervals between scale points (e.g., difference between 60°F and 70°F is same as difference between 20°F and 30°F). napter

Interval Measurement

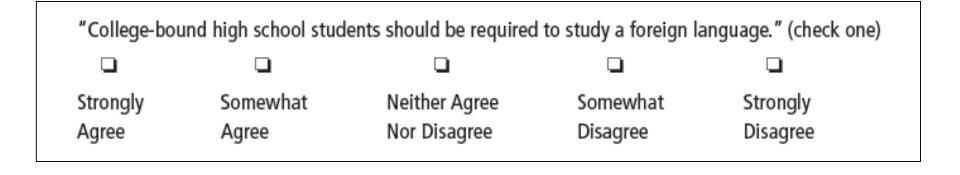
- Since intervals between numbers represent distances, mathematical operations can be performed (e.g., average).
- Zero point of interval scales is arbitrary, so ratios are not meaningful (e.g., 60°F *is not* twice as warm as 30°F).

Ratio Measurement

 Ratio data have all properties of nominal, ordinal and interval data types and also possess a <u>meaningful zero</u> (absence of quantity being measured).

Ratio Measurement

- Because of this zero point, ratios of data values are meaningful (e.g., \$20 million profit is twice as much as \$10 million).
- Zero does not have to be observable in the data; it is an absolute reference point.


LO2-5: Recognize a Likert scale and know how to use it.

Likert Scales

- A special case of interval data frequently used in survey research.
- The *coarseness* of a Likert scale refers to the number of scale points (typically 5 or 7).

Chapter 2

Likert Scales (examples)

"	How would you rat	e your Internet service	provider?" (check	one)
🖵 Terrible	🖵 Poor	Adequate	Good Good	Excellent

Chapter 2

LO2-4 2.2 Level of Measurement

Use the following procedure to recognize data types:

Question	If "Yes"
Q1. Is there a meaningful zero point?	Ratio data (statistical operations are allowed)
Q2. Are intervals between scale points meaningful?	Interval data (common statistics allowed, e.g., means and standard deviations)
Q3. Do scale points represent rankings?	Ordinal data (restricted to certain types of nonparametric statistical tests)
Q4. Are there discrete categories?	Nominal data (only counting allowed, e.g., finding the mode)

Changing Data By Recoding

- In order to simplify data or when exact data magnitude is of little interest, ratio data can be recoded *downward* into ordinal or nominal measurements (but not conversely).
- For example, recode systolic blood pressure as "normal" (under 130), "elevated" (130 to 140), or "high" (over 140).
- The above recoded data are ordinal (ranking is preserved), but intervals are unequal and some information is lost.

LO2-6: Use the correct terminology for samples and populations

Sample or Census

- A <u>sample</u> involves looking only at some items selected from the population.
- A <u>census</u> is an examination of all items in a defined population.
- Why can't the United States Census survey every person in the population? – mobility, un-documented workers, budget constraints, incomplete responses, etc.

TABLE 2.4

Sample or Census?

Situations Where a Sample May Be Preferred

Situations Where a Census May Be Preferred

Infinite Population

No census is possible if the population is of indefinite size (an assembly line can keep producing bolts, a doctor can keep seeing more patients).

Destructive Testing

The act of measurement may destroy or devalue the item (battery life, vehicle crash tests).

Timely Results

Sampling may yield more timely results (checking wheat samples for moisture content, checking peanut butter for salmonella contamination).

Accuracy

Instead of spreading resources thinly to attempt a census, budget might be better spent to improve training of field interviewers and improve data safeguards.

Cost

Even if a census is feasible, the cost, in either time or money, may exceed our budget.

Sensitive Information

A trained interviewer might learn more about sexual harassment in an organization through confidential interviews of a small sample of employees.

Small Population

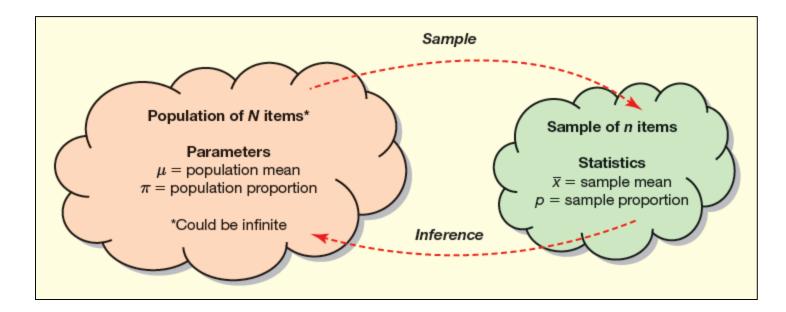
If the population is small, there is little reason to sample, for the effort of data collection may be only a small part of the total cost.

Large Sample Size

If the required sample size approaches the population size, we might as well go ahead and take a census.

Database Exists

If the data are on disk, we can examine 100% of the cases. But auditing or validating data against physical records may raise the cost.


Legal Requirements

Banks must count *all* the cash in bank teller drawers at the end of each business day. The U.S. Congress forbade sampling in the 2000 decennial population census.

Chapter 2

Parameters and Statistics

- <u>Statistics</u> are computed from a sample of *n* items, chosen from a population of *N* items.
- Statistics can be used as estimates of <u>parameters</u> found in the population.
- Symbols are used to represent population parameters and sample statistics.

Rule of Thumb: A population may be treated as infinite when *N* is at least 20 times *n* (i.e., when $N/n \ge 20$).

Target Population

- The population must be carefully specified and the sample must be drawn scientifically so that the sample is representative.
- The *target population* is the population we are interested in (e.g., U.S. gasoline prices).
- The <u>sampling frame</u> is the group from which we take the sample (e.g., 115,000 stations).
- The frame should not differ from the target population.

LO2-7: Explain the common sampling methods and how to implement them

Random Sampling Methods

Simple Random Sample	Use random numbers to select items from a list (e.g., Visa cardholders).
Systematic Sample	Select every <i>k</i> th item from a list or sequence (e.g., restaurant customers).
Stratified Sample	Select randomly within defined strata (e.g., by age, occupation, gender).
Cluster Sample	Select random geographical regions (e.g., zip codes) that represent the population.

Non-random Sampling Methods

Judgment Sample	Use expert knowledge to choose "typical" items (e.g., which employees to interview).
Convenience Sample	Use a sample that happens to be available (e.g., ask co-workers' opinions at lunch).
Focus Groups	In-depth dialog with a representative panel of individuals (e.g., iPod users).

With or Without Replacement

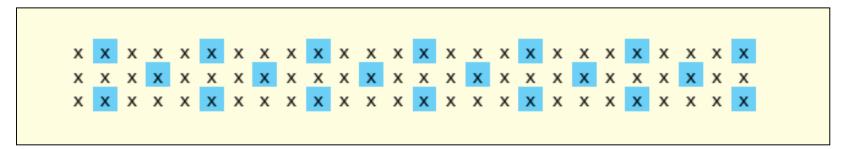
- If we allow duplicates when sampling, then we are sampling <u>with replacement</u>.
- Duplicates are unlikely when *n* is much smaller than large *N*.
- If we do not allow duplicates when sampling, then we are sampling <u>without replacement</u>.

Computer Methods: Examples of alternative ways to choose 10 integers between 1 and 875.

Excel—Option A	Enter the Excel function =RANDBETWEEN(1,875) into 10 spreadsheet cells. Press F9 to get a new sample.
Excel—Option B	Enter the function =INT(1+875*RAND()) into 10 spreadsheet cells. Press F9 to get a new sample.
Internet	The website www.random.org will give you many kinds of excellent random numbers (integers, decimals, etc).
MINITAB	Use MINITAB's Random Data menu with the Integer option.
Pocket Calculator	Press the RAND key to get a random number in the interval [0,1], multiply by 875, then round up to the next integer.

These are <u>pseudo-random</u> generators because even the best algorithms eventually repeat themselves.

Row – Column Data Arrays


- When the data are arranged in a rectangular array, an item can be chosen at random by selecting a row and column.
- For example, in the 4 x 3 array, select a random column between 1 and 3 and a random row between 1 and 4.
- This way, each item has an equal chance of being selected.

Randomizing a List

- In Excel, use function =RAND() beside each row to create a column of random numbers between 0 and 1.
- Copy and paste these numbers into the same column using *Paste Special* > *Values* in order to paste only the values and not the formulas.
- Sort the spreadsheet on the random number column.

Systematic Sampling

- Sample by choosing every *kth* item from a list, starting from a randomly chosen entry on the list.
- For example, starting at item 2 (see below), we sample every 4 items to obtain a sample of n = 20 items from a list of N = 78 items.

Note that $N/n = 78/20 \approx 4$ (periodicity).

hapter

Stratified Sampling

- Utilizes prior information about the population.
- Applicable when the population can be divided into relatively homogeneous subgroups of known size (<u>strata</u>).
- A simple random sample of the desired size is taken within each <u>stratum</u>.
- For example, from a population containing 55% males and 45% females, randomly sample from 110 males and 90 females (n = 200).

Cluster Sample

- Strata consist of geographical regions.
- <u>One-stage</u> cluster sampling sample consists of all elements in each of k randomly chosen subregions (clusters).
- <u>Two-stage</u> cluster sampling, first choose k subregions (clusters), then choose a random sample of elements within each cluster.

Cluster Sample

 Here is an example of 4 elements sampled from each of 3 randomly chosen clusters (twostage cluster sampling).

FIGURE 2.7

Two-Stage Cluster Sampling: Randomly choose three clusters, then randomly choose four items in each cluster

										1		
					х	х	х	х	х			1
		х	х	х	х	х	х	х	х	х	х	
		х	х	х	х	x	x	х	х	х	х	х
		х	х	х	х	х	x	х	х	х	х	х
х	х	х	х	х	х	х	x	х	х	x	х	х
х	х	х	х	х	х	х	х	х	х	х	х	х
х	х	х	х	х	х	х	х	х	х	х	х	х
х	х	х	х	х	х	х	x	х	X	х	х	
Х	х	х	х	х	х	х	x	х	х	х	х	
	x	х	х	х	х	х	х	х	х	х	х	
	x	х	х	х	х	х	х	х	х	х	х	х
	х	x	х	х	х	х	х	x	х	х	х	х
		x	х	х	х	х	х	х	х	х	х	х
		x	Х	Х	х	х	х	х	х	х	х	х
		x	х	х	х	х	х	х	х	х	х	х
		x	х	х	х	х	х	х	х	х	х	x
		x	х	х	х	х	х	х	х	х	х	
		x	х	х	х	x	х	х	х	х	х	
		x	х	х	х	х	х	х	х	х	х	
		х	x	х	х	х	х	х	х	х	Х	
			х	х	х	х	х	х	х			

Chapter

N

Judgment Sample

- A non-probability sampling method that relies on the expertise of the sampler to choose items that are representative of the population.
- Can be affected by subconscious bias (i.e., <u>non-randomness</u> in the choice).
- *Quota sampling* is a special kind of judgment sampling, in which the interviewer chooses a certain number of people in each category.

Chapter 2

Convenience Sample

• Take advantage of whatever sample is available at that moment. A quick way to sample.

Focus Groups

 A panel of individuals chosen to be representative of a wider population, formed for open-ended discussion and idea gathering.

Chapter 2

LO2-8 2.5 Data Sources

LO2-8: Find everyday print or electronic data sources.

 One goal of a statistics course is to help you learn where to find data that might be needed. Fortunately, many excellent sources are widely available. Some sources are given in the following table.

TABLE 2.10

Type of Data	Examples Useful Da	la sour
U.S. job-related data	U.S. Bureau of Labor Statistics	
U.S. economic data	Economic Report of the President	
Almanacs	World Almanac, Time Almanac	
Periodicals	Economist, Bloomberg Businessweek, Fortune, Forbes	
Indexes	The New York Times, The Wall Street Journal	
Databases	Compustat, Citibase, U.S. Census	
World data	CIA World Factbook	
Web	Google, Yahoo!, MSN	

LO2-9 2.6 Surveys

LO2-9: Describe basic elements of survey types, survey designs, and response scales.

Basic Steps of Survey Research

- Step 1: State the goals of the research.
- Step 2: Develop the budget (time, money, staff).
- Step 3: Create a research design (target population, frame, sample size).
- Step 4: Choose a survey type and method of administration.

Basic Steps of Survey Research

- Step 5: Design a data collection instrument (questionnaire).
- Step 6: Pretest the survey instrument and revise as needed.
- Step 7: Administer the survey (follow up if needed).
- Step 8: Code the data and analyze it.

Survey Types

Mail

Telephone

Interviews

Web

Direct observation

Survey Guidelines Planning Design Quality Pilot test **Buy-in Expertise**

LO2-9 2.6 Surveys

Questionnaire Design

- Use a lot of white space in layout.
- Begin with short, clear instructions.
- State the survey purpose
- Assure anonymity.
- Instruct on how to submit the completed survey.
- Break survey into naturally occurring sections.
- Let respondents bypass sections that are not applicable (e.g., "if you answered no to question 7, skip directly to Question 15").

Questionnaire Design

- Pretest and revise as needed.
- Keep as short as possible.

Types of Questions

Open-ended Fill-in-the-blank Check boxes Ranked choices Pictograms Likert scale

Question Wording

- The way a question is asked has a profound influence on the response. For example,
 - 1. Shall state taxes be cut?
 - 2. Shall state taxes be cut, if it means reducing highway maintenance?
 - 3. Shall state taxes be cut, if it means firing teachers and police?

LO2-9 2.6 Surveys

Question Wording

Make sure you have covered all the possibilities. For example,

Are you married? Yes No

 Overlapping classes or unclear categories are a problem. What if your father is deceased or is 45 years old.

How old is your father? 35 – 45 45 – 55 55 – 65 65 or older

LO2-9 2.6 Surveys

Data Screening

- Responses are usually coded numerically (e.g., 1 = male, 2 = female).
- Missing values are typically denoted by special characters (e.g., blank, "." or "*").
- Discard questionnaires that are flawed or missing many responses.
- Watch for multiple responses, outrageous or inconsistent replies or out-of-range answers.
- Followup if necessary and always document your datacoding decisions.