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Abstract

This dissertation presents three proofs of Mostow's Rigidity Theorem.
This result states that two compact hyperbolic manifolds of dimension n ≥ 3
with isomorphic fundamental groups are isometric. Thurston's proof inves-
tigates the analytical properties of the boundary map to show that it is con-
formal. Gromov's proof uses homology theory, Gromov norm and simplices
of maximal volume in hyperbolic space. The approach of Besson, Courtois
and Gallot gives a characterization of locally symmetric metrics from which
Mostow rigidity easily follows. We also present the Dehn-Nielsen-Baer theo-
rem which is an important result the about mapping class group of a surface.
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Introduction

Mostow's rigidity theorem is seminal in the theory of rigidity. It is one of
the most in�uential results of the last �fty years in geometry and topology.
This dissertation attempts not only to explain and prove it, but also to
illustrate the wide range of mathematical techniques this theorem is linked
to. Thus, rather than simply proving Mostow rigidity in the simplest possible
way, we give three proofs of it.

Assume that two Riemannian manifolds have isomorphic fundamental
groups. From a geometer's point of view, this is a topological, unprecise
information that does not bring much geometric information. However, under
the hypotheses of Mostow's rigidity theorem, having the same fundamental
group implies being isometric ! Precisely,

Theorem. Let M , N be compact hyperbolic n-manifolds, n ≥ 3. If π1(M) is
isomorphic to π1(N), then M and N are isometric. Moreover, the isomor-
phism of fundamental groups is induced by a unique isometry.

Moreover, this theorem is false in dimension 2 (see the beginning of Chap-
ter 2). The proofs that we are going to present include tools such as the
boundary at in�nity, quasi-isometries, conformal maps, some analysis results,
ergodic theory, homology theory and di�erential geometry.

Chapter 1 collects basic facts that will be needed subsequently and pro-
vides some examples of hyperbolic manifolds. Although it is not necessary
to read it, its presence is meant to emphasize that it is a good idea to have
some intuition in hyperbolic geometry before jumping into proofs of Mostow
rigidity.

The common denominator of the next chapters is a construction known
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8 INTRODUCTION

as the boundary map. Whereas the frequent use of universal covers should
not be a surprise, the fact that much of the work will be carried out on the
boundary at in�nity of the universal covers of our manifolds is perhaps more
interesting. This construction is given in Section 2.2.

Besides the construction of the boundary map, Chapter 2 discusses Mostow
rigidity and presents a version of Mostow's proof modi�ed by Thurston. Us-
ing geometric arguments, hard analytical facts and ergodic theory, one proves
that the boundary map is conformal and thus gives rise to an isometry be-
tween the manifolds. A proof of the ergodicity of the geodesic �ow on �nite-
measure hyperbolic manifolds is given in Section 2.4.

Chapter 3 presents Gromov's proof of Mostow rigidity. It uses a ho-
mological invariant of a manifold known as Gromov norm and the volume of
simplices in hyperbolic space. The main result of that chapter is that Gromov
norm and the volume of hyperbolic manifolds are proportional. Therefore
one �rst proves that the manifoldsM and N have the same volume. The end
of the proof studies the e�ect of the boundary map on simplices of maximal
volume.

Chapter 4 focuses on the approach by Besson, Courtois and Gallot. They
use the entropy of a metric to characterize the locally symmetric metrics
among all negatively curled metrics on manifolds related by a homotopy
equivalence. Mostow rigidity then follows as an easy corollary. This method
mainly uses techniques from di�erential geometry.

Chapter 5 deals with the Dehn-Nielsen-Baer Theorem. Surfaces are out-
side the scope of Mostow rigidity because of the hypothesis on dimension.
However, hyperbolic geometry and quasi-isometries can be used to prove this
result about surfaces which is closely related to a corollary of Mostow rigid-
ity. Let Σg be a surface of genus g ≥ 1. The Dehn-Nielsen-Baer Theorem
states that the group of outer automorphisms of π1(Σg) is isomorphic to the
generalized mapping class group of Σg.

This dissertation was written so as to be fairly self-contained and acces-
sible to students who have studied mathematics for about four years. Our
philosophy was to give enough information and hints so that the reader can
�ll in the last details by himself. Our hope is to transmit some of the beauty
of this subject where many areas of mathematics meet. Concerning prereq-
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uisites, instead of writing a list of concepts that should be known before
reading this, we suggest the reader to browse through Chapter 1 and to �nd
out by himself how comfortable he feels with the vocabulary.
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Chapter 1

Some hyperbolic geometry

This chapter gathers facts about hyperbolic geometry that will be used
often repeatedly in this dissertation. Readers familiar with the topic should
skip this and return only if necessary.

Since most results presented in this work involve hyperbolic manifolds,
we devote Section 1.2 to constructions of some of the classical examples.

Throughout this dissertation, we will only consider complete connected
orientable manifolds. This will be not be repeated throughout. However,
these hypotheses will be written out in the main results' statements. Also, hy-
perbolic will always mean real hyperbolic and manifolds are without bound-
ary (unless otherwise indicated).

1.1 Basic facts

In this section, we quickly introduce some models of hyperbolic geometry,
the boundary at in�nity (which will be ubiquitous in this thesis), the clas-
si�cation of isometries in hyperbolic space, conformal maps and Busemann
functions. Only a few proofs are given, so the reader who is new to these
concepts should consult other references. This material has been gathered
here so as to make this thesis more self-contained, but not to provide an
actual introduction to hyperbolic geometry.

Hyperboloid model

13



14 CHAPTER 1. SOME HYPERBOLIC GEOMETRY

We �rst de�ne hyperbolic space using the hyperboloid model as follows:

Hn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + . . .+ x2

n − x2
n+1 = −1, xn+1 > 0}.

For p ∈ Hn, the restriction of the Euclidean scalar product on Rn+1 to TpHn is
positive de�nite. This endows Hn with a Riemannian metric. In this model,
the isometries of Hn are given by

Isom(Hn) = {M = (mij) ∈ GL(n+ 1,R) : M tIn,1M = M, mn+1,n+1 > 0},

where

In,1 =


1

. . .

1
−1

 .

The group Isom(Hn) acts (n + 1)-transitively on Hn. This means that
for points p, q ∈ Hn and orthonormal frames at these points, there ex-
ists an isometry of Hn mapping one orthonormal frame to another. Be-
sides, it is an exercise in Riemannian geometry to show that the curve
t 7→ (0, . . . , 0, sinh t, cosh t) is a geodesic. Using these facts, it is easy to
see that any geodesic is given by the intersection of an (Euclidean) hyper-
plane through the origin and Hn. Hyperbolic hyperplanes are totally geodesic
complete submanifolds of Hn. This means that geodesics in the hyperplane
are geodesics in Hn and that they can be in�nitely extended within the hy-
perplane.

Ball model

Another model of hyperbolic space can be obtained by stereographic pro-
jection of the hyperboloid onto the unit sphere in Rn, based at the point
(0, . . . , 0,−1). This model is especially useful for visualizing H3. Geodesics
are Euclidean circles cutting orthogonally the boundary Sn−1 of the unit n-
ball. Likewise, hyperbolic hyperplanes come from Euclidean spheres cutting
Sn−1 orthogonally.

Upper half-space model
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A third model is obtained by inverting the unit ball model through a
sphere of radius

√
2 centered at (0, . . . , 0,−1). This maps the unit ball onto

the upper half-space

{(x1, . . . , xn) ∈ Rn : xn > 0}.

Geodesics are either Euclidean semi-circles orthogonally cutting the hori-
zontal plane or vertical lines. Similarly, hyperplanes are Euclidean hemi-
spheres meeting the horizontal plane orthogonally or vertical hyperplanes.
This model is also useful for visualization purposes and makes some calcula-
tions easier.

The boundary at in�nity

It would not be too big an exaggeration to state that we will encounter
maps on the boundary at in�nity of Hn more often than maps on the hy-
perbolic space itself. The three proofs of Mostow rigidity expounded in this
thesis will involve a map f̃ : Hn → Hn which is the lift of a homotopy equiv-
alence between compact hyperbolic manifolds. Our goal is to straighten this
lift to an isometry. This will always be done by studying (in various ways)
the e�ect of f̃ on the boundary at in�nity of Hn.

Let X be a nonpositively curled manifold. A geodesic ray is a geodesic
ϕ : [0,∞) → X. Two geodesic rays ϕ1 and ϕ2 are asymptotic if the
distance between ϕ1(t) and ϕ2(t) stays bounded for all t ≥ 0. This de�nes
an equivalence relation on the set of geodesic rays in X, denoted by ∼. The
boundary at in�nity of X is de�ned to be

∂X = {geodesic rays in X}/ ∼ .

The equivalence class of a geodesic ray ϕ is denoted by ϕ(∞). We also write

X̄ = X ∪ ∂X.

We endow the space X̄ with the cone topology . Fix a basepoint x0 ∈ X.
A basis of neighborhoods is given by open sets in X and sets of the form

{y ∈ X̄ : ∠(y, ξ) < ε, d(x0, y) > r} for ε > 0, r > 0, ξ ∈ ∂X.

This topology does not depend on the choice of basepoints. It is easy to see
that in the ball model, Hn is homeomorphic to the closed unit ball in Rn.
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Also, since isometries send open basis sets to themselves, an isometry of X
naturally extends to a homeomorphism of X̄.

For the universal cover X̃ of a complete nonpositively curled manifold X,
the boundary at in�nity can be identi�ed with Sn−1 by choosing any x ∈ X̃
and �looking around�. More precisely, for x ∈ X̃, the map

T 1
x X̃ −→ ∂X̃

v 7−→ γv(∞)

is a homeomorphism (as usual γv denotes the geodesic with initial tangent
vector v). Very often, Sn−1 will be implicitly identi�ed with ∂X̃.

Transitivity properties of the group of isometries ofHn often allow to make
simplifying assumptions. This will sometimes be used without reference.

Proposition 1.1.

1. Isom(Hn) acts transitively on the set of k-hyperplanes, 1 ≤ k ≤ n− 1.

2. Isom(Hn) acts n-transitively on the boundary at in�nity of Hn.

3. In the upper half-space model, the set of isometries �xing the point at
in�nity equals the group of Euclidean similarities.

Classi�cation of isometries

The vocabulary we now introduce will be used repeatedly. Isometries
of hyperbolic space split into three categories. It is useful to know two
equivalent de�nitions. A nontrivial isometry γ ∈ Isom(Hn) is

• elliptic if it �xes a unique point in Hn;

• parabolic if it �xes a unique point at in�nity;

• hyperbolic if it �xes two points at in�nity.

For the alternate de�nition, de�ne the displacement function of an isom-
etry γ of Hn to be

Dγ = inf
x∈Hn
{d(x, γ.x)}.

Then γ is
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• elliptic if Dγ = 0 and the in�mum is attained;

• parabolic if Dγ = 0 and the in�mum is not attained;

• hyperbolic if Dγ > 0 and the in�mum is attained.

For the former and the latter de�nition, it is an exercise to show that all
the cases are exhausted and that they are equivalent. See [23, Prop. 2.5.17]
for a complete proof.

It is useful to understand why hyperbolic isometries are going occur most
often in this dissertation. Indeed, complete hyperbolic manifolds of �nite
area arise from quotients of Hn by a lattice Γ in Isom(Hn). To obtain a
manifold, the action of Γ on Hn should have no �xed points, so Γ should
contain no elliptic elements.

Whereas �xed points rule out elliptic isometries, compactness exludes
parabolic isometries. Let γ ∈ Γ. Since the function x 7→ d(x, γ.x) is con-
tinuous in hyperbolic space, compactness of the manifold implies that the
in�mum must be attained and so γ cannot be parabolic. Thus γ must be
hyperbolic. As we will primarily focus on compact hyperbolic manifods, we
will mainly encounter hyperbolic isometries. This will be illustrated in the
examples given in Section 1.2.

In fact, the condition that Γ should not contain elliptic isometries can be
rephrased in a convenient way, namely that Γ has to be torsion-free. Assume
that an element γ has torsion. This means that the orbits of γ are �nite. In
nonpositive curvature, there is a meaningful concept of center of mass of a
bounded set (see [6, Prop. 2.7]. The center of mass of that �nite orbit must
be �xed by γ, but γ should have no �xed points. This discussion proves
most of the following result. It will be used in Chapter 2 to get an algebraic
version of Mostow's rigidity theorem.

Proposition 1.2. There is a natural bijection

{isometry classes of complete hyperbolic manifolds of �nite volume}
↔

{conjugacy classes of torsion-free lattices in Isom(Hn)}.

Moreover, compact manifolds correspond to cocompact lattices.

Proof. There just remains to see that such manifolds are isometric if and
only if the underlying lattices are conjugate. This is an easy exercise.
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Conformal maps and inversions

The interplay between isometries of Hn and maps on the boundary Sn−1

will be crucial in Chapter 2. We mentioned that isometries of Hn induce
homeomorphisms of Hn. Knowing what kind of boundary maps give rise to
isometries of Hn will be essential. Here is the kind of maps that will arise.

De�nition 1.3. Let X, Y be Riemannian manifolds. A di�eomorphism
f : X → Y is conformal if there exists a smooth function α : X → R+ such
that for all x ∈ X,

〈Df(u), Df(v)〉f(p) = α(p)〈u, v〉p for all u, v ∈ TpX.

Notice that conformality of f is equivalent to the fact that f preserves
angles.

We are interested in conformal maps because they arise naturally from
isometries of Hn. One can prove that any isometry of Hn is a composition of
re�ections through (n− 1)-hyperplanes (see [6, Prop. 2.17]). Using the ball
model, it is easy to see that symmetries of Hn are in one-to-one correspon-
dence with inversions of Sn−1.

Theorem 1.4. Denote by Conf(Sn−1) the group of conformal maps of Sn−1.
For n ≥ 2, the natural map

Isom(Hn) −→ Conf(Sn−1)

is an isomorphism.

Proof. Well-de�nedness and injectivity were explained above. To prove sur-
jectivity, one needs that for n ≥ 2, the conformal group of Sn−1 is generated
by inversions. This is a nontrivial fact which can be found in [2].

Busemann functions

This paragraph will only be needed in Chapter 4, so it is recommended
to skip it until it is needed. Busemann functions formalize the notion of
distance to in�nity. In the following, we assume X to be a nonpositively
curved manifold and ϕ a geodesic ray in X. Let also ξ = ϕ(∞).
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De�nition 1.5. For x0 = ϕ(0), the Busemann function at x0 centered
at ξ is de�ned to be

Bx0(x, ξ) = lim
t→∞

(d(x, ϕ(t))− t).

Busemann functions behave nicely with respect to change of basepoints.
More precisely, for x1, x2 ∈ X and ξ ∈ ∂X as above, one has

Bx0(·, ξ)−Bx1(·, ξ) = C,

where the constant C depends on x0 and x1.
Horospheres are level sets of Busemann functions. More precisely, the

horosphere at ξ through x1 is the set

HS(x1, ξ) = {x ∈ X : Bx1(x, ξ) = 0}.
To visualize a Busemann function Bξ,x0 , it is easiest to work in the upper

half space model, putting ξ at ∞. Then horospheres are horizontal planes.
The Busemann function Bx0(x1, ξ) is the signed distance between horospheres
through x0 and x1 respectively. In this case, it is the vertical hyperbolic dis-
tance between the two horizontal planes. If ξ lies on the horizontal boundary
hyperplane, then any horosphere at ξ is a Euclidean sphere tangent to the
horizontal plane at ξ. In the ball model, horospheres are also Euclidean
spheres tangent to the boundary of the unit ball.

1.2 Examples of hyperbolic manifolds

In this section, we shortly introduce two kinds of constructions of hyper-
bolic manifolds. First, we show how to put a hyperbolic metric of �nite area
on all genus g ≥ 1 punctured surfaces, except the torus that does not admit
a hyperbolic structure. This is done by directly constructing fundamental
domains in H2. Next, we provide a construction of hyperbolic arithmetic
manifolds that provides less geometric intuition but is very general, although
we introduce one example only.

Hyperbolic surfaces

The canonical example is provided by Σg, the closed oriented genus
g surface, when g ≥ 2. Recall that Σg is obtained by gluing a 4g-gon
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with edges labelled a1, b1, a
−1
1 , b−1

1 . . . , ag, bg, a
−1
g , b−1

g via the gluing pattern

a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g . Since the sum of the angles of a Euclidean 4g-gon
is (4g − 2)π, the resulting CW complex cannot be embedded in R3 when
g ≥ 2. Contrary to this, �at tori can be embedded in R3 since they arise
from a quadrilateral whose angles sum up to 2π.

Observe that one can construct hyperbolic 4g-gons whose angles sum
up to 2π. To see this, use the ball model (where Euclidean angles equal
hyperbolic angles). A tiny 4g-gon is �almost Euclidean�, whereas a very
large 4g-gon has angles close to 0. By continuity, some scaling of a 4g-gon
has angles whose sum is 2π. To obtain a hyperbolic manifold of the form
H2/Γ, the gluing has to be done via isometries. The next elementary result
ensures that such isometries exist.

Proposition 1.6. Given two distinct geodesics γ1,γ2 in Hn, there exists a
unique geodesic ϕ in Hn that crosses orthogonally γ1 and γ2.

Sketch of proof. Work in the ball model. The two geodesics are contained in
an embedded copy of H2. Then use a continuity argument involving the set
of geodesics cutting orthogonally γ1.

Thus, to endow the surface Σg, g ≥ 2 with a hyperbolic metric, construct
such a 4g-gon in H2 and glue its sides via the pattern described above. Fig-
ure 1.1 shows a regular octagon with angles equal to π/4. The dashed lines
are the axes of hyperbolic isometries mapping one side to another.

Some manifolds do not admit a hyperbolic metric. Recall that if S a
closed surface, the Gauss-Bonnet theorem implies that∫

S

K = 2πχ(S),

where K is the Riemann curvature of S and χ(S) is the Euler characteristic
of S. In particular, the sphere and the torus (of Euler characteristic 1 and 0
resp.) do not admit a hyperbolic metric.

Concerning tori, the situation is di�erent when they are punctured. De-
note by Σg,p the genus g surface with p punctures. We are going to describe
how to put a complete hyperbolic metric of �nite area and in�nite diameter
on Σg,p for all g ≥ 1, p ≥ 1.

Let us start with Σ1,1. A quadrilateral Q in H2 is said to be ideal if all
its vertices lie on the boundary at in�nity of H2. By Proposition 1.6, there
exists geodesics γ, ρ cutting orthogonally pairs of opposites sides of Q. These
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a1

b1

a−1
1

b−1
1

a2

a−1
2

b−1
2

b2

Figure 1.1: Construction of a hyperbolic structure on Σ2

geodesics give rise to hyperbolic isometries g and h that both map a side of
Q to its opposite side. Let Γ = 〈g, h〉. It is easy to see that Γ is the free
group on two elements, which is incidentally the fundamental group of Σ1,1

(observe that Σ1,1 deformation retracts to a wedge of two circles). Gluing
opposite sides of Q yields a 1-punctured torus. Although the generators of
Γ are both hyperbolic, Γ contains parabolic elements, for instance ghg−1h−1.
This is consistent with the discussion on page 17 and the fact that Σ1,1 is
noncompact.

This construction easily generalizes. To construct Σ2,p, start with an
octagon whose vertices lie on the boundary of H2 and add p− 1 �bumps� to
the sides a1 and a−1

1 as shown on Figure 1.2. Join again these bumps with
geodesic lines cutting them orthogonally and glue the polygon accordingly.
It is a good exercise for visualization to observe that this yields Σ2,p.

Arithmetic constructions

Arithmetic lattices are an essential (and huge) class of lattices. By the
way, their importance reaches far beyond hyperbolic geometry. Intuitively,
arithmetic lattices are obtained by �taking integer points� in a semisimple
Lie group. The canonical example is SL(n,Z), which is a lattice in SL(n,R).
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Figure 1.2: Construction of a hyperbolic structure on Σ2,3

However, in order to have a reasonable concept arithmetic lattice should be
stable under some basic operations, such as isomorphisms, modding out by
compact subgroups and passing to �nite index subgroups. This is why the
formal de�nition of arithmetic lattices is somewhat lengthy � we just mention
to satisfy the curiosity of the interested reader. We will not explain all the
vocabulary used in the de�nition.

De�nition 1.7. Let Γ be a lattice in a semisimple Lie group G. Γ is an
arithmetic lattice in G if there exists

• a closed connected semisimple subgroup G′ of some SL(l,R) that is
de�ned over Q,

• compact normal subgroups K < G and K ′ < G′,

• an isomorphism ϕ : G/K → G′/K ′,

such that ϕ(Γ) is commensurable with G′Z. Here Γ and G′Z are the images of
Γ and G′Z in G/K and G′/K ′ respectively.

For more information on arithmetic lattices, the reader should consult
[15].

The following tool is useful to show that spaces of lattices (and thus man-
ifolds) are compact. Given a lattice Λ in Rl, we de�ne min(Λ) = min{‖v‖ :
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v ∈ Λ}, where ‖ · ‖ is the Euclidean norm.

Theorem 1.8. Mahler Compactness Criterion. Let L be a space of
covolume 1 lattices. Then L is precompact if and only if there exists ε > 0
such that min(Λ) ≥ ε for all Λ ∈ L.

Example 1.9. Cocompact arithmetic lattice. De�ne quadratic forms

h−(x) = x2
1 + . . .+ x2

n −
√

2x2
n+1

h+(x) = x2
1 + . . .+ x2

n +
√

2x2
n+1

for x = (x1, . . . , xn+1) ∈ Rn+1.

Recall that given a Lie group H, we denote the connected component of
the identity by H◦. Let G = SO(h−)◦ and let Γ = G ∩ SL(n+ 1,Z[

√
2]) We

are going to show that Γ is a cocompact lattice in G. At �rst sight, it is not
even obvious that Γ is discrete in G (indeed, Z[

√
2] is not discrete in R).

For simplicity, write R = Z[
√

2]. To show discreteness of Γ, let σ be
the (only) nontrivial Galois automorphism of R given by σ(

√
2) = −

√
2.

Let ∆ = (id, σ). Since ∆(1) = (1, 1) and ∆(
√

2) = (
√

2,−
√

2) are linearly
independent over R, it follows that ∆(Γ) is discrete in GL(n+1,R)×GL(n+
1,R). An elementary calculation shows that ∆(Γ) ⊂ G×SO(n+1). Since the
second factor is compact, the image of Γ in the �rst factor must be discrete.
Hence Γ is discrete in G.

We use the fact that G/ StabG(x0) is homeomorphic to G.x0. In our
situation, the lattice ∆(Rn+1) of R2(n+1) plays the role of x0. Thus

∆(Γ) = StabG×SO(n+1)(∆(Rn+1)) ' (G× SO(n+ 1)).(∆(Rn+1)).

We claim that the space of lattices (G× SO(n+ 1)).∆(Rn+1) has a positive
minimum. Another elementary calculation shows that the value of the func-
tion h(x) := h−(x)h+(σ(x)) is an integer for all x ∈ Rn+1. The neighborhood
of 0 in Rn+1 × Rn+1 de�ned by {(u, v) ∈ Rn+1 × Rn+1 : |h−(u)h+(v)| < 1}
contains no other elements of ∆(Γ). Indeed, if h−(x)h+(σ(x)) = 0 for some
x ∈ Rn+1, then h−(x) must be zero. Thus h+(σ(x)) = 0, and so x = 0. This
proves the claim. It now follows immediately that G.Rn+1 has a positive
minimum. By Mahler's compactness criterion 1.8, G.Rn+1 must be precom-
pact.

It remains to show thatG/Γ is closed. Let (Λr)
∞
r=1 be a sequence of lattices

in (G × SO(n + 1)).∆(Rn+1) converging to some lattice Λ in Rn+1 × Rn+1.
The values of h on vectors of Λi are contained in a discrete set. For an index
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i0 su�ciently large, the function h assume the same values on some ordered
bases of Λi0 and Λ. This means that there is an element of G × SO(n + 1)
mapping Λi0 to Λ. In particular, the �rst factor of Λ is in G.Rn+1. Thus
G/Γ ' G.Rn+1 is both precompact and closed. This proves that G/Γ is
compact.

A last detail has to be taken care of. Nothing tells us that Γ is torsion-
free. Nevertheless, the following result asserts that a subgroup of Γ of �nite
index has that desired property.

Theorem 1.10. Selberg's lemma. Let G be a linear group and Γ < G a
subgroup of �nite index. Then Γ has a torsion-free subgroup of �nite index.

Thus, Selberg's lemma provides us with a torsion free subgroup Λ < Γ of
�nite index and thus we obtain a hyperbolic manifold G/Λ.



Chapter 2

Mostow's Rigidity Theorem

As mentioned in the introduction, this chapter presents Thurston's proof
of Mostow's rigidity theorem. This theorem was originally proved in 1967 by
the American mathematician George Mostow in [16]. Some of its ideas are
present in Thurston's proof but the two proofs remain essentially di�erent.

Theorem 2.1. Mostow rigidity. Let M , N be compact hyperbolic n-
manifolds with n ≥ 3. Assume that M and N have isomorphic fundamental
groups. Then the isomorphism of fundamental groups is induced by a unique
isometry.

Besides this geometric version, there is an equivalent algebraic version
of Mostow rigidity. The proof of the equivalence is a simple application
of Proposition 1.2, which translates information about manifolds into the
language of lattices.

Theorem 2.2. Mostow rigidity, algebraic version. Let Γ1, Γ2 be co-
compact lattices in Isom(Hn), with n ≥ 3. If they are isomorphic, then they
are conjugate in Isom(Hn).

Let us introduce a de�nition to attempt to show the signi�cance of Mostow's
rigidity theorem.

De�nition 2.3. A lattice Γ in a Lie group G is said to be strongly rigid
or Mostow rigid if, given a lattice Γ′ in another Lie group G′ and an
isomorphism ϕ : Γ→ Γ′, ϕ extends to a unique isomorphism G→ G′.

It follows the algebraic version of Mostow's rigidity theorem that we have
strong rigidity when G = G′ = Isom(Hn), n ≥ 3 and Γ and Γ′ are funda-

25
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mental groups of compact hyperbolic manifolds. The problem of rigidity of
lattices in Lie groups is very general. Theorems 2.1 and 2.2 were the �rst re-
sults of this kind and many rigidity theorems were discovered after Mostow's
breakthrough.

Throughout this dissertation, we will deal with the geometric version of
Mostow's rigidity. Also, we will focus on compact manifolds. Nevertheless,
Prasad showed that the same statement holds for �nite-volume complete
hyperbolic manifolds (see [19]).

Before going into corollaries and the proof of Mostow rigidity, let us dis-
cuss one of the hypotheses. The assumption that n ≥ 3 is essential. In
the three proofs that will be given, this hypothesis will be used in very dif-
ferent ways. To �nd an elementary counter-example to Mostow rigidity in
dimension 2, �nd two octagons in H2 whose sum of angles is 2π and that are
not isometric. They form fundamental domains for nonisometric surfaces of
genus 2.

In fact, Teichmüller theory tells us that the space of all marked hyperbolic
structures on Σg is homeomorphic to R6g−6 (see [7, Chapter 9]). Therefore,
such manifolds can be deformed and are not rigid. The whole point of Mostow
rigidity is that this kind of deformations cannot happen in higher dimensions.

2.1 Consequences and outline

We now mention some consequences of Mostow rigidity. Assume that two
compact hyperbolic manifolds M and N are homeomorphic. A priori, there
is no reason for M and N to have the same geometric invariants (such as
volume, diameter, injectivity radius). However, Mostow rigidity implies that
this actually happens.

Corollary 2.4. For compact hyperbolic manifolds, geometric invariants are
topological invariants.

Proof. The manifolds M and N are homeomorphic so they have isomorphic
fundamental groups. Therefore they are isometric and have the same geo-
metric invariants.

Given a group G, the group of outer automorphisms of G is de�ned to
be Out(G) = Aut(G)/ Inn(G), where elements of Inn(G) are inner automor-
phisms of G. For a �xed basepoint x0 ∈M , any isometry ϕ of M induces an
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automorphism
ϕ∗ : π1(M,x0) −→ π1(M,ϕ(x0)).

In order to get an automorphism of π1(M), we have to choose a path from x0

to ϕ(x0). Thus we do not obtain a canonical map Isom(M)→ Aut(π1(M)).
However, observing that choosing di�erent paths results in a conjugation by
an element of π1(M,x0), modding out by Inn(π1(M)) yields a canonical map
from Isom(M) to Out(π1(M)).

Corollary 2.5. LetM be a compact connected orientable hyperbolic n-manifold
with n ≥ 3. Then the natural map

Isom(M) −→ Out(π1(M))

F 7−→ [F∗]

is an isomorphism. Therefore Out(π1(M)) is �nite.

Proof. Only the proof of surjectivity uses Mostow's rigidity. Simply apply
the theorem with N = M . To prove injectivity, let ϕ be a map inducing
the identity outer automorphism of π1(M). Lift ϕ to an isometry ϕ̃ of Hn.
Then ϕ̃ is homotopic to the identity map. Homotopies move points by a
bounded distance, so ϕ̃ equals the identity of the boundary at in�nity of Hn.
Theorem 1.4 implies that ϕ̃ is the identity isometry. Thus ϕ = id.

There remains to prove that Isom(M) is �nite. An isometry of M is
uniquely determined by its action on an n-frame Fp at some point p ∈M via
the exponential map. Assume that there are in�nitely many isometries ofM .
By compactness ofM , there exist distinct isometries ϕ, ϕ′ ofM sending Fp to
frames arbitrarily close to each other. This implies that ϕ is homotopic to ϕ′.
By the same argument as in the last paragraph, we infer that ϕ = ϕ′, which
is a contradiction. Therefore, Isom(M) is �nite and so is Out(π1(M)).

Before plunging into the proof of Mostow rigidity, we �rst give an outline
of Thurston's proof. Assume that M and N are compact hyperbolic n-
manifolds, n ≥ 3, with isomorphic fundamental groups. The �rst three steps
are described in Section 2.2 and give a general construction for a bound-
ary map. This will be used in all three proofs of Mostow rigidity, whereas
subsequent steps are speci�c to Thurston's proof.

1. Since the universal covers M̃ and Ñ are aspherical, there is a homotopy
equivalence f : M → N .



28 CHAPTER 2. MOSTOW'S RIGIDITY THEOREM

2. This map lifts to a π1(M)-equivariant quasi-isometry f̃ : M̃ → Ñ .

3. Geometric lemmas show that f̃ induces a homeomorphism ∂f̃ : ∂M̃ →
∂Ñ that is π1(M)-equivariant.

4. The boundary map is quasi-conformal. As a result of a fact of hard
analysis, ∂f̃ is di�erentiable almost everywhere.

5. It follows from the ergodicity of the geodesic �ow on compact hyperbolic
manifolds, that the action of π1(M) on Sn−1 ' ∂M̃ is ergodic.

6. This together with a geometric argument forces the di�erential of ∂f̃
to be conformal

7. Another fact from analysis implies that ∂f̃ is a conformal map.

8. Thus ∂f̃ induces an π1(M)-equivariant isometry F̃ : M̃ → Ñ that
descends to an isometry F : M → N .

To make the end of the proof look shorter and clearer, steps 5 and 6 will
be postponed after step 8.

2.2 The boundary map

The compact hyperbolic manifoldM is our main object of interest. How-
ever, most of the proof will be carried out on the universal cover M̃ of M .
Since M̃ is hyperbolic space, we can use its boundary at in�nity. The gist of
the proof is to �nd a π1(M)-equivariant map f̃ between the universal covers.
Denote by

ρ : π1(M)→ π1(N)

the isomorphism of fundamental groups. Equivariance means that f(γ.x) =
ρ(γ).f(x), for x ∈ M̃ and γ ∈ π1(M) = π1(N). This map will induce a
homeomorphisms of the boundaries. The study of this boundary map is the
core of Thurston's proof. The next result we quote tells us how the universal
cover of a hyperbolic manifold looks like.

Theorem 2.6. Hadamard-Cartan. Let X be a complete manifold with
nonpositive sectional curvature. Then the exponential map exp : TpX → X
is a covering map for all p ∈ X. In particular, the universal cover X̃ is
di�eomorphic to Rn and X is a K(π, 1) space
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Thus, the universal covers M̃ and Ñ are isomorphic to Hn which is con-
tractible and so the manifolds M and N are K(π, 1) spaces, where π =
π1(M) ∼= π1(N). We recall for a group G, a topological space Y is K(G, 1)
if π1(Y ) = G and πk(Y ) = 0 for all k ≥ 2.

SinceK(π, 1) spaces are uniquely determined up to homotopy equivalence
(see [11, Theorem 1B.8]), the manifolds M , N are homotopically equivalent.
Let f : M → N and g : N → M be continuous maps such that f ◦ g ∼ IdN
and g◦f ∼ IdM . Lift these maps to the universal cover such that the diagram
in Figure 2.1 commutes up to homotopy.

M̃

p1

��

f̃
**
Ñ

p2

��

g̃

jj

M
f

**
N

g
jj

Figure 2.1: Commutativity of f and its lift

We also require another key property of the lifts. The function f̃ can be
constructed so that it is π1(M)-equivariant. Moreover, by a classical result
from di�erential topology, f and g can be assumed to be C1.

Since f is C1, the map z 7→ d(f(x),f(z))
d(x,z)

is continuous. Compactness of
M implies that this map is bounded and this means that f is K-Lipschitz
for some K > 0. As a consequence of the �rubberband principle�, f̃ is also
Lipschitz. This principle means that being Lipschitz in small scale implies
being Lipschitz in large scale. Precisely, pick x and y ∈ M̃ and subdivide the
path between x and y in small neighborhoods such that the covering map p1

is a local isometry. The same argument implies that g is K-Lipschitz.
We will shortly see that f̃ and g̃ are quasi-isometries, which is de�ned as

follows.

De�nition 2.7. Let X, Y be metric spaces and f : X → Y . The map f is
said to be a (K, ε)-quasi-isometry if

1. for all x, x′ ∈ X,

1

K
· d(x, x′)− ε ≤ d(f(x), f(x′)) ≤ K · d(x, x′) + ε.
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2. the map f is coarse onto, that is, there exists C > 0 such that every
y ∈ Y lies in a C-neighborhood of some f(x).

Since f̃ and g̃ are K-Lipschitz, they satisfy the upper bound of the last
de�nition. Strictly speaking, no ε > 0 is needed in the upper-bound. This
will only matter in the proof of Lemma 2.8. Apart from this, f̃ and g̃ will
be treated as usual quasi-isometries.

To prove the lower bound, observe that g ◦ f ∼ IdM , so that g̃ ◦ f̃ ∼ IdM̃ .
Since homotopies move points by a bounded distance, there exists c > 0 such
that d(g̃ ◦ f̃(x), g̃ ◦ f̃(y)) < c for all x, y ∈ M̃ . Using that g̃ is K-Lipschitz,
we get

d(f̃(x), f̃(y)) ≥ 1

K
d(g̃ ◦ f̃(x), g̃ ◦ f̃(y))

≥ 1

K
(d(x, y)− 2c).

It remains to see that f̃ is coarse onto. The manifolds M and N are
bounded metric spaces, so that f is obviously coarse onto. Then equivariance
implies that this must also be true for the lift f̃ . Up to a modi�cation of the
constants, the same holds for g̃. Thus f̃ and g̃ are (K, ε)-quasi-isometries,
with ε = 2c/K.

The next step is to construct a map ∂f̃ : ∂M̃ → ∂Ñ . Recall that ∂M̃
and ∂Ñ are homeomorphic to Sn−1. Since the map f̃ is a quasi-isometry
and the de�nition of the boundary at in�nity involves geodesic rays, it is
natural to wonder how images of geodesic under quasi-isometries look like in
hyperbolic space. The image of a geodesic under a (K, ε)-quasi-isometry is
called a (K, ε)-quasi-geodesic. We add the constraint that quasi-geodesics
be continuous. We do so because they will always arise as images of geodesics
under the quasi-isometry f̃ which is continuous.

Quasi-geodesics in Euclidean space and hyperbolic space behave di�er-
ently. It is easy to check that the logarithmic spiral in R2 is a quasi-geodesic
that moves arbitrarily far from straight lines. The next lemma shows that
this cannot happen in hyperbolic space.

Lemma 2.8. Morse-Mostow Lemma. Given K > 0, there exists a con-
stant D = D(K) > 0 such that for any (K, ε)-quasi-geodesic β : R → Hn,
there exists a unique geodesic γ : R→ Hn within a D-neighborhood of β.
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Proof. We �rst prove a local statement. Let I = [a, b], x = β(a), y = β(b)
and γ be the geodesic segment from x to y. Pick D � K and suppose that
β does not stay at distance D from γ. Let x′, y′ ∈ β(I) be distinct points at
distance D from γ, as shown on Figure 2.2. Let β′ be the segment from x′

to y′. An elementary calculation shows that

l(β′) ≤ K2d(x′, y′) + εK.

This computation uses the fact that our quasi-geodesics are continuous. Now
let γ′ be the geodesic segment joining the projection of x′ and y′ on γ. It is
a classical fact that projections in hyperbolic space decrease distances expo-
nentially (see [20, Lemma 11.8.4]). This together with the triangle inequality
implies that

l(β′) ≤ K2(l(γ′) + 2D) + εK

≤ K2(e−Dd(x′, y′) + 2D) + εK.

Notice that d(x′, y′) ≤ l(β′) and use that D � K to obtain

l(β′) ≤ 2DK2 + εK

1−K2e−D
≤ 4D2.

Thus β stays in a D + 4D2 neighborhood of γ. Note that this estimate
depends only on K, so this holds for any bounded interval.

γ
γ′b bx y

b
x′

b

y′

β′

D

b b

Figure 2.2: Proof of Morse-Mostow Lemma
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The proof of the global existence of γ is essentially an application of
Arzela-Ascoli theorem. The idea is to de�ne γm : R→ Hn to be the geodesic
line through β(−m) and β(m), wherem ∈ N (parametrize it carefully so that
the points γm(0) does not move too much). Then restrict to a big compact
set and apply the compactness theorem to �nd a subsequence converging
uniformly to some geodesic γ that can be extended to R. The details are left
to the reader.

Uniqueness comes from the fact that distinct geodesics in hyperbolic space
do not stay at bounded distance from each other.

We can now de�ne the boundary map ∂f̃ : Sn−1 → Sn−1. For a geodesic
γ in M̃ , let γ′ be the unique geodesic in Ñ close to f̃(γ). Now let

∂f̃(γ(∞)) = γ′(∞).

To check that ∂f̃ is well-de�ned, observe that if geodesics γ, τ are asymptotic,
then the unique geodesics close to f(γ) and f(τ) are also asymptotic. A
simple but crucial observation is that the map ∂f̃ is still π1(M)-equivariant.
We will use the same symbol for the induced action of π1(M) on ∂M̃ . Thus
equivariance may be rewritten as

∂f̃(γ.ξ) = ρ(γ).∂f̃(ξ) for all ξ ∈ ∂M̃.

The map ∂f̃ is one-to-one. To see this, pick ξ 6= η ∈ ∂M̃ , let γ be
the geodesic line such that γ(−∞) = ξ and γ(∞) = η. Since ∂f̃(ξ) and
∂f̃(η) correspond to endpoints of some geodesic line, they must be distinct.
Besides, since f̃ is a quasi-isometry, it is coarse onto and so every point in
∂Ñ is an accumulation point of f̃(M̃). This proves surjectivity.

The continuity of ∂f̃ follows from a geometrical lemma that again uses
negative curvature and the fact that any two points at in�nity can be joined
by a geodesic (in other words, the fact that Hn is a visibility space).

Lemma 2.9. Let γ be a geodesic in Hn and P some hyperplane orthogonal
to γ. Let γ′ be the geodesic close to f̃(γ). Then there exists a constant D > 0
depending only on the quasi-isometry constants of f̃ such that

Diam(Projγ′(f̃(P ))) ≤ D.

Notice that this is false in a Euclidean space. A quasi-isometry can tilt γ
and P so that the projection of f̃(P ) has in�nite diameter.
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Proof. Let x0 = γ ∩ P and let β be a geodesic in P passing through x0. Let
τ be the geodesic joining β(∞) and γ(∞). There is an absolute constant
A > 0 such that d(x0, τ) ≤ A. Let γ′, β′, τ ′ be the geodesics close to f̃(γ),
f̃(β), f̃(τ) respectively. Let x′0 be the point on γ′ closest to f̃(x0). Let β⊥

be the geodesic orthogonal to γ′ with endpoint β′(∞) and let y0 = γ′ ∩ β⊥.

β ∈ P

γ

τ

b

x0

τ2

β(∞)

γ(∞)
b

b

γ′

τ ′

τ ′2 β⊥

x′
0

y0

f̃(P )
β′

f̃

Figure 2.3: The diameter of the projection of an hyperplane

Since f̃ is a (K, ε)-quasi-isometry, we have d(f̃(x0), f̃(τ)) ≤ KA+ ε. By
Morse-Mostow Lemma 2.8, we have d(x′0, f̃(x0)) ≤ L and d(τ ′, f̃(τ)) ≤ L for
some constant L > 0, so that d(x′0, τ) ≤ KA + ε + 2L =: D′. Therefore, on
one side of x′0 (the left side on Figure 2.2), the point y0 must be at distance
at most D′ from x′0. Applying the same argument to the geodesic τ2 joining
γ(−∞) and β(∞), we infer that d(x′0, y0) ≤ D′. Therefore, the projection of
β′ onto γ′ lies within distance D′ from x′0. Since any y ∈ f̃(β) lies at distance
L from β′ and since orthogonal projections decrease distances, it follows that
d(x′0,Projγ′(y)) ≤ D′+L. Since β can be arbitrarily chosen in P , the lemma
follows.

Proposition 2.10. The boundary map ∂f̃ : Hn → Hn is a homeomorphism.

Proof. For a geodesic ray γ ∈ Hn, let χ = γ(∞). In the ball model, a basis of
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neighborhoods of ∂f̃(χ) in Hn (in the cone topology) is given by intersections
between the ball and the interior of some hyperbolic hyperplane Q orthogonal
to γ′, where γ′ is as usual the geodesic close to f̃(γ).

P

χ

γ

b

b y

b
y′

∂f̃

b

b

z

b z′
∂f̃(χ)Q

∂f̃(P )

γ′

Figure 2.4: The boundary map is a homeomorphism

Our goal is to �nd a hyperplane P ⊥ γ such that f̃(P ) is contained in
the half-space delimited by Q and containing ∂f̃(χ). Let z = Q ∩ γ. Let
y ∈ γ such that f̃(y) lies at distance at most L from z, where L is the
constant arising in Morse-Mostow Lemma 2.8. Morally it su�ces to choose a
hyperplane P orthogonal to γ such that the point y′ := P ∩γ lies su�ciently
far away from y. Let z′ be the projection of f̃(y′) onto γ′. By Lemma 2.9 it is
enough to ensure that d(z, z′) ≥ D (see Figure 2.4). This can be done easily
since quasi-isometries provoke only bounded perturbation. The interested
reader can work out the constant that works.

Finally, this argument can be reversed to show that the inverse of ∂f̃ is
continuous.

2.3 Properties of the boundary map

The properties of ∂f̃ shown in this section will only be used in Thurston's
proof of the theorem. The two other proofs will just rely on the homeomor-
phism property. Out of these three proofs, this one is the most analytical,
since it relies on a hard analysis fact and on some ergodic theory.
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For simplicity, we are going to write h = ∂f̃ throughout.

Quasi-conformality

Our ultimate goal in this section is to show that h is a conformal map.
The proof of this will not be direct. Conformality will be a consequence of
the (a.e.) di�erentiability of h and some ergodic theory. Di�erentiability will
follow from a weaker property, namely quasi-conformality.

De�nition 2.11. Let X,Y be metric spaces and K > 0. A map f : X → Y
is K-quasi-conformal if for all x ∈ X,

lim
r→0

supz∈X:d(x,z)=r d(f(x), f(z))

infz∈X:d(x,z)=r d(f(x), f(z))
< K.

R1

R2

f(∂Bx(r))

x b

Figure 2.5: De�nition of quasi-conformality

With the schematic of Figure 2.3, the function f is quasi-conformal if
limr→0

R2

R1
< K for some K > 0. It is easy to see that the composition of two

quasi-conformal maps is again quasi-conformal and that the constants mul-
tiply. In particular, composing a K-quasi-conformal map with a conformal
map again yields a K-quasi-conformal map.

Proposition 2.12. The boundary map is quasi-conformal.
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Proof. We work out this proof in the upper-half space model which is con-
formally equivalent to the ball model. Let ξ ∈ Sn−1. Up to an isometry, we
assume that ξ is at the origin. Let l be the vertical line through ξ and let P
be a small Euclidean half-sphere around ξ. It de�nes a neighborhood of ξ in
Sn−1. We will show that this neighborhood cannot be deformed too much by
h. Composing h with an isometry, we can assume that it �xes ξ and l. By
Lemma 2.9, the projection of h(P ) onto l has bounded diameter D, where D
only depends on the quasi-isometry constants. Let Q and Q′ be Euclidean
(n− 1)-half spheres that bound the projection of ∂f̃(P ).

At this stage, one should be careful about which distance is considered.
We are studying the map h, which is de�ned on Sn−1 endowed with the
usual spherical metric. The Euclidean metric on the horizontal hyperplane
{xn = 0} obviously does not correspond to the spherical metric. However,
this does not matter since these metrics are close to each other in a small
neighborhood of ξ. Thus let R1, resp. R2, be the radii in the Euclidean
metric of Q, resp. Q′. Then

D ≥
∫ R2

R1

dx

x
= log(R2/R1),

so that h is an eD-quasi-conformal map.

The following hard analysis fact will be essential to us. It follows from a
result in [21].

Theorem 2.13. Suppose n ≥ 3. A quasi-conformal homeomorphism h :
Sn−1 → Sn−1 is di�erentiable almost everywhere. Moreover, the di�erential
is uniformly bounded a.e., that is, there exists a constant λ > 1 such that for
a.a. x ∈ Sn−1 and for all v ∈ T 1

xS
n−1,

1

λ
≤ ‖Dxh(v)‖

‖v‖ ≤ λ.

Notice that this is the only part of the proof that uses n ≥ 3. It is
interesting to see where the argument fails when n = 2. In this case, we
consider homeomorphisms of S1. It is a classical fact that any such map is
di�erentiable a.e.. However, the condition on the di�erential need not hold.
Namely, there exist homeomorphisms of the circle that have zero derivative
at each point of di�erentiability. This very fact prevents from using the next
argument.



2.3. PROPERTIES OF THE BOUNDARY MAP 37

We now turn back to the case n ≥ 3. For a.a. x ∈ Sn−1, consider the
tangent space TxS

n−1. Since the di�erential of h at x is uniformly bounded,
the image of the unit sphere in TxS

n−1 maps to a nondegenerate ellipsoid
in Th(x)S

n−1. Let v1(h(x)), . . . , vn−1(h(x)) be the principal vectors of this

ellipsoid. Normalize these vectors so that
∏n−1

i=1 ‖vi(h(x))‖ = 1.
Let us now de�ne the excentricity function

eh(x) = max
i 6=j

{‖vi(h(x))‖
‖vj(h(x))‖

}
for a.a. x ∈ Sn−1.

Now notice that eh(γ.x) = eh(x) for all γ ∈ π1(M). To see this, observe
that π1(M) acts by conformal maps on the boundary and that the maps h◦γ
and ρ(γ) ◦ h are equal, so that they have the same di�erential. This means
that eh(γ.x) = eρ(γ)◦h(x) = eh(x).

We now quote a result that we are going to prove in the next section.

Theorem 2.14. The diagonal action of π1(M) on Sn−1 × Sn−1 is ergodic.
In particular, π1(M) acts ergodically on Sn−1.

The reader who is new to ergodicity should believe for the moment that
this implies that eh = c a.e. for some c ≥ 1. It is an easy consequence of
ergodicity that will be explained in the next section. We are going to show in
Proposition 2.16 that c = 1. From the de�nition of the excentricity function
eh, this means that the di�erential of h is a conformal map. We need to
quote one more analytical result which is addressed in [5].

Theorem 2.15. If a map h : Sn−1 → Sn−1 is quasi-conformal and its dif-
ferential Dh is conformal, then h is conformal.

Accepting these facts for the moment, we can �nish the proof of Mostow's
rigidity theorem.

Proof of Mostow rigidity. Recalling Theorem 1.4, the fact that the boundary
map h = ∂f̃ is conformal means it is induced by some isometry F̃ : M̃ →
Ñ . Since isometries of Hn are uniquely determined by their e�ect on the
boundary, the map F̃ must be π1(M)-equivariant. Moreover, F̃ and f̃ induce
the same map on the fundamental group of M and so they are homotopic.
Thus F̃ descends to an isometry F : M → N that is homotopic to f and
induces the same isomorphism of π1(M).

We now prove that Dh is conformal, which amounts to prove that eh = 1
a.e..



38 CHAPTER 2. MOSTOW'S RIGIDITY THEOREM

Proposition 2.16. The excentricity function eh equals 1 a.e..

This will follow from the next result.

Lemma 2.17. There is no π1(M)-invariant measurable frame �eld de�ned
almost everywhere on Sn−1.

Proof of Proposition 2.16. Assume by contradiction that eh = c > 1 a.e..
Thus for a.a. x ∈ Sn−1, there is a measurable frame �eld (v1(x), . . . vn−1(x))
in TxS

n−1, normalized as above. Since h satis�es h ◦ γ = ρ(γ) ◦ h, we must
have

{vi(γ.x)}n−1
i=1 = {Dγ(vi(x))}n−1

i=1 .
1

Assume now for simplicity that the vectors (v1(x), . . . , vn−1(x)) have di�erent
norms for a.e. x ∈ Sn−1 and are labeled so that ‖v1(x)‖ < . . . < ‖vn−1(x)‖.
As a result, the vectors (v1(x), . . . , vn−1(x)) form a π1(M)-invariant measur-
able frame �eld on Sn−1. But by Lemma 2.17, this is impossible. Hence
c = 1.

Proof of Lemma 2.17. Assume for contradiction that there exists a π1(M)-
invariant measurable frame �eld {v1(x), . . . vn−1(x)} for a.e. x ∈ Sn−1. For
x, y ∈ Sn−1, x 6= −y, let Pyx : TyS

n−1 → TxS
n−1 be the parallel translation

map along the unique geodesic joining y to x.
For 1 ≤ i, j ≤ n, de�ne functions

ϕi,j : TpS
n−1 × TpSn−1 −→ R

(x, y) 7−→ 〈vi(x), Pyx(vj(y))〉.

These functions are de�ned a.e.. Since π1(M) acts ergodically on Sn−1×Sn−1,
it follows that the functions ϕi,j are constant a.e.. Now �x a point x0 ∈ Sn−1

where the frame �eld is de�ned. Since the functions ϕi,j are constant, the
vectors v1(x0), . . . , vn(x0) uniquely determine v1(y), . . . , vn(y) for a.e. y ∈
Sn−1 via the map Sxy. We will now show with an elementary argument that
this is impossible.

The proof is based on projections on an isometrically embedded 2-sphere
and uses the Gauss-Bonnet theorem. Isometrically embed a 2-sphere S in
Sn−1 such that it contains at least three non-aligned points where the frame
�eld is de�ned. Denote by ProjTxS : TxS

n−1 → TxS the projection map. It is

1Note that the measurability of the frame �eld uses the assumption that c > 1.
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easy to see that the projections commute with the parallel translation map.
In other words,

Sxy ◦ ProjTxS = ProjTyS ◦Sxy for all x, y ∈ S, x 6= −y.

Now �x non aligned points x, y, z ∈ S where the frame �eld is de�ned and
pick j ∈ {1, . . . , n} such that ProjTxS(vj(x)) 6= 0. The invariance property of
vj(x) together with the above commutation property imply that

ProjTxS(vj(x)) = ProjTxS(Szx ◦ Syz ◦ Sxy(vj(x)))

= Szx ◦ Syz ◦ Sxy(ProjTxS(vj(x))).

Since the points x, y, z form a non-degenerate spherical triangle, the Gauss-
Bonnet theorem tells us that this is impossible.

Remark 2.18. Lemma 2.17 can be proved using the fact that the restricted
holonomy group of a connection ∇ is trivial if and only if ∇ is �at.

2.4 Ergodicity of geodesic �ow

We postponed the proof of Theorem 2.14 to this section. It states that
the action of π1(M) on Sn−1 is ergodic. To prove this, we need to introduce
some basic facts about ergodicity, Birkho�'s Ergodic Theorem and geodesic
and horocyclic �ows. Then we show the ergodicity of the geodesic �ow on
a complete hyperbolic manifold of �nite area, from which Theorem 2.14 will
follow.

Basics of ergodicity

De�nition 2.19. Let (X,µ) be a measure space. A measurable map T :
X → X is said to be measure-preserving if µ(T−1(E)) = µ(E) for all
measurable E ⊂ X. A measure-preserving transformation T : X → X is
ergodic with respect to µ if the only T -invariant subsets have zero or full
measure. In other words, T is ergodic if

T (E) = E ⇒ µ(E) = 0 or µ(X − E) = 0 for all measurable E ⊂ X.

Ergodicity has an equivalent formulation as follows.
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Proposition 2.20. Let X be a �nite-measure space. A measure-preserving
map T : X → X is ergodic if and only if every T -invariant function f ∈
L2(X) is constant.

Recall that in the last section, the excentricity function eh was seen to
be π1(M)-invariant. Provided the action of π1(M) on Sn−1 is ergodic (see
Theorem 2.14), Proposition 2.20 implies that eh is a constant function.

A rather short proof of the next theorem can be found in [12].

Theorem 2.21. Birkho�'s ergodic theorem. Let (X,µ) be a probability
space and suppose T : X → X is a measure-preserving transformation. Then
the limit

f ∗(x) = lim
N→∞

1

N

N∑
k=1

f(T (k)(x))

exists for a.a. x ∈ X. The function f ∗ is T -invariant and satis�es∫
X

f ∗ dµ =

∫
X

f dµ.

If T is ergodic, then f ∗ = c a.e. for some constant c ∈ R and

c =

∫
X

f ∗ dµ =

∫
X

f dµ.

Thus

lim
N→∞

N∑
k=1

f(T (k)(x)) =

∫
X

f dµ for a.a. x ∈ X.

Remark 2.22. The last equation is often rephrased as follows. If T is
ergodic, then the space average equals the time average. Also note that
the conclusions of Birko�'s ergodic theorem also hold when considering a
1-parameter family of measure-preserving maps Ts : X → X, s ∈ R. Since
we are going to deal with the geodesic �ow, this is will be our case of interest.

Geodesic and horocyclic �ows

De�nition 2.23. Let X be a complete Riemannian n-manifold and denote
by T 1X the unit tangent bundle. For v ∈ T 1X, write γv for the in�nite
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geodesic with initial tangent vector v. The geodesic �ow on T 1X is the
1-parameter family of di�eomorphisms de�ned by

gt : T 1X −→ T 1X

v 7−→ (γv(t), D(γv)t(v)).

De�nition 2.24. Let X be a Riemannian manifold of �nite measure. The
Liouville measure on T 1X is de�ned to be

dω = dVolX dθ,

where the volume form of X has unit total mass and dθ is the Lebesgue
measure of unit mass on the (n− 1)-sphere T 1

pX, for all p ∈ X.

Thus the Liouville measure is a probability measure on T 1X. The geodesic
�ow preserves the Liouville measure. To see this, �rst check this on subsets
of T 1X of the form T 1U , where U is an open set in X, and observe that gt
preserves the measure of subsets of T 1

pX for all p ∈ X.
From now on, let M be a �nite-measure complete hyperbolic n-manifold.

For simplicity, we are going to prove the ergodicity of the geodesic �ow for
n = 2. Although this may seem paradoxical (since Mostow rigidity does not
hold in this case), the proof easily extends to higher dimensions.

Apart from the geodesic �ow gt, the proof will use two other �ows on
T 1M . Given a tangent vector v ∈ T 1

pM , consider the geodesic γ with initial
tangent vector v. Let HS+(v) be the horosphere through p centered at
γ(∞) and HS−(v) be the horosphere through p center at γ(−∞). The
positive horocyclic �ow h∗s moves v along HS+(v) at distance s from p
so that h∗s(v) is a unit vector orthogonal to the positive horosphere. The
negative horocyclic �ow is de�ned similarly, namely hu(v) is the unit
vector orthogonal to HS−(v) at distance u from p.

This construction is most easily visualized in the upper-half space model,
as shown on Figure 2.6. Up to an isometry sending the vector v to ii, the
following identities are easily seen.

gth
∗
s = h∗se−tgt, gths = hsetgt. (2.1)

Our proof of the ergodicity of the geodesic �ow is based on [1].

Theorem 2.25. Let M be a complete connected hyperbolic manifold of �nite
measure. Then the geodesic �ow on T 1M is ergodic with respect to Liouville
measure.



42 CHAPTER 2. MOSTOW'S RIGIDITY THEOREM

b

v

HS+(v)

HS−(v)

h∗
s(v)

hu(v)

Figure 2.6: Positive and negative horocyclic �ows

Proof. The key tool will be a kind of converse to Birkho�'s ergodic theorem.
Let f be any function in L1(T 1M). Since gt is measure-preserving, Birkho�'s
Ergodic Theorem 2.21 implies that for a.a. v ∈ T 1M , the limits

f+(v) = lim
T→∞

1

T

∫ T

0

f(gt(v)) dt,

f−(v) = lim
T→∞

1

T

∫ 0

−T
f(gt(v)) dt

exist and f+, f− ∈ L1(T 1M). Moreover, for a given v ∈ T 1M , whenever
either limit exists, we have f+(v) = f−(v) (see [13, Corollary II.1.4].

We claim that for any f ∈ L1(T 1M), the function f+ is constant a.e.. This
implies the ergodicity of the geodesic �ow gt (see [24]). By a classical density
argument, it is enough to prove the claim when f is continuous function with
compact support.

The �rst step is to prove that f+ (resp. f−) is constant along positive
(resp. negative) horocycles. Since f is uniformly continuous, there is a δ > 0
such that |f(v1)−f(v2)| < ε whenever v1 and v2 are δ-close. Pick a v ∈ T 1M
such that f+(v) exists. Fix s ∈ R and let t0 ∈ R such that |s|e−t0 < δ. Then
(2.1) implies that

d(gt(v), gth
∗
s(v)) = d(gt(v), h∗se−tgt(v)) = |s|e−t < δ for all t ≥ t0.
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Therefore

1

T

∫ T

0

f(gt+t0(v)) dt and
1

T

∫ T

0

f(gt+t0(h
∗
s(v))) dt

are ε-close. Since ε is arbitrary, this means that f+(v) = f+(h∗s(v)) for all
s ∈ R. The proof for f− is exactly the same.

Now de�ne W s(v) = {gth∗s(v) : s, t ∈ R} and W u(v) = {gths(v) : s, t ∈
R}. The sets W s(v) and W u(v) are called the stable (resp. unstable) folia-
tions. The last paragraph together with the fact that f+(gt(v)) = f+(v) a.e.
imply that f+ (resp. f−) is constant on W s(v) (resp. W u(v)).

At this point, for distinct v1, v2 ∈ T 1M , the function f+ might assume
di�erent values on W u(v1) and W u(v2). But the fact that one can almost
always travel from W u(v1) to v2 along a positive horocycle will imply that
this cannot happen. More precisely, we claim that

ω({h∗sgtha(v) : a, s, t ∈ R}) = 1. (2.2)

(and we know exactly the set where it does not hold).
To see this, let w1, w2 be in T

1M and consider the unique geodesic γ that
cuts orthogonally HS−(w1) and HS+(w2). Figure 2.7 shows that we can
travel from w1 to w2 by moving successively along the negative horocyclic
�ow, the geodesic �ow and the positive horocyclic �ow. The picture is similar
in higher dimensions (horosphere will simply have dimension n− 1).

The attentive reader will have noticed that this construction fails if and
only if w = −v′, for some element v′ ∈ W s(v). But this subset of T 1M has
zero measure.

Similarly,
ω({hagth∗s(v) : a, s, t ∈ R}) = 1. (2.3)

Observe that around each point w in T 1M , there is a neighborhood di�eo-
morphic to a small neighborhood of the origin in R3 via the map

(s, t, u) 7→ h∗sgthu(w).

In a neighborhood of w, these coordinates provide us with a measure dsdtdu
that is equivalent to the Liouville measure dω, in the sense of having the same
sets of measure zero. This can be seen using a �gure similar to Figure 2.7.
As a result, there exists a full Lebesgue measure subset U of R such that
f+(hu(v)) and f−(h∗u(v)) exist for all u ∈ U .
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w2HS−(w1)

HS+(w2)γ

Figure 2.7: How to travel on horocyclic and geodesic �ows

All these partial results sum up as follows. For all u ∈ U ,

f+ is constant on W s(hu(v)) and exists on W u(h∗u(v)), (2.4)

f− is constant on W u(h∗u(v)) and exists on W s(hu(v)) (2.5)

Finally, for u1, u2 ∈ U ,

f+(hu2(v)) = f−(hu2(v)) since u2 ∈ U and f+, f− agree whenever they exist

= f−(hu1(v)) since f− is constant along negative horocycles

= f+(hu1(v)) since u1 ∈ U and f+, f− agree whenever they exist,

and so (2.2) implies that f+ is constant a.e..

Now we again assume M to be a compact hyperbolic manifold of dimen-
sion n ≥ 2. Everything is ready to prove Theorem 2.14 which states that the
diagonal action of π1(M) on Sn−1 × Sn−1 is ergodic.

Proof of Theorem 2.14. We want to translate our knowledge about the er-
godicity of the geodesic �ow on M to the boundary of M̃ = Hn. This can be
done by putting certain coordinates on T 1Hn. For a unit vector v tangent
to p ∈ Hn, let ϕ be the geodesic with initial tangent vector v, let ξ, η be its
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endpoints and de�ne s ∈ R to be the hyperbolic signed distance between p
and the Euclidean midpoint of ϕ. The coordinates that we will use are

T 1Hn −→ (Sn−1 × Sn−1 −∆)× R
v 7−→ (ξ, η, s).

We need to know how the Liouville measure on Hn behaves under this change
of coordinates. It is a fact that there exists a positive function ρ(ξ, η) such
that

dω = ρ(ξ, η)dξdηds.

Let A ⊂ Sn−1 × Sn−1 −∆ be a π1(M)-invariant subset. Since the diagonal
∆ has zero measure, one can forget about it. De�ne B = A×R and observe
the following.

1. B is invariant under the geodesic �ow on Hn,

2. B is π1(M)-invariant (since A is π1(M)-invariant),

3. the geodesic �ow on M = Hn/π1(M) is the projection of the geodesic
�ow on Hn.

The last fact holds because for all γ ∈ π1(M) and all geodesic ψ in Hn, the
commutation property

ψt ◦Dγ = Dγ ◦ ψt
holds. As a result, the set B/Γ is invariant under the geodesic �ow on M .
By Theorem 2.25, either ω(B/Γ) = 0 or ω(M − B/Γ) = 0. In the former
case, we get

0 = ωHn(B) =

∫
B

dω =

∫
B

ρ(ξ, η)dξdηds.

Therefore, ∫
A

ρ(ξ, η)dξdη = 0

so that µ(A) = 0. The latter case is handled similarly.
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Chapter 3

Gromov's proof

As pointed out above, the only feature that Gromov's proof of Mostow
rigidity shares with Thurston's proof is the use of the boundary map. In
this chapter, we introduce a homological invariant of a manifold known as
Gromov's norm. Gromov's norm of hyperbolic manifolds will be seen to be
proportional to the volume of the manifold. The �rst striking consequence
of this result is that the volume of a hyperbolic manifold is a topological
invariant. To deduce Mostow rigidity, one has to show that the boundary
map preserves the family of ideal simplices of maximal volume.

Simplices in hyperbolic space and a modi�ed homology where cycles are
measures are the major tools in this chapter. We follow Thurston [22] and
Munkholm [17].

3.1 Gromov norm

We start by �xing some notation and introducing the Gromov norm of
a manifold. For a topological space X, let C∗(X) be the real singular chain
complex. Any k-chain can be written uniquely as

c =
∑
i

aiσi,

where ai ∈ R and σi : ∆k → X is a C1 map. Here ∆k denotes the standard
k-simplex in Rn.

We endow C∗(X) with the l1 norm. That is, the norm of a k-chain c as

47
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above is
‖c‖ =

∑
i

|ai|.

This norm descends to a seminorm on the real homology groups Hk(X) by
taking the in�mum. Namely, for z ∈ Hk,

‖z‖ = inf{‖c‖ : c is a singular k-chain representing z}.
The axioms of a seminorm are easily veri�ed. Also notice that the induced
action of a continuous map f : X → Y on homology classes decreases the
norm. In other words, for z ∈ Hk(X),

‖f∗(z)‖ ≤ ‖z‖.
There is a inequality because if σ1, σ2 are distinct simplices in X such that
f ◦ σ1 = f ◦ σ2, then

‖f∗(σ1 − σ2)‖ = 0 < ‖σ1 − σ2‖.
It is a classical fact from algebraic topology that if M is an orientable

n-manifold, then Hn(M ;Z) = Z (see [11, Theorem 3.26]. A generator for
this homology group is called a fundamental class of M and is denoted
by [M ]. This carries over to real homology by noticing that Hn(M,R) =
Hn(M,Z)⊗ R.

De�nition 3.1. Let M be an orientable manifold. The Gromov norm of
M is de�ned to be

‖M‖ = ‖[M ]‖.
The Gromov norm is also called simplicial volume . Note that the

existence of manifolds with positive Gromov norm is not obvious. This is
emphasized by the next result.

Proposition 3.2. Suppose f : M → N is a continuous map between ori-
entable manifolds. Then

‖M‖ ≥ | deg f |‖N‖.
Proof. Write d = deg f . Since f∗([M ]) = d[N ], for any cycle z representing
[M ], the cycle f∗(z) represents d[N ]. Therefore

|d|‖N‖ = ‖d[N ]‖ ≤ ‖f∗(z)‖ ≤ ‖z‖.
Conclude by taking the in�mum.
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Now suppose that M admits a self-map f : M → M with | deg f | > 1.
The proposition implies that ‖M‖ > | deg f |‖M‖, so ‖M‖ must be zero. For
example, the n-sphere Sn admits self-maps of any degree (see [11, Ex. 2.31]),
so ‖Sn‖ = 0 for all n. However, we are going to see that hyperbolic manifolds
have positive Gromov norm.

3.2 Simplices and their volume

Before going into proofs of deeper results, we need to better understand
when the in�mum in De�nition 3.1 is attained. In fact, among all simplices,
it is enough to take the in�mum over straight simplices.

Suppose thatM is a hyperbolic n-manifold. Given a simplex σ : ∆k →M
that may have a complicated shape, we want to construct a new �nicer�
straight simplex. Pick a lift σ̃ : ∆k → Hn of σ and denote its vertices by
v0, . . . , vk+1. Using the hyperboloid model, we can build an a�ne simplex
τ : ∆k → Rn+1 with vertices v0, . . . , vk+1. The projection of τ onto Hn is
denoted by str(σ̃) and we de�ne str(σ) to be the projection of str(σ̃) onto
M . Straightening is extended linearly to C∗(M).

Since isometries of Hn are a�ne maps of Rn+1, the straightening of σ is
independent from the choice of its lift. While dealing with Gromov norm, it
is enough to focus on straight simplices. Indeed, for a cycle z,

‖ str(z)‖ ≤ ‖z‖.

This holds because str z and z are chain homotopic. Again, there is an
inequality since cancellations may occur while straightening.

The maximal volume of simplices will be of special interest. De�ne

vn = sup{Vol(σ) : σ is a straight n-simplex}.

Hyperbolic spaces have the property that this quantity is bounded. Asymp-
totic formulas for vn are available, but the following estimate will be su�cient
for our purposes.

Proposition 3.3. For n ≥ 2,

vn ≤
π

(n− 1)!
.
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Proof. First observe that any straight simplex σ in Hn is contained in a
simplex with vertices at in�nity (we now consider maps ∆n → Hn). The
geometric construction is shown on Figure 3.1. Such a simplex is called an
ideal simplex . Thus, in this proof it su�ces to consider ideal simplices.

b

b

b

Figure 3.1: Every simplex is contained in an ideal simplex

The proof is by induction. By the Gauss-Bonnet theorem, one has v2 = π.
The proof will follow from the inequality vn ≤ vn−1

n−1
.

To see this, work in the upper half-space model and assume that v0 =∞.
Denote by σ0 the lower (n − 1)-subsimplex of σ and let τ be the projection
of σ onto the horizontal hyperplane. For z ∈ τ , write h(z) for the Euclidean
distance between z and the point above z in σ0. Thus the volume of σ0 can
be written as

Vol(σ) =

∫
τ

∫ ∞
h(z)

dy

yn
dz

=
1

n− 1

∫
τ

1

h(z)n−1
dz

Up to an isometry, we can assume that σ0 lies in the unit Euclidean upper
hemisphere centered at the origin, so that h(z) =

√
1− z2. It is now enough

to prove that ∫
τ

1

h(z)n−1
dz ≤ Vol(σ0).
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Let f : Dn−1 → Rn be the parametrization of the unit half sphere given by

(x1, . . . , xn−1) 7→ (x1, . . . , xn−1,
√

1− (x2
1 + . . .+ x2

n−1)).

The volume of σ0 is given by

Vol(σ0) =

∫
τ

α(x)
dx

h(x)n−1
,

where α(x) =
√

det(〈Dfx(eix), Dfx(ejx)〉). An easy computation yields

〈Dfx(eix), Dfx(ejx)〉 = δij +
xixj

1− ‖x‖2
.

Taking the determinant, we get

α2(x) = 1 +
‖x‖2

1− ‖x‖2
=

1

h2(x)
.

Therefore, using that h(x) ≤ 1 for all x ∈ τ ,

Vol(σ0) =

∫
τ

dx

h(x)n
≥
∫
τ

dx

h(x)n−1
.

3.3 Gromov norm of hyperbolic manifolds

At the end of Section 3.1, we noticed that the existence of manifolds
with nonzero Gromov norm is not obvious. Nevertheless, hyperbolic mani-
folds have the property that their Gromov norm is bounded away from zero.
Moreover, the next theorem we state provides an exact formula to compute
Gromov's invariant. This important result is also an essential ingredient in
Gromov's proof of Mostow rigidity.

Theorem 3.4. Let M be a �nite-volume hyperbolic n-manifold. Then

‖M‖ =
Vol(M)

vn
.
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This theorem can be proved using the usual singular homology (see [2]).
However, the proof is easier to understand when using a modi�ed homology
which is a smoothing of singular homology.

Instead of continuous maps from the standard k-simplex, the chains of
this modi�ed homology are measures compactly supported on the space
C1(∆k,M). More precisely, a k-chain is a signed Borel measure on C1(∆k,M)
with bounded total variation and compactly supported. Recall that any mea-
sure space (X,µ) admits a canonical splitting (X+, µ+), (X−, µ−) such that
X+ ∩X− = ∅ and µ = µ+−µ−, where µ+ and µ− are nonnegative measures.
Then the total variation of µ is given by

‖µ‖ =

∫
X+

dµ+ +

∫
X−

dµ−.

Let Ck(M) be the corresponding set of k-chains. The natural face inclusions
ηi : ∆k−1 → ∆k induce boundary maps in the following way. The map

η∗i : C1(∆k,M)→ C1(∆k−1,M)

pushes forward to another map

ξi : Ck(M) −→ Ck−1(M)

µ 7−→ ξi(µ) = (η∗i )∗µ.

The boundary map is de�ned as dk =
∑k

i=0(−1)iξi. It is an exercise to
show that dk−1dk = 0.

We claim that the natural inclusion i : C∗(M) → C∗(M) that sends
σ ∈ C1(∆k,M) to the Dirac measure on σ is a chain map. We are to show
that i(∂σ) = d(i(σ)). To see this, observe that i(∂σ) =

∑k
j=0(−1)jδσj , where

δσj stands for the Dirac measure on the j-th side of σ. On the other side, for
a Borel subset A of C1(∆k−1,M),

ξj(i(σ))(A) =

{
1 if σj ∈ A
0 otherwise

= δσj(A)

Thus the inclusion map descends to a map between the homology groups.
In fact,

Proposition 3.5. The map

i∗ : Hn(C∗(M)) −→ Hn(C∗(M))

is an isomorphism for all n ≥ 0.
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The de Rham pairing naturally extends to the modi�ed homology by
integrating one more time over the set of singular simplices. Denote by
C∗DR(M) the de Rham cochain complex. Then the de Rham pairing

Ck(M)× Ck
DR(M) −→ R

(σ, α) 7−→
∫
M

σ dα.

extends to

Ck(M)× Ck
DR(M) −→ R

(µ, α) 7−→
∫
τ∈C1(∆k,M)

(∫
∆n

τ dα

)
dµ(τ).

Let p : Hn → M be a covering map and let ΩM (resp. ΩHn) be the
volume form of M (resp. Hn). Also observe that the straightening map
extends linearly to a map C∗(M)→ C∗(M) that induces another map str∗ :
C∗(M)→ C∗(M). Recall that straightening commutes with the projection p.

We are now in position to show that Vol(M)/vn ≤ ‖M‖. Let µ be a
representative for [M ] corresponding to a triangulation of M . Let τ̃ be a lift
of τ to Hn. Then

Vol(M) = 〈µ,ΩM〉

=

∫
τ∈C1(∆k,M)

(∫
∆n

τ ∗ΩM

)
d(str∗ µ)

=

∫
τ∈C1(∆k,M)

∫
∆n

( str(τ)︸ ︷︷ ︸
=p◦str ◦τ̃

)∗ΩM

 dµ

=

∫
τ∈C1(∆k,M)

(∫
∆n

(str(τ̃))∗ΩHn

)
dµ

=

∫
τ∈C1(∆k,M)

(∫
str(τ̃)(∆n)

ΩHn

)
dµ

≤ vn‖µ‖.

Taking the in�mum over representatives of [M ], one obtains Vol(M) ≤
vn‖M‖.

The reverse inequality requires more work. This is because we are going
to explicitly construct a cycle that achieves the bound Vol(M)/vn. However,
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having introduced the modi�ed homology on M makes the idea easier to
grasp. We will de�ne the smearing operation as follows. Given a singular
straight simplex σ in M , we construct a measure smear(σ) that is supported
on the set of isometric copies of σ. The cycle that we seek will use the
smearing of an ideal simplex of maximal volume.

The following fact will be needed (see [2]).

Proposition 3.6. Isom+(Hn) is a unimodular Lie group.

Let h denote a Haar measure on Isom+(Hn). Since Γ := π1(M) is a
discrete subgroup of Isom+(Hn), it is unimodular. Therefore, by a classical
theorem about Haar measures on a quotient, h descends to a Haar mea-
sure hM on the quotient P (M) := Γ\ Isom+(Hn). Normalize hM so that
hM(P (M)) = Vol(M). Let σ ∈ C1(∆n,Hn) be �xed. De�ne

ϕσ : P (M) −→ C1(∆n,M)

Γg 7−→ p ◦ g ◦ σ
and

smear : C1(∆n,Hn) −→ Cn(M)

σ 7−→ ϕσ∗(hM).

Proposition 3.7. Let σ ∈ C1(∆n,Hn) be a straight simplex. Then

1. smear(σ(i)) = ξi smear(σ),

2. smear(gσ) = smear(σ) for all g ∈ Isom+(Hn),

3. ‖ smear(σ)‖ = Vol(M),

4. 〈smear(σ),ΩM〉 = Vol(σ) Vol(M).

Proof. Properties (i) and (ii) are straightforward consequences of de�nitions.
Property (iii) is a consequence of the normalization of hM and its proof
similar to the computation for (iv) that follows. By de�nition,

〈smear(σ),ΩM〉 =

∫
τ∈C1(∆n,M)

(∫
∆n

τ ∗ΩM

)
d(ϕσ∗(hM))(τ)

=

∫
Γg∈P (M)

∫
∆n

(pgσ)∗ΩM︸ ︷︷ ︸
=σ∗ΩHn

 dhM(Γg)

= Vol(σ) Vol(M).
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It is now time to prove the second inequality of Theorem 3.4. Denote by
σ− the re�ection of σ through one of its faces. Let

ζ(σ) =
1

2
(smear(σ)− smear(σ−)).

Since smear(σ) and smear(σ−) are both nonnegative, Proposition 3.7.(iii) im-
plies that ‖ζ(σ)‖ = Vol(M). Since σ and σ− are not conjugate in Isom+(Hn),
the chain ζ(σ) is non trivial. However, the faces of σ and σ− are conjugate in
Isom+(Hn), so that ζ(σ) is a cycle. Remembering that Hn(M ;R) = R, there
exists λ 6= 0 such that ζ(σ) represents λ[M ]. It follows Proposition 3.7.(iv)
that

Vol(σ) Vol(M) = 〈ζ(σ),ΩM〉 = λ〈[M ],ΩM〉 = λVol(M).

Therefore ζ(σ) represents Vol(σ)[M ]. By de�nition of Gromov norm, this
means that

Vol(M) = ‖ζ(σ)‖ ≥ |Vol σ|‖M‖.
Taking the supremum over all straight simplices, one �nally obtains

Vol(M) ≥ vn‖M‖.

3.4 Gromov's proof of Mostow rigidity

We again turn our attention to the boundary map h = ∂f̃ : Sn−1 → Sn−1.
An application of Theorem 3.4 will show that h maps simplices of maximal
volume to other simplices of maximal volume. A result by Haagerup and
Munkholm then implies that h maps regular ideal simplices to regular ideal
simplices. A geometric argument using repeated re�ections of these simplices
will conclude Gromov's proof of Mostow's rigidity.

Proposition 3.8. The boundary map h carries vertices of ideal simplices of
maximal volume to vertices spanning an ideal simplex of maximal volume.

Proof. Let σ be an ideal simplex of maximal volume with vertices v0, . . . , vn.
Assume by contradiction that Vol(str(h(σ))) < vn. Then there exists ε > 0
and open sets Ui ⊂ Hn such that

Vol(h(str(σ(u0, . . . , un)))) < vn − 2ε for all ui ∈ Ui.
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Choose open subsets Vi ⊂ Ui with the property that the set

A(G) = {g ∈ Isom+(Hn) : (vi ∈ Vi ⇒ gvi ∈ Ui ∀i)}

has positive measure mA > 0. For any δ > 0, there exists σ0 = σ0(u0, . . . , un)
with ui ∈ Vi and Vol(σ0) > vn − δ.

• if g ∈ A(G), then Vol(str(f̃(σ0))) < vn − 2ε < Vol(σ0)− 2ε+ δ;

• if g /∈ A(G), then Vol(str(f̃(σ0))) < vn < Vol(σ0) + δ.

Now integrate on A(G) and its complement to �nd

〈str f̃∗(smear(σ0)),ΩN〉 =

∫
τ∈C1(∆n,N)

(∫
∆n

τ ∗ΩN

)
d(str f̃∗ϕσ0∗hM)

=

∫
Γg∈P (M)

(∫
∆n

(p str f̃ gσ0)∗ΩN

)
dhM

=

∫
Γg∈P (M)

(∫
∆n

(str f̃ gσ0)∗ΩHn

)
dhM

< mA(Vol(σ0)− 2ε+ δ) + (VolM −mA)(Vol σ0 + δ)

= Vol(M)(Vol(σ0) + δ)− 2mAε.

Letting δ < (εmA)/VolM , we obtain

〈str f̃∗(smear(σ0)),ΩN〉 < VolM Vol σ0 − εmA. (3.1)

The map f : M → N is a homotopy equivalence, so that f∗([M ]) =
[N ]. By Theorem 3.4, M and N must have the same volume. Since ζ(σ0)
represents |Vol(σ0)|[M ], it follows that str(f∗(ζ(σ0))) represents |Vol(σ0)|[N ].

On other hand, since Vol(M) = Vol(N), the equation (3.1) implies that
str(f∗(ζ(σ0))) represents λ[N ], with λ < |Vol σ0| − εmA/VolM . This is a
contradiction.

We now know how the boundary map acts on simplices of maximal vol-
ume. But we need more precise geometric information. This is going to be
provided by Theorem 3.12, proved by Haagerup and Munkholm [10]. Before
stating it, regular simplices and some of their properties have to be intro-
duced.
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De�nition 3.9. A simplex σ in Hn with vertices v0, . . . , vn is regular if for
each i < j, there exists an isometry of Hn �xing v0, . . . , v̂i, . . . , v̂j, . . . , vn and
swapping vi and vj.

Lemma 3.10. In the upper half-space model, let v0, . . . , vn be an ideal sim-
plex with v0 =∞. Then the simplex is regular if and only if v1, . . . , vn span
a regular Euclidean simplex.

Proof. Straightforward from the de�nition of a regular simplex.

Lemma 3.11. Isom(Hn) acts transitively on the set of regular ideal simplices.

Proof. This follows from Proposition 1.1.

Theorem 3.12. An ideal simplex in Hn has maximal volume if and only if
it is regular.

Gromov's proof of Mostow rigidity. To simplify the notation, we carry out
the proof for n = 3. It is exactly the same proof in higher dimensions. Let
v0, . . . , v3 be vertices in S2 spanning an ideal simplex of maximal volume in
H3. Then h(v0), . . . , h(v3) span an ideal simplex of maximal volume which
must be regular by Theorem 3.12. By Lemma 3.11, up to an isometry, we
can assume that h �xes v0, . . . , v3. Now work in the upper half-space model
and suppose that v0 =∞. We have to show that h is the identity.

We �rst claim that h �xes a tiling of the horizontal plane by equilateral
triangles isometric to v1, . . . , v3. To see this, use Lemma 3.10 to observe
that v1, . . . , v3 is an equilateral triangle. Then let v′1 be the re�ection of v1

through the subsimplex v0, v2, v3, as shown in Figure 3.2. Since h is injective,
�xes v0, v2, v3, and sends regular simplices to regular simplices, it must also
�x v′1 (here we again use Lemma 3.10). Argue similarly for the other vertices
of this tiling.

Second, h �xes a �ner tiling of the horizontal plane by equilateral trian-
gles. Use the re�ections v′0 and v′′0 of v0 shown in Figure 3.2. By the same
argument as above, h must �x v′0 and v

′′
0 . Then observe that v2, v

′
0, v

′′
0 form a

new equilateral triangle smaller than the former. Inducting these two steps
implies that h �xes a dense tiling of S2. By continuity, h is the identity.



58 CHAPTER 3. GROMOV'S PROOF

b b

bbb

b

b

v1 v2

v3

v′0

v′′0

v′1v′2

v0 = ∞

Figure 3.2: Tiling of ∂Hn by iterated re�ections



Chapter 4

Minimal entropy

This chapter contains a third proof of Mostow rigidity that is again very
di�erent from the preceding proofs, except for the use of the boundary map.
The main result characterizes locally symmetric metrics amongs metrics on
negatively curved manifolds that are related by a homotopy equivalence.
This characterization is given in terms of an invariant known as the entropy
of the manifold. Mostow's rigidity theorem will then be a straightforward
corollary.

Although we give a complete proof only for real hyperbolic spaces, the
employed methods extend rather easily to complex and quaternionic hyper-
bolic spaces. Moreover, the theorem we prove is a special case of a stronger
theorem from which many corollaries can be deduced (see [4] and [3]). Thus,
the methods employed are very fruitful. Nevertheless, we will restrict our
attention to Mostow rigidity.

While the techniques used in the preceding chapters were mainly analyti-
cal and homological, this chapter relies on di�erential geometry, construction
of measures and multi-variable calculus. In addition, this proof provides an
explicit construction of the desired isometry.

Throughout this section, (M, g) will be a compact connected negatively
curved Riemannian n-manifold. The main references for this chapter are [4],
[3] and [8].

59
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4.1 Entropy and outline

We �rst introduce the entropy of a metric, then state the theorem and
outline the proof. Details are �lled in in subsequent sections.

Intuitively speaking, the entropy measures how quickly the volume of a
ball grows.

De�nition 4.1. Let (X, g) be a Riemannian manifold. Let Bp(R) be a ball
of radius R about p in the universal cover X̃ of X. The (volumic) entropy
of (X, g) is

h(g) = lim
R→∞

1

R
log(Vol(Bp(R))),

for some p ∈ X̃.

Manning [14] proved that this de�nition is meaningful in the following
sense.

Proposition 4.2. The entropy of a compact Riemannian manifold (X, g)
always exists and is independent of the choice of basepoint.

Sketch of proof. We sketch the independence from the basepoint. Since X
is compact, it has a fundamental domain in M̃ of �nite diameter D. Let
p0, p1 be two basepoints in X̃. Moving either point by an isometry, we can
assume that p0 and p1 lie in the same copy of the fundamental domain and
so are at distance at most D from each other. It is now easy to see that
that Vol(Bp0(r−D) ≤ Vol(Bp1(r)) ≤ Vol(Bp0(r+D)), so that the limits are
independent of the choice of basepoint, provided they exist.

The �aw in this invariant is that it is not invariant under rescaling and
thus distinguishes metrics that are essentially the same. Precisely, for any
λ > 0, we have h(λg) = 1

λ
h(g). To see this, notice that Vol(Bp(R), λg) =

Vol(Bp(R/λ), g) and so

h(λg) = lim
R→∞

1

R
log(Vol(Bp(R), λg)) =

1

λ
lim
R→∞

λ

R
log(Vol(Bp(R/λ), g))

=
1

λ
h(g).

Therefore, instead of just considering the entropy, we will consider the func-
tional Vol(M, g)hn(g). It is now straightforward to see that this is invariant
under rescaling of the metric.
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Example 4.3. Entropy of a hyperbolic manifold. The computation is
simplest when using the hyperboloid model and assuming that p = (0, . . . , 0, 1).
Use the usual parametrization

(x1, . . . , xn) 7−→ (x1, . . . , xn,
√

1 + x2
1 + . . .+ x2

n)

and hyperspherical coordinates to �nd

Vol(Bp(R)) =

∫
‖x‖≤sinhR

dx1 . . . dxn√
1 + x2

1 + . . .+ x2
n

= cn

∫ sinhR

0

rn−1

√
1 + r2

dr

= cn

∫ R

0

sinhn−1(u) du

∼ e(n−1)R.

Therefore, the entropy of a hyperbolic manifold is n− 1.

The manifolds of interest in this theorem are locally symmetric spaces.

De�nition 4.4. A locally symmetric space is a homogeneous connected
Riemannian manifold X such that for any p ∈ X, there is a symmetric
neighborhood U of p on which the geodesic symmetry map is a local isometry.
The geodesic symmetry map at p �xes the point p and reverses all geodesics
through that point.

The theorem this chapter focuses on is the following, due to Besson,
Courtois and Gallot (see [4]).

Theorem 4.5. Let (M, g), (N, g0) be compact, connected, negatively curved
Riemannian n-manifolds with n ≥ 3. Suppose that g0 is a locally symmetric
metric and that there exists a homotopy equivalence f : M → N . Then

1. hn(g) Vol(M, g) ≥ hn(g0) Vol(N, g0),

2. h(g) = h(g0) and Vol(M, g) = Vol(N, g0) if and only if (M, g) is iso-
metric to (N, g).

The second statement can be rephrased as follows. There is equality if
and only if the manifolds are isometric up to rescaling of the metrics.

Mostow's rigidity theorem follows as an easy corollary.
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Proof of Mostow rigidity. Since both manifolds M and N are assumed to be
hyperbolic, they are locally symmetric, thus the inequality of 4.5.1 holds in
both ways and so equality holds. Theorem 4.5.2 then implies that M and N
are isometric up to rescaling of the metrics.

We now outline the proof of Theorem 4.5.

1. The boundary map

Exactly as in Chapters 2 and 3, we use the π1(M)-equivariant lift f̃ :
M̃ → Ñ and the boundary map h = ∂f̃ : ∂M̃ → ∂Ñ . Nevertheless, unlike
in Chapter 2, we need only the fact that h is a homeomorphism. No heavy
analysis facts will be quoted. Instead, we use tools such as Patterson-Sullivan
measures, the barycenter construction and the map h to de�ne a map from
M̃ to Ñ which turns out to be a π1(M)-equivariant isometry.

2. Patterson-Sullivan measures

DenoteM(∂M̃) denote the space of Borel measures on ∂M̃ . We construct
a map

M̃ −→ M(∂M̃)

y 7−→ µy

that is π1(M)-equivariant. The measure µy will arise from a limiting process
involving measures of the form

νy,s =

∑
γ∈Γ e

−sd(y,γ.p0)δγ.p0∑
γ∈Γ e

−sd(p0,γ.p0)
,

for some basepoint p0 ∈ M . The series converges for s > h(g) and the
denominator can be assumed (for mathematical reasons) to diverge at s =
h(g). From this fact and a compactness argument, some subsequence νy,si
converges to a measure concentrated on ∂M̃ . The fact that Γ is a lattice
ensures that the resulting measure is nonatomic.

The Radon-Nikodym derivative of these measures has the following nice
form. For y, y′ ∈ M̃ ,

dµy
dµy′

(θ) = e−h(g)By′ (y,θ), (4.1)
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where By′(·, θ) is the Busemann function of θ centered at y′ (see Section 1.1
for the basics of Busemann functions).

3. The barycenter method

Let X be the universal cover of a complete nonpositively curved mani-
fold and let Γ be a discrete group acting cocompactly by isometries on X.
Suppose that ∂X is endowed with a nonatomic measure λ. Just as Buse-
mann functions formalize the concept of distance to in�nity, the barycenter
of λ captures the idea of the �closest� point to the boundary at in�nity with
respect to this measure.

Fix an origin o ∈ X. The barycenter of λ, written barλ, is the unique
minimum x of the functional∫

X̃

Bo(x, θ) dλ(θ).

This de�nes a Γ-equivariant map

M(∂X) −→ X

λ 7−→ barλ.

4. The natural map and its properties

Given steps 2 and 3, the de�nition of the natural map is now quite natural.
Given y ∈ M̃ , construct the Patterson-Sullivan measure µy on ∂M̃ , push it
forward to ∂Ñ by h and take the barycenter.

F̃ : M̃ → M(∂M̃) → M(∂Ñ) → Ñ

y 7→ µy 7→ h∗µy → bar(h∗µy) = F̃ (y).

As a consequence of the preceding steps, F̃ is π1(M)-equivariant and so
descends to a map F . Since all the following estimates are pointwise, we will
not distinguish F and F̃ any more. Since F induces the same isomorphism
of fundamental groups as f , the two maps are homotopic. Theorem 4.5 will
directly follow from the following proposition.

Proposition 4.6. The function F is at least C1 and satis�es

1. | JacF (y)| ≤ hn(g)
hn(g0)

for all y ∈M ,
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2. equality holds if and only if F is a homothety of ratio h(g)/h(g0).

Proof of Theorem 4.5. Let ω (resp. ω0) be the volume form on (M, g) (resp.
(N, g0)). Since F is homotopic to f , it has degree one, so Proposition 4.6.1
implies that

Vol(N, g0) =

∫
Y

ω0 =

∫
X

F ∗ω0 =

∫
X

| JacF |ω

≤ hn(g)

hn(g0)

∫
X

ω =
hn(g)

hn(g0)
Vol(M, g).

This implies the �rst statement. Now, if equality holds, then | JacF (y)| =
hn(g)/hn(g0) so by Proposition 4.6.2, F is a homothety. Rescaling the metrics
so that h(g) = h(g0) implies that JacF = In. In other words, F is an
isometry.

4.2 Patterson-Sullivan measures

Let X be the universal cover of a complete nonpositively curved manifold
and let Γ be a discrete group acting cocompactly by isometries on X. We
�x once and for all a basepoint p0 in X. The purpose of this section is to
construct a family (µy)y∈X of probability measures such that the map

X −→ M(X)

y 7−→ µy

is Γ-equivariant and satis�es

dµy
dµy′

(θ) = e−h(g)By′ (y,θ) for all θ ∈ ∂X.

Intuitively, the Patterson-Sullivan measure at y ∈ X measures the visual
density at in�nity of the orbit Γ.p0, as seen from the point y. This will
be obtained by a limiting process. In hyperbolic spaces, the visual size of
objects decreases exponentially as the object moves further away. Thus, for
each γ ∈ Γ, we place a Dirac measure at γ.p0 and we scale it by a factor
e−sd(y,γ.p0) for some adequately chosen s > 0. For convergence purposes, we
divide the resulting sum by another in�nite sum so as to de�ne

νy,s =

∑
γ∈Γ e

−sd(y,γ.p0)δγ.p0∑
γ∈Γ e

−sd(p0,γ.p0)
.
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These series will shortly be seen to converge when s > h(g). For x, y ∈ X,
de�ne

gs(y, z) =
∑
γ∈Γ

e−sd(y,γ.z).

Let an = #{Γ.p0 ∩ (Bp0(n)−Bp0(n− 1))} and observe that

gs(p0, p0) ∼
∞∑
n=1

ane
−sn

Let bn = Vol(Bp0(n)). The cocompactness of Γ implies that an ∼ bn − bn−1.
Since s > h(g), there is an ε > 0 such that s − 1

n
log bn > ε for large n.

Therefore
∞∑
n=1

bne
−sn =

∞∑
n=1

e−(s− 1
n

log bn)n

and this last expression converges. This implies the convergence of the se-
ries

∑∞
n=1 ane

−sn. The same argument shows the divergence of this series
when s < h(g). Using the triangle inequality, it is easily seen that g(p0, p0)
converges if and only if g(y, z) converges for all y, z ∈ X.

We do not know whether the series gs(y, z) converges or diverges when s =
h(g). In fact, the series can be modi�ed so that it diverges at s = h(g) and
still converges when s < h(g). We refer the reader to [8] or [18] where this is
explained thoroughly. The idea is to multiply each term in the series g(y, p0)
by u(ed(y,ζ)), where ζ ∈ X̄ and u : [0,∞) → [0,∞) is an increasing function
that grows just slightly faster than the identity function. For simplicity of our
discussion, we simply assume that the series gs(·, ·) diverges when s = h(g).

De�ne

νs,y =

∑
γ∈Γ e

−sd(y,γ.p0)δγ.p0∑
γ∈Γ e

−sd(p0,γ.p0)
.

The family of Γ-equivariant maps {y 7→ νs,y : y ∈ X, s ∈ (h(g), h(g) + 1]}
is a subset of C(X,M(X̄)). It is an exercise to show that this family is
equicontinuous and uniformly bounded on compact sets, so by the Arzela-
Ascoli theorem, this family is a relatively compact subset of C(X,M(X̄))
endowed with the topology of uniform convergence on compact sets. It fol-
lows that for all y ∈ X, there is a sequence νsi,y converging to a measure νy.
The divergence of the series gh(g)(p0, p0) implies that νy lies inM(∂X). The
measure νy is concentrated on the set of accumulation points of Γ.p0. Since
Γ is cocompact, the measure νy is supported on the whole boundary ∂X.
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To see that the measure νy is nonatomic, suppose for the sake of con-
tradiction that there exists some ξ ∈ ∂X with µy({ξ}) > 0. Since M is
cocompact, π1(M) must contain a hyperbolic element γ such that its axis
does not have ξ as endpoint. Equivariance of νy and the fact that the set
{γm.ξ : m ∈ Z} is in�nite imply that νy has in�nite mass, which is absurd.

We �nally prove the property of change of measure. Namely, for y, y′ ∈ X
and θ ∈ ∂X, we show that

dνy
dνy′

(θ) = e−sBy′ (y,θ). (4.2)

Consider a point γ.p0 close to θ. When computing the ratio νy,s/νy′,s, the
coe�cient in front of each Dirac measure δγ.p0 close to θ is

e−sd(y,γ.p0)

e−sd(y′,γ.p0)
= e−s(d(y,γ.p0)−d(y′,γ.p0)) ' e−sBy′ (y,θ).

This is illustrated on Figure 4.1. As si → h(g), only terms near the boundary
count. This proves (4.2).

θ
b

b
y b y

′

××× ×××

×
× ×

× ×
γ.p0

By′(y, θ)

Figure 4.1: Change of measure property

Renormalizing the measures νy, we obtain probability measures on ∂X
via the map

X −→ M(∂X)

y 7−→ µy =
1

νy(∂X)
· νy.
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The property of change of measures only changes up to a multiplicative
constant. Thus

dµy
dµy′

(θ) = cy,y′e
−sBy′ (y,θ), (4.3)

where cy,y′ = νy′(∂X)/νy(∂X).

4.3 The barycenter

Let X again be the universal cover of a negatively curved manifold. As
said above in the outline, the barycenter of a nonatomic measure on ∂X̃ is in
some sense the closest point in X to the boundary with respect to that mea-
sure. This part uses Riemannian geometry and relies on the understanding
of the curvature of horospheres. The main result of this section asserts the
existence and uniqueness of the barycenter.

Proposition 4.7. Let λ ∈M(∂X) be a nonatomic measure. Then the func-
tion

rλ(x) =

∫
∂X

Bo(x, θ) dλ(θ)

has a unique minimum in X, denoted by bar(λ).

First observe that the map

M(∂X) −→ X

λ 7−→ barλ

is Γ-equivariant, that is, bar(γ∗λ) = γ. bar(λ). Write x0 = bar(λ). One has
to show that γ.x0 minimizes rγ∗λ. To see this, recall that Bo(·, θ) and Bo′(·, θ)
di�er by a constant c = c(θ). Then

rγ∗λ(γ.x) =

∫
∂X

Bo(γ.x, θ) d(γ∗λ)(θ) =

∫
∂X

Bo(γ.x, γ.θ) dλ(θ)

=

∫
∂X

Bγ−1o(x, θ) dλ(θ)

=

∫
∂X

Bo(x, θ) dλ(θ) +

∫
∂X

c(θ) dλ(θ).

and notice that this expression is minimal when x = x0.
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Existence and uniqueness of the barycenter follow from the strict convex-
ity of the function x 7→

∫
∂X
Bo(x, θ) dλ(θ). This will come from the fact that

the Hessian of Busemann functions is positive de�nite for almost all vectors,
which is a consequence of the next two propositions.

Proposition 4.8. For any θ ∈ Sn−1 ' ∂Hn, the Hessian of the Busemann
function B(·, θ) at p equals the second fundamental form of the horosphere at
θ through p.

Proof. Fix p ∈ Hn, θ ∈ Sn−1 and for simplicity write B(·) = Bo(·, θ). Recall
that the second fundamental form of a hypersurface S is the symmetric form
given by

II(u, u) = −g(∇uν, u), for all u ∈ TS,
where ν is a vector �eld normal to S. The Hessian of B at p is Hp(B)(v, v) =
(∇vdB)(v), where v ∈ TpHn.

Write S = HS(p, θ). Pick a chart (U,ϕ) around p such that gij(p) = δij.
Let ν be the vector �eld normal to the horosphere HS(p, θ). Up to an
isometry of Rn, we can assume that (U,ϕ) is such that ν(p) = − ∂

∂xn
.

For q ∈ HS(p, θ), write ν(q) = ak(q)
∂
∂xk

and notice that at point p,

ak(p) =

{
0, 1 ≤ k ≤ n− 1
−1, k = n

.

Also notice that dB = akdx
k.

We are going to prove that II(u, u) = Hp(B)(u, u) for u = ∂
∂xl
∈ TpS,

with l = 1, . . . , n− 1.
By de�nition, ∇udh = C(u⊗∇dh), where C is the contraction operator.

∇dB = ∇(akdx
k) = dak ⊗ dxk + ak∇dxk

= dak ⊗ dxk − akΓkijdxi ⊗ dxj.

Since u = ∂
∂xl

, one has dxi(u) = δil and so

(∇udB)(u) = dak(u)dxk(u)− akΓkijdxi(u)dxj(u)

= dal(u) + Γnll(p).

On the other hand,

∇ν = ∇(ak
∂

∂xk
) = dak ⊗ ∂

∂xk
+ akΓ

i
kj

∂

∂xi
⊗ dxj
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so that

∇uν = C(u⊗∇ν) = dak(u)
∂

∂xk
+ akΓ

i
kj

∂

∂xi
dxj(u)

= dak(u)
∂

∂xk
− Γinl(p)

∂

∂xi
,

Thus

g(∇uν, u) = g(dak(u)
∂

∂xk
− Γknl(p)

∂

∂xk
,
∂

∂xl
)

= dal(u)− Γlnl(p) = dal(u) + Γnll(p)

= Hp(B)(u, u).

Proposition 4.9. Let M be a compact Riemannian manifold of constant
sectional curvature κ = −1 and X its universal cover. Then horospheres in
X have positive sectional curvatures equal to 1.

Proof. Fix θ ∈ ∂X and write B = B(·, θ). Let ν be the gradient vector �eld
of B and let γp(t) be the geodesic curve with initial tangent vector ν(p). Let
w ∈ ν(p)⊥ and de�ne a vector �eld along γp

Y (t) = d(γp)tw.

This is a Jacobi �eld. For any q ∈ HS(q, θ), the geodesics γp and γq converge
to the same point in ∂X when t tends to −∞. Therefore

lim
t→−∞

‖Y (t)‖ = 0. (4.4)

Let w(t) be the parallel translation of w along γp. Choose an orthonormal
frame at p containing the vectors ν(p), w and parallel translate it along γp.
Use this with (4.4) to solve the Jacobi equation. This yields Y (t) = etw(t).
Also observe that ∇Y

dt

∣∣
t=0

= ∇νY = ∇wν. Therefore

II(w,w) = 〈∇wν, w〉 =
1

2

d

dt

∣∣∣∣
t=0

〈Y (t), Y (t)〉 = g0(w,w) = 1.
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Corollary 4.10. Under the same hypotheses, for all p ∈ X and u, v ∈ TpX,

Hp(B)(u, v) = g0(u, v)− dB(u)dB(v)

Proof. The preceding proof and Proposition 4.8 shows that Hp(B)(v, v) =
g0(v, v) for all v ∈ TS. An easy computation implies that Hp(B)(u, u) =
−dB(u)2. Using that dB(v) = 0 for all v ∈ TS, the result easily follows.

Proof of Proposition 4.7. To prove that the function rλ has an absolute min-
imum, it su�ces to check that it is strictly convex and that rλ(x) tends to
in�nity as x approaches the boundary ∂X.

It follows from Corollary 4.10 that (∇uB(x,θ))(u) = 0 if and only if θ is
an endpoint of the geodesic line with tangent vector u. Moreover, Propo-
sition 4.9 implies that ∇uB(x,θ)(u) is positive de�nite. Thus, since λ is
nonatomic, the bilinear form

(∇urλ)(u) =

∫
∂X

(∇uBo(x,θ))(u) dλ(θ)

is positive de�nite and so rλ is strictly convex.
It remains to check that r(x) goes to in�nity when x tends to θ ∈

∂X. This uses the convexity of Busemann functions and standard measure-
theoretic arguments. See [3, Appendix A] or [8] for more details.

4.4 Computation of the Jacobian

Recall that the natural map F (y) = bar(h∗dµy) is implicitly de�ned by
the vector-valued equation∫

∂Ñ

dBo(F (y),θ)
(·) d(h∗µy)(θ) = 0. (4.5)

Using (4.1), this is equivalent to∫
∂M̃

dBo(F (y),h(α))
(·)e−h(g)B(α,y) dµp0(α) = 0. (4.6)

It is natural to use the implicit function theorem to show the regularity of F
and the properties of Proposition 4.6. Let (ei(z))i=1,...,n be a family of frames
on TzÑ depending smoothly on z. De�ne

G : M̃ × Ñ −→ Rn

(y, z) 7−→ (G1(y, z), . . . , Gn(y, z)),
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where

Gi(z) =

∫
∂M̃

dBo(z,h(α))(ei(z))e−h(g)B(α,y) dµp0(α).

To ckeck the nondegeneracy condition, carefully di�erentiate G with respect
to z. For v ∈ TyM̃ and G(y, z) = 0, one �nds

(DzGi)(y,z)(v) =

∫
∂M̃

∇vdBo(z,h(α))(ei(z)) dµy(α)

By the same argument as in the proof of Proposition 4.7, one concludes that
DzG is invertible. Therefore, by the implicit function theorem, the natural
map F is C1. To estimate the Jacobian of F , di�erentiate the equation
G(y, F (y)) = 0. Then for all u ∈ TyM̃ and v ∈ TF (y)Ñ ,∫
∂M̃

∇dFy(u)dBo(F (y),h(α))
(v) dµy(α) = h(g)

∫
∂M̃

dBo(F (y),h(α))
(v)dB(α,y)(u) dµy(α).

(4.7)
Using the Cauchy-Schwarz inequality, we obtain∣∣∣∣∫

∂M̃

∇dFy(u)dBo(F (y),h(α))
(v) dµy(α)

∣∣∣∣
≤ h(g)

(∫
∂M̃

dB2
o(F (y),h(α))

(v) dµy(α)

)1/2(∫
∂M̃

dB2
(α,y)(u) dµy(α)

)1/2

. (4.8)

This prompts us to de�ne symmetric endomorphisms KF (y), HF (y) on TF (y)Ñ
via the bilinear forms

g0(KF (y) ◦ dFy(u), v) =

∫
∂M̃

∇dFy(u)dBo(F (y),h(α))
(v) dµy(α)

g0(HF (y)(v), v) =

∫
∂M̃

dB2
o(F (y),h(α))

(v) dµy(α).

Thus (4.8) can be rewritten as

|g0(K ◦ dFy(u), v)| ≤ h(g) · g0(H(v), v) ·
(∫

∂M̃

dB2
(α,y)(u) dµy(α)

)1/2

. (4.9)

From now on, omit subscripts for simplicitly and write 〈·, ·〉0 instead of g0(·, ·).
Since Proposition 4.6 is trivial when dFy is not invertible, we can assume that
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it is invertible. Notice that K is invertible, since the bilinear form g0(K·, ·)
equals the Hessian of B0 which is positive de�nite. This ensures that the
map K ◦ dFy is invertible. In the following, linear maps will be considered
as matrices and a good choice of basis will make the computation easier.

Let (ui) be a basis of TF (y)Ñ diagonalizing H and let (vi) be the or-

thonormal basis of TyM̃ obtained by applying the Gram-Schmidt process to
the basis ((K ◦ dFy)−1(ui)). Then the matrix of K ◦ dFy is upper triangular.
Use (4.8) and the inequality of geometric and arithmetic means to �nd

det(K ◦ dFy) =
n∏
i=1

〈K ◦ dFy(vi), ui〉0

≤ hn(g)(detH)1/2

(
1

n

∫
∂M̃

n∑
i=1

dB2
(y,α)(vi) dµy(α)

)n/2

= hn(g)(detH)1/2n−n/2, (4.10)

where the last equality comes from the fact that
∑n

i=1 dB
2
(y,α)(vi) = ‖dB2

(y,α)‖2 =
1 and that µy is a probability measure.

Now we restrict our attention to real hyperbolic spaces. The general
proof for complex and quaternionic hyperbolic spaces is given in [4] and [8].
Integrating the formula of Corollary 4.10 yields

H = I −K.

Thus (4.10) becomes

|JacF (y)| ≤ hn(g)

nn/2
· (detH)1/2

det(I −H)
. (4.11)

Also observe that

Tr(H) =
n∑
i=1

〈Hui, ui〉0 =
∑

dB2
o(F (y),h(α))

(ui) dµy(α)

= 1,

for the same reason as in (4.10).
The next linear algebra result is the cornerstone of the proof. Notice that

it is the only step requiring that n ≥ 3.
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Lemma 4.11. Let H be a symmetric de�nite positive matrix with trace 1.
Assume that n ≥ 3. Then

det(H)1/2

det(I −H)
≤
( √

n

n− 1

)n
,

with equality if and only if H = I/n. Moreover, this is false when n = 2.

Proof. The proof uses Lagrange multipliers. See [3, Appendix B].

This result and (4.11), together with the fact that h(g0) = n − 1, imply
that

| JacF (y)| ≤ hn(g)

hn(g0)
(4.12)

There remains the equality case. The second part of Lemma 4.11 implies
that H = 1

n
I and K = n−1

n
I. Thus (4.8) becomes

|〈dFy(u), v〉0| ≤
h(g)

h(g0)
n1/2‖v‖0

(∫
∂M̃

dB(α,y)(u) dµy(α)

)1/2

. (4.13)

Taking the supremum over all v with ‖v‖ = 1 yields

‖dFy(u)‖0 ≤
h(g)

h(g0)
n1/2

(∫
∂M̃

dB(α,y)(u) dµy(α)

)1/2

. (4.14)

Let L = dF ∗y ◦ dFy. It is a normal endomorphism of TyM̃ . Let (wi) an or-

thonormal basis diagonalizing L. We are going to show that detL = (TrL
n

)n.
The equality case of the inequality of arithmetic and geometric means will

then imply that L = h2(g)
h2(g0)

I. It follows from (4.14) that

TrL =
n∑
i=1

〈dFy(wi), dFy(wi)〉 ≤
h2(g)

h2(g0)
· n. (4.15)

Thus
h2n(g)

h2n(g0)
= detL ≤

(
TrL

n

)n
≤ h2n(g)

h2n(g0)
.

This implies that L is a multiple of the identity and so dFy = h(g)
h(g0)

I. This
�nishes the proof of Proposition 4.6.
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Chapter 5

The Dehn-Nielsen-Baer Theorem

It was stressed that Mostow's Rigidity Theorem does not hold in dimen-
sion 2. Thus, nothing has been proved about surfaces in this dissertation yet.
However, for surfaces of genus g, the Dehn-Nielsen-Baer theorem is an analog
of Corollary 2.5. Recall that this result states that for a manifold M satisfy-
ing the hypotheses of Mostow rigidity, we have Out(π1(M)) = Isom(M). In
the current case, outer automorphisms do not necessarily arise from isome-
tries, but they do arise from homeomorphisms. Namely, we will show that
for g ≥ 1,

Mod±(Σg) = Out(π1(Σg)),

where Mod±(Σg) is the generalized mapping class group of Σg. This is a
remarkable result of algebraic topology, since it relates a purely topological
object (Mod±(Σg)) to a purely algebraic object (Out(π1(Σg))). We have
included this result because it can be proved using hyperbolic geometry and
quasi-isometries. We follow the approach of Farb and Margalit [7] and we
also used [9].

Let us �x some terminology and notation. A surface is a connected ori-
entable 2-manifold of �nite type (i.e. its fundamental group is �nitely gener-
ated). An isotopy of S is a homotopy H : S × [0, 1]→ S with the property
that H(·, t) is a homeomorphism onto its image for all t ∈ [0, 1]. We denote
Homeo0(S) the group of homeomorphisms isotopic to the identity map.

Our object of interest will be the generalized mapping class group,
which is

Mod±(S) = Homeo(S)/Homeo0(S).

75
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A mapping class [ϕ] ∈ Mod±(S) does not necessarily induce a unique
isomorphism of π1(S). Indeed, if two homeomorphisms ϕ and ϕ′ of S �xing
a basepoint x0 are isotopic via an isotopy that does not �x x0, then ϕ∗ and ϕ

′
∗

will di�er by conjugation by the loop γ(t) = H(x0, t). Therefore, a mapping
class only induces a well-de�ned outer automorphism of π1(S).

Theorem 5.1. Dehn-Nielsen-Baer Theorem. Let g ≥ 1. The natural
map

Mod±(Σg) −→ Out(π1(Σg))

ϕ 7−→ [ϕ∗]

is an isomorphism.

Injectivity of the natural map easily follows from homotopy theory. The
universal cover of Σg is di�eomorphic to Rn, so Σg is a K(π1(Σg), 1) space.
We use again the fact that maps to K(G, 1) spaces inducing the same map
on fundamental groups must be homotopic (see p.29). This does not tell
us that these maps are isotopic, but it is a fact due to Baer that for closed
surfaces other than the closed disk and the closed annulus, any homotopy of
homeomorphisms can be improved to an isotopy of homeomorphisms (see [7,
1.4]). This proves injectivity.

For the case g = 1, we cannot use hyperbolic geometry (see page 20), but
a short direct proof of surjectivity is possible. Since the fundamental group
of the torus is abelian, it is clear that Out(π1(Σ1)) = Aut(Z2) = GL(2,Z).
Furthermore, an element Φ of Out(π1(Σ1)) = GL(2,Z) sends the vertices of
the square [0, 1]2 to vertices of another parallelogram P of unit area. This
readily extends to a map ϕ : [0, 1]2 → P . This map in turn induces a
homeomorphism of Σ1 that maps to the initial (outer) automorphism Φ.
Thus the theorem is proved when g = 1. Also notice that this argument
shows that Mod±(Σ1) = GL(2,Z).

A complete proof of the Dehn-Nielsen-Baer Theorem will be given, but
we �rst outline it.

Outline of proof of Dehn-Nielsen-Baer Theorem. Given [Φ] ∈ Out(π1(Σg)),
we have to �nd a homeomorphism ϕ of Σg inducing the outer automorphism
[Φ]. The tool that will give rise to ϕ is nonseparating chains of simple closed
curves (see Figure 5.3). Since any essential closed curve corresponds to an
element of π1(Σg), the automorphism Φ acts on such curves. The key of
the proof is that Φ sends a nonseparating chain of simple closed curves to
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another one. This step uses hyperbolic geometry and quasi-isometries. As
a consequence of the change of coordinate principle, there exists a map ϕ ∈
Homeo(Σg) having the same e�ect as Φ on the chain of curves. Then a clever
induction argument shows that [ϕ∗] = [Φ] ∈ Out(π1(Σg)).

5.1 Change of coordinates principle

The change of coordinates principle is useful to prove topological state-
ments about curves on surfaces. It generally enables to carry out arguments
using some standard picture. For example, given a complicated curve α
on some surface S, one can ask whether there exists a curve γ on S with
i(α, γ) = 0. This kind of question is most easily answered if one can notice
that there is a homeomorphism mapping α to a simpler curve β.

For us, the change of coordinates principle will give rise to the home-
omorphism of Σg that we are looking for. Indeed, we will show that any
nonseparating chains of curves are homeomorphic (see Figure 5.3 to see our
favorite chain of curves). In this section, S will be a closed surface. For
simplicity, we will not consider punctured surfaces.

A curve α on S is said to be nonseparating if S − α is connected.

Proposition 5.2. For any two nonseparating curves α, β on S, there exists
a homeomorphism ϕ of S such that ϕ(α) = β.

Proof. Let Sα (resp. Sβ) be the compact surfaces obtained by removing a
tubular neighborhood of α (resp. β). Thus Sα and Sβ are connected and have
the same number of boundary components, punctures and Euler characteric.
It follows the classi�cation of surfaces (see [7, Section 1.1]) that Sα and Sβ are
homeomorphic. This homeomorphism readily extends to a homeomorphism
of S sending α to β.

Before de�ning chain of curves, another concept is needed. The geomet-
ric intersection number of two transverse curves α, β, denoted i(α, β)
is the number of intersection points of α, β. The algebraic intersection
number of two transverse curves α, β, denoted î(α, β), is the sum of indices
of intersection points of α and β. An intersection point has index +1 if the
orientation of the crossing agrees with the orientation of S and −1 otherwise.
These quantities can be de�ned for isotopy classes of curves by taking the
minimum over all pairs of representatives.
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De�nition 5.3. A chain on S is a sequence of simple closed curves α1, . . . , αr
with the property that i(αi, αi+1) = 1 for i = 1, . . . , r − 1 and i(αi, αj) = 0
whenever |i−j| ≥ 2. A chain is oriented if the index of the intersection point
of αi and αi+1 does not depend on i. A chain is nonseparating is the union
α1 ∪ . . . ∪ αr does not separate S. Chains of isotopy classes of simple closed
curves are de�ned similarly.

The change of coordinate principle for chains of curves is the following.

Proposition 5.4. Any two nonseparating oriented chains of simple closed
curves with the same number of curves are homeomorphic.

Proof. The proof is by induction on the number of curves. The basis step
follows directly from Proposition 5.2.

For the inductive step, let (α1, . . . , αk+1), (β1, . . . , βk+1) be oriented chains
of simple closed curves. Suppose that the chains (α1, . . . , αk), (β1, . . . , βk) are
homeomorphic and that the homeomorphism agrees with their orientations.
Denote by Sα,k the surface obtained by removing tubular neighborhoods of
α1, . . . , αk from S and de�ne Sβ,k similarly. Then Sα,k and Sβ,k are homeo-
morphic and so we can identify them. On Sα,k, the curves αk+1, βk+1 become
nonseparating arcs that connect the same pair of boundary components.
Thus Sα,k+1 and Sβ,k+1 have the same number of boundary components and
the same Euler characteristic. By the classi�cation of surfaces, they are
homeomorphic. Moreover, the chains are oriented and homeomorphisms ei-
ther preserve of reverse the orientation of the whole surface, so that this
homeomorphics respects the orientation of the chains.

The chain of curves on Σg that will interest us all have even length 2g.
We will need to know that such chains of curves always are nonseparating.

Proposition 5.5. Any chain of curves of even length is nonseparating.

Proof. For simplicity assume that our surface S has no boundary compo-
nents. Let α1,. . . ,αk be a chain of curves on S such that î(αi, αi+1) = 1. Let
U be a tubular neighborhood of the collection of curves.

If there is only one curve, cutting U along α1 yields a space homeomorphic
to a disjoint union of two strips (a strip is topologically S1× [0, 1]) as shown
on the left of Figure 5.1. This is the base step of the induction.

If k = 2, the fact that i(α1, α2) = 1 implies that α2 joins the two boundary
components of the space obtained in the base step. Thus, cutting along α2
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Figure 5.1: Induction by cutting strips

yields a single strip. Thus U − {α1, α2} is connected and the same holds for
S − {α1, α2}. Cutting the resulting surface along α3 splits the single strip
into two strips, as shown on the right hand side of Figure 5.1, and thus we
are back to the �rst inductive step.

Continuing the induction process shows that U−{α1, . . . , αk} is connected
whenever k is even and disconnected whenever k is odd. This implies that
S − {α1, . . . , αk} is connected when k is even. In other words, any chain of
curves of even length is nonseparating. Finally note that there may be chains
of odd length that are nonseparating.

Free homotopy classes of curves on hyperbolic surfaces are easier to han-
dle because they admit unique geodesic representatives. The lifts of these
representatives will be used throughout the proof of the Dehn-Nielsen-Baer
Theorem.

Proposition 5.6. Let S be a closed hyperbolic surface. Then every essen-
tial closed curve γ on S is freely homotopic to a unique closed geodesic α.
Moreover, if γ is simple then α is simple.

Proof. The geodesic α is the projection of the axis corresponding to γ. Since
images of homotopies are compact, the lifts of two homotopic geodesics to
H2 stay at bounded distance, which forces them to be equal.

5.2 Quasi-isometries

Quasi-isometries were introduced in De�nition 2.7. A �nitely generated
group G can be made into a metric space via its Cayley graph and the word
metric with respect to a set of generators. Choose a symmetric set S of
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generators for G. The Cayley graph C(G,S) of G with respect to S has G
as set of vertices and two vertices g, h are connected by an edge if there is
an s ∈ S such that g = sh. The word metric dS(·, ·) on G is de�ned as the
graph metric on C(G,S) (edges have length 1). In other words, dS(g, h) is
the reduced word length of gh−1. It is an easy exercise to show that word
metrics with respect to di�erent �nite generating sets are quasi-isometric.

In the case of the fundamental group of a hyperbolic surface, we can
give π1(S) a hyperbolic metric as follows. Fix a covering projection with
basepoints p : (H2, y0) → (S, x0) and de�ne dH(γ, δ) to be the hyperbolic
distance between γ.y0 and δ.y0. Observe that a choice of a di�erent covering
map yields a metric quasi-isometric to dH .

Word metrics and hyperbolic metrics on G = π1(Σg) are quasi-isometric,
which will allow us to switch freely from one to another. Since word metrics
are quasi-isometric, we can choose the generating set S = (a1, b1, . . . , a2g, b2g).
Proving that dS and dH are quasi-isometric is an easy exercise. As a hint, one
bound comes from the maximum hyperbolic distance between generators in S
and the other can be expressed using the injectivity radius of a fundamental
domain for Σg.

As it was discussed in Section 1.1, the fundamental group of a compact
hyperbolic manifolds only contains hyperbolic elements. Thus, throughout
this chapter, elements of the fundamental group of Σg, g ≥ 2, will be seen
as axes of the underlying hyperbolic deck transformations (often without
mention).

Proposition 5.7. Let Ψ : G → G be a group automorphism. Then Ψ is a
quasi-isometry of G.

Proof. Left as an exercise.

For a hyperbolic surface S, elements γ, δ of π1(S) are said to be linked
at in�nity if the axes in H2 corresponding to γ and δ intersect in one point.
This is the very property that connects topology to hyperbolic geometry in
the proof of the Dehn-Nielsen-Baer theorem. The next lemma is the essential
geometric tool of the proof.

Lemma 5.8. Let Φ be an automorphism of π1(Σg). Then γ and δ are linked
at in�nity if and only if and only if Φ(γ) and Φ(δ) are linked at in�nity.

Proof. Since Φ is an automorphism, it su�ces to show that Φ(γ) and Φ(δ)
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Figure 5.2: Piecewise polygonal paths PO and PO′

are not linked at in�nity whenever γ and δ are not linked at in�nity. By
Proposition 5.7, Φ is a (K, ε)-quasi-isometry for some K > 1, ε > 0.

We are going to use the graph of the universal cover. Fix a covering
projection p0 and a basepoint y0 in H2. Choose a fundamental hyperbolic
4g-gon that has y0 as a vertex and corresponding to the usual polygonal
gluing. This 4g-gon naturally gives rise to a generating set (a1, b1, . . . , ag, bg)
for π(Σg). The edges of resulting tiling of H2 form a graph that we simply
call the graph of the universal cover. Let D > 0 be the maximal hyperbolic
length of an edge in that graph. De�ne

O = {γky0 : k ∈ Z}

and
O′ = {δkNy0 : k ∈ Z− {0}}.

Choose N so large that O and O′ are at distance at least M := K2D +
2εK+1. First connect the points in O by edges in the graph of the universal
cover so that the resulting piecewise geodesic path PO stays at distance M
from O′. Then connect points in O′ in the same way so that the path PO′
stays at distance M away from PO. This construction fails if γ and δ are
linked at in�nity.

Note that the length of an edge in Φ(PO) or Φ(PO′) is at most KD + ε.
Assume by contradiction that Φ(γ) and Φ(δ) are linked at in�nity. Then
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there exist vertices y ∈ PO, y′ ∈ PO′ such that

KD + ε ≥ dH(Φ(y),Φ(y′)).

But on the other hand,

dH(Φ(y),Φ(y′)) ≥ 1

K
M − ε

≥ KD + ε+
1

K
,

which is a contradiction.

Another relation between elements of π1(S) will be used. Let α, β, γ ∈
π1(S), such that α and β do not share an axis with γ. Then α and β are said
to be on the same side as γ if there is a geodesic δ crossing α, β but not γ.

Corollary 5.9. Let S be a hyperbolic surface and let α, β, γ ∈ π1(S). Then
α, β are on the same side of γ if and only if Φ(α), Φ(β) are on the same
side of Φ(γ).

Proof. Assume that α, β are on the same side of γ. According to the above
de�nition α and β can be connected by a geodesic δ that does not cross γ.
Then apply Lemma 5.8.

5.3 End of proof

Let (c1, c2, . . . , c2g) be a chain of curves on Σg as on Figure 5.3 and let Φ
be an automorphism of π1(Σg). We now show that (Φ(c1), . . . ,Φ(c2g)) is also
a chain of curves on Σg. The proof breaks down in four parts.

1. Φ sends simple closed curves to simple closed curves.

2. Φ preserves intersection number 0.

3. Φ preserves intersection number 1.

4. The sign of î(Φ(ci),Φ(ci+i)) does not depend on the index i.
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c1

c2
c3

c4

Figure 5.3: Example of a chain of curves on Σ2

Proof of 1. Let c be an isotopy class of simple closed curve and α be its
unique geodesic representative. By Proposition 5.6, α is also simple and thus
has minimal period. Since an automorphism sends primitive elements to
primitive elements, it follows that the geodesic representative β of Φ(c) also
has minimal period.

There remains to check that β does not intersect itself transversely. We
will use implicitly the fact that distinct lifts of α are in one-to-one correspon-
dence with elements conjugate to α in π1(Σg) (see [9, Prop. 2.5]). Since α is
simple, no two of its lifts intersect in H2. By Lemma 5.8, the image under Φ
of two lifts of α do not intersect. Therefore, no two elements in the conjugacy
class of Φ(c) are linked at in�nity and so β is simple.

Proof of 2. This relies on the following easy observation. Two isotopy classes
of curves have intersection number 0 if and only if no two lifts to H2 intersect.
Since Φ preserves linking at in�nity, it preserves intersection number 0.

Proof of 3. This step is more involved and requires a good understanding of
the set of lifts of an isotopy class of curves. Let a, b be conjugacy classes of
curves and �x a representative α of a. Then i(a, b) = 1 if and only if the
set of representatives for b linked at in�nity with α is {αkβα−k : k ∈ Z} for
some representative β of b linked at in�nity with α.

The direction from right to left is obvious. Conversely, since i(a, b) = 1,
there exists a representative β of b linked at in�nity with α. We have to
show that any representative of b linked at in�nity with a is of the form
αkβα−k (the other inclusion is obvious). Let z = α ∩ β and assume there is
a representative β′ of b that crosses α strictly between αkz and αk+1z, for
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α

β

αβα−1

α−1βα

α2βα−2

z

β′

Figure 5.4: Proof of fact 3.

some k ∈ Z (see Figure 5.4). By Fact 1, since b is simple, no two lifts of b
intersect and so β′ is between αkβα−k and αk+1βα−(k+1). But this implies
that i(a, b) ≥ 2, which is absurd.

Proof of 4. Let c1, c2, c3 be isotopy classes of curves with î(c1, c2) = î(c2, c3) =
±1 and i(c1, c3) = 0. Let γ1, γ2, γ3 be the corresponding axes in H2. The
orientation of these curves implies that the lines γ1γ2γ

−1
1 and γ−1

3 γ2γ3 lie on
the same side of γ2. Since Φ preserves the �same side� relation, the images of
the ci's have the right orientation, that is, î(Φ(c1),Φ(c2)) = î(Φ(c2),Φ(c3)) =
±1.

Now everything is ready to �nish the proof of the theorem.

Proof of the Dehn-Nielsen-Baer theorem. Let [Φ] ∈ Out(π1(Σg)) and �x a
basepoint x0 ∈ Σg. Let (c1, . . . , c2g) be a chain of curves as above and let
(γ1, . . . , γ2g) be representatives in π1(Σg, x0) that only cross each other at
x0. Notice that the γi's generate π1(Σg, x0). Since (Φ(c1), . . . ,Φ(c2g)) is
also a chain of curves, by the change of coordinates principle, there exists
a homeomorphism ϕ such that ϕ∗(ci) = Φ(ci). We can require ϕ to �x
x0. Thus, ϕ

−1
∗ ◦ Φ is an automorphism of π1(Σg) �xing conjugacy classes of

generators.
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It now remains to see that ϕ−1
∗ ◦ Φ is an inner automorphism. Let Iβ

denote conjugation by β. We have to �nd an element α ∈ π1(Σg) such that

Iα ◦ ϕ−1
∗ ◦ Φ(γi) = γi for all i.

Since ϕ−1
∗ ◦ Φ(c1) = c1, there exists α such that Iα ◦ ϕ−1

∗ ◦ Φ(γ1) = γ1. For
γ2, use the fact proved in the above proof of 3 to see that Iα ◦ ϕ−1

∗ ◦Φ(γ2) =
γ−k1 γ2γ

−k
1 for some k ∈ Z. Therefore, Iγk1α ◦ ϕ

−1
∗ ◦ Φ(γj) = γj for j = 1, 2.

In fact, the conjugation Iγk1α satis�es our purpose, which is a little surpris-

ing at �rst sight. That is, we now prove by induction that Iγk1α◦ϕ
−1
∗ ◦Φ(γi) =

γi for i = 1, 2, . . . , 2g. Since i(c1, c3) = 0, the elements γ1 and γ3 are not linked

and so it is easy to see that γ3 lies strictly between γl2γ1γ
−l
2 and γl+1

2 γ1γ
−(l+1)
2

for some l ∈ Z. Moreover, using the fact stated in proof of 3, this uniquely
determines γ3. Since Iγk1α ◦ ϕ

−1
∗ ◦ Φ is an automorphism, it preserves linking

at in�nity and lying between. The fact that it �xes γ1 and γ2 implies that is
also �xes γ3. The inductive step for γi is similar, so the proof is �nished.
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