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ABSTRACT: An approach to estimating the limit and post-limit behavior 
of a framed structure from its geometrically linear response is presented. 
The method follows from a particular restatement of the weak form of 
the nonlinear differential equations governing the response of the 
structure, and is based upon the observation that geometric effects are 
insensitive to redistribution of the moment field in planar framed 
structures. The formulation gives insight into the relationship between 
important observed phenomena and the complex nonlinear governing 
equations. A novel derivation of Home's method for estimating the 
nonlinear response of frames is presented and extended to the important 
case of nonproportional loads. The role of the linearized geometric 
stiffness matrix, and the buckling eigenvalues is clearly demonstrated. 
Several examples are given to evaluate the validity of the inherent 
assumptions and to demonstrate the effectiveness of the approach. 

INTRODUCTION 

Elastoplastic structures subjected to gravity loads generally exhibit a 
limit point with degrading post-limit behavior when subjected to overloads. 
Thus geometric effects play a fundamental role in determining the maxi
mum capacity of a structure and its rate of failure. Recent advances in 
computational mechanics have made it possible to carry out fully nonlinear 
analyses of elastoplastic structures, and effective algorithms exist for 
tracing limit points and post-limit behavior. However, these methods give 
little qualitative insight into the behavior of complex structures. 

The purpose of the present paper is to describe a method for accounting 
for the geometric effects in an elastoplastic analysis through a simple 
procedure that amounts to post-processing the results of a geometrically 
linear analysis. The method is inspired by and generalizes Home's ap
proach (Home 1963) to estimating the nonlinear response of frames. The 
present work probes the relationship between the governing nonlinear 
equations and a hierarchy of approximations. Further, it is shown that an 
estimate similar to Home's can be obtained without solving an eigenvalue 
problem. 

The principal result is the extension of Home's method to the case of 
nonproportional loading, which generally has more physical significance 
than proportional loading for structures in wind and earthquake environ
ments. The formulation presented here is distinguished by a clear state
ments of both the approximations involved and the sense in which the 
method approximates the exact solution. Qualitative insight into the 
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behavior of framed structures is gained both through the success of the 
approximation as well as through a spectral analysis of the results. The 
developments clarify the important role of the linearized geometric stiff
ness matrix in the nonlinear response of frames. 

The paper begins with a brief sketch of the essential features of the 
nonlinear equations governing the response of frame structures. The 
formula for estimating nonlinear response from geometrically linear re
sponse is then derived from a simple decomposition of the nonlinear 
equations in conjunction with a hypothesis about the way internal forces 
are distributed in framed structures. A Rankine-type estimate of the limit 
load is derived for the nonproportional case. Finally, several examples are 
presented to demonstrate the features of the method. The structures 
considered include both moment-resisting frames and eccentrically braced 
frames, range in height from two to eight stories, and are subjected to 
proportional and nonproportional loads. 

NONLINEAR ANALYSIS OF FRAMES 

The equations governing the nonlinear elastic response of planar rods 
were first presented by Reissner (1972). Simo, Hjelmstad, and Taylor 
(1984) put the nonlinear equations into a form suitable for numerical 
analysis by the finite-element method and extended the theory to account 
for inelasticity of the members. Simo (1982) discusses a consistent second-
order approximation to the fully nonlinear rod equations that properly 
accounts for the effects of shear in elastically deformed beams. These 
stress-resultant formulations are taken as the point of departure for the 
present development. The governing nonlinear rod equations will be 
summarized here. Derivations of the general theory can be found in the 
cited references. 

Equilibrium 
The equations governing the equilibrium of a beam can be expressed in 

their weak (variational) form as a statement of the principle of virtual 
displacements. Accordingly we define the functional 

G(u, r,) = <B(t|), S(u)R(u)> - <t|, q> (1) 

in which u = {u,v,\\i}' represents the vector of generalized displacements; 
t\ = an admissible variation of the displacement field; and the notation 
(a, 0) = fna.'$ds represents the inner product of two vectors a and p over 
the entire volume of the structure. The displacement vector {u,v\ = the 
movement of the line of centroids; and i|/ = the rotation of the cross section 
relative to the initial configuration. In Eq. 1, B(u) = {1 + u' ,v', i|>', i|>}' is a 
strain-displacement operator that acts either on the real displacements u or 
their variations tj. Note that a prime indicates differentiation with respect 
to the argument, and a superscript / indicates the transpose of the 
argument. R = {N,V,M}' is the vector of internal stress resultants; TV = the 
axial force; V = the shear force; and M = the bending moment. The 
applied loads are designated as q = {p,q,m}' where p = the applied axial 
force; q = the applied transverse force; and m - the applied moment. 
Concentrated loads can be viewed as limiting cases of distributed loading 
and thus will not be treated explicitly here. The integral in Eq. 1 is taken 
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over the entire volume of the structure and is generally accomplished by 
summing integrals over each element. 

The matrix H(u) in Eq. 1 plays a fundamental role in the nonlinear theory 
as well as in the developments presented in this paper. The strain gradient 
operator H(u) has the physical significance that it reflects the effect of 
geometry on the equilibrium of the internal resisting forces R. Different 
approximations to nonlinear rod theories are distinguished by different 
forms of the strain gradient matrix. For example, the geometrically exact 
theory expressing the Bernoulli-Kirchhoff hypothesis that plane sections 
remain plane can be expressed as 

S(u) = 
cos \|/ 
sin v|/ 
0 

sin \|/ 
COS V|/ 

0 

0 
0 
1 

W cos \|/ 
— W sin \|/ -

— (1 + u') sin v|/ 
- (1 + u') cos \|/ 

0 
(2) 

The consistent second-order approximation of Simo (1983) accounting for 
cross-sectional warping has the following strain gradient matrix: 

S(u): 

1 (1 
V 
0 

K)V' — K\|/ 0 K(V' — v|/) 
1 0 - ( 1 + u') 
0 1 0 

(3) 

where K = the shear coefficient. Note that the consistent second-order 
strain gradient of Eq. 3 can be obtained by linearization of the fully 
nonlinear one of Eq. 2 only if K = 1. 

The strain gradient matrix is related to the true nonlinear strain measures 
in the sense that the virtual strain is defined through the relationship 8e = 
De • ti = H' (u)B(ir|), where e is the strain conjugate to R. Through 
standard procedures one can determine the strain displacement equations 
from this relationship, but since these play a secondary role here they are 
not presented. 

A system is in equilibrium for any configuration, u, in which G(u,iri) = 0 
for any admissible virtual displacement i\. Thus, G(u,*i) has the physical 
significance that it measures, in a weak sense, the equilibrium imbalance in 
the system. This interpretation will motivate the approximation developed 
in the next section. 

Constitutive Equations 
One can assume an additive decomposition of the strain resultants into 

an elastic part and an inelastic part, E = Be + ep, The strains are then 
related to the stress resultants through a rate equation having the form 

D - 1 R + r| 
8R 

(4) 

where <|>(R) = the yield potential; T| = a scalar multiplier that can be 
determined from the consistency condition; and D = diag[EA,KGA,EI] = 
the matrix of elastic moduli. The constitutive relationships are capable of 
representing generalized yielding due to the interaction of all stress 
resultants. They can be specialized for particular cross sections and can be 
extended to incorporate hardening rules by introducing additional internal 
variables as discussed in Hjelmstad and Popov (1983). 
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Numerical Analysis 
While it is outside of the scope of the present paper, it should be pointed 

out that the nonlinear equations just described can be solved through an 
iterative numerical scheme. The equations of equilibrium can be linearized 
and discretized using the finite-element method and can be solved using an 
incremental procedure with Newton-Raphson iteration at each step as 
described by Simo, Hjelmstad, and Taylor (1984). Ramm (1980) has 
presented a summary account of algorithms useful for tracing the response 
of a structure through limit points and into the post-limit regime. The 
reader is directed to these references and the references contained therein 
for a more complete account of the exact treatment of the nonlinear 
equations. The exact numerical analysis is important here only insofar as 
the examples make use of the exact results for the purpose of comparison. 
All exact computations presented here were carried out using the proce
dure described in Simo, Hjelmstad, and Taylor (1984) with a displacement 
control algorithm as described in Ramm (1980). 

APPROXIMATION OF NONLINEAR LOAD FACTOR 

The goal of the present development is to estimate the nonlinear 
response of a structure from a geometrically linear analysis. In essence we 
endeavor to find an approximate reduced load factor that gives an estimate 
of the loads equilibrated by the nonlinear system. Thus, as we trace the 
linear behavior, we can determine a load factor that estimates the true 
external loads that the structure can sustain as given by the nonlinear 
theory. 

The development of the approximate approach proceeds as follows. The 
nonlinear equations are partitioned into a linear part and a nonlinear part. 
The crucial observation that each configuration satisfying the linear 
equations is close in form to an associated configuration that satisfies the 
nonlinear equations then allows an approximation of the internal axial and 
shear forces. The solution satisfying the geometrically linear equations is 
substituted into the nonlinear operator. The load factor is then chosen as 
the one that gives zero equilibrium error in a weak sense. 

Decomposition of Nonlinear Operator 
The nonlinear equilibrium functional G(u,ifj) can be decomposed into a 

linear part and a nonlinear part. Letting H = S(u) - H(0) and H0 = H(0) we 
obtain 

G(u, ii) = <B(n), S 0 R(u)> + <B(n), §(u)R(u)> - XQ0 - Qt (5) 

In this equation the virtual work associated with the external loading, 
(n,q>, has been divided into a fixed part, Qx = (q, , *)), (dead loading) and 
a proportional part, Q0 = (q0 ,*)), driven by the proportionality factor \ . 
The expression given by Eq. 5 is a simple restatement of the nonlinear 
equilibrium equations, which will provide a convenient framework for the 
following developments. 

Residual at Linear Configuration 
Linearizing G(u,ti) about the undeformed configuration yields the stan

dard linear equations of equilibrium 

< B ( n ) , S o R ( u ) > - l e o - G i = 0 (6) 
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One can carry out an analysiso with Eq. 6 to obtain a sequence of 
geometrically linear load factors X and corresponding linear displacements 
u. 

Substituting X and u into the nonlinear operator, the expression for the 
residual takes the form 

G(u, i!) = <Bfo), S0R(u)> + <B(ti), E(u)R(u)> - iQ0 - Qt (7) 

Approximation of Internal Forces 
For many framed structures it can be observed that the distribution of 

axial forces in a structure does not change appreciably as inelasticity 
progresses. In contrast, the moment field can change considerably as the 
structure strains inelastically. The key to the success of the proposed 
approximation is that the strain gradient operator is linear in the bending 
moment, and thus H(u)R does not depend upon the moment. Conse
quently, the redistribution of moment will not affect the approximation. 
The internal shear forces will change in accordance with their equilibrium 
relation to the changing moments. However, the importance of shear is 
small for most structures. Even for a structure such as the eccentrically 
braced frame, in which shear plays an important role, only a few of the 
members are effected by high shear, and thus the aggregate effect of shear 
on the structure as a whole is small. 

In accordance with the foregoing observations we assume that the 
internal axial forces and shears, designated as R = {N,V}, can be 
approximately represented in terms of their initial linear values and a 
proportionality factor as 

R(u) = XR0 + R1 (8) 

where R0 = the vector of internal forces in equilibrium with (q0,11); and R[ 
= the vector of internal forces in equilibrium with (q[ ,t)). Substituting Eq. 
8 into Eq. 7, noting the linearity of G(u,-n) with respect to R, that 
(B(Tfi),5<jRo> = 2o > a n d that (B(YI),H0RI) = 2 I » w e obtain 

G(u, n) = (X - i)Q0 + X(B(n), E(u)R0> + <B(t|), 3 ( 6 ^ > (9) 

Minimizing Residual 
Eq. 9 gives an expression for the magnitude of the residual force at the 

configuration u in terms of the single parameter X. The best value of the 
parameter is the one that corresponds to the smallest error, i.e., G(u,t\) = 0. 
Setting Eq. 9 equal to zero and solving for X, the following estimate of the 
actual nonlinear load factor is obtained: 

x =
 iQ° ~ <BW- ^ R * > 

Go + <B(r,), E(u)R0>
 ( ' 

While Eq. 10 is suitable for computation, it can be recast in a discrete 
form in terms of the well-known geometric stiffness matrix of the structure. 
The discrete form has the advantage that it allows comparison with 
standard structural analysis formulations. In addition, the discrete form 
exposes the role of the global geometric stiffness matrix. To obtain a 
convenient discrete representation of Eq. 10, we first truncate a series 
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expression for H(u)R as follows: 

S(u)R = A(R)B(u) + 0(u, u) + • (11) 

where A(R) = the local-element linearized geometric stiffness matrix. The 
notation 0(u,u) stands for the quadratic term in the expansion. Substituting 
Eq. 11 into Eq. 10 and interpolating the displacements of the structure with 
a standard finite-element approximation, the expression for the nonlinear 
load factor takes the discrete form 

_ i g 0 - H'G.U 
Qo + H'GoU ' (U) 

where U and H = the discrete nodal displacements and their variations, 
respectively; and the discrete global geometric stiffness matrices G0 and G! 
are obtained in the standard way from element shape functions and direct 
assembly procedures. Recall that G0 is the linearized geometric stiffness 
resulting from the action of only the forces Q0 , whereas Gj is the linearized 
geometric stiffness resulting from the action of only the forces Qx. 

For the purpose of computing with Eq. 12, it is convenient to charac
terize the variation in displacements as being proportional to some 
displaced configuration of the structure H<*U. An advantage of making the 
variations proportional to a displacement vector is that one can define a 
natural way of measuring the displaced configuration of the structure with 
a scalar quantity, as ||U||2 = U' GU. In general G is not guaranteed to be 
positive-definite, and thus ||U|| does not define a true norm. However, it 
does have the advantage of treating the displacements in a dimensionally 
consistent manner, and we adopt it here as the measure of the deformed 
state of the structure. An objective measure of displacement such as ||U|| is 
especially desirable for irregular structures where it is not clear that a 
measure such as displacement at a single point is most representative of 
the deformation of the structure. 

Eq. 12 with H = U provides us with a formula for computing the 
nonlinear load factor from the sequence of linear configurations generated 
from Eq. 6. The second term in the numerator of Eq. 12 vanishes in the 
absence of dead loading. 

Spectral Analysis 
Eq. 12 can be studied through a spectral analysis of the system. The 

spectral approach provides an enlightening framework for characterizing 
the behavior of complex systems by significantly reducing the number of 
important response parameters. By projecting the displacement response 
of a structure onto an associated eigenbasis, we need only follow the 
progress of a few generalized components of the system to understand the 
behavior of that system. The spectral analysis will help in our evaluation of 
the approximations we have made. Another benefit of performing a 
spectral analysis is the ready identification of the special case examined by 
Home (1963). 

Consider the eigenvalue problem defined by the initial elastic and 
geometric stiffness matrices of the structure: 

K<|> = uG<j> (13) 
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where K = the initial elastic stiffness matrix; and G = the geometric 
stiffness matrix of the system. A discrete system with n degrees-of-
freedom will yield n eigenpairs satisfying Eq. 13. In accordance with 
standard practice, the eigenpairs are ordered such that lu l̂ < I JJL2I < . . . < 
l(x„l, and the eigenvectors are normalized such that c^G^ = 8,-,-, where 8,-,-
= the Kronecker delta. 

For proportionally loaded structures, there is only one initial geometric 
stiffness and thus only one associated eigenvalue problem. A nonpropor-
tionally loaded structure, on the other hand, has one associated eigenvalue 
problem corresponding to the proportional loads (G0) and one correspond
ing to the dead loads (Gj). We will consider that the nonproportional load 
case gives rise to a family of associated eigenvalue problems with G = eG0 
+ G[, in which e = the parameter of the family. As e^O, the eigenvalue 
problem is governed by dead loads only. As e—»°°, the eigenvalue problem 
is governed by proportional loads only. We will see in the examples that 
the specific choice of s is crucial to the success of some of the approxi
mations. 

Let the displacement vector U be decomposed into its components along 
the eigenbasis induced by the eigenvalue problem Eq. 13. The displace
ments can then be expressed in terms of spectral ordinates as 

U= t a.*, (14) 
i = l 

We will identify the a,- as being modal participation factors, measuring the 
components of displacement relative to the basis {<)>,•}. The participation 
factors can be computed from the displacement U using the formula 

u ; G<j>,. 
a i = AH^A ; i = h..-,n (15) 

where G = the metric of the space spanned by the eigenvectors. If the 
basis {<]),.} is normalized with respect to the metric G, then the denominator 
of Eq. 15 is unity. 

Substituting Eq. 14 into the expression for the nonlinear load factor (Eq. 
12), noting that Q0 = U'R0 = U'KU0 , one obtains the following expression: 

A '= "F , w o~ (lb> 

where a0|. = the initial linear participation factors, i.e. U0 = 2dof<l»i! a r ,d Hv 
= the eigenvalues of Eq. 13. We have noted in the above expression that 
the eigenvalue problem has been normalized such that faGtyj = 8&-. Since 
G need not (but could) be either G0 or G1, we define the parameters -y?- = 
4>,G04>j and yjj = typify. 

If first-mode behavior is assumed to dominate, i.e., ô  =k 0, a,- = 0, / = 
2, . . . , «, then under these restrictions we have 

M a ) = l ( a ) a 0 u - a y i • 
a0 u + ay0 

where the subscripts on a, a0 , and JJU are understood to be one; -y0 = -y°, ; 
and -y, = y\1. Note also that an approximation having the form of Eq. 17 
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can be achieved using any of the eigenvectors in the expression for the 
nonlinear load factor. This observation is important because the funda
mental mode will not always dominate the limit response of the frame. 

Eq. 17 degenerates to the expression given by Home (1963) if only 
proportional loads are considered ("Yi = 0, 70 = 1). Home has suggested 
that Eq. 17 provides a lower bound on the nonlinear load factor for 
moment-resisting frames. However, as demonstrated in one of the exam
ples, we find that the lower bound character can be spoiled if the selected 
mode does not actually dominate the response. 

If the displacement of the structure is approximated as proportional to a 
constant vector, U = av (not an eigenvector), the preceding derivations 
apply, except that fj- is simply the Rayleigh quotient and not an eigenvalue. 
The ramifications of choosing the vector v to be the initial displaced 
configurations of the structure under load (U0) will be examined in the 
examples later. One might expect that when the chosen assumed shape is 
representative of the shape at the limit load, then a good estimate of the 
limit load can be achieved. Such an approximation has the computational 
advantage of avoiding the solution of an eigenvalue problem. 

Rankine-Type Formula for Limit Load 
The limit load plays a singularly significant role in the limit design of 

structures. Thus, its estimation is of fundamental importance. Indeed, 
plastic design is predicated on the knowledge of the "limit" load without 
knowledge of the response history. We demonstrate in this section that the 
limit load can be estimated from Eq. 17, i.e., by assuming that the 
displaced configuration is controlled by a single parameter. The success of 
the estimate relies both on an appropriate choice of the displaced shape 
and on the invariance of that shape as the deformation progresses. The 
spectral analyses of the example structures presented later will shed light 
on the validity of the estimate. 

The limit load occurs when \ '(a) = 0. Taking the derivative of Eq. 17 
with respect to a and setting the resulting expression equal to_zero, one 
obtains an expression from which the limit displacement a can be 
evaluated. Carrying out this operation we obtain the expression 

(<x0 u + ay0)i'(a) - y01(a) - y1 = 0 (18) 

the solution of which defines the limit displacement a. Substituting Eq. 18 
into Eq. 17 we arrive at an approximation of the limit load in terms of the 
slope of the linear response curve evaluated at the limit displacement 

K=-laoixi'(a)-yJ (19) 
Yo 

If only proportional loading is considered fyj = 0, y0 = 1), then Eq. 19 
reduces to 

^ r = a 0 u l ' ( ( x ) (20) 

which is the formula given by Home (1963). Thus, Eq. 19 generalizes 
Home's formula to the case of nonproportional loading. 

For some structures, the transition from elastic to plastic behavior 
covers a reasonably short range of displacement values, as shown in Fig. 
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^» 

FIG. 1. Idealized Structural Behavior for Rankine-Type Estimate 

1. As the structure passes through this region the slope X' changes 
dramatically from the large, elastic_slope to a very small, post-yield slope. 
The critical value of the slope, X'(a) is almost certainly contained within 
these bounds. For these structures, failure will occur at or near the "knee" 
of the linear curve, which has an approximately identifiable displacement 

level X„ (the linear plastic capacity of the structure). The ap and load 
known values offeree and displacement can be substituted into Eq. 
solve for the indeterminate slope X'. Accordingly, we obtain 

~ a 0 u + y 0 a p 

18 to 

(21) 

Substituting this value into Eq. 19 one obtains an estimate of the limit load. 
Noting that ap = a0Xp , the estimate can be expressed as 

"^•rr ~ ^ - „ 
H - 7 i 

H + Yo K 
(22) 

Again, if we assume proportional loading, Eq. 22 reduces to the so-called 
Merchant-Rankine load of the structure 

Xm UK (23) 

where jx = the eigenvalue corresponding to <}>• 

APPLICATIONS TO FRAMED STRUCTURES 

The remainder of the paper is devoted to application of the methods 
derived previously to a set of examples. The examples will serve to 
demonstrate the effectiveness of the approximate methods of tracing the 
limit behavior of framed structures and to indicate the limitations of the 
approximate formulas. Also, the examples will demonstrate that the 
approximate methods provide a useful framework for assessing the limit 
performance of framed structures in general. Thus, we get insight both into 
the performance of the method and into the behavior of framed structures. 

Six structures have been analyzed. These structures cover a wide range 
of framed structure types including moment-resisting and eccentrically 
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TABLE 1. Member Properties 

Section 
(1) 

W14X43 
W14X48 
W14X53 
W14X132 
W14X426 
£T8x8x(5/16) 
"Column" 

Stiffness Properties (X10~ 3) 

EA 
(k) 
(2) 

365 
410 
425, 

1,125 
3,625 

270 
1,200 

KQA 

(k) 
(3) 

183 
205 
226 
563 

1,813 
135 
600 

El 
(k-ft2) 

(4) 

86.2 
97.2 

108.9 
308.1 

1,329 
18.3 

208.3 

I Yield Properties 

No 
(k) 
(5) 

449 
510 
560 

1,409 
4,705 

340 
1,650 

Vo 
(k) 
(6) 

83 
90 

102 
183 
610 
100 
500 

Mo 
(k-ft) 
(7) 

206.3 
233.3 
260.4 
710.0 

2,726 
83.3 

583.3 

Note: 1 k = 4.448 kN; 1 ft = 0.3048 m. 

braced frames, low-rise and high-rise buildings, and proportionally and 
nonproportionally loaded structures. The designation used for the exam
ples describes the framing type (MRF means moment-resisting frame and 
EBF means eccentrically braced frame). The properties of most of the 
members used in the example structures are summarized in Table 1. 

Each structure is submitted to an exact nonlinear analysis using the 
methodology and finite elements developed in Simo, Hjelmstad, and 
Taylor (1984). For each of these "exact" analyses, the solution has been 
decomposed into components along the eigenbasis {<}>,•}, where the basis 
vectors are generated from the eigenvalue problem defined by Eq. 13. with 
G selected from the family of initial geometric stiffness matrices. The 
modal participation factors a,- are computed according to Eq. 15. 

Tracing the history of the modal participation factors as the nonlinear 
solution progresses allows one to assess the change in the character of the 
displaced configuration as the nonlinearities accrue. One can also compare 
different bases by seeing how the same nonlinear response curve reflects 
on each basis. Viewing the results in this way gives an indication as to why 
the approximate methods work well in some cases but not in others. A 
modal decomposition gives a good qualitative representation of the prog
ress of the solution. 

For each structure, the nonlinear load versus displacement history is 
presented for several cases: (1) The actual computed nonlinear response 
(designated as "Exact Nonlinear" in the figures); (2) the actual computed 
response without nonlinear geometric effects (designated as "Exact Lin
ear" in the figures); (3) an approximation to the nonlinear response using 
Eq. 12; and (4) an approximation of the nonlinear response using Eq. 17. 

The finite elements used in these analyses were all C° quadratic 
elements. Each structural member was discretized using two of these 
elements. Inelasticity of the elements accrues due to the interaction of 
shear force, axial force, and bending moment. The computational model is 
a viscoplastic penalty approach to model-perfect elastoplasticity. The yield 
potential used in these computations was 

4>(n, v,m) = \m\ + n2(l + v2) + vA-l (24) 
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5X 5X 

X — • * 

l -as-J 

= 05 

Exact Nonlinear 
Enact Linear 
Eq. (12) 
Eq. (17): Mode I 

Mode I 
Mode 2 
Mode 3 
Mode 4 
Mode 5 

S. ol .^^^^-V- ' - f ' -
2 4 6 

Norm of Displacement 

Exact Nonlinear 
Exact Linear 
Eq. (12) 
Eq. (17): Mode I 

2 4 

Norm of Displacement 

FIG. 2. Response of MRF-1 FIG. 3. Response Of MRF-2 

where n = N/N0, v = V/V0, and m = M/M0 are the axial force, shear 
force, and bending moment normalized by their fully plastic values. Each 
stage of the computation is iterated to satisfaction of equilibrium to within 
a specified tolerance on the Euclidean norm of the out-of-balance forces. 
The following paragraphs discuss the results of the analyses. 

MRF-1 is a two-story, single-bay, moment-resisting frame with tall 
stories. The beam members are W14 X 53 and the columns are of type 
"column." The structure was proportionally loaded as shown in the figure, 
with two vertical loads of magnitude 5\ and one lateral load of magnitude 
X applied at the top level. The results of the various analyses of MRF-1 are 
shown in Fig. 2, along with the spectral decomposition of the exact 
nonlinear solution. 

The linear elastoplastic response of the structure shows a typical 
multilinear force-deformation behavior, with the changes in slope corre
sponding to the formation of plastic zones in the structure. Due to the 
relatively heavy vertical loads, the actual capacity of the structure is 
greatly reduced from the linear "collapse load." Both Eq. 17 and Eq. 12 
give excellent approximations of the nonlinear behavior of the frame. Note 
in particular the accuracy with which the post-limit behavior of the frame 
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is traced by the approximate methods. Upon examining the evolution of 
modal participation factors of the actual response, one can see that the first 
buckling mode dominates the response throughout the analysis. 

MRF-2 is a five-story, single-bay frame with W14 x 53 beams and W14 
x 48 columns. The loading of the frame was similar to that of MRF-1 with 
loading at the top level. The response of MRF-2 is shown in Fig. 3. Again, 
both approximate methods work well. Eq. 12 gives a more accurate 
assessment of the response near the limit load than does Eq. 17. Note that 
because the columns are not as slender as the ones in MRF-1, the 
reduction in carrying capacity due to geometric effects is not as dramatic 
as it was for MRF-1. However, the slope of the post-limit response curve 
is steeper, indicating poorer post-limit behavior. One can note that while 
the initial response tends to be dominated by the first mode, the second 
mode contributes more as the structure settles into its final collapse 
deformation mode. 

MRF-3 is also a moment-resisting frame and has the same topology as 
MRF-1. This structure is different from the previous structures in that the 
vertical loads are gravity loads instead of proportional loads. The lateral 
loads at the two-story levels were equal and increased monotonically in 
accordance with a proportionality factor. Such a loading would be repre
sentative of a building structure subjected to earthquake or wind loads. 

The response of the structure to the imposed loading is shown in Fig. 4. 
Note that the initial displacement is due to the presence of dead loading, 
while the proportionality factor is still zero. Two different approximations 
within the context of Eq. 12 are shown in Fig. 4(a). The approximations 
differ only in the choice of the form of the variation in displacements H. In 
one case, H is taken to be proportional to the initial displaced configuration 
U0, while in the other case, it is taken to be proportional to the current 
displacement U. Both approximations give good results but demonstrate 
that the method depends upon the choice of the vector representing the 
variation in displacements. 

The results obtained from Eq. 17 are shown in Fig. 4(b and c). Three 
different methods of calculation were used: (P) a and {\i,<$>} computed 
using only the proportional part of the geometric stiffness; (D) a and {(A,<}>} 
computed using only the dead part of the geometric stiffness; and (P + D) 
a and {fx,<|>} computed using a geometric stiffness G = \crG0 + Gj , where 
\cr = the actual limit load of the structure. Case (P + D) works well for this 
problem whereas cases (P) and (D) do not. The reason that the first two 
cases performed so poorly can be seen upon examining the evolution of the 
modal participation factors. Three different versions of this history are 
shown in Fig. 4(d-f), corresponding to the geometric stiffness matrices and 
associated eigenvectors of cases (P), (D), and (P + D). The first (P) 
eigenvector contributes very little to the response. The first (D) eigenvec
tor is totally orthogonal to the displaced configuration of the structure. Eq. 
17 was also tried using mode five for the (P) case and mode six for the (D) 
case. The results for these cases were also poor. It is interesting to note 
that, while mode one of the (P) and (D) cases did not contribute to the 
response, mode one of the (P + D) case dominated the response as it 
passed through the limit load. The obvious shortcoming of the method 
represented by case (P + D) is that the limit load is not known a priori. 
However, one could estimate the limit load from a Rankine approximation 
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-»1J—, , 1 1 1 1 1 1 d - a' ' ' ' ' 

0 1 0 2 0 3 0 4 0 0 0 2 0 3 0 4 0 
Norm of Displocement Norm of Displacement 

FIG. 4. Response of MRF-3: (a) Estimates Based on Eq. 12; (b) Estimates Based 
on Eq. 17 Using Mode One; (c) Estimates Based on Eq. 17 Using Other Modes; (d) 
Evolution of Participation Factors: (P + D) Case; (e) Evolution of Participation 
Factors: (D) Case; (f) Evolution of Participation Factors: (P) Case 

before embarking on the solution. The method that uses Eq. 12 does not 
suffer from the ambiguities that Eq. 17 does and does not presuppose a 
priori knowledge of the limit load. 

One can conclude that it is not the vector v that is important to the 
approximation, but the metric G used in computing the norm of the 
displacements. To verify this conclusion, the initial displacement v = U0 
was used in Eq. 17 with the (P + D) geometric stiffness. The results for this 
case were found to be indistinguishable from the curve H = U0 shown in 
Fig. 4(a). 

MRF-4 is an eight-story, single-bay frame similar to the one analyzed by 
Korn and Galambos (1968). Similarly to MRF-3, this frame was subjected 
to nonproportional loads. The member designations are given in Table 2. 
The loading is shown in Fig. 5, along with the response of the structure. 
MRF-4 was subjected to the same analyses as was MRF-3. 

One can see from Fig. 5(a) that Eq. 12 approximates the true solution 
well. As was true with MRF-3, Eq. 17 gives meaningful results only for the 
case (P 4- D) where the geometric stiffness matrix has e equal to the limit 
load of the structure. Contrary to MRF-3, this structure has a good result 
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TABLE 2. Frame MRF-4 Properties 

Story 

(D 
1 
2 
3 
4 
5 
6 
7 
R 

Column 
(2) 

W14X99 
W14X90 
W12X79 
W10X49 

W8X35 
W8X31 
W8X31 
W6X20 

Beam 
(3) 

JV14X38 
W14X34 
W14X30 
W12X26 
W12X22 
W10X22 
W8x21 
W8xl8 

for case (D) in which only dead loads were used for the geometric stiffness. 
The reason for this is clear upon reviewing the modal participation 
histories for the various cases shown in Fig. 5(d and e). The case (D) shows 
a history of modal participation factors almost identical to the (P -I- D) 
case. The first proportional mode does not contribute significantly to the 

Norm of Displocsment Norm of Displacement 

FIG. 5. Response of MRF-4: (a) Istimates Based on Eq. 12; (b) Estimates Based 
on Eq. 17 Using Mode One; (c) Estimates Based on Eq. 17 Using Other Modes; (d) 
Evolution of Participation Factors: (P + D) and (D) Cases; (e) Evolution of 
Participation Factors: (P) Case 
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Exact Nonlinear 
Exact Linear 
Eq.(l2) 
Eq. (IT): Mods I 
Eq. (17): Mods 3 

I « 

Mods I 
Mode 2 
Mods 3 
Modo 5 
ModoS 

0 Q6 1.2 IB 24 3D 36 

Norm of Displacement 

Exact Nonllnsar 
Exact Linear 
Eq.112) 
Eq. (17); Mods I 
Eq. (17): Mods 4 

1 2 3 4 5 
Norm of Displacement 

FIG. 6. Response of EBF-1 FIG. 7. Response of EBF-2 

response. The success of the case (D) can be considered coincidental. 
Again the initial displacement v = U0 was used in conjunction with the 
(P + D) case and was found to give excellent results. 

EBF-1 is a three-story, single-bay, eccentrically braced frame with an 
eccentricity e = 22 in. (0.56 m). The frame was subjected to proportional 
loads at the top level. The various computed responses of the frame to the 
applied loading is shown in Fig. 6. One can see that both approximate 
methods give a reasonable representation of the actual nonlinear behavior. 
Eq. 12 slightly overestimates the response, while Eq. 17 slightly underes
timates the response. Both methods accurately reproduce the post-limit 
slope of the response curve, and thus give an accurate representation of 
the rate of loss of carrying capacity of the structure. The method based 
upon Eq. 17 can be improved by noting that the structure responds 
predominantly in the third mode. The result of using the third mode in Eq. 
17 is also shown in Fig. 6. 

EBF-2 is a three-story, two-bay, eccentrically braced frame having W14 
X 43 beams, ST8 x 8 x (5/16) braces, and W14 x 132 columns except for 
the bottom-story interior column which is a W14 x 426 section. The 
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TABLE 3. Summary of Results 

Frame 

(D 
MRF-1 
MRF-2 
MRF-3 
MRF-4 
EBF-1 
EBF-2 

Approximate \CJ 
Exact \ c r 

(2) 

1.009 
1.001 
0.997 
1.005 
1.045 
0.984 

Normalized Rankine Estimates 
of Limit Load 

v=U0 

(3) 

1.187 
1.041 
1.412 
1.095 
1.123 
1.047 

v = <t>i 
(4) 

1.164 
1.004 
1.407 
1.064 
1.086 
0.998 

Approximate A„7 
Exact Acr 

(5) 

0.881 
1.000 
0.942 
0.916 
1.499 
0.929 

loading was proportional as shown in Fig. 7, which also shows the 
response curves of the structure. One can see that Eq. 12 gives good 
results for this structure. 

An interesting feature of the response of this structure is that modes four 
through nine were the greatest contributors to the displacement field. In 
addition, modes four and nine shift in importance as the deformations 
progress. The computations using Eq. 17 were carried using mode one, 
four, and nine. It is clear that use of mode one does not give good results, 
and, in fact, violates the lower-bound character suggested by Home. Using 
either mode four or mode nine gives a better representation of the response 
than mode one. 

Summary of Examples 
A summary of the approximation of the limit loads and displacements of 

the example structures are shown in Table 3. The limit load of the 
structures computed from Eq. 12 was within 5% for all cases and was 
better for most of the cases. The estimate of the limit drift Acr was also 
accurately predicted by Eq. 12. 

Table 3 also contains two Rankine estimates of the limit load, one based 
upon the fundamental eigenvector v = <(>, and one based upon the initial 
displacement v = U0. The values presented are the ratio of the Rankine 
estimate to the true limit load of the structure. Except for MRF-4, the 
estimate of the limit load is reasonably good. Almost all values give an 
overestimate of the limit load. While the Rankine estimate based upon the 
eigenvector is uniformly better than the one based upon the initial 
displacement, there is really no appreciable difference between the two. 
Either one might be used as an estimator of the limit load for use in 
nonproportional load cases with Eq. 17. 

CONCLUSIONS 

An approximate method for tracing the limit and post-limit response of 
framed structures has been presented. The method was constructed from 
the weak form of the nonlinear equations of equilibrium in conjunction 

329 

J. Struct. Eng. 1988.114:314-331.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
M

em
ph

is
 o

n 
02

/0
8/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



with some observations on the behavior of framed structures. Several 
example structures having different topologies and loading conditions were 
analyzed to demonstrate the effectiveness of the method. 

The importance of the approximate method presented is not so much its 
potential for post-processing geometrically linear analyses, but rather the 
qualitative information it gives into the behavior of framed structures. Eq. 
12 clearly distinguishes the manner in which nonlinear geometry affects the 
limit and post-limit response of the structure both for proportional and 
nonproportional loads. The approximate method and the subsequent 
spectral analyses of the examples demonstrate the role of the geometric 
stiffness matrix in the nonlinear response and clarify the issue for the 
nonproportional load case. 

While Eq. 17 allows all solution parameters to be estimated from the 
initial state, it suffers from the difficulty of not knowing the dominant mode 
in advance, and applies to nonproportionally loaded structures only if the 
geometric stiffness matrix is chosen with e equal to the limit load of the 
structure. An estimate of the limit load for use in this equation might be 
obtained from a Rankine-type formula. It has further been observed that 
the eigenvector cf> plays a secondary role in Eq. 17. Good results can be 
obtained using the initial displaced configuration of the structure with a 
Rayleigh-quotient estimate of the eigenvalue, obviating the need to solve 
an eigenvalue problem. Contrary to Home's hypothesis, Eq. 17 does not 
give a lower bound to the solution if a poor choice is made for the selected 
eigenvector, even for proportionally loaded structures. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

B 
D 

G, G 0 , G, 
H 
K 
M 
m 
N 
P 

Q,Q0,Qi 

q 
<? 
R 

R, R 0 , Rj 

u 
u 
V 
V 

V 

a0i, a, 
7 o . 7 i 

h 
e, ee, e p 

V 
K 

X, X, Xcr 

M-, K 

+/ 
4>(R) 

* 
a 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
— 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

strain displacement operator; 
elastic moduli; 
geometric stiffness matrices; 
variation of discrete nodal displacements; 
initial elastic stiffness matrix; 
bending moment; 
applied moment; 
axial force; 
applied axial force; 
virtual work of external loads, proportional load, dead 
load; 
applied forces; 
applied transverse force; 
internal resisting forces; 
internal shear and axial forces, proportional load, dead 
load; 
cross-section displacements; 
axial displacements; 
shear force; 
displaced shape vector; 
transverse displacements; 
displacement modal participation factors; 
parameters; 
Kronecker delta; 
strain resultants; 
admissible variation of displacement field; 
shear coefficient; 
proportional load factor, linear load factor, limit load; 
elastic critical eigenvalue; 
strain gradient; 
eigenvector; 
yield potential of member; 
rotation displacements; and 
volume of structure. 
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