
* Copyright © 2005 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

335

APPLYING OBJECT-ORIENTATION AND

ASPECT-ORIENTATION IN TEACHING DOMAIN-SPECIFIC

LANGUAGE IMPLEMENTATION*

Xiaoqing Wu, Barrett Bryant and Jeff Gray
Department of Computer and Information Sciences

The University of Alabama at Birmingham
Birmingham, AL, USA 35294-1170

Phone: 1-205-934-2213
{wuxi, bryant, gray}@cis.uab.edu

Marjan Mernik
Faculty of Electrical Engineering and Computer Science

University of Maribor
2000 Maribor, Slovenia
Phone: 386-2-220-7455

marjan.mernik@uni-mb.si

ABSTRACT
In traditional compiler design and programming language courses, the
complexity required for a successful implementation of the course project is
often a major obstacle for many students. This is especially true for courses
focused on the design and implementation of domain-specific languages,
where the language evolves constantly. This paper describes an approach that
allows students to modularize the language constructs of a compiler using
object-orientation (OO) and aspect-orientation (AO). Compared to traditional
methods used in compiler projects, such a modular design can help students
to improve the comprehensibility and changeability of their implementation,
leading to a decrease in the overall complexity.

JCSC 21, 2 (December 2005)

336

INTRODUCTION
Project development is one of the greatest challenges in teaching compiler design

and programming language implementation courses. Many students often have difficulty
in completing a real compiler project from the beginning to the end. This is due to the fact
that the implementation is hard to modularize, specifically because the different phases
of compiler construction (e.g., lexical analysis, syntax analysis, tree generation, static
checking, and code generation) are always tangled together, making the implementation
complex to evolve. The problem is more evident when the target language is continually
evolving, as in the case of Domain-Specific Languages (DSLs) [1], which change more
frequently than general-purpose programming languages. The problem cannot be solved
solely by formal specification-based implementations (as introduced in classical compiler
design textbooks [2]) because most mathematics-based formal specifications do not
cleanly separate the different phases of the compiler implementation and do not provide
a strong library mechanism and I/O capabilities. Consequently, it can be very complicated
to implement low-level semantics because of the difficulty in comprehending the details
and associations among language constructs. Despite the potential applicability of various
formal specifications, students generally implement their project by a manual
implementation or through use of a parser generator such as YACC (Yet Another
Compiler-Compiler - http://dinosaur.compilertools.net/yacc).

To address the problem of complexity in compiler projects, students should be
encouraged to apply modern software engineering principles and concepts in their
implementation. This paper describes an approach that assists a student in constructing
a compiler with greater extensibility and changeability. A side benefit of the approach is
that students have a context for mastering state-of-the-art software engineering
methodologies.

The paper is organized as follows. The next section introduces DSLs and
aspect-oriented programming, followed by a sample DSL that will be used as a case
study. The case study is used to illustrate the application of object-orientation and
aspect-orientation in compiler implementation. The pedagogical benefits in adopting the
approach are summarized in the final section.

BACKGROUND: DOMAIN-SPECIFIC LANGUAGES AND ASPECTS
To understand the remainder of the paper, there are two research areas that are

presented briefly in this section.
Domain-Specific Languages (DSLs). A DSL is a computer language targeted to a
particular kind of problem, rather than a general purpose language aimed at any kind of
software problem. DSLs usually allow solutions to be expressed at the level of abstraction
of the problem domain such that low-level implementation details are hidden and
implemented by the compiler. A typical example of a DSL is SQL, which enables
database users to manipulate data without concern for data storage issues.
Aspect-Oriented Programming (AOP). Aspect-Oriented Programming [3] provides
special language constructs called aspects that modularize crosscutting concerns in
conventional program structures (e.g., a concern that is spread across class hierarchies of
object-oriented programs). In AOP, a translator called a weaver is responsible for

CCSC: Southeastern Conference

337

merging the additional code specified in an aspect language into the traditional language.
A general aspect-oriented language for supporting separation of crosscutting concerns is
AspectJ [4], which is an extension of Java.

SAMPLE LANGUAGE DESIGN: GQL
Although Google™ has already provided dozens of query forms to interface its

advanced search features, the inflexible and untraceable nature of these forms offsets the
popularity of using Google advanced search. The Google Query Language (GQL) is a
DSL that we have developed to provide a user-friendly facility to support advanced
Google search. The language enables query results to be constrained by domain names,
language preference, file format, file date, and keyword location. Moreover, in addition
to traditional text search, it also supports image search, online groups search, news search
and shopping search. A key feature of GQL is automatic syntax and static checking to
insure the user-supplied query is valid. Additionally, each GQL query is represented by
a named program, which makes it possible to search within previous query results (i.e.,
previous queries can be reused to build new queries and consequently make the new
query more precise). The left part of Figure 1 is a sample GQL program called
CSResume, which is used to search sample resumes that contain the exact keyword
“computer science” in the form of a PDF or PS file. As can be seen, CSResume is based
on an existing GQL program named SampleResume (shown in the right of Figure 1).

CSResume sampleResume
search "computer science" search CV|resume,
from SampleResume sample|example, !letters
where type=pdf, ps

Figure 1. Sample GQL programs

Figure 2 shows the initial syntax for GQL. The students are asked to extend the
grammar several times during language evolution. This initial version will be used as an
example to illustrate the benefits ascribed in the next section.

query ::= searchtype keylist fromstmt
 constraints
searchtype ::= WEBSEARCH | IMGSEARCH
keylist ::= key | keylist COMMA key
key ::= word | noword | orwordlist | exactword
word ::= STRING
noword ::= NOT word
orwordlist ::= orword OR orword |
 orwordlist OR orword

orword ::= word | exactword
exactword ::= QSTRING
constraints ::= WHERE constraintlist |
constraintlist ::= filetype|constraintlist filetype
filetype ::= acceptfiletype | rejectfiletype
acceptfiletype ::= TYPE EQ TYPEVALUE
rejectfiletype ::= TYPE NE TYPEVALUE
fromstmt ::= FROM query | FROM filename |
filename ::= STRING

Figure 2. GQL syntax

METHODOLOGY
The goal of the GQL translator is to compile the GQL programs into Google

recognizable search tokens, which are a sequence of user-supplied search keywords
associated with reserved keywords (e.g., filetype:). in addition to the parsing phase, two
more phases need to be built after the abstract syntax tree (AST) is generated. The static

JCSC 21, 2 (December 2005)

338

Figure 3. The compiler implementation framework

checking phase is utilized to ensure the program represents a valid query and the code
generation phase implements the translation.

Figure 3 provides the control flow of DSL implementation. Tools are shown in
ellipses. Shaded boxes contain generated code. To describe the language GQL, the
student needs to first specify the lexical and syntactic rules for each grammar symbol
(terminal or non-terminal) of GQL in a Context-Free Grammar (CFG). The CFG will
serve as input to a specification compiler that extracts lexical rules and syntax rules,
which can be processed by the lexer generator JLex (Java Lexical Analyzer Generator -
http://www.cs.princeton.edu/~appel/modern/java/JLex/) and parser generator CUP
(Parser Generator for Java - http://www.cs.princeton.edu/~appel/modern/java/CUP/) to
generate the corresponding lexer and parser in Java. Additionally, AST nodes are
generated as Java classes and interfaces. The parser uses the embedded action code in
CUP to call the construction methods of these AST classes to build an AST object
structure during the parsing phase. Students can later add AspectJ code for semantic
analysis without any change to the automatically generated Java code. After the lexer,
parser and AST nodes in Java are compiled together and the semantics in AspectJ are
weaved into those Java classes, a GQL compiler is produced. The use of
object-orientation (OO) and aspect-orientation (AO) can improve the ability to evolve
GQL, as described below.

A benefit can be realized by applying the Interpreter pattern [5] to treat each GQL
grammar symbol as a class (terminals are treated as a special class String) in order to
generate Java code for AST nodes. For each production rule in the form of R ::= R1 R2
... Rn, the left-hand-side (LHS) non-terminal R is generated as a Java class, and the
right-hand-side (RHS) of the production R1 R2 ... Rn is generated as a set of attributes of
the class, which are assigned values when the constructor is called. For example, the CFG
production in GQL “query ::= searchtype keylist fromstmt constraints” will generate the
following Java class for non-terminal query:
class Query implements Node{

public String searchtype, Keylist keylist, Fromstmt fromstmt, Constraints constraints;
public Query (String searchtype, Keylist keylist , Fromstmt fromstmt, Constraints constraints){

CCSC: Southeastern Conference

339

this.searchtype = searchtype; this.keylist = keylist;
this.fromstmt = fromstmt; this.constraints = constraints;

}
}

By using the Interpreter pattern, students can easily change and extend the grammar
during compiler development. This is well-suited for GQL implementation because the
language has to be extended as more Google functionalities are increasingly supported.
The student can modify the grammar by class manipulation or extend the grammar using
inheritance. Moreover, because each AST node represented by a Java class is
automatically generated from the syntax grammar, the students do not need to have a
separate phase to design AST nodes and generate the tree.

Each phase of semantics analysis has basic AOP characteristics: the structure and
behavior characteristics are scattered throughout the AST nodes. In order to freely attach
each phase of the semantics analysis to generated AST nodes, the aspect-oriented Visitor
pattern [5, 6] can be utilized in the student compiler implementation. In the Visitor
pattern, all the methods pertaining to one operation of the nodes are encapsulated into a
single visitor aspect, which is independent of other node classes and can be freely added
or deleted from the implementation. Below are the sample aspect specifications for static
check of AST node Acceptfiletype. More details of the aspect-oriented semantics
implementation can be found in [6].

aspect StaticCheck{
 … …// static check for other AST nodes
 public boolean Acceptfiletype.staticCheck(){
 if (typevalue.compareTo("pdf")==0 || typevalue.compareTo("ps")==0 ||

 typevalue.compareTo("doc")==0 || typevalue.compareTo("xls")==0 ||
 typevalue.compareTo("ppt")==0 || typevalue.compareTo("rtf")==0)

 return true;
 else {
 ErrorReport.ErrorMessage("filetype must be pdf, ps, doc, xls, ppt, or rtf");
 return false; }
 }
}

By using an aspect-oriented semantics implementation, all the operations that belong to
one phase can be encapsulated as a separated aspect, which allows additions to be added
to the existing class hierarchy without “polluting” the parser or AST node structure.
Therefore, students can always come back to the early phase during development of later
phases. This feature eases the progress of development as well as facilitates teaching and
grading of compiler projects, because the failure of one phase will not affect the success
of previous phases. Each aspect can either run independently or glued together with other
aspects as one phase by using the pointcut-advice [4] model. In AspectJ, a pointcut is
used to provide an abstraction for one or more phases with before advice associating the
abstraction with other phases. For example, the aspect code below invokes static checking
of each AST node before compiling the language into Google recognizable tokens.

pointcut translate(Node node): target(node) && call(String *.translate());
before(Node node): translate(node){ node.staticCheck (); }

Another benefit of using aspects in semantics implementation is the ability to accumulate
states (e.g., the symbol table) during AST node traversal, which comes from the use of

JCSC 21, 2 (December 2005)

340

the Visitor pattern. Without a visitor, the state would be passed as extra arguments to the
semantics operations or they might appear as global variables.

RESULTS & CONCLUSIONS
This paper describes a pedagogical approach that allows students to construct a DSL

compiler project rapidly using a modular technique. The concept is based on the
application of object-orientation and aspect-orientation to compiler design. Compared to
the traditional methods used in compiler course projects, students using OO and AO can
improve the comprehensibility and changeability of their compiler project, which leads
to a decrease in the overall complexity of their implementation. When the language
definition is frequently changed (e.g., evolution of a domain-specific language), the
benefits are even more evident.

A language called GQL is presented in the paper as an example target language for
a compiler project. In the implementation of the GQL compiler, the lexical and syntax
analysis are integrated as one phase, which automatically generates lexer, parser and AST
classes for the language. This releases the students from spending particular effort on the
phase of tree generation. The framework enables a student to build the GQL compiler
through a series of phases with clear separation of each phase in the implementation. The
separation of concerns among compiler phases eases the development task for students.
There is initial evidence to support a claim that teaching compiler and language concepts
is improved, as well as a reduction in the grading effort. The implementation strategy
helps students understand and master state-of-the-art software engineering concepts in
the context of a compiler course.

REFERENCE

[1] van Deursen, A., Klint, P., Visser, J., Domain-specific languages: an annotated
bibliography, ACM Sigplan Notices, 35 (6), 26-36, 2000.

[2] Aho, A. V., Sethi, R., Ullman, J. D., Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[3] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
Irwin, J., Aspect-oriented programming, Proceedings of the 11th European Conf.
Object-Oriented Programming (ECOOP), LNCS 1241, 220-242, 1997.

[4] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. G., An
Overview of AspectJ. Proceedings of the 15th European Conf. on Object-Oriented
Programming (ECOOP), LNCS 2072, 327–355, 2001.

[5] Gamma, E., Helm, R., Johnson, Vlissides, R., J., Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Wu, X., Roychoudhury, S., Bryant, B., Gray, J., Mernik, M., A two-dimensional
separation of concerns for compiler construction, Proceedings of the ACM
Symposium on Applied Computing (SAC), 1365-1369, 2005.

