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Chapter 1

Introduction

Artificial Intelligence (AI) has become one of the most promising fields in science and
engineering, for that it could define the future of humanity. One of AI’s most attractive
qualities is allowing computers to learn from examples. One of the approaches used for this
is known as Reinforcement Learning. Reinforcement Learning is inspired by the interaction
between animals and their environment, particularly in how the environment is affected
by what the agent does, and how the agent acts upon seeking its goal [17, p. 1]. In order
to train an agent for a particular environment, it is required to provide the agent with a
representation of the domain. By using Deep Neural Networks, it is possible to design an
agent that perceives the domain in the shape of images, similarly to how some animals may
use their eyes to perceive what’s around him.

Games provide an interesting means of testing this theory, as they possess domains
observable through images, one or many agents —mainly, the player— with a specific goal,
and a way to iterate and test the training at hand. Groups like Google’s DeepMind [2] or
OpenAI [4] have already designed and implemented solutions to use Reinforcement Learning
and Deep Learning in many games, which sets a guideline for those interested in learning and
applying these concepts on their own. DeepMind’s Deep Q Network (DQN) implementation
is particularly interesting [14], as it set the guideline for following studies to improve on, or
to compare against.

Berkeley’s CS188 Introduction to AI [8] course designed a game called Capture the Flag,
which is based on Pac-Man. The game is setup in a way that students can implement agents
that can compete against each other. There are many interesting aspects about the game,
some of them being: Agents play in teams of two; Agents are required to defend and attack
well, in order to defeat their rival; Changes in score are considerable scarce, as it takes agents
a significant amount of actions to eat and return food pellets. Also, it is interesting that
an implementation of Deep Reinforcement Learning for the game has not been published
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yet. This sets the possibility to explore the inner workings of DeepMind’s DQN algorithm,
implement a specific solution, test it on different settings, analyze and compare the results,
and set a path for future work.

The final implementation, with installation and testing instructions, is available at:
github.com/srojas19/dqn-contest.

1.1 Objectives

1. Learn about Deep Reinforcement Learning (Personal).

2. Implement DeepMind’s DQN on Berkeley’s CS188 Capture the Flag game.

3. Train agents making use of the DQN implementation made.

4. Analyze and compare the results of the trained agents.

5. Describe possible improvements over the designed solution, and set a path for future
work.

https://github.com/srojas19/dqn-contest
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Background

2.1 Reinforcement Learning

"Reinforcement learning is learning what to do—how to map situations to actions—so as
to maximize a numerical reward signal. The learner is not told which actions to take, but
instead must discover which actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not only the immediate reward but also
the next situation and, through that, all subsequent rewards. These two characteristics –trial-
and-error search and delayed reward– are the two most important distinguishing features of
reinforcement learning." [17, p. 2]

Formalization of Reinforcement Learning is reached mainly through Markov Decision
Processes (MDPs), as it allows the definition of the interaction between the learning agent and
the environment, in terms of states, actions, and rewards. Also, MDPs allow the modeling
of stochastic situations, where an agent might execute an action with a defined discrete
probability distribution for its set of actions.

Value functions are specially important for Reinforcement Learning, as it allows the agent
to efficiently search through the space of policies [17, p. 13]. This value function is generally
described with a Bellman equation, which describes the reward for taking the action giving
the highest expected return:

V π(St) = R(St ,π(St))+ γ ∑
St+1

P(St+1|St ,π(St))V π(St+1) (2.1)

Note that in deterministic environments, where (St ,π(St)) always leads to the same
following state, the Bellman equation can be simplified to:
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V π(St) = R(St ,π(St))+ γV π(St+1) (2.2)

With:

• St : State of the environment for time t.

• π(St): Action returned by the policy used by the agent, which determines the action
that the agent should use for the given state.

• St+1: Following state, product of using π(St) in St .

• γ: Discount factor, γ ∈ [0,1].

2.1.1 Temporal-Difference (TD)

Temporal-Difference (TD) Learning is a tabular solution method for reinforcement learning
problems. TD Learning is a combination of Monte Carlo ideas and Dynamic Programming
ideas (both being other tabular solution methods). TD methods can learn without a model of
the environment’s dynamics. TD methods use bootstrapping, which means that they update
estimates based on other learned estimates, without waiting for a final outcome. TD’s main
focus is the policy evaluation or prediction problem, which is estimating the value function
Vπ for a given policy π . TD methods use a variation of generalized policy iteration (GPI) to
approach the prediction problem. [17, p. 119]

TD uses experience to solve the prediction problem. By following a policy π , TD updates
its estimate V of vπ for the non-terminal states St occurring in that experience. TD methods
only need to wait until the next step in an episode to make an update to V (St), while other
methods like Monte Carlo need a full episode to make an update. The simplest TD method
makes the update:

V (St)←V (St)+α[Rt+1 + γV (St+1)−V (St)] (2.3)

With:

• S: State

• α: Step size or Learning rate, α ∈ [0,1]

• R: Reward
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• γ: Discount factor, γ ∈ [0,1].

2.1.2 Off-policy learning and On-policy learning

All learning control methods face a dilemma: They seek to learn action values conditional
on subsequent optimal behavior, but they need to behave non-optimally in order to explore
all actions (to find the optimal actions). To take on this dilemma, there are two approaches:
On-policy learning and Off-policy learning. The on-policy approach learns action values not
for the optimal policy, but for a near-optimal policy that still explores. On the other hand,
the off-policy approach uses two policies, one that is learned about and that becomes the
optimal policy, and one that is more exploratory and is used to generate behavior. The policy
being learned is called the target policy, and the policy used to generate behavior is called the
behavior policy. In this case, it is said that learning is from data off the target policy, which
is the reason that the overall process is named off-policy learning. [17, p. 103]

2.1.3 Q-Learning

Q-Learning is an off-policy TD control algorithm developed by Watkins [18], defined by:

Q(St ,At)← Q(St ,At)+α[Rt+1 +max
a

Q(St+1,a)−Q(St ,At)] (2.4)

Q, the learned action-value function, approximates to the optimal action-value function
q∗, independent of the policy being followed. The policy, however, still determines which
state-action pairs are visited and updated. This means that a policy that allows all state-actions
pairs to be updated is required for the correct convergence of Q. The Q-Learning algorithm
is as follows: [17, p. 131]
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Algorithm 1 Q-Learning for estimating π = π∗

Algorithm parameters: step size α ∈ (0,1], small ε < 0
Initialize Q(s,a), for all s ∈ S+,a2A(s), arbitrarily except that Q(terminal, .) = 0
Loop for each episode:

Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε-greedy)
Take action A, observe R,S′

Q(S,A)← Q(S,A)+α[R+ γ maxa Q(S′,a)−Q(S,A)]
S← S′

until S is terminal

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural networks that make the assumption that
the inputs are images, which allows the encoding of special properties into their architecture.
These allow to make the implementation of the forward function more efficient, while also
reducing the amount of parameters in the network. Unlike a regular Neural Network, the
layers of a CNN have neurons arranged in 3 dimensions: width, height, depth. The neurons
in a convolutional layer are connected to a small region of the layer before it, instead of all of
the neurons in a fully-connected manner.

Fig. 2.1 On the left, a traditional neural network with two hidden layers. On the right, a CNN
with two convolutional layers. Taken from Stanford’s CS231n course’s page. [1]

CNNs are built, mainly, with three different types of layers: Convolutional Layers,
Pooling layers, and Fully-connected layers. Every layer in a CNN transforms one volume
of activations to another through a differentiable function. In this way, CNNs transform the
original image input to an output of scores (or values) that determine information about the
image. The convolutional and fully-connected layers are trained with gradient descent so
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that the output computed is consistent with the training labels in the training set for a given
image. [1]

2.3 Deep Reinforcement Learning: Deep Q-Network

Deep Reinforcement Learning are implementations of Reinforcement Learning methods that
use Deep Neural Networks to calculate the optimal policy. Of these, one implementation
that came to prominence is DeepMind’s Deep Q-Network (DQN) [14], which uses a CNN
to approximate Q, the action-value function. The use of a CNN means that the DQN agent
uses a stack of images as inputs, which it then passes to the neural network. Then, the neural
network outputs an array, for which each value is the result of Q(s,a), with s being the
current state, and a one of the actions that the agent can execute, according to an established
order.

DQN has two key components that improve the performance of the algorithm: Experience
Replay and Iterative Updates. Experience Replay consists in storing the agent’s experiences
et = (st ,at ,rt ,st+1) (a tuple of a state, an action, a reward, and the following state) in a dataset.
When applying Q-Learning updates, samples of the dataset are drawn randomly to train the
network, which breaks the correlation between consecutive samples, therefore reducing the
variance between updates [14, p. 7]. Iterative Updates means that the action-values Q are
periodically updated towards the target values, which reduces correlations with the target.
For this, off-policy learning is necessary, because the current parameters are different to those
used to generate the sample.

The training algorithm closely resembles Algorithm 1 (Q-Learning). The difference
resides mainly in the use of two CNNs to represent Q and Q̂ (target Q). This means that the
action-value updates are done with images φ instead of states s, although the states are used
to generate the images. Target Q is updated every C steps, representing the use of off-policy
learning. The algorithm is as follows: [14, p. 7]
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Algorithm 2 Deep Q-Learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

for episode = 1,M do
Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)

for t = 1,T do
With probability ε select a random action at

otherwise select at = argmaxaQ(φ(st),a;θ)

Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st ,at ,xt+1 and preprocess φt+1 = φ(st+1)

Store transition (φt ,at ,rt ,φt+1) in D
Sample random minibatch of transitions (φ j,a j,r j,φ j+1) from D

Set y j =

r j if episode terminates at step j+1.

r j + γ maxa′ Q̂(φ j+1,a′;θ−) otherwise.

Perform a gradient descent step on (y j−Q(φ j,a j;θ))2 with respect to the network
parameters Q

Every C steps reset Q̂ = Q
end for

end for

2.4 Berkeley’s CS188 Capture the Flag game

Fig. 2.2 Game of capture the flag on the default layout.

Capture the flag is a game implemented for Berkeley’s Introduction to AI course. It is used
for its final project, setup in a way that students implement a team of agents that can compete
against other teams. "The course contest involves a multi-player capture-the-flag variant of
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Pacman, where agents control both Pacman and ghosts in coordinated team-based strategies.
A team will try to eat the food on the far side of the map, while defending the food on its
home side."[8]

The game’s layout is divided in two halves (red and blue), one for each team. When a
team’s agent is on its own side, it acts as a ghost which should attempt to defend its own
team’s food, while being able to eat an opponent that is attacking. If a ghost eats a Pacman,
the food pellets captured by the Pacman will spread out to the closest available spaces. When
a team’s agent is on its rival’s side, it acts as a Pacman, which should attempt to eat the
opponent’s food, avoid ghosts, and return the eaten food to its team’s side. An attacking
agent can eat a power capsule in its rival’s side to scare the opponent’s agents, which means
that it can eat them, returning them to their initial position.

Score only changes when a team’s agent returns the food pellets it ate from the opponent’s
side to it’s own side. Each piece (white dot) eaten earns the team one point. Eating an
opponent, eating power capsules, or eating food pellets without returning them won’t result
in a score change. Contestant’s agents can access to state information such as: Food pellets’
positions in each side (and thus, the quantity), power capsules’ positions, walls’ placement
in the layout, the distance or position of the opponent’s agents (depending on how far they
are). This project uses a modified version of the game that allows all agents to access
the exact position of the other competing agents.

Finally, the game ends when a team returns all but two of the opponent’s food pellets,
or if 1200 agent moves have occurred. Each move represents a game state, for which one
specific agent must act. An agent’s actions A = {NORT H,SOUT H,WEST,EAST,STOP}
are restricted by its surroundings (e.g. if there is a wall immediately west of the agent, it
can’t move WEST ). The team that returned the most food pellets wins. If the final score is
zero (both teams returned the same amount of food pellets), the game finishes as a tie.
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Methods

The full implementation is available on github.com/srojas19/dqn-contest, with instal-
lation and testing instructions. The implementation is based on an existing project that uses
DQN on Flappy Bird (See Section 3.1), for which several changes/additions were made:

• All logic that interacts with the game was changed to be compatible with capture the
flag. For this, a function that creates games and loads agents was implemented. Also,
all other instructions that require the game’s state information, access it with the API
implemented for the game.

• The way actions were handled was changed to use objects of the class Directions
of the game. Furthermore, the function getLegalActionsVector(state, agent)
was implemented to restrict agents to use only possible actions (e.g. if there is a wall
immediately west of the agent, The WEST direction is blocked). The function returns
an array of numbers, with a value in each position equal 0 or −1000, depending on
whether the action in that position is possible or not. Then, the array is summed to the
prediction of the model (i.e. if Q is used), restricting the use of illegal actions.

• Training data is captured to CSV files, which are later used to generate figures and
statistics of the training.

• The algorithm was modified to use iterative updates, by using a target model that
copies the weights as the trained model (See Section 2.3).

• Variables’ names were changed to resemble DeepMind’s DQN algorithm (Algorithm
2) with more accuracy.

• The model was changed to receive only one image as input, instead of a stack of four
images. This is because, unlike Atari games (used by DeepMind) or Flappy Bird that

https://github.com/srojas19/dqn-contest
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are meant to be played by humans, Capture the Flag is meant to be played by computer
agents. For this reason, the agents trained for Capture the Flag need to act for a given
game state, which can be represented by one frame of the game (created with the game
state), while DeepMind tries to simulate a human’s reaction time, by stacking four
frames of the game.

• The function createMapRepresentation(state, agentIndex) returns an image
representation of state, as seen by the agent identified by agentIndex, which is then
used as an input for the CNN model. Section 3.2 details the solution.

• The function getSuccesor(game, state, agentIndex, action) returns a tuple
(newState,reward, terminal), where newState is the product of the agent identified
by agentIndex using action, and the remaining agents using their preferred action;
reward is the value received by the agent for using action on state (defined on
Section 3.4); and terminal is a boolean value that signifies if game has finished.

• While ε−greedy is still used for exploration purposes, ε is reduced linearly during the
training. For the majority of the experiments, ε starts at 1 and is reduced to 0.1 in the
first million steps. Then, ε remains constant for the following five hundred thousand
steps.

On top of this, the implementation was designed so that a trained model can be used
by any of the four agents (red, orange, blue, and cyan). Originally, agents implemented by
the students for CS188’s contest (that uses Capture the Flag) must be enclosed in a team
file that implements a set of functions used by the game to access the action chosen by the
agents. DQNTeam.py creates a team of two DQNAgents. A DQNAgent loads a trained neural
network and its correspondent weights, for the given path name (the one set on the training
stage). When it has to choose an action, DQNAgent creates an image representation (equal
to the one used on the training stage), which it then used as an input to the loaded neural
network. Finally, DQNAgent chooses the action that has the maximum Q-value, according to
the output of the neural network, and is not illegal.

3.1 Used Technologies

The implementation is based on Ben Lau’s Keras-FlappyBird repository [12], which in turn,
is based on Yen-Chen Lin’s DeepLearningFlappyBird [13]. In short, Lau’s implementation
provided a simple python implementation of DeepMind’s DQN algorithm (as seen in Algo-
rithm 2), with the logic necessary to generate stacks of images specifically for the Flappy
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Bird game. Lau’s implementation differs from Lin’s implementation in that they both use
different deep learning platforms: Lau’s uses Keras [3], while Lin’s uses Tensorflow [6]. The
decision to use Keras on top of Theano [7], over Tensorflow, was motivated by these reasons:

• Keras is a high-level API, which allows for a simpler use of the required functionalities
for the project (that is, model creation, batch training, cloning and loading of weights
into models).

• Keras is capable of running on top of different APIs, like Tensorflow, CNTK, or Theano.
This is important because Capture the Flag is developed on Python 2.7, making it
incompatible with Tensorflow. Using Keras allowed the use of Theano as its backend,
which is compatible with Python 2.7.

• Diego Montoya’s thesis [15], a project that aimed to implement a version of DQN
(without the use of a CNN) on Berkeley’s CS188 Pacman game, used Keras with
Theano as its backend. Montoya’s thesis served as a motivator to this thesis, thus
promoting the use of Keras in this project’s implementation.

It’s important to note PyTorch [5], another deep learning platform, as an interesting
alternative to Keras and Tensorflow, since it offers the granularity of Tensorflow, while also
being compatible with Python 2.7 like Keras on top of Theano. Also, PyTorch has grown in
popularity within the research community, making it an attractive option for follow-up work
on this project. The main reason PyTorch wasn’t used for this project is because I didn’t have
prior knowledge of it as an alternative.

Additionally, numpy was used for arrays and matrices, and matplotlib was used to test
the results of the image generation algorithm.

3.2 Image Preprocessing

A challenge that arose from attempting to implement DQN over Capture the Flag was that
there was no simple way to capture frames of the game to pass to the Neural Network. Some
different approaches were already designed to circumvent this in Berkeley’s CS188 Pacman
game (which shares many implementation aspects to capture the flag), namely two:

• Ranjan et al.[16] used raw pixel images of the game, by using screen shots of the
display captured with ImageGrab. This resulted in 540x540x3 (height x width x color
channels) images, which then were downsampled to 224x224x3 images.
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• Gnanasekaran et al. [10] created equivalent images of the game’s frames, with each
pixel representing objects in the Pacman grid. This resulted in an increase in training
speed according to their results.

In the end, an image generation approach (similar to Gnanasekaran et al.’s) was used for
the following reasons:

• Generating images from the game’s state information allows for a simpler, easier to
understand, implementation of the training algorithm, similar to DeepMind’s approach
to training for Atari games (by using a defined API).

• By using generated images over raw frames from the game, one can maximize the
information per pixel. For example, while an agent would take a 20x20x3 image to be
represented in a raw frame, it would require a single, one-channel, pixel (1x1x1) in a
generated image.

• Generating images is the only way to add sufficient information to allow a model
that can be used by all agents. If raw images from the game were used, the CNN
wouldn’t be able to differentiate which agent it is representing. For instance, if the
algorithm trained the CNN with games for all agents (red, orange, blue, and cyan), the
CNN wouldn’t be able to recognize which agent is the one that is using it. Instead, by
using a generated image from the state, it is possible to assign a unique color to the
agent that is using the CNN, another color for the agent’s partner, and another color
for both of its rivals. This allows all agents to use the same trained neural network to
play the game.

• As a consequence of maximizing information per pixel, generated images are of low
dimensions (16x32x1 for the default layout and 18x34x1 for random layouts), and
thus, faster to train on.

Fig. 3.1 Comparison of a raw frame from the game and a generated image from the game
state. The generated image is shown as plotted by matplotlib (in reality, it is in grayscale).
The second image is shown as it was generated for the cyan agent.



3.3 CNN Architecture 15

Table 3.1 Values for objects in generated image

Object Value/Color

Walls 37
Food Pellet 46
Space 32
Power Capsule 112
Observing Agent (defending) 200
Observing Agent (not scared, attacking) 220
Observing Agent (scared, attacking) 230
Agent’s partner (not scared) 150
Agent’s partner (scared) 160
Rivals (not scared) 80
Rivals (scared) 90

All objects in the game are represented by one grayscale pixel. In other words, each
object is represented by a number between 0 and 255, where 0 is absolute black and 255 is
absolute white. The values for each type of object are defined in Table 3.1.

3.3 CNN Architecture

Fig. 3.2 Illustration of the CNN’s architecture used for training and prediction.

This project uses a similar architecture to the one used by DeepMind [14]. All hidden layers
are equal, and the dimensions of the input and output layers are changed. The input layer’s
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dimensions are 1x16x32x1 (one grayscale 16x32 image) for models trained for the default
layout, and 1x18x34x1 for models trained for random layouts. There is a separate output
unit for each action that corresponds to the predicted Q-value for using the action in the
input state. The experiments were carried with models using Adam as the optimizer, with
learning rate 0.00025 (same learning rate as DeepMind), although the possibility to use SGD
or RMSProp as optimizers exists. It is important to recognize that more efficient architectures
may exist, but finding one wasn’t in the scope of this project.

3.4 Reward Calculation

DeepMind’s DQN implementation defines the reward used for action-value updates as the
change in the score of the game. Their decision is based in making an implementation that
can be used for multiple games, without major modifications. However, this negatively
affects games were the score is scarcely changed, like capture the flag, because the transitions
that make an impact on Q are lower than games than games that change the score with higher
frequency. To illustrate, while the game Pacman would change the score every time Pacman
eats food or a ghost, in capture the flag the score changes whenever an agent eats one or
more food pellets, and then returns it to its own side. Arjona-Medina et al. [9] have shown
that redistributing rewards (i.e. making rewards more frequent) in games with scarce delayed
rewards can significantly improve agent performance and training speeds. With this in mind,
different reward functions where defined to train agents, by taking into consideration these
events of the game:

• sc: Score change after all agents move.

• n: Food pellets returned by the agent.

• s: 0.5 if the action attempted by the agent is STOP, 0 otherwise.

• f r: Food pellets recovered by the agent, by eating an opponent.

• f l: Food pellets carried by the agent (not yet returned) that was lost because the agent
was eaten by an opponent.

• f e: +1 if the agent ate one food pellet (which hasn’t been returned yet), 0 otherwise.

The following reward functions were used to train agents:

A : r = sc− s+ f e+ f r (3.1)
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A attempts to reward the agent when it recovers food by eating an opponent (with f r),
and when it eats one of the opponent’s food pellets (with f e). s is meant to motivate the
agent to move at all times. sc informs the agent if its partner or itself returned food to its side,
by giving it positive feedback. Additionally, sc informs the agent if the opponent’s agents
returned food pellets to their side, by giving it negative feedback.

B : r = sc− s+ f e+ f r+n− f l (3.2)

B gives the agent the same information as A. Also, n attempts to allow the agent to receive
additional feedback if it returned food pellets, by scoring for its team. f l tries to make the
agent averse to its opponent’s agents, by giving it negative feedback when it gets eaten by
one. This aversion should be increased by the amount of food pellets carried by the agent.

C : r = sc+n (3.3)

C is a bare-bones implementation, similar to DeepMind’s. The only addition is the use of
n to allow the agent to recognize when it scores for its team.

The reasoning behind these reward functions is to test the effectiveness of advancing
rewards in the training, regarding how well the resulting agent plays. Chapter 4 shows the
results of the training.





Chapter 4

Results

Testing was carried by training a set of 6 agents. The difference between them consists in
the use of different reward functions (defined in Section 3.4) and the actions applied when
using ε−greedy exploration. Some agents use the action that a baselineTeam agent would
do, while others perform a random action. Since baselineTeam implements two different
agents —one that attacks and one that defends— the solution is designed to choose one of
the two agents uniformly. Incidentally, baselineTeam’s agents are quite poor, the attacking
agent moves towards the closest food pellet, and the defending agent tries to chase down its
rival when it sees them. This effectively makes the training agent learn from the choices of
two different agents. The trained agents are:

Table 4.1 Trained agents

Agent Reward Function ε−greedy action

A baseline A baselineTeam
A random A random
B baseline B baselineTeam
B random B random
C baseline C baselineTeam
C random C random

4.1 During Training

Training for each agent finalized when the training agents completed 1,500,000 actions. ε is
reduced linearly from 1 to 0.1 during the first 1,000,000 actions, to then stay constant for the
remaining 500,000 actions.
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Fig. 4.1 Training loss for all agents.

Figure 4.1 shows the evolution of the loss function during the training. The spike at step
50,000 for all agents is because that is when the neural networks start to train on batches from
the replay memory. As a reminder, the training loss is equal to the one defined by DeepMind
[14, p.1], which is a mean-squared error (MSE). MSE values are considered better when
they approach zero. As such, A baseline, C baseline and C random seem to show the best
results, because the loss value stays low (below 0.5) and consistent. On the other hand, A
random and B random appear to increase in value, both peaking at ∼0.125. This signifies an
increment in the deviation of the predictions from the neural network to the target values.
B baseline shows a bell-shaped progression that peaks at ∼1,000,000. This might indicate
that the training loss would have decreased if the training carried on further, although that is
not guaranteed. Altogether, while this figure gives insight of the training, it is not enough to
judge the performance of the agents.

To give more intuitive results, the following comparisons are between agents with equal
reward functions, and between agents with equal ε−greedy actions. The figures show for
each comparison are:

• Sum of Game Scores: Plots the aggregated score of all training games prior to the
current one. For example, the value for game 3 is the sum of games 1, 2, and 3.
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• Game Results: Displays a line for each possible outcome for each agent, with each
one showing the aggregated training results until the current one. i.e. The figure shows
the number of games that the agent won, lost, and drew, during training.

• Average Q Value: Shows the progression of the Q values predicted by the network.
This is heavily reliant on the reward function used to train the agents, as rewarding the
agent for more events may result in higher Q values.

• Sum of Rewards: Plots the aggregated reward of all training steps prior to the current
one. For instance, an agent that continuously makes wrong decisions while training
will lower its sum. Similarly to the last figure, this is reliant on the reward function
used to train the agents.

4.1.1 Agents using A as their reward function

(a) Sum of Game Scores (b) Game Results

Fig. 4.2 Training results for A agents

As seen in Figure 4.2a, A baseline maintained an aggregated score close to 0 for the whole
training. Moreover, A random always has a negative slope, that becomes less enunciated
around the game 2000.

Figure 4.2b shows that A baseline drew the majority of its games, with a flux of wins
beginning at the ∼2500th game. In addition, more than 50% of the training games played
by A random resulted in a loss, while close to 43% of the games resulted in a draw. Overall,
this figure suggests that A baseline performed better than A random while training, since A
baseline drew a higher percentage of games, lost close to 0, and won a considerable amount
of games, while A random lost the majority of games, and seemed to win 0 games.
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(a) Average Q Value (b) Sum of Rewards

Fig. 4.3 Training results for A agents

Figure 4.3a demonstrates that A random had a higher average Q value than A baseline. A
baseline seems to converge around 9. While A random grew to 20, it might have converged
later to a lower value.

Figure 4.3b presents the general performance of both agents during training. While A
baseline sees a steady incline all the way, A random sees a sharp decline from step 0 to step
600,000, that later steadies to a lower slope, from step 1,000,000 to step 1,500,000.

4.1.2 Agents using B as their reward function

(a) Sum of Game Scores (b) Game Results

Fig. 4.4 Training results for B agents

A higher aggregated score for B baseline than B random is shown in Figure 4.4a. A transition
from a near constant value to a steady decline appears from game ∼2200 for B baseline. At
any rate, B random’s value ended close to 11.5 times lower than B baseline’s value.
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Figure 4.4b shows, once again, better performance from B baseline. In this case, both
B baseline and B random drew the majority of their games, although the proportion of lost
games is larger for B random (∼ 30% vs. ∼ 2%). B baseline won a small amount of games,
while B random won close to 0 games.

(a) Average Q Value (b) Sum of Rewards

Fig. 4.5 Training results for B agents

As shown in Figure 4.5a, both agents approach the same average Q values at the end of
training. B baseline grew at a logarithmic rate throughout training, whereas B random grew
exponentially for the first million steps, and at a logarithmic rate for the remaining steps.

A disparity between both agents’ rewards sum is presented in Figure 4.5b. While B
baseline always possessed a positive aggregate, B random always possessed a negative
aggregate. B baseline’s training finalized with an aggregate of 40,000, and B random’s
finalized with -120,000.
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4.1.3 Agents using C as their reward function

(a) Sum of Game Scores (b) Game Results

Fig. 4.6 Training results for C agents

Figure 4.6a continues the pattern set by Figures 4.2a and 4.4a, where the baseline agent had
a higher aggregate score over its random counterpart. In this instance, C baseline’s aggregate
finished at ∼−11,000, and C random’s aggregate finished at ∼−38,000.

C baseline performed better than C random on all stages, as seen in Figure 4.6b. For
instance, C baseline lost ∼ 12% of its games, while C random lost ∼ 36%. Furthermore,
C baseline drew ∼ 84% of its games, whereas C random drew ∼ 64% of its games. Lastly,
C baseline won ∼ 4% of its games, while C random won ∼ 0% of its games. In sum, C
baseline lost less, drew more, and won more games than C random.

(a) Average Q Value (b) Sum of Rewards

Fig. 4.7 Training results for C agents
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Figure 4.7a shows that C baseline’s average Q value is always between ∼ 2.5 and ∼ 3,
and C random’s average Q value is always between ∼ 1 and ∼ 1.5. Taking into consideration
the reward function –C for both– the reason for these results are because C baseline returned
more food pellets than C random.

Figure 4.7b shows essentially the same information as Figure 4.6a, but by representing
the information in steps, instead of games. Consequently, this proves that the additional
boost for returning food pellets in C wasn’t used frequently enough during training to make
a significant impact.

4.1.4 Agents using baselineTeam as their ε−greedy actions

(a) Sum of Game Scores (b) Game Results

Fig. 4.8 Training results for baseline agents

Figure 4.8a presents the performance during training for all baselineTeam agents. All
agents performed similarly during the first ∼ 2300 games, diverging in the following games.
While A baseline maintains a constant total score, B baseline and C baseline get continuously
worse, with C baseline being the worst of the three.

As shown in 4.8b, the game results for all agents are similar, with all agents being
clustered by the result of their games. That is, all agents drew the majority of their games,
with the smaller proportion given for loses and wins. The amount of loses for C baseline
seems to stand out over the bottom cluster, which means that C baseline was the agent that
lost the most games out of the three agents.
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(a) Average Q Value (b) Sum of Rewards

Fig. 4.9 Training results for baseline agents

According to Figure 4.9a, B baseline reached the highest average Q value, followed by A
baseline, and ending with C baseline. This correlates with the reward function used by each
agent, with the ones receiving more feedback being the ones with higher Q values. Finally, it
appears as though A baseline and C baseline’s Q values converged, while that may not be the
case for B baseline.

Figure 4.9b is compatible with Figure 4.9a, as both position the agents in the same order.
This is anticipated by the fact that higher Q values will result in a higher sum of the rewards
given to the agent. However, it is interesting that C baseline is the only agent that achieved a
negative sum, which could imply the worst resulting policy out of the three.

4.1.5 Agents using random as their ε−greedy actions

(a) Sum of Game Scores (b) Game Results

Fig. 4.10 Training results for random agents
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Figure 4.10a shows that during training, all agents were always on a negative aggregate score.
A random had the lowest value out of the three, with B random and C random being between
10,000 points of each other.

Figure 4.10b plots three different clusters of the results for each agent. The top cluster
groups the amount of games drawn by B random and C random, and the games lost by
A random. The middle cluster groups the amount of games drawn by A random, and the
amount of games lost by B random and C random. The bottom cluster groups the amount of
games won by all agents, all near 0. Given these points, it seems that A random performed
the worst of all agents during training, and B random and C random performed similarly.

(a) Average Q Value (b) Sum of Rewards

Fig. 4.11 Training results for random agents

Figure 4.11a shows the average Q values for all random agents. C random’s values are
considerably lower than A random and B random’s values. Interestingly, while B random’s
reward function is designed to provide higher rewards than A random’s reward function, A
random’s average Q value was always higher than B random’s.

Figure 4.11b presents all agents’ aggregate rewards throughout training. All agents were
always on negative values, with C random having the highest value of the three. These values
are inversely proportional to the values in Figure 4.11a, meaning that the higher the average
Q value, the lower the sum of the rewards.
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4.1.6 All Agents

(a) Average Scores (b) Average Q Values

Fig. 4.12 Training results for all agents

The average score achieved for all agents during training are presented in Figure 4.12a. A
baseline appears to be the best performer throughout training, with B baseline performing
similarly. C baseline begins with almost identical scores to A baseline and B baseline,
but it starts declining at the 2000th game. B random and C random begin at lower scores,
fluctuating along the games without improving significantly. A random begins with the
lowest average score out of all the agents, but manages to improve its value, closing on B
random and C random at the ending. Overall, the agents that used baselineTeam actions
achieved better scores, compared to their random actions counterparts.

The average predicted Q values for all trained agents are provided in Figure 4.12b. Both
agents using B as their reward function reached the same average Q values. A random reached
the highest average Q value at the end of training, also doubling the value reached by A
baseline. Both agents using C as their reward function had the lowest average Q values out
of all the agents, maintaining similar values for the duration of the training.

4.2 After Training

100 games were played between a team of two of the trained agents and baselineTeam to
test the final performance of each trained agent. Of these games, 50 were played with the
training agents as Red (left side), and 50 were played with them as Blue (right side). This
allows the identification of the effectiveness of the agents depending on the side of the field
they play. Furthermore, putting two agents that use identical neural networks gives insight
into if the agent learned two play as a team, or if it works individually. baselineTeam was
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used as the opponent for all agents, because it was the same team used to train the agents,
and also because it reduced the amount of variables between the results.

Table 4.2 Results after 50 games, playing as RED

Agent Avg. Score Win % Draw % Loss %

A baseline -14.06 0% 22% 78%
A random -0.36 0% 98% 2%
B baseline 0 0% 100% 0%
B random 0 0% 100% 0%
C baseline 0 0% 100% 0%
C random -18 0% 0% 100%

Table 4.2 shows the results after all agents played 50 games, playing as the red team. As
seen in the data, B baseline, B random, and C random were the best performers, drawing all
of their games. A baseline was the worst performer, with an average score of -14.06 and 78%
of the games played lost.

Table 4.3 Results after 50 games, playing as BLUE

Agent Avg. Score Win % Draw % Loss %

A baseline -7.92 0% 56% 44%
A random -18 0% 0% 100%
B baseline 0.08 8% 92% 0%
B random -17.64 0% 2% 98%
C baseline -5.4 0% 70% 30%
C random -18 0% 0% 100%

Table 4.3 presents the performance after all agents played 50 games as the blue team. B
baseline was the best performer, winning 8% of the games and drawing the rest. In contrast,
A random and C random were the worst performers, because they lost all of their games.
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Table 4.4 Aggregate results of tables 4.2 and 4.3

Agent Avg. Score Win % Draw % Loss %

A baseline -10.99 0% 39% 61%
A random -9.18 0% 49% 51%
B baseline 0.04 4% 96% 0%
B random -8.82 0% 51% 49%
C baseline -2.2 0% 85% 15%
C random -18 0% 0% 100%

The aggregate results of all the games played are shown in Table 4.4. The team that
consisted of two B baseline agents was the team that won the most games (4%), and the only
team with a positive average score (0.04). The team of C baseline agents had the second best
average score (-2.2), while also being the second team with the least lost games (15%). At
the end of the spectrum, the team of C random agents lost of all of its games, with an average
score of -18.
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Discussion

Taking into account the results given in Chapter 4, one can assess the effectiveness, potential
problems, and improvements of the key components of the solution. Each of the key
components will be evaluated in the following sections.

5.1 Effectiveness of the Image Preprocessing

Given that all the trained agents showed meaningful results, it is possible to assume that
the images used as inputs for the CNN were successful. To be specific, the fact that the
majority of agents are capable of competing against manually designed agents, like the ones
in baselineTeam, by entering generated images into a neural network, means that both the
images and the network serve their purpose.

However, there exists the possibility of creating better images to use as inputs for the
network. For instance, changing the values given for the objects in the generated image (Table
3.1 may give different results after training. For example, if the values were distributed in a
way that the importance of each object was described by its value, the neural network could
output better feature maps. Other option that could potentially improve the performance of
the agents is using stacks of images as inputs. A stack of images could provide the CNN with
information of the previous movements by the agents playing, which might lead to better
decision making. Admittedly, it was unfeasible to implement and test these changes on time.

5.2 Effectiveness of the Algorithm Implementation

Generally, the implementation was capable of producing capable and coherent agents. Deep-
Mind’s algorithm (Algorithm 2) adapted successfully to Capture the Flag, given that the
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game provided an apt implementation to run games programmatically during the training of
the agents. There were multiple stages during the implementation were bugs appeared, due
to inadequate use of the game’s methods, but all identified bugs were solved.

Nonetheless, it is possible that the algorithm used could have performed better with
different values for the algorithm’s hyperparamaters. As a reminder, the initial decision
was to use the same values used by DeepMind [14, p.10], only changing the number of
exploration frames to 1.5 millions (instead of 1 million) and the number of stacked frames
to 1 (instead of 4). Specifically, increasing the number of exploration frames even further
could result in better agents, but the training time could increase significantly. For reference,
it took 17.46 hours to train each agent on average.

It is important to note that there could be an issue with the training algorithm, by the
way the agents performed when playing as red or blue. According to the results in tables
4.2 and 4.3, all agents but one performed differently depending on the team they played as.
Although a disparity between the results is expected, the difference in results for A random
and B random are particularly concerning. While the team that consisted of A random agents
drew 98% and lost 2% of the games as red, it lost 100% of the games as blue. Likewise, the
team that consisted of B random agents drew 100% of the games as red, and drew 2% and
lost 98% of the games as blue. This problem could be linked with the number of exploration
frames used to train the networks, the architecture of the network, the nature of the game, or
a misdiagnosed bug in the implementation.

5.3 Effectiveness of the Reward Functions

The results in Table 4.4 show that B was the most effective reward function. This is evident
because: the team with B baseline agents was the best performer out of the teams using
baseline-based agents, the team with B random agents was the best performer out of the
teams using random-based agents, and B baseline was the only team that won games. This
corresponds with the assertion that redistributing rewards improves the agent performance
(Section 3.4, as B is the reward function that gives the most feedback to the agent, in turn
allowing it to take better decisions.

With regards to A and C, the aggregated game results show that while C performed
better with baseline-based agents, A performed better with random-based agents. This could
indicate that C helps agents imitating actions to perform better, and A helps agents exploring
randomly to perform better. If the results of the team using A random agents while playing as
blue are considered as an anomaly (Table 4.3), A could be considered a reward function that
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is nearly as effective as B. Given these points, it is possible to consider advancing rewards as
a beneficial addition to the training of agents.

As a final point, the fact that the win rate for all teams (Table 4.4) and agents (Figures
4.8b and 4.10b) is low could be justified by the way the agents were rewarded during training.
Considering the setup of the game, and the way all functions reward good defending, it is
easy to see that all agents find defending easier than attacking. The rewards –and particularly,
the score change– are not sufficient to inform the agents if they are winning, drawing or
losing. Thus, the agent will think that defending well is as good as attacking well. One
analogy to understand this occurs in football: In the eyes of a team, stopping the opponent
from scoring a goal is as valuable as attacking and scoring a goal; but, even if the teams
defends excellently, it won’t be able to win without scoring more than its opponent. Couple
this with the fact that it is much easier for an agent to defend than to attack, given the layout
of the map, and there is a recipe for good defending agents, but poor attackers. It is important
to note that DeepMind’s solution found games were the solution played below human-level
[14, p.3], and Capture the Flag could be comprehended in this group.

5.4 Random or Agent recommended actions?

All results seem to indicate that training agents that use the actions of a manually designed
agent when using the ε − greedy strategy produces better agents. Taking Figure 4.12a as
a reference, all baseline-based agents had higher average scores than their random-based
analogs. Table 4.4 shows that a team composed of two B baseline agents performed better
than a team of two B random agents, with B baseline being the only team that won against
its opponent. The same trend continues with C baseline and C random, as the team with
C baseline agents had an average score of -2.2, while the team with C random agents had
an average score of -18 (it lost all games). Conversely, the team with A baseline agents
performed worse than the team with A random agents, with a difference in average score of
1.81 between both.

One reason that could explain why the agents that used random actions as their ε −
greedy strategy performed worse than the agents that imitated the actions of the agents in
baselineTeam is the number of frames used to train the agents. This suspicion comes from
the instability of the average scores of random-based agents in Figure 4.12a, and the apparent
lack of convergence for A random and B random’s average Q values in Figure 4.11a. It is
likely that increasing the number of frames used for training, and particularly, increasing
the number of frames were ε is reduced (1,000,000 in the tests), could result in more stable
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average scores and converged average Q values for these agents. Incidentally, this could also
improve the results for the agents that imitate the actions of other agents.

Indeed, there is additional potential from training agents using an ε−greedy strategy that
imitates manually implemented agents. To put this into perspective, Table 4.4 shows that a
team consisting of two B baseline agents –that is, agents that used B as their reward function
and imitated the actions of the agents from baselineTeam– managed to win 4% and draw
the remaining of its games. In contrast, playing two baselineTeams against each other for
100 games results in draws for 100% of their games. Due to this, it is possible to conclude
that the B baseline agent performs better than the agents in baselineTeam. Allowing the
possibility of training agents that imitate the actions of manual implementations of better
agents should be considered. By doing this, and allowing the trained agent to learn from a
different assortment of agents, it might learn a policy that is capable of competing against
every possible agent. This would require additional work on the solution implemented, since
it can only learn from one pair of agents (one team) as it stands.
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Conclusion

In conclusion, it was possible to apply Deep Reinforcement Learning to Berkeley’s Capture
the Flag game. DeepMind’s DQN algorithm served as a suitable solution to train agents
capable of playing the game. An algorithm to generate an image from the game state was
implemented, which allowed for a simple, low resolution, representation of the game, while
also providing additional information over the standard image displayed in the game, such as
a defined color for the playing agent, for its partner, and for its rivals. This allows the trained
neural network to be usable by agents in both teams, or with a different index (either the
orange or red player in the red team, or the cyan or blue in the blue team). A way to advance
rewards was applied, making the training agents recognize if they recovered food pellets
from their opponents (by eating them), or if they ate food pellets from their opponent’s side,
even if these haven’t been returned yet. Furthermore, the solution was found to be suitable to
imitate the behaviour of conventionally implemented agents, by using their recommended
actions instead of random actions when using ε-greedy to select the action.

In the future, it would be interesting to test the solution with different training parameters.
That is, changing the number of training episodes, the learning rate in the neural network, the
reward values (for score, or advanced rewards), the implementation of the image generation,
etc. Also, the solution could be improved to allow the training of agents that imitate more
than two agents’ actions. The results of this project could be compared with an alternative
that uses the displayed images from the game. With this project in mind, improvements
in Deep Reinforcement Learning could be studied and applied, particularly DeepMind’s
Rainbow [11] and LIT AI Lab’s RUDDER [9].
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