
Proceedings ofthe First International
Conference on Information and
Knowledge Management, Baltimore,
MD, November 1992.

Approximate Knowledge-base/Database Consistency: M2-2~
An Active Database Approachl

Leonard J. Seligman

The MITRE Corporation

Mclean. Virginia

Larry Kerschberg

George Mason University

Fairfax. Virginia

Abstract

Many AI applications populate their knowledge-bases with information retrieved

from large. shared databases. This paper describes a new approach to maintaining

consistency between objects in a dynamic, shared database and copies of those

objects which are cached in an application knowledge-base. The approach relies on

an intelligent interface to active databases that we call a Mediator for Approximate

Consistency (MAC). The MAC has several unique features: (1) it permits

applications to specify their consistency requirements declaratively. using a simple

extension of a frame-based representation language. (2) it automatically generates

the interfaces and. database objects necessary to enforce those consistency

requirements, shielding the knowledge-base developer from the implementation

details of consistency maintenance. and (3) it provides an explicit representation of

consistency constraints in the database, .which allows them to be queried Ilnd

reasoned about. The paper describes the knowledge-base/database consistepcy

problem and previous approaches to dealing with it. It then describes our

architecture for maintaining approximate knowledge-base/database consistency.

including techniques for specifying, representing. and enforcing consistency

constraints.

Keywords: knowledge-base management, AIJDB integration, active databases. expert

database systems. quasi-caching

1 . Introduction

Recently, there have been many advances in the integration of artificial intelligence and

database systems. For example, it is now common for commercial Al shells to provide

tools to automatically retrieve schema information from a DBMS and help a knowledge

engineer develop a mapping from that schema to objects in a knowledge-base

(e.g., [Abarbane186]). In addition, research prototypes such as BERMUDA [Ioannidis88]

and ID1 [McKay90] have demonstrated features which can enhance the performance of an

AlIDB interface, including heuristic prefetching of database objects and preanalysis of rule

preconditions to identify functionality (e.g., relational joins) which can be more efficiently

performed within the DBMS.

Despite these advances, however. current approaches do not effectively support

applications which must reason about the current state of dynamic, shared databases. An

important limitation of these approaches is that they rely on caching data in an application's

virtual memory but fail to address the issue of cache consistency adequately. To see why

this can be a problem, consider a sample application, a knowledge-based Order of Battle

Analyst, shown in Figure l. The order of battle (OB) problem consists of analyzing a

highly dynamic, multiple-source intelligence database and coming up with a current

assessment of the enemy units on the battlefield. their strength, and the relationships among

them. The timeline in Figure 2 demonstrates the problem. At t3. the shared database is

updated with information that is of critical importance to the OB application.

Unfortunately, because there is no mechanism for ensuring cache consistency, the change

is not propagated to the application. As a result, the conclusions made by the application at

t2, based on the outdated information, are now potentially flawed.

Order of
Query: "retrieve
unit Information" Multiple Source

Intelligence
Database

Battle Analysis
System -

Information on
unitt!

I

UpdatM

J .(Analy.)
......ment .

Figure 1: Order of Battle example

-2

~,
(Current

I Tune Event

to

tl

t2

t3

Order of battle application queries the database to get

information on enemy units

Application receives and caches information about UNIT-I,

with type = "motorized rifle It and strength = 100

Application infers the presence of some higher level unit, its

perceived mission. and its estimated overall strength,

based on data cached at tl

Database is updated with corrected or more current information

about UNIT-I: type = "tank" and strength = 20. Some data

cached in the application are now invalidated. In addition,

conclusions inferred by the application at t2 are potentially

invalid.

Figure 2: Timeline tor order ot battle example

Active databases (e.g .• [Stonebraker88. Sellis88, Delcambre88, Hanson89. McCanhy89.

Widom901). in which a forward-cbaining production system is embedded in the DBMS.

can address the cache consistency problem in two different ways.2 FU'St, for applications

which can be implemented completely within the rule system of an active database, the

problem does not exist In an active database. the working memory of the production

system is the dynamic shared database. As a result, there is no need for the rule+based

application to create a separate copy of each data object about which it is reasoning.

Unfonunately. because the inference engines of active databases are extremely primitive by

AI system standards. this approach only solves the cache consistency problem for very

simple rule-based applications [Stonebraker90]. Second, for knowledge-based systems

that are too complex to be implemented entirely within a simple database inference engine,

the rule processing capabilities of the active database can be leveraged for consistency

maintenance. Coupling a knowledge-based system with an active database makes possible

the specification of alener rules in the database. which can be used to notify the knowledge

based system about changes to objects which have been cached in the application

knowledge-base [Seligman90, Stonebraker90].

2F'or a good overview of active databases, see [Hanson92].

-3

In the following section, we describe the limitations of these approaches and introduce our

approach to knowledge-base/database consistency, including techniques for specifying

consistency constraints. Section 3 describes our architecture. Section 4 describes our

approach to representing and enforcing consistency constraints within the active database.

Section 5 PI'C?vides an illustrative example. Finally. we close with a discussion of the status

of our work and likely future directions.

2. A New Approach to KB/DB Consistency

While the use of alener rules in an active database does address the KB/DB consistency

req uirements of some applications, it fails to address the needs of many others. This is

because many applications would be completely overburdened by receiving notifications

about every update to any cached object. In addition, the message traffic g~nerated by a

large nwnber of alener rule ruings could result in seriously degraded network performance.

For example, a military deployment planning application might cache information about

troops and equipment to be moved, the status of various ports and airports, and

transportation resources such as airplanes, ships, and fuel. The development and

refInement of a deployment plan is a time-consuming process which should not be

interrupted continually by inconsequential database updates which might trigger

unnecessary re-planning (e.g., that there has been a slight change in the amount of

petroleum available at Airbase-27). On the other hand, certain updates might be significant

enough to threaten the viability of a plan under development (e.g., that Airbase-27 has been

attacked and will be unavailable for weeks). In such cases, particularly in crisis situations

which require rapid responses to certain critical events, the application should be notified of

the change in a timely manner.

Because of the need to maintain various kinds and degrees of consistency, which may be

short of 1~ consistency, a hardware model of cache consistency is not appropriate.

What is required is a quasi-cachet as dermed in [Alonso9O]. Quasi-caches contain quasi
copies, which are cached copies whose values are allowed to deviate in controlled ways

from the primary copies of those objects. Our work is the rust we are aware of to consider

the implementation of quasi-caches within the context of general purpose database

management systems (using active database rules) and to apply quasi-caching to the

problem of KBJDB consistency.

Quasi-caches and their consistency requirements are specified in our approach using a

simple extension to a frame-based representation language. A declarative language is

necessary for specifying and transparently enforcing consistency constraints so that the

knowledge-base developer can be shielded from the low-level details of quasi-cache
implementation within the active database.

To specify that an object should be cached, one creates a class which is a specialization of
the class DB-Class. The dermition for DB-Class is shown in Figure 3.

(Oeflne-cl... OB-CI•••
(.elect Ion -co nd It 10n.) ; Define. the condition. under which • quu/-copy

I · I. .dded to the know/edge-b••e
(.electlon-Ia nguage) ; Speclfle. the languag. to b. u••d In .peclfylng

,· ••'.ctlon condition.
(ret ract 10 n-cond It Ions) : D.fln.. th. condition. und.r which a qu••'.copy

, I. purged from the knowl.dge-b•••
(conslatency-condltlon) ; Defln.. th. condition. und.r which a knowledge

,· ba•• qua.'-copy .hould b. r.fr••h.d
(m.g-prlorlty» ; Priority of knowl.dge-ba.. update m••••g••

: tor thl. db-cia••

Figure J: Definition of DB·Class

Five slots of DB-Class are used to defIne the consistency requirements of a quasi-cache:

selection-conditions, selection-language, retraction-conditions, consistency-conditions, and
msg-prioriry. We describe these in tum.

The selection-conditions slot contains a specification of one or more conditions which
trigger the creation of a new instance of this particular DB·Class in the knowledge-base.
Depending upon the value of the selection-language slot, this specification can either be in

the Intelligent Database Interface Language (IDa), a logic-based language used in

[McKay90], or in a Lisp-like variation of SQL.

Refraction-conditions indicate when a quasi-copy should be purged from the quasi-cache.

Valid values for retraction-conditions are the following:

• 	 nil: This means never retract. This is the default, because it is the least expensive
option. No retraction rules need be generated in the active database for this option.

-s

• 	 t: This means delete a quasi-copy whenever its selection-conditions become

invalidated. Retraction rules must be generated in the active database to enforce

this.

• 	 <predicate>: This means that quasi-copies should only be purged from the quasi

cache when <predicate> becomes true. This option also requires the generation of

retraction rules in the active database.

The consistency-conditions slot contains zero or more conditions which are used to specify

when an update to the database should cause the corresponding quasi-copy to be refreshed.

Valid condition specifications include the following:

• 	 (version <n»: Refresh when the quasi-copy is more than n versions out of date

• 	 (time <n»: Refresh when the quasi-copy is more than n minutes out of date

• 	 (percent <attribute> <n»: Refresh when <attribute> varies by more than n percent

from the cached. copy

• 	 (value <attribute> <n»: Refresh when <attribute> varies by more than n from the
cached copy .

• 	 (member <attribute> <list»: Refresh when <ataibute> is changed to a value which
appean in <list>

• 	 «op> <attribute> <constant»: Refresh when the (preflx) expression evaluates to
true. <op> can be one of '>', ~', '<', 'S', '=', or '~'.

The msg-priority slot -is used to help manage the stream of update messages from the

database to the knowledge-base. Proper use of this slot ensures that more critical

knowledge-base updates will take place before less critical ones.

To defme a new-DB-Class, one uses the macro define-DB-Class , as shown in Figure 4.

This figure shows the definition of a new DB-Oass, TankUnit, which is also a

specialization ofUnit.3 The IDn.. expression in the selection-conditions slot indicates that

instances of TankUnit are to be created. in the application knowledge-base whenever there

are instances of Unit and UnitAssets in the database such that Unit. type is "tank".
UnitAssets.asset is "T-7r, and Unilname equals UnitAssets.uname.4 The retraction

conditions slot indicates that instances are to be purged from the application knowledge

30ur system uses multiple inheritance.

4"Ans" refers to the answer relation. Tuples that are returned into the answer relation are mapped into the

specified slots (i.e., name, type. echelon. and strength). In IDIL. variables are preceded by an underscore

character.

- 6

base only when Unit.type is changed to something other than "tank". There are two

consistency-conditions shown in this example. First. a knowledge-base instance should be

refreshed whenever it is more than three versions out of date. Second. it should be

refreshed whenever the strength attribute changes by more than 30 percent from the

currently cached value. Finally. the msg-priority slot indicates the priority of update

messages from the active database to the application knowledge-base for instances of

TankUnit.

(D.fln.·DS-CI... T.nkUnlt (:.up.rcl..... Unit)
i; Name, type, echelon, and .trength are doma/n-.peclf/c ./ot.
(n.m.)
(typ.)
(.ch.'on)
(.tr.ngt h)
;; The remaining ./ota are u.ed to define the qua.'-cache
(sel.ctlon-I.ngu.g. lOlL)
(a.'.ctlo n-co nd Itlon.

;; Mapa re.ult 01 lOlL query Into doma/n-.peclllc ./ot.
«.n. _n.m. _type _ech.'on _.tr.ngth)

c
(Unit _name _type _.ch.'on _atr.ngth)

(UnltA•••t. _uname _....t _number)

(. _type "t.nk")

(a _n.m. _un.m.)

(a _••••t "T-72")))

(r.tr.ctlon-condltlon. (_ _type "t.nk"»

(conalat.ncy-co nd Itlon.

«v.r.'on 3)

(p.rc.nt atr.ngth 30)))

(mag-priority 5»)

Fiaure 4: An example DB·Class definition

3 • An Architecture tor Approximate Consistency Maintenance

Our approach for managing knowledge-base/database consistency relies on the use of an

intellig.ent KB/DB interface that we call a Mediator for Approximate Consistency (MAC).

The term "mediator" comes from [Wiederhold92] and refers to software that presents data

at a higher level of abstraction for a higher layer of applications. The MAC abstracts away

most changes to the underlying database and only reports those updates that the

knowledge-base has defined as being significant.

-7

Figure S illustrates the operation of the MAC. It is composed of two major submodules:

the translator, which handles communication from the application to the active database.

and the mapper/message handler, which handles communication from the active database to

the application.

Knowledge-based

Application

~.diator for~app'rl
Translator Approximate~.SI.g, handl,r

Consistency
(~AC)

COMtnIlnt
rule object. defIde" . and updltu

DOL •

uynchronous
.-....Ita fro",
ruIeI

Figure 5: Architecture of the MAC

The translator accepts the declarative specification of a given class' consistency
requirements as it appears in a DB-Class definition and translates it into the following:

queries to be execu~ immediately. rules for monitoring the future state of the database,
and data defmition language commands which result in the creation of and updates to

consistency constraint objects in the database. The queries which are to be executed

immediately are used to populate the quasi-cache with those instances of the newly defined

DB-Class for which the selection-conditions are satisfied at quasi-cacbe initialization time.

The rules are of three types: selection-rules, which are used to monitor the database for

future occurrences of the selection-conditions, retraction-rules, which are used to monitor

- 8

the database for the retraction-conditions. and consistency-rules, which are used to monitor

the database for conditions which require refreshing of quasi-copies in the knowledge

base. The purpose and representation of the constraint objects will be discussed in the

following section.

The mapper/message handler receives notification of relevant database updates from the

active database and maps them into the knowledge representation of the application. The

mapper/message handler must accept two kinds of messages: synchronous query results.

which are immediate responses to queries forwarded to the database by the translator, and

asynchronous knowledge-base update messages. which result from the ruing of selection.

retraction. and consistency rules in the active database. Asynchronous messages are

managed by a priority queue, to ensure that higher priority knowledge-base updates are

processed before lower priority ones.

4. Constraint Representation

In our initial design. enforcement of consistency constraints was completely handled by

rules in the active database. For each instance of a DB-Cass in the knowledge-base which

had a consistency-condition associated with it. there would need to be a separate alener rule

in the active database. For example. the DB-Cass def"tnition in Figure 4 has a consistency

constraint that instances cached in the knowledge-base must be refreshed if their values for

strength deviate by more than 30 percent from the current values in the database.

Enforcement of this simple constraint would require one consistency rule per constrained

instance. Assuming that <uniCl, tank. banalion, SO> and <uniC2, tan.k, battalion, 80>

are two TankUnit instanc'es cached in the knowledge-base. the rules shown in Figure 6

would enforce the constraint on strength for these instances.5

.s All rule examples in this paper use a variation of POSTQUEL. abe data defmition and manipulation
language of POSTGRES. a prolOtype acrive database system [St0nebraker88].

-9

Define rul. r_1
On replec. to unlt.strength
Wh.r. new.nem. • 'unlt_1' end

(new. strength c 35 or new.strength ,. 85)
Do

Refre.h the knowledge-b... qu••'-copy
D.I.,. .nd fe-.dd ,hi. rule with 'he new .pproprl.te bound.ry

condition.

Oefln. rule r_2
On repl.ce to unlt.strength
Where new.neme • 'unlt_2' end

(new.strength c 58 or new.strength ,. 104)
Do

Refre.h 'he knowledge-b... qu••'-copy
D.,.te .nd r.-.dd ,h'. rule with 'he new .pproprl.'e bound.ry

condition.

Figure 6: Enforcing consistency constraints using only rules

Our current design represents constraints explicitly as objects in the database. instead of

burying the constraint representation in the where clause of consistency rules. This has

two advantages over a strictly rule-based approach. First, it results in much less rule-base

maintenance. Note that in Figure 6t every time a consistency constraint is violated. the rule
- .

must be deleted and readded with the new appropriate boundary conditions. This is much

more computationally expensive than simply updating a couple of fields of a constraint

instance object. Second, explicit representation of constraints is preferable to burying that

knowledge in rules, because it permits the constraints themselves to be queried and

reasoned about [Shepherd86].

Two classes of database objects are used to represent information on constraints. -The first,

a constraint_de/, contains information on the defmitions of constraints. A constraincdef is
a six-tuple: <co, a, it p, 't,e>, where c is the database class which is constrained

(e.g., unit), a is the constrained attribute (e.g., strength), i is an identifier for the

application which is used for routing knowledge-base update messages to the application,
p is the name of the rule which enforces this constraint, 't is the type of the constraint

(e.g., version, time, percent, value), and e is the permitted deviation beyond which

knowledge-base quasi-copies must be refreshed. Instances of constraincdef are added

when a new OB-Qass is defined in the knowledge-base. The number of instances added

by a given define-DB-class depends upon the number of consistency-conditions specified.

The second class used to represent constraint information is the constraint_instance. Each

constraincinstance contains information on the state of a particular quasi-copy and the

- 10

http:bound.ry
http:bound.ry

specific consistency constraints on the corresponding object in the database. Figure 1

shows a partial schema for constraincinstance.

Con.tral nt_I n.tanc.
(co n.t r.'n.d_obJ. 010 01 the con.tra/ned object

attrlb. ; name 01 the con.tra/ned attribute
con.tralnt_d.f. ; 010 01 the cor,..pondlng con.train '-del
KB_obLn.m•• ; name 01 the know/edge-be.e object In.t.nce
c.ched_v.l. value lor thl••ltrlbute cached In the KB
low_limit. ; « thl. value mean. con.tra/nt I. v/o/.ted
hIgh_limIt) ; ,. thl. v.lu. mean. con.tra/nt I. v/o/.ted

Figure 7: Scbema tor tbe constraintJnstance class

S • An Example

For this example. we will again use the DB-class definition for TankUnit in Figure 4.

Evaluation of this definition would result in the generation of the following POSTQUEL

query, which would be used to initialize the contents of the quasi:-eache for TankUnit:

R.trl.v. (Unlt.n.m.. Unlt.typ., Unlt••oh.lon, Unlt••tr.ngth)
Where Unlt.typ. • "t.nk" and

Unlt.n.m. • UnltA...t••un.m. and

UnltA•••t••••••t • "T·7Z"

In addition, selection and retraction rule definitions would be generated and sent to the

database in order to monitor the database for future occurrences of the selection and

retraction conditions.

Now suppose ~t as a result of the execution of the quasi-cache initialization query and the

flring of selection rules. the knowledge-base now contains two instances of TankU nit,

unicl' and unie2t, with the following values: <uniel. tank, battalion, 50> and

<unic2, tank. battalion, 80>. Figure 8 shows the state of the objects in the database

which support maintenance of the TankUnit quasi-cache. There are two constraint

instances, consttaincinsc27 and constraincinsC29, each of which has a pointer to the

defmition of the constraint on the strength attribute, consttaincdeC15. In addition. each

constraincinstance has a pointer to the corresponding constrained object in the database, in

this case instances of the class Unit. ConstraincdeClS contains a pointer to

consistency_rule_7, which checks for violations of this constraint, and a reference to an

- 11

identifier for the application (i.e .• KB_l). This identifier is used to route update messages

to the knowledge· base.

Conslstency_ru ,_7
On replace to unit.strength
Where new.oid - c.constrained_obj and

violated_constraint(new.strength, c.oid)
From unit, c in constrainLinstance
Do

Refresh the knowledge-base quasi-copy
Update constrainLil1$tance with

Con.tralnLdef_15
constrained_class: unit
attrib: strength
applic.Jd: KB_1
rule:
type: percent
t.: 30

new bound conditions

ConsttalnLlnaL27 Con.tralnLlnlL29
constrainLdef:constrainLdef:
constrained_obj:constrained_obj:
attrib: strength attrib: strength

KB_obj_name: uniL1 ' KB_obj_name: uniL2'
cached_val: 80cachecLval: 50
low_limit: 56low _limit: 35
high_limit: 104high_limit: 65.

type echelon strength

tank BN 50
tank BN 80 -4-1--

name

UNIT

Figure 8: Database objects for enforcing consistency constraints

Consistency_rule_7 checks for constraint violations whenever the strength attribute of a

constrained object is updated. Suppose for example that unie! has its strength updated to

30. Consistency_rule...:.7 would then check for constraint violations and would fmd that

constraint_inse27 had been violated. Since its preconditions would be satisfied. the rule

would fue, resulting in an update notification to the knowledge-base for quasi-copy

uniCI'. In addition. constrainCinsc27 would be updated to contain the new low and high

limits of 21 and 39 respectively. No rule-base maintenance is required to process this

update.

- 12

http:applic.Jd

6. Conclusions

This paper has discussed a new approach to maintaining consistency between an

application knowledge-base and related data in a dynamic, shared database. The techniques

described hC(re are applicable not only to knowledge-based applications, but to any

application which could benefit from quasi-caching of shared data. To our knowledge, this

work is the first to address quasi-caching within the context of general purpose database

management systems.

We are currently developing a prototype implementation of our approach. We are

implementing the MAC in the Common Lisp Object System (CLOS) and are providing an

interface from the MAC to POSTGRES [Stonebraker88]. a prototype extended relational

database with rule processing capabilities. We do not anticipate that providing interfaces to

other active databases would be a major difficulty, although we may have to change some

of our underlying implementation assumptions (e.g .• that every database instance has a

unique object identifier). In addition, while we are using an extended relational database in

our prototyping, there is nothing in our approach which would prevent us from using an

object-oriented database, assumin,g it had adequate rule processing capabilities. That is

why we have been careful to use the generic terms class and instance instead of their

relational counterparts. relation and tuple.

Following the completion of our prototype implementation, we will use it to integrate an AI

planning application with a POSTGRES database. During the course of developing the

application, we expect to identify new requirements that will help us refine our design,

Also planned is the construction of a simulation model that will allow us to assess when

these techniques are more efficient than alternate ones, such as using alerter rules for all

changes and periodic polling of the database to detect critical changes.

References

[Ab~baneI86] R. Abarbanel and M. Williams, "A Relational Representation for

Knowledge Bases", in [Kerschberg86].

[Alonso90] R. Alonso, D. Barbara. and R Garcia-Molina, "Data Caching Issues in an

Information Retrieval System", ACM Trans. on Database Systems, Vol. 15. No.3,

September, 1990.

[Delcambre88] L. Delcambre and 1. Etheridge, "The Relational Production Language: A

Production Language for Relational Databases", in [Kerschbcrg88].

[Hanson89] E. Hanson, "An Initial Report on the Design of Ariel", ACM SIGMOD

Record, VoL 18, No.3, September, 1989.

[Hanson92]. E. Hanson and J. Widom, "Rule Processing in Active Database Systems",

in L. Delcambre and F. Petry, cds .• The Emeuine Landscape of Database and

Information Systems. JAI Press. 1992 (to appear).

[Ionnidis88] Y. Ioannidis. 1. Chen. M. Friedman. and M. Tsangaris, "BERMUDA - An

Architectural Perspective on Interfacing Prolog to a Database Machine", in

[Kerschberg88].

[Kerschberg86] L. Kerschberg, ed., Expert Database Systems; Proc. from the First

International Worksho,p, Benjamin Cummings, Menlo Park, CA, 1986.

[Kerschberg88] L. Kerschberg. cd., Expert Database Systems; Proc. from the Second

International Conference. Benjamin Cummings, Menlo Park. CA, 1988. .

[McCanhy89] D. McCarthy and U. Dayal, "The Architecture of an Active Data Base

Management System", Proc. of ACM-SIGMOD Int. Cont. on Manaes;ment of Data,

1989.

[McKay90] D. McKay. T. Finin. and A. O'Hare, "The Intelligent Database Interface:

Integrating AI and Database Systems". in Proc. AAAI·90. Boston, MA, July 1990.

[Seligman90] L. Seligman and L. Kerschberg. "On Active Databases: An Approach to

Building Knowledge·base Management Systems". Proc. of Workshop on Knowledes;

base Manaes;ment Systems. AAAI·90. Boston, MA, July. 1990.

[Seligman91] L. Seligman and L. Kerschbcrg. "Active Federation: A New Architecture for

Integrating AI and Database Systems," Proc. of Workshop on Iptewtini AI and

patabases. IJCAI-91. Sydney. Australia, August, 1991. Also in L. Delcambre and

F. Petry, eds .• The Emer&jnc Landscape of patabase and Information Systems. JAI

Press. 1992 (to appear).

[Sellis88] T. Seills. C. Lin, and L. Raschid, "Implementing Large Production Systems in

a DBMS Environment: Concepts and Algorithms", Pmc. of ACM-SIGMQD Int. Cont

on Mana&ement of Data. 1988. .

[Shepherd86] 	 A. Shepherd and L. Kerschberg, "Constraint Management in Expert

Database Systems", in [Kerschberg86].

[Stonebraker88] M. Stonebraker. E. Hanson, and S. Potamianos. "The POSTGRES Rule

Manager", IEEE Trans. on Software Endneerinc. 14(7). July, 1988.

- 14·

[Stonebraker90] M. Stonebraker. "Architectures for DBMS-Oriented Expert Systems'"

Workshop on Knowledae-base Manaaernent Systems. AAAI·90. Boston, MA. July.

1990.

[Widom90] J. Widom and S. Finkelstein, "Set-oriented Production Rules in a Relational

Database Management System", Proc. of ACM-SIGMOD fot. Conf. on Maoaaemeot

of Data, Atlantic City. NJ, May, 1990.

[Wiederhold92] G. Wiederhold. "The Roles of Artificial Intelligence in Infonnation

Systems". Journal of Intelljeent Information Systems. Vol. I, No.1. eds. L.

Kerschberg. Z. Ras. and M. Zemankova. Kluwer Academic Publishers, August 1992

(to appear).

- 15

