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ABSTRACT 
 
 An approximate design method is presented for the design of a single stage Stirling 
type pulse tube refrigerator.  The design method begins from a defined cooling power, 
operating temperature, average and dynamic pressure, and frequency.  Using a 
combination of phasor analysis, approximate correlations derived from extensive use of 
REGEN3.2, a few ‘rules of thumb,’ and available models for inertance tubes, a process is 
presented to define appropriate geometries for the regenerator, pulse tube and inertance 
tube components.  In addition, specifications for the acoustic power and phase between 
the pressure and flow required from the compressor are defined.  The process enables an 
appreciation of the primary physical parameters operating within the pulse tube 
refrigerator, but relies on approximate values for the combined loss mechanisms. The 
defined geometries can provide both a useful starting point, and a sanity check, for more 
sophisticated design methodologies. 
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INTRODUCTION 
 
 Two 50-minute class sessions of the Cryogenics course at the University of Wisconsin 
– Madison are devoted to the topic of pulse tube refrigerators.  During this time, the 
objective of the lectures and discussion is to introduce students who are completely 
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unfamiliar with the topic, to the design process of the pulse tube refrigerator and the 
physical parameters that define, constrain and optimize its geometry.  Various authors 
provide well-developed numerical models for designing pulse tube refrigerators that 
simultaneously solve the equations of mass, momentum, and energy conservation. [1-3] 
However, while such models are recommended for those interested in an accurate design or 
commercial product, they are impractical as a means to introduce a physically intuitive 
justification for pulse tube design.  The material presented in this report summarizes the 
lectures presented to the first year graduate students in the Cryogenics course and provides 
a step-by-step procedure for an approximate design of the pulse tube refrigerator.  This 
approach relies on design charts for the regenerator and inertance tube that have been 
developed independently through the use of REGEN3.2, and inertance tube models [4-8]. It 
utilizes optimized phase relations between the sinusoidal mass flow and pressure waves in 
a manner similar to that presented by Hoffman & Pan[9] and Radebaugh[10], and makes 
use of an empirical ‘rule-of-thumb’ to determine the pulse tube volume. Most significantly, 
the approach provides a method to define the geometry of the three primary components, 
the regenerator, pulse tube and inertance tube. The sequence of topics presented here 
follows that given in the classroom: 1) defining the desired and required operation 
parameters, 2) estimating the necessary acoustic power at the warm and cold ends of the 
regenerator, 3) determining the dimensions of the regenerator and the mass flow and phase 
at its cold end, 4) fixing the pulse tube volume and dimensions, and 5) determining the 
length and diameter of the inertance tube. 
 
 
DESIGN PROCESS 
 
Desired and Required Parameters 
 
 From the perspective of a user, the primary parameters of interest for a cryocooler are 
the net cooling capacity, Qc  the desired operating temperature, Tc, and the warm – or heat 
rejection – temperature, Tw.  Beyond these, for a Stirling-type pulse tube refrigerator, it is 
necessary to define the average pressure, Po, the dynamic pressure amplitude, Pd, and the 
cycle frequency, ƒ.   
 The choice of average pressure couples to the overall size of the system and the length 
scale of the regenerator matrix.  If the pressure is low, a large volume will be required for 
effective heat transfer in the regenerator.  On the other hand, high pressures will dictate 
optimum performance with small length scales in the regenerator matrix, and miniature 
size for the overall system.  Practical fabrication limits for the regenerator matrix will in 
part dictate the possible length scales and the associated maximum average operating 
pressure. The time constant associated with the heat exchange process in the regenerator 
also dictates an inverse relationship between the characteristic length scale of the matrix 
and the cycle frequency.  For the example developed here, a 400-mesh screen, with a 
porosity of 0.6858, is chosen for the matrix and the associated desired and required 
parameters are listed in TABLE 1.  The pressure at any time during the cycle is assumed 
to be uniform through the refrigerator (approximately true) and given by 
 
TABLE 1.  Example values for desired and required design parameters 
 
Tc (K) 80  Qc (W) 25 Po (MPa) 2.5 
Tw (K) 300 ƒ (Hz) 60 Pd (kPa) 326 
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  P t( )= Po + Pd sin ωt( ); ω = 2π f . (1) 
 
The pressure ratio Pr, a parameter utilized by REGEN3.2 is related to Po and Pd by 
 

  Pr =
Po + Pd

Po − Pd

. (2) 

 
That is, Pr is the ratio of the maximum pressure to the minimum pressure over one cycle. In 
this case, Pr=1.3. 
   
Acoustic Power 
 
 The oscillating flow generated by the compressor provides acoustic power to the pulse 
tube refrigerator components.  The magnitude of the acoustic power is related to the 
pressure and mass flow oscillations according to the equation: 
 

  1 cos
2ac d

o

RTW P m
P

θ=  (3) 

 
where R is the gas-specific ideal gas constant, T is the time averaged temperature and θ is 
the phase angle between the pressure and mass flow oscillations.  It is significant to note 
that the acoustic power in the regenerator varies nearly linearly with the temperature, so 
that the acoustic power at the cold end, Wac,c , is approximately related to the acoustic 
power at the warm end by: 
  , ,

c
ac c ac w

w

TW W
T

 (4) 

 
Because of the thermal and flow losses occurring in the regenerator and pulse tube, and 
because the acoustic power is reduced with temperature through the regenerator, the net 
refrigeration capacity available at the cold end of the pulse tube and regenerator is only a 
fraction of the acoustic power generated in the compressor. The ratio of the net cooling 
power to the acoustic power generated in the compressor defines the coefficient of 
performance for the refrigerator: 
 

  
,

c

ac w

QCOP
W

= . (5) 

 
Thus, knowledge of the COP and the desired cooling power defines the magnitude of the 
required acoustic power from the compressor.  Of course, it is of interest to minimize the 
required compressor power, and therefore one would like to know how to maximize the 
COP.   
 
Mass Flow and Phase Angle at the Cold End of the Regenerator 
 
 As Radebaugh[10] points out, the dominant losses in a pulse tube refrigerator originate 
in the regenerator and are proportional to the average magnitude of the mass flow in that 
component.  FIGURE 1 displays the phasor diagram relating the mass flow, pressure, and  
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FIGURE 1.  Phasor diagram displaying magnitude and phase of mass flow in the regenerator.  The phase 
of the pressure oscillation is defined as 0°.  The mass flow at the warm end of the regenerator leads the 
pressure by θr,w while the mass flow at the cold end lags the pressure by θr,c. 
 
mass storage terms in a regenerator.  The vectoral addition reflects the equation for mass 
conservation in the regenerator: 

  reg
w c

reg

PV
m m

RT
= +  (6)   

 
where the second term on the right hand side of equation (6) represents mass storage in the 
dead volume of the regenerator, Vreg, at a temperature Treg, given by the reciprocal of the 
average of 1/T in the regenerator.  Because of the sinusoidal nature of P(t), its time 
derivative, P , and thus the second term on the right hand side of equation (6), is 
orthogonal to P(t).  Note from equation (3) that the term m cosθ , that is the projection of 
the mass flow vector onto the pressure axis, is constant throughout the regenerator.  Thus 
adjusting the angles θr,w and θr,c away from the condition 
 
  θr ,w = θr ,c  (7) 
 
results in a larger average mass flow rate in the regenerator than if equation (7) is satisfied.  
Although this condition is approximate, it is a key requirement for minimizing the 
regenerator losses and therefore maximizing the COP of the pulse tube refrigerator.  
Whatever phase shifting mechanisms are available in the pulse tube refrigerator should 
therefore be used to produce the condition given by equation (7). 
 From FIGURE 1 it may be noticed that with the condition defined by equation (7) 
 

  ,
1sin
2

d reg
c r c

reg

P V
m

RT
ω

θ = . (8) 

 
Furthermore, by combining equations (3) and (4) we have 
 

  ,
,

2
cos ac c o

c r c
d c

W P
m

P RT
θ = . (9) 

 
Combining equations (8) and (9) eliminates the mass flow term, leaving 
 

  
2
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Here we have also used the time derivative of equation (1) to determine the amplitude 
relationship: 
  dP Pω=  (11) 
 
Before equation (10) can be used to quantitatively determine θr,c values must be found for 
Wac,c and Vreg.  Knowing the COP is the key to evaluating Wac,c .  Specifically, from 
equations (4) and (5),  Wac,c  is given by 

  ,
c c

ac c
w

T QW
T COP

=  (12) 

   
 Various methods can be pursued to characterize regenerator performance and thereby 
determine its geometry.  Recent parametric studies using REGEN3.2[5,6] provide 
convenient charts for this purpose. In these one finds that although the COP is influenced 
by many variables, optimizing over all of these reveals in the end that the maximum value 
of COP is most strongly influenced by Tc.  For 80 K, assuming that 20% of the acoustic 
power flow in the pulse tube is consumed by losses there, and including conduction loss 
through the regenerator wall, one finds COP = 0.117.  Combining this result with 
equations (4) and (5) yields a value of Wac,c  = 57.1 W.  Furthermore an optimization 
process through the use of REGEN3.2 reveals that the oscillation frequency and end 
temperatures determine an optimum length of the regenerator.  Also, as shown in 
FIGURE 2, for a fixed choice of the parameters listed in TABLE 1, a maximum COP can 
be identified as a function of mass flux through the regenerator.  For example, with the 
conditions chosen in TABLE 1, REGEN3.2 finds that the COP is maximized for a 
regenerator length of 0.052 m and an inverse mass flux (Ag/ mc ) of 0.052 m2⋅s/kg 

               
FIGURE 2.  Results from parametric investigation with REGEN3.2.  Solid circles: L=45 mm, Po=2.5 
MPa, Pr=1.3, θr,c=-30°; open circle w/ solid line: L=52 mm, Po=2.5 MPa, Pr=1.3, θr,c=-30°; open circle w/ 
dashed line: L=52 mm, Po=2.0 MPa, Pr=1.3, θr,c=-30°; open diamond: L=52 mm, Po=2.5 MPa, Pr=1.3, θr,c=-
10°; open square with dot: L=52 mm, Po=2.0 MPa, Pr=1.39, θr,c=0°; open square: L=52 mm, Po=2.5 MPa, 
Pr=1.3, θr,c=0°; open square with x: L=52 mm, Po=3.0 MPa, Pr=1.24, θr,c=0°. 
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respectively.  Here Ag = Vreg/Lreg is the cross sectional area of gas flow; equal to the total 
cross sectional area times the porosity.   
 As long as the optimized mass flux is held constant, the cooling capacity of the 
regenerator can be scaled directly with the regenerator area.  This fact can also be 
appreciated by inspection of the linear relationship between the amplitude of the mass flow 
at the cold end of the regenerator and the cooling capacity.  The combination of equations 
(4), (5) and (9) provides the relationship 
 

  2 1
cos

c o
c

w d c

Q Pm
T COP P R θ

=  . (13) 

 
Combining equation (13) with the optimum inverse mass flux provides an expression for 
the gas flow area:  
 

  2 1
cos

g regc o
g

c w d c regopt

A VQ PA
m T COP P R Lθ

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

. (14) 

 
An iterative solution to equations (10) and (14) yields the values of Ag and θr,c.  For the 
given example, Ag = 3.54 x 10-4 m2 (with associated regenerator diameter of 25.6 mm) and 
θr,c = -39°.  Additionally, the amplitude of the mass flow at the cold end is 6.81 g/s.  
Note that the compressor must provide the same values of mass flow and phase (with 
opposite sign) at the warm end of the regenerator.  Having defined the optimum geometry 
for the regenerator, the design process moves next to the pulse tube. 
 
Pulse Tube Volume and Dimensions 
 
 The gas flow oscillation from the cold end of the regenerator into the pulse tube 
defines a cold end swept volume, Vc,pt the maximum value of which is given by 
 

  ,
2 2c c c

c pt
o

V m RTV
Pω ω

= = . (15) 

 
Based on an empirical ‘rule of thumb’[10], the total volume of the pulse tube should be 
three to five times larger than Vc,pt.  If the pulse tube is designed for low temperature 
operation (4 K - 20 K) the value of five times Vc,pt is appropriate, while for operation 
around 100 K, three times Vc,pt is the better choice.  In either case, if the pulse tube is too 
small, excessive losses are caused by penetration of the cold oscillation to the warm end.  
Alternately, if the volume is too large, excessive power is required from the compressor to 
develop the desired dynamic pressure amplitude.  Continuing with the example 
calculation, a value of 3.5 for operation at 80 K is selected and results in a pulse tube 
volume of 8400 mm3. 
 A limit on the pulse tube aspect ratio may be identified by considering the conditions 
necessary to avoid turbulence in the oscillating boundary layer at the pulse tube walls.  As 
shown by Akhavan etal.[11] the critical Reynolds number for oscillating flow is given by 
 

  crit 2Re 280;crit
u vρ δ δ
µ ω

= = =  (16) 
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where ρ, u, and µ are the density, amplitude of the cross-sectional mean velocity, and 
dynamic viscosity respectively, while δ is the boundary layer thickness dependent on ν, the 
kinematic viscosity and ω, the angular frequency.  The maximum limit of the cross-
sectional mean velocity defined by equation (16) imposes a minimum limit to the cross 
sectional area of the pulse tube for a given mass flow rate.  From equation (15) it can be 
seen that a maximum velocity and the associated minimum area are related by 
 

  mincrit
o

mRTu A V
P

= = . (17) 

 
From equations (16) and (17) then, the limit on the cross-sectional area is: 
 

  min Recrit

mA δ
µ

= . (18) 

 
The limit of cross-sectional area must be considered at both the warm and cold ends.  The 
larger minimum area will then define the minimum cross sectional area for the pulse tube.  
In most cases, the cold end conditions will define the limit.  However, to calculate 
equation (18) for the warm end, a value of mpt ,w  must be found.  From the equation for 
conservation of energy in the pulse tube[4] the vectoral diagram displayed in FIGURE 3 
results.  Here γ is the specific heat ratio, cp / cv.  An expression for the magnitude of the 
mass flow at the warm end of the pulse tube is then obtained geometrically from FIGURE 
3: 
 

  

1/ 222

,
,

2
2

d reg d ptac c oc
pt w

h d c reg c

P V P VW PTm
T P RT RT RT

ω ω
γ

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪= + +⎢ ⎥⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
. (19) 

 
For the example calculation, Ac,min = 1.57x10-4m2 and Aw,min = 7.49x10-5m2.  Using Ac,min, 
the diameter and length of the pulse tube become dpt = 14.1 mm and Lpt = 53.6 mm. 
Finally, utilizing the geometric relations associated with θpt displayed in FIGURE 3, 
 

  

,
, ,

,

2
cos cos

sin
2

ac c ow
pt w pt c r c

c d c

d reg d ptw
pt w pt

c reg c

W PTm m
T P RT

P V P VTm
T RT RT

θ θ

ω ω
θ

γ

⎛ ⎞
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⎝ ⎠
⎛ ⎞
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 (20) 
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FIGURE 3.  Phase diagram displaying the relationship between the mass flow vectors in the pulse tube as 
defined by the conservation of energy in the pulse tube. 
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an expression for θpt is obtained: 
 

  ( )2

,

2
arctan

4
d reg c pt reg

pt
reg ac c o

P V T V T
T W P

ω γ
θ

γ

⎡ ⎤+
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (21) 

 
For the example parameters defined above, θpt = 57°. 
 
Inertance tube dimensions 
 
 The diameter and length of the inertance tube are determined by the required phase 
angle, θpt, where it interfaces with the warm end of the pulse tube, and the acoustic power 
flow at the same location. Various inertance tube models are available[7,8] and show that 
for smaller values of acoustic power (less than 1 watt), the inertance tube does not provide 
any appreciable phase shift..  For the example calculation carried out here, the model by 
Schunk etal.[7] finds that for Po = 2.5 MPa, Pr = 1.3, Wac = 57.1 watts and θ = 57°, the 
required length and diameter for the inertance tube are 2.92 m and 4.67 mm respectively.  
 
 
SUMMARY 
 
 A method for approximating the design of a pulse tube refrigerator has been presented.  
For user defined parameters of cold end temperature and cooling power, the method 
requires definition of the average and dynamic pressure and cycle frequency.  Utilizing 
established design charts for the regenerator and inertance tube, and phasor diagrams, the 
approach provides a method to define the diameter and length for the pulse tube, 
regenerator, and inertance tube components as well as the required performance of the 
compressor including acoustic power, mass flow, and pressure-flow phase relationship. 
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