
Approximate methods. Time-independent perturbation theory
Variational principles. Semiclassical approximation.

There exist only a handful of problems in quantum mechanics which can be solved exactly.
More often one is faced with a potential or a Hamiltonian for which exact methods are unavailable
and approximate solutions must be found. Here we review three approximate methods each of
which has its own strengths and weaknesses.
(i) Perturbation theory: useful when the Hamiltonian can be written as an exactly solvable piece
plus ’small’ correction;
(ii) Variational method: in the standard form helps to determine ground state properties in a
complex system. The major drawback is lack of control over the accuracy (which often is remar-
kably good!). Can be re-formulated to deal with excited states, but quickly becomes inaccurate.
(iii) Semiclassical approximation: deals with slowly-varying potentials.

Time-independent perturbation theory
In perturbation theory one considers corrections to energy eigenstates and eigenvalues which

originate from ’small’ terms, let’s denote them V̂ , added to the exactly solvable Hamiltonian Ĥ0:

Ĥ = Ĥ0 + V̂ .

The conditions for naming V̂ ’small’ will be quantified below. Let E
(0)
n and ψ

(0)
n be eigenenergies

and the corresponding eigenstates of Ĥ0:

Ĥ0|ψ(0)
n 〉 = En|ψ(0)

n 〉 , n = 0, 1, 2, 3, . . . .

The goal is to determine corrections to ψ
(0)
n and E

(0)
n which take us closer and closer to the exact

eigenstates ψn with exact eigenenergies ψn under the assumption that V̂ is small. Since V̂ is a
matrix and has a dimension of energy the notion of small can not be attached to it directly without
comparing matrix elements of V̂ to some energy scale. To avoid this complication we introduce
an auxiliary quantity λ, replace V̂ with λV̂ , and pretend that λ→ 0 is a small parameter. At the
end of the calculation we set λ = 1. In essence, we simplify the bookkeeping of collecting terms
which are proportional to the same power of V̂ terms. So, we start solving the eigenvalue equation

[Ĥ0 + λV̂ ] |ψn〉 = En|ψn〉 ,

by assuming the existence of expansions

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · ·+ λkE(k)

n + . . . ,

ψn = Zn

(
ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + · · ·+ λkψ(k)

n + . . .
)
, (1)

where the global normalization factor has to be established at the end of the calculation (this
allows one to demand that the wavefunction correction is orthogonal to the un-perturbed state).
Plugging these expansions back to the eigenvalue equation we get

[Ĥ0+λV̂ ]
(
ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . .

)
=
[
E(0)
n + λE(1)

n + λ2E(2)
n + . . .

] (
ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . .

)
.

The rest of the theory requires that we express both the l.h.s and the r.h.s. of this equation as
power series expansions in λ and then equate expressions in front of each λk, i.e. we match Taylor

1



series expansions about the λ = 0 point. This is why this procedure is called the ’perturbation
theory’. Now the l.h.s is

Ĥ0ψ
(0)
n + λ

(
Ĥ0ψ

(1)
n + V̂ ψ(0)

n

)
+ λ2

(
Ĥ0ψ

(2)
n + V̂ ψ(1)

n

)
+ · · ·+ λk

(
Ĥ0ψ

(k)
n + V̂ ψ(k−1)

n

)
+ . . . ,

and the r.h.s. is

E(0)
n ψ(0)

n +λ
(
E(0)
n ψ(1)

n + E(1)
n ψ(0)

n

)
+λ2

(
E(0)
n ψ(2)

n + E(1)
n ψ(1)

n + E(2)
n ψ(0)

n

)
+· · ·+λk

k∑
m=0

E(m)
n ψ(k−m)

n +. . . .

Matching power series we get a set of coupled equations which admit an easy step-by-step solution.
The first equation is

Ĥ0ψ
(1)
n + V̂ ψ(0)

n = E(0)
n ψ(1)

n + E(1)
n ψ(0)

n . (2)

We project it on the ψ
(0)
l state to replace operators with numbers and matrix elements. For l = n

we obtain
V̂nnψ

(0)
n = E(1)

n ψ(0)
n −→ E(1)

n = V̂nn . (3)

which immediately solves for the lowest, or first, order correction to the energy eigenvalue. It is
nothing but the average of the perturbation term over the unperturbed state. For l 6= n we obtain

E
(0)
l 〈ψ

(0)
l |ψ

(1)
n 〉+ V̂ln = E(0)

n 〈ψ
(0)
l |ψ

(1)
n 〉 −→ 〈ψ(0)

l |ψ
(1)
n 〉 = − V̂ln

E
(0)
l − E

(0)
n

. (4)

which solves for the lowest-order correction to the wavefunction

ψ(1)
n = −

∑
l 6=n

ψ
(0)
l

V̂ln

E
(0)
l − E

(0)
n

. (5)

We immediately see that an admixture of states with l 6= n is small as long as |V̂ln/(E
(0)
l −E

(0)
n )| �

1, and the sum over l converges fast enough. Thus is a major condition which justifies the use of
the perturbation theory.

This wonderful conspiracy that one only needs to know wavefunction corrections up to ψ
(k−1)
n

to find E
(k)
n which is then used to determine ψ

(k)
n persists in higher orders, making the whole

scheme slightly increasing in complexity for larger k, but still easily manageable. Consider now
second-order corrections. Projecting

Ĥ0ψ
(2)
n + V̂ ψ(1)

n = E(0)
n ψ(2)

n + E(1)
n ψ(1)

n + E(2)
n ψ(0)

n , (6)

onto the state ψ
(0)
l with l = n we get the second order correction to energy as

〈ψ(0)
n |V̂ |ψ(1)

n 〉 = E(2)
n , −→ E(2)

n = −
∑
l 6=n

V̂nlV̂ln

E
(0)
l − E

(0)
n

. (7)

Note that 〈ψ(0)
n |ψ(1)

n 〉 = 0 as well as 〈ψ(0)
n |ψ(k)

n 〉 = 0 for any k by construction, see Eq. (1). Since
for Hermitian operators V̂nl = V̂ ∗ln we can write the answer in the form which makes it clear that
the second-order correction to the ground state is always negative

E(2)
n = −

∑
l 6=n

|V̂ln|2

E
(0)
l − E

(0)
n

, (8)
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because for n = 0 all denominators are positive. This result has numerous important implications
in physics. For example, if the ground state of Ĥ0 is degenerate and matrix elements of V̂ are zero
between all ground states (say by symmetry) then the the best state is the one which admits larger
matrix elements between the ground state manifold and excited states. Second-order perturbation
theory for energy is also behind many effective interactions such as the VdW force between neutral
atoms without dipole moments, or any force mediated by an exchange of an intermediate particle
for that matter. Below I also discuss how it leads to the notion of effective Hamiltonian under
appropriate conditions; after all nearly everything in physics is an effective description at the
relevant energy scale.

By projecting (6) on ψ
(0)
l with l 6= n we find the second-order correction to the wavefunction

〈ψ(0)
l |ψ

(2)
n 〉 = −

〈ψ(0)
l |V̂ |ψ

(1)
n 〉 − E(1)

n 〈ψ(0)
l |ψ

(1)
n 〉

E
(0)
l − E

(0)
n

. (9)

What is left is to plug in here expressions for ψ
(1)
n and E

(1)
n :

ψ(2)
n =

∑
l 6=n

ψ
(0)
l

∑
k 6=n

V̂lkV̂kn

(E
(0)
l − E

(0)
n )(E

(0)
k − E

(0)
n )
− V̂lnV̂nn

(E
(0)
l − E

(0)
n )2

 . (10)

Since
E(k)
n = 〈ψ(0)

n |V̂ |ψ(k−1)
n 〉 ,

holds for any k, it does not cost us anything to write the next-order correction to energy

E(3)
n =

∑
l,k 6=n

V̂nlV̂lkV̂kn

(E
(0)
l − E

(0)
n )(E

(0)
k − E

(0)
n )
−
∑
l 6=n

V̂nn|V̂nl|2

(E
(0)
l − E

(0)
n )2

. (11)

We will stop here since the protocol is clear. Let us now turn to examples of how it works.
Take a fake problem when the potential is represented by two harmonic oscillator terms

U(x) = U0(x) + V (x) =
1

2
mω2x2 +

1

2
mν2x2 ,

with ν � ω. The exact solution is, of course, readily obtained by introducing Ω = (ω2 + ν2)1/2

which also can be Taylor expanded as

Ω = ω

(
1 +

ν2

2ω2
− ν4

8ω4
+ . . .

)
.

The exact energies are

En = Ω

(
n+

1

2

)
.

In perturbation theory we have

E(1)
n = 〈n|1

2
mν2x2|n〉 =

mν2〈n|x2|n〉
2

=
mν2(2n+ 1)

4mω
= ω

(
n+

1

2

)
ν2

2ω2
,

exactly as expected from exact E0 with Ω expanded in a series.
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Doing the check for the wavefunction is also straightforward conceptually but more messy:

ψ(1)
n = −

∑
l 6=n

ψ
(0)
l

〈l|mν2x2/2|n〉
ω(l − n)

= − ν2

4ω2

∑
l 6=n

ψ
(0)
l

〈l|[̂(a) + (̂a)†]2|n〉
l − n

.

Substituting here

〈l|[̂(a) + (̂a)†]2|n〉 = (2n+ 1)δl,n +
√

(n+ 1)(n+ 2)δl,n+2 +
√

(n)(n− 1)δl,n−2

we get

ψ(1)
n =

ν2

8ω2

(
−
√

(n+ 1)(n+ 2) ψ
(0)
n+2 +

√
n(n− 1) ψ

(0)
n−2

)
,

(the second term is present only if n− 2 ≥ 0). To compare this expression with exact solution we

have to take ψ
(0)
n (
√
mΩx) and differentiate it with respect to Ω

ψ(1)
n = δΩ

d

dΩ
ψ(0)
n (
√
mΩx)

∣∣∣∣
Ω=ω

=
ν2

2ω

d

dω
ψ(0)
n (
√
mωx) .

It is convenient to use y =
√
mωx at this point

ψ(1)
n =

ν2

2ω2

(mω
π

)1/4 1√
2nn!

[
1

4
Hn(y) +

y

2
Hn
′(y)− y2

2
Hn(y)

]
e−y

2/2 .

The rest is lengthy algebra of manipulating with Hermite polynomials using

Hn
′(y) = 2yHn(y)−Hn+1(y)

to write square brackets as [
. . .
]

=
1

2

[1
2
Hn − yHn+1 + y2Hn

]
,

and then applying

yHn = nHn−1 +
1

2
Hn+1 ,

couple of times to get rid of the powers of y in front of polynomials[
. . .

]
=

1

2

[
1

2
Hn − yHn+1 + y(nHn−1 +

1

2
Hn+1)

]
=

1

4

[
Hn − yHn+1 + 2nyHn−1

]
=

1

4

[
Hn −

(
(n+ 1)Hn +

1

2
Hn+2

)
+ 2n

(
(n− 1)Hn−2 +

1

2
Hn

)]
= −1

8
Hn+2 +

n(n− 1)

2
Hn−2 .

The final step is to attach the proper normalization factors to Hermite polynomials to obtain ψ
(0)
n+2

and ψ
(0)
n+2

1√
2nn!

[
n(n− 1)

2
Hn−2 −

1

8
Hn+2

]
≡

√
n(n− 1)

4

1√
2n−2(n− 2)!

Hn−2 −
√

(n+ 1)(n+ 2)

4

1√
2n+2(n+ 2)!

Hn+2 .

4



This leads to

ψ(1)
n =

ν2

8ω2

(√
(n)(n− 1) ψ

(0)
n−2 −

√
(n+ 1)(n+ 2) ψ

(0)
n+2

)
,

which matches the result of the perturbation theory precisely.

Problem 35. Shifted harmonic oscillator by perturbation theory
Consider a harmonic oscillator accompanied by a constant force f which is considered to be small

V (x) =
1

2
mω2x2 − fx .

a). Show that this system can be solved exactly by using a shifted coordinate

y = x− f

mω2
,

and write exact expressions for energy eigenvalues and eigenfunctions.

b). Use perturbation theory (by considering the force term as a perturbation) to calculate E
(1)
n ,

E
(2)
n , and ψ

(1)
n . Compare you answers with the exact expression and demonstrate match when

exact expressions are expanded in powers of f .

Problem 36. Anharmonic oscillator1.
Evaluate the effect of a small anharmonic term of the form

Vanh = −εx3 ,

on the spectrum of harmonic oscillator with mass m and frequency ω.
a). Start by showing that

〈k|x3|n〉 =

(
1

2mω

)3/2 [√
(n+ 1)(n+ 2)(n+ 3)δk,n+3 + 3(n+ 1)3/2δk,n+1+

3n3/2δk,n−1 +
√
n(n− 1)(n− 2)δk,n−3

]
.

b). Calculate the first-order energy shift E
(1)
n in perturbation theory in Vanh.

c). Calculate the second-order energy shift E
(2)
n .

Degenerate perturbation theory. Effective Hamiltonians.

We observe that the perturbation theory fails when denominators in expressions for E
(k)
n and

ψ
(k)
n are either zero, or comparable to the mixing matrix element, i.e. when |E(0)

l − E
(0)
n | . |V̂ln|.

Often this is a sign that the perturbation theory has to be abandoned altogether. However, there
are important cases when the condition of validity of the perturbation theory is violated only
for two, of several, say N , isolated levels which happen to be near degenerate. Lets denote the
corresponding N -dimensional Hilbert space by νA while the rest of the Hilbert space is νB
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In this case we proceed as follows:

• Account for the diagonal matrix elements of V̂nn in the renormalized spectrum εn = E
(0)
n +E

(1)
n .

Formally, they are exact energy eigenstates of the Hamiltonian Ĥ ′0 = Ĥ0 + D̂, where D̂nm =
V̂nnδnm. I thus suggest that we always transfer diagonal matrix elements of V̂ to Ĥ0 and consider
the rest as perturbation V̂ ′ = V̂ − D̂. By construction V̂ ′nn = 0. At this point we check again
whether conditions for the validity of the perturbation theory are violated for V̂ ′ and the spectrum
{εn} to identify the troubled group of states νA, if any.

• Suppose that we do have a group of N states for which the perturbation theory cannot be
applied directly.

We split the matrix V̂ ′kk′ into two matrixes Âkk′ and

B̂kk′ such that B̂ does not have non-zero matrix ele-
ments between states which both belong to νA, while
Â has non-zero matrix elements only between the sta-
tes in the νA subspace. This is illustrated in the figure
which explains which matrix elements are assigned to
Â and B̂. By definition, the perturbation theory can
be applied for B̂. We thus proceed as usual and cal-
culate corrections to energy levels and wavefunctions
for all levels. The final result must be regarded as an
approximate solution for the energy spectrum and ei-
genstates of Ĥ ′0 + B̂. Let us denote them as {ε̃n} and
{ψ̃n}.

0 a b c 
 *

* *

0 ˆˆ ˆ'
0

a e f
V A B

b e g

 
   
 

* * *

0
0

b e g
c f g
 
 
 f g 

0 0 0 0
0 0 0e
 
 
 

*

0
0 0
a b c

a f
 
 
 

*

0 0 0ˆ
0 0 0

e
A

e
 
 
 

*

0 0ˆ
0 0

a f
B

b g

 
 
 
 0 0 0 0 

 
* * * 0

g
c f g 
 

A subspace

• We now account for the effects of matrix Â and new matrix elements generated in the near-
degenerate subspace νA. In some cases we have non-zero Â from the very outset and in the
leading approximation it is possible to skip the previous step completely and proceed with the
diagonalization of the Hamiltonian matrix

Ĥ(A)
nm = εnδnm + Ânm , ψn, ψm ∈ νA ,

in the νA subspace. For the two-level example shown in the figure we readily find

E± =
ε2 + ε3

2
±
√

(ε2 − ε3)2

4
+ |A23|2 ,

i.e. we deal with this problem exactly the same way as with any other finite-dimensional space.
One immediate improvement would be to use corrected spectrum ε̃n instead of εn. However,

to be consistent we must also account for corrections to the matrix Â introduced by the change
of basis states from ψn to ψ̃n and new matrix elements generated from higher orders in B̂. This
is especially important in cases when Â is small, or even zero! This brings us to the notion of
effective Hamiltonian in the selected energy subspace νA. Needless to say that effective Hamil-
tonians and theories are found in physics all over the place. More precisely, all we do in physics
is effective Hamiltonians and models which emerge after high-energy modes are ’absorbed’ into
effective constants and potentials. Here I will discuss how things are done at the level of the
lowest-order perturbation theory (first for the wavefunction).
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We have

ψ̃n = Zn

ψ(0)
n −

∑
l 6=νA

ψ
(0)
l

B̂ln
εl − εn

 ≡ Zn
ψ(0)

n −
∑
l 6=νA

ψ
(0)
l Cln

 , (12)

with Z-factors close to unity because

Zn =

(
1 +

∑
l 6=νA

|Cln|2
)−1/2

−→ Zn ≈ 1− 1

2

∑
l 6=νA

|Cln|2 .

Now
ˆ̃Amn = 〈ψ̃m|Â|ψ̃n〉 = ZmZnÂmn ≈ Âmn .

I will not keep terms proportional to AB2 here, though it is possible at a little cost (see below for
normalized and orthogonal functions).

Given new wavefunctions we also find that the B̂ matrix in the νA subspace now has non-zero
matrix elements. They may be small, i.e. proportional to B̂2, but given near degeneracy of energy
levels in νA their effect on these levels may be strong and even non-perturbative. These matrix
elements are (keeping only terms ∝ B̂2):

Â′m6=n =

〈
ψ(0)
m −

∑
l 6=νA

ψ
(0)
l Clm

∣∣∣B̂∣∣∣ψ(0)
n −

∑
l 6=νA

ψ
(0)
l Cln

〉
= −

∑
l 6=νA

[
C∗lmB̂ln + B̂mlCln

]
=

−2
∑
l 6=νA

B̂mlB̂ln
εl − (εn + εm)/2

(εl − εm)(εl − εn)

Finally, we have to account for contributions coming from
[
Ĥ ′0

]
n6=m

. If we naively use wa-

vefunctions (12) we will get a meaningless expression because it will not be invariant under the
choice of where the energy is counted from. This is because the overlap

〈ψ̃m|ψ̃n〉 ≈ Omn =
∑
l 6=νA

C∗lmCln 6= 0 ,

is non-zero. By small rotation of states (again, keeping only the leading small terms)

em = ψ(0)
m −

1

2

∑
n

Onmψ
(0)
n −

∑
l 6=νA

Clmψ
(0)
l ,

we fix orthogonality (and normalization!) to leading order. Now

Â′′m 6=n =
[
Ĥ ′0

]
n 6=m

=

〈
ψ(0)
m −

∑
l 6=νA

ψ
(0)
l Clm −

1

2

∑
k

Okmψ
(0)
k

∣∣∣Ĥ ′0∣∣∣ψ(0)
n −

∑
l 6=νA

ψ
(0)
l Cln −

1

2

∑
i

Oinψ
(0)
i

〉
=

∑
l 6=νA

C∗lmCln

[
εl −

1

2
(εm + εn)

]
=
∑
l 6=νA

BmlBln
εl − (εm + εn)/2

(εl − εn)(εl − εm)
≡ −1

2
Â′m6=n .
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Combining all pieces together we finally get

Ĥ(eff)
mn = ε̃nδnm +

[
Â+ Â′ + Â′′

]
m6=n

= ε̃nδnm + Âmn−
∑
l 6=νA

B̂mlB̂ln
εl − (εn + εm)/2

(εl − εm)(εl − εn)
(1− δnm) .

Establishing an effective Hamiltonian for the N -dimensional subspace is important when |εl −
εn| � |εn − εm|, for all l 6= νA and n,m ∈ νA, i.e. when near degenerate states are separated by
large energy gaps from the rest of the spectrum. In this case we can use a simplified expression

Ĥ(eff)
nm = ε̃nδnm + Âmn −

∑
l 6=νA

B̂mlB̂ln
εl − εA

(1− δnm) ,

where εA = N−1
∑

n∈νA εn is the ’central’ energy of the νA subspace. This completes our deriva-

tion. Notice that for exact degeneracy of εn levels and zero Â-matrix, an arbitrary small mixing
of levels generated by Â′-matrix is a non-perturbative effect.

Problem 37. Degenerate perturbation theory.
Go back to the Three-Level Problem (# 26), i.e.

Ĥ =

 0 0 ∆
0 0 ∆
∆ ∆ U

 ,

(it is exactly the same Problem; I simply re-ordered the matrix for transparency) and address
it now in the limit of large U � ∆ using degenerate perturbation theory and the effective Ha-
miltonian approach. At the end compare your final result to the result of exact calculation from
Problem 34.

Problem 38. Perturbation theory for the two level system.
Well, we already know the exact solution for the two level system. Now try to reproduce known
results by considering the case of large bias, or small mixing, ∆/ξ � 1, and applying the pertur-
bation theory in ∆.
a). Calculate the second order corrections to energies E1,2 = ±ξ. Compare with the exact result
at the same level of accuracy.
b). Calculate the first order corrections to the energy wavefunctions. Compare with the exact
result at the same level of accuracy.

Variational principle
Consider the quantity

J [ψ] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

,

which can be constructed for any state. The fancy name for it is ’functional’ because it converts
an input in the form of a function into an output which is a number. Next we expand ψ in the
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energy basis

ψ(x) =
∑
n

cnψn , Ĥψn = Enψn ,

and write J [ψ] as

J =

∑
nEn|cn|2∑
n |cn|2

≥
E0
∑

n |cn|2∑
n |cn|2

= E0 .

The inequality follows from the fact that En ≥ E0 for all n. Thus J is minimized when ψ = ψ0

in which case J = E0. However any other choice will yield something larger. A good choice
of wavefunction will result in an answer which is closer to the exact value. The protocol then
is to make a variational guess of ψ containing one or more parameters {αi}, calculate J({αi}),
and minimize J with respect to this parameter set. For example, consider the standard harmonic
oscillator Hamiltonian for which the ground state energy is E0 = ω/2. Of course, the actual
ground state wavefunction is a Gaussian, but suppose we don’t know this and choose instead

ψ(x) = N(a2 − x2)2 for |x| ≤ a and zero otherwise.

First, choose N to normalize the wavefunction

1 =

∫ a

−a
dx|ψ(x)|2 = N2

∫ a

−a
dx(a2 − x2)4 = N2a9 256

315
−→ N =

√
315

256a9
.

Then

〈ψ|x2|ψ〉 = N2

∫ a

−a
dxx2(a2 − x2)4 = N2a11 256

3465
=

315

3465
a2 =

a2

11
.

Also

〈ψ| − d2

dx2
|ψ〉 = 〈ψ′|ψ′〉 = N2

∫ a

−a
dx[4x(a2 − x2)]2 = N2a7 256

105
=

3

a2
.

Hence

J =
3

2ma2
+
mω2a2

22
−→ dJ

da
= − 3

ma3
+
mω2a

11
= 0 −→ a2 =

√
33

mω
.

Substituting this back to J we finally get

Emin =
3ω

2
√

33
+

√
33ω

22
=
ω

2

(
2

√
3

11

)
= 1.044

ω

2
,

which is only 4% above the true ground state despite the crude guess for the wave function.
Today, the whole machinery is developed for variational calculations of many-body ground

states with the trial states containing hundreds and even thousands of variational parameters. At
this level of complexity, the evaluation and minimization of J is done by computers (in the multi-
dimensional Hilbert space of particle coordinates, J is often simulated by Monte Carlo). The most
recent advance came from quantum information science when Vidal and Verstraete introduced
matrix product and tensor network states. In quantum chemistry calculations people can do 200
electrons and calculate energies with relative accuracy of about 0.1%, a remarkable achievement.
But even this is not enough because 0.1% on 1 keV energy is about 10000K—not sufficient to
make reliable predictions for chemical reaction rates at room temperature. Still ...
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We have discussed the variational principle for the ground state. Can it be generalized to
excited states? The answer is yes. First, the trivial way. Sometimes the symmetry of the ground
and excited states is different, say one is even and the other is odd. By taking variational states
which respect different symmetries we obtain a standard variational principle for the ground states
in each of the different symmetry sectors. This works because expansion coefficients cn are non-
zero only in the same-symmetry sector; the rest of the proof is exactly as before with E0 being
replaced with the lowest energy in a given symmetry sector. This observation can be carried out
also at the level of conserved quantum numbers: for example, if the total momentum is conserved,
then taking trial states with different total momentum we have a variational principle in this
momentum sector. Same for the conserved total angular momentum, or magnetization component
on the symmetry axis, etc. etc.

An idea of using trial states orthogonal to the variational ground state (in the same symmetry,
or conserved quantum number sector) in attempt to determine the first excited level might work
in practice for the lowest excited state, though, strictly speaking, it is not based on a solid mat-
hematical foundation because of an unknown contribution from an admixture of the exact ground
state.

There is, however, an extension of the variational principle which works for any energy level,
in principle. Consider quantity, called ’local energy’, defined by

E(x) =
ψ∗(x)Ĥψ(x)

|ψ(x)|2
.

For an arbitrary state it is a function of x, but whenever ψ(x) coincides with one of the energy
eigenstates it becomes a constant (!). This immediately suggests that a functional looking at local
fluctuations of E(x) about its average (averaging can be done using |ψ|2):

Jloc =
〈

(E(x)− 〈E(x)〉)2
〉

= 〈E2(x)〉 − 〈E(x)〉2 ,

which is non-negative by construction, reaches a minimum value of Jloc = 0 when the trial state
is hitting one of the eigenstates. Not only we have a general variational principle, but also some
measure of estimating the accuracy by monitoring how close is the minimum value of Jloc to zero.
Once the best state is determined (by minimization of Jloc with respect to variational parameters)
one proceeds with the calculation of energy using the standard expression for J .

Problem 39. Anharmonic oscillator2.
Consider a harmonic oscillator with additional εx4 term

V (x) =
1

2
mω2x2 + εx4 .

a). Use the variational principle with a Gaussian trial wavefunction

ψ(x) =

(
1

πa2

)1/4

e−x
2/2a2 ,

in order to estimate the ground state energy E0.
b). Evaluate your variational answer for E0 analytically in the limit of vanishing ε.
c). Use first-order perturbation theory in order to calculate E0, and compare with the result found
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in b).

Problem 40. Quartic potential.
Use Gaussian trial wavefunction to estimate the ground state energy for the quartic potential
V (x) = gx4 (save time by paying attention to the previous problem :) Show that your answer is

Emin =

(
3

4

)4/3 ( g

m2

)1/3
.

Compare this to the ’exact’ answer 0.668(g/m2)1/3.

The semiclassical approximation
This method paves the road connecting QM with the classical mechanics. It is also a useful

tool for obtaining accurate results under circumstances when the potential is relatively smooth.
It was developed by Wentzel, Kramers, and Brillouin, giving it the ’WKB’ name. Well, some
actually call it LG=Liouville–Green method by arguing that borrowing math. tools for solving
math. equation when it happens to be relevant for physics does not qualify for name giving, some
add another latter to the end, WKBJ with J=Jeffreys, some call it ’eikonal approximation’, etc. I
will generically call it the semiclassical approximation. The idea here is to write the wavefunction
as

ψ(x) = A(x) eiB(x)/~ ,

where A(x), B(x) are real functions. Now demand that the form satisfy the time independent
Schrödinger Equation . In preparation for that, compute

dψ

dx
= A′ eiB(x)/~ +

i

~
AB′ eiB(x)/~ ,

d2ψ

dx2
= A′′ eiB(x)/~ +

2i

~
A′B′ eiB(x)/~ +

i

~
AB′′ eiB(x)/~ +

i2

~2
A(B′)2 eiB(x)/~ .

We then have[
− ~2

2m

(
A′′(x) +

2i

~
A′(x)B′(x) +

i

~
A(x)B′′(x) +

i2

~2
A(x)(B′(x))2

)
+ (V (x)− E)A(x)

]
= 0 ,

let us consider the limit of ~ → 0, which is formally the same as assuming that higher-order
derivative of the wavefunction amplitude is small, and start solving the Schrödinger Equation
approximately by dealing separately with different powers of ~ in the above expression. In the
leading approximation we find

A′′ = 0 , neglect this derivative ,

2A′B′ +AB′′ = 0 ,

A(B′)2+2m(V (x)−E)A = 0 −→ B′ = ±
√

2m(E − V (x)) −→ B = ±
∫ x

x0

√
2m(E − V (x))dx .
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The usual way of writing the last expression is

B(x) = ±
∫ x

x0

p(x)dx , where p(x) =
√

2m(E − V (x)) ,

where p(x) is called the semiclassical momentum; correspondingly, v(x) = p(x)/m is called the
semiclassical velocity. If E − V (x) is negative, i.e. we are dealing with the classically forbidden
region, the value of p(x) becomes purely imaginary, p(x) = iκ(x), where κ(x) =

√
2m(V (x)− E).

I will also call κ(x) a semiclassical momentum in the forbidden region.
Knowing B(x) we solve for A(x) using the second equation

d lnA

dx
= −1

2

d lnB′

dx
−→ A(x) =

C√
p(x)

.

This completes the derivation of the semiclassical approximation for the wavefunction

ψ(x) ≈ C√
p(x)

exp

{
± i
~

∫ x

x0

p(x)dx

}
. (13)

There is also good physical reasoning for this functional form. We know that a particle moving
in a constant potential is described by a plane wave Ceipx with p =

√
2m(E − V ). If potential is

smooth, i.e. does not change much on the scale of the particle wavelength then locally the plane
wave description should be also valid, but with locally defined momentum p(x) adjusted to the
current value of the potential. The only problem with the replacement

px −→
∫ x√

2m(E − V (x))dx ,

is that if we do not do something with the wave amplitude then the current density j = |C|2p(x)/m
will decrease while for smooth potentials we do not expect any reflections (with exponentially good
accuracy), i.e. the current density should remain constant. This leads to

C −→ C(x) ∝ p(x)−1/2 .

We can now explicitly check under what conditions it is possible to neglect the second derivative
of A. To this end require that

A′′(x)� A(x)(B′(x))2

~2
,

If L is the length scale over which the A(x) function changes substantially then A′′ ∼ A/L2 leading
to

L(x)� ~
p(x)

=
λ(x)

2π
, (14)

i.e. the amplitude has to change a little (in relative terms) over the particle wavelength.
We can not consider the theory of the the semiclassical approximation complete until we discuss

the matching conditions. The problem is that in the vicinity of points where E = V (x) called
the classical ’turning points’, the semiclassical momentum goes to zero. This invalidates condition
(14) leaving us with an incomplete description because even if we can use (13) in different regions
in space, to the left and to the right of the turning point, we do not know yet how to match them
to establish a common state and find the energy quantization condition. The only exception from

12



this is the case of a stepwise change in V (x) at point x0 — then the semiclassical approximation
may be valid all the way to point x0 from both sides and the matching conditions are standard,
i.e. continuity of ψ(x) and its derivative.

One of the many equivalent solutions for the generic turning point is as follows. In the vicinity
of the turning point a we can write V (x) − E = V (x) − V (a) ≈ f(x − a) and try to solve the
Schrödinger Equation equation (let’s assume that f is positive)[

− 1

2m

d2

dx2
+ f(x− a)

]
ψ(x) = 0 .

we have to do it only once (!) because in terms of the dimensionless variable z = (2mf)1/3(x− a)
we have a universal (system independent) equation[

d2

dz2
− z
]
ψ = 0 .

Its solutions are special (Airy) functions Ai(z) and Bi(z). What is crucial for our semiclassical
theory is their asymptotic form for large positive and negative z:

Ai(z) −→ lim
z→∞

1

2
√
πz1/4

e−(2/3)z3/2 ,

Bi(z) −→ lim
z→∞

1
√
πz1/4

e(2/3)z3/2 ,

Ai(−z) −→ lim
z→∞

1
√
πz1/4

cos

(
2

3
z3/2 − π

4

)
,

Bi(−z) −→ lim
z→∞

− 1
√
πz1/4

sin

(
2

3
z3/2 − π

4

)
,

These are exact relations across the turning point.
Now, if we look at the semiclassical solutions in the same asymptotic regions we find that∫ a

x
p(x)dx =

√
2mf

∫ a

x

√
a− x dx =

√
2mf

2

3
(a− x)3/2 =

2

3
(−z)3/2 , for − z > 0 ,

and ∫ x

a
p(x)dx =

√
2mf

∫ x

a

√
(x− a)dx =

√
2mf

2

3
(x− a)3/2 =

2

3
z3/2 , for z > 0 .

This allows us to write the general solution to the left of the turning point as

ψ(−z) −→ lim
z→∞

1
√
πz1/4

[
α cos

(
2

3
z3/2 − π

4

)
− β sin

(
2

3
z3/2 − π

4

)]
,

with arbitrary α and β, and to the right of the turning point as

ψ(z) −→ lim
z→∞

1
√
πz1/4

[
γ e−(2/3)z3/2 + δ e(2/3)z3/2

]
,
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with arbitrary γ and δ. All what is left is to notice that our expression to the left can be re-written
identically as

ψ(−z) = αAi(−z) + βBi(−z) ,

and to the right as
ψ(−z) = 2γAi(z) + δBi(z) .

To agree with the exact solution we must then have γ = α/2 and δ = β. These are our matching
conditions across the turning point. To summarize:

ψx<a =
α√
p(x)

cos

(∫ a

x
p(x)dx− π

4

)
− β√

p(x)
sin

(∫ a

x
p(x)dx− π

4

)
←−−→

ψa<x =
α/2√
κ(x)

exp

(
−
∫ x

a
κ(x)dx

)
+

β√
κ(x)

exp

(∫ x

a
κ(x)dx

)
.

Note, that in this matching rule the integrals are always increasing as we move away from the
turning point. We do not need to do anything to obtain matching conditions when the classically
forbidden region is to the left of the turning point x = b, i.e. when f < 0. Simply notice that if
we change z → −z we will get the same problem with f → −f . Thus

ψb<x =
α√
p(x)

cos

(∫ x

b
p(x)dx− π

4

)
− β√

p(x)
sin

(∫ x

b
p(x)dx− π

4

)
←−−→

ψx<b =
α/2√
κ(x)

exp

(
−
∫ b

x
κ(x)dx

)
+

β√
κ(x)

exp

(∫ b

x
κ(x)dx

)
.

Again, the integrals are all increasing as we move away from the turning point. With this, the
semiclassical approximation is complete and can be used as a tool to establish interesting results
under rather generic conditions when exact solutions are not available.

Consider particle transmission through the large smooth
barrier shown to the left. For the reflection/transmission
setup in region III we require that there is only an outgoing
wave

ψIII =
δ√
p(x)

ei
∫ x
b p(x)dx−iπ/4 =

δ√
p(x)

[
cos

(∫ x

b
p(x)dx− π

4

)
+ i sin

(∫ x

b
p(x)dx− π

4

)]

I II IIII II III

E

xba

In the second region, the wavefunction is a superposition of increasing and decreasing exponentials

ψx<b =
δ/2√
κ(x)

exp

(
−
∫ b

x
κ(x)dx

)
+
−iδ√
κ(x)

exp

(∫ b

x
κ(x)dx

)
. (15)

We immediately fix the amplitudes in this expression using matching conditions; in a way it even
looks easier than ’continuity of ψ and its derivative’ because we can work our way from right to
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left in a unique way and build the solution, i.e. no need for solving a set of linear equations for
free coefficients. We rewrite (15) identically as

ψx<b =
e−Cδ/2√
κ(x)

exp

(∫ x

a
κ(x)dx

)
+
−ieCδ√
κ(x)

exp

(
−
∫ x

a
κ(x)dx

)
. (16)

but now we count all integrals from point x = a to prepare for applying the matching conditions
for the second point. Here

C =

∫ b

a
κ(x)dx ,

is the semiclassical action for the underbarrier motion. According to the conditions of validity, the
length of the underbarrier passage has to be much longer than the typical wavelength 2π~/κ(x),
i.e. the value of C is large. Applying the second matching condition we get

ψx<a = −e
−Cδ/2√
p(x)

sin

(∫ a

x
p(x)dx− π

4

)
+
−2ieCδ√
p(x)

cos

(∫ a

x
p(x)dx− π

4

)
. (17)

We can write it as

ψx<a =
α√
p(x)

exp

(
−i
∫ a

x
p(x)dx+ i

π

4

)
+

β√
p(x)

exp

(
i

∫ a

x
p(x)dx− iπ

4

)
. (18)

with
α = −iδ

(
eC + e−C/4

)
, β = −iδ

(
eC − e−C/4

)
.

Assuming that the potential goes to zero on both sides of the barrier as |x| → ∞ we have the
current density of incoming/reflected/transmited particles being proportional to |α|2, |β|2, and
|δ|2, respectively. This leads to the transmission coefficient

T =
1

(eC + e−C/4)2
≈ e−2C = exp

{
−2

∫ b

a
κ(x)dx

}
,

which is exponentially small, but non-zero. The final answer is remarkably compact despite being
valid for smooth potentials of arbitrary shape!

The other powerful application of the method is
the semiclassical quantization rule. We consider
now a smooth potential well shown to the left
and work our solution from the right to the left.
In region III we have a decaying exponential

ψIII =
δ√
κ(x)

exp

{
−
∫ x

a
κ(x)dx

}
.

Using matching conditions we write the solution
in the well, in region II, as

xb a

E

  I II III
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ψII =
2δ√
p(x)

cos

(∫ a

x
p(x)dx− π

4

)
≡ 2δ√

p(x)
cos

(
C −

∫ x

b
p(x)dx+

π

4

)
≡ 2δ√

p(x)
cos

(∫ x

b
p(x)dx− π

4
− C

)
,

where

C =

∫ a

b
p(x)dx− π

2
.

On the other hand we may start with

ψI =
α√
κ(x)

exp

{
−
∫ b

x
κ(x)dx

}
,

and use matching conditions to obtain

ψII =
2α√
p(x)

cos

(∫ x

b
p(x)dx− π

4

)
.

The two expressions for region II are consistent with each other only if α = ±δ and C = πn (odd
values of n correspond to α = −δ). This leads to the famous Bohr-Sommerfeld quantization rule∫ a

b
p(x)dx = π

(
n+

1

2

)
.

Again, its power is that it applies to an arbitrary smooth potential with large enough separation
between the turning points, i.e. for high excited levels. Though formally it is not supposed to
work accurately for the ground state, typically it does, and extremely well! It is a conspiracy of
Nature that Bohr-Sommerfeld rule happens to be exact for the harmonic oscillator. Indeed,

p(x) =
√

2m(E − V (x)) = mω
√
x2

0 − x2 , x0 =

√
2E

mω2
.

Next ∫ x0

−x0
mω
√
x2

0 − x2 dx = mωx2
0

∫ 1

−1

√
1− s2 ds =

πE

ω
= π

(
n+

1

2

)
.

If a smooth and deep potential near the minimum is well approximated by a parabola (an exception
would be a minimum with zero second derivative) then the semiclassical formula will describe the
lowest energy levels perfectly well.

The last application in this chapter will be the α-particle decay rate in nuclear physics. We
will ignore many details of what happens inside the nucleus thus our answer is not expected to be
accurate down to the number in front of the exponential factor which is determined by the alpha
particle moving in the Coulomb potential barrier.
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The simplified model is depicted to the left
where α-particle in the parent nucleus is con-
sidered as being trapped in the potential well
created by the remaining protons and neutrons
(forming the so-called daughter nucleus). This
potential well is mostly of strong-force origin.
The radius of the well is the radius of the nu-
cleus R ∼ r0A

1/3 where r0 = 1.2 fm and A the
atomic mass number. On the other hand, once
outside this well the α-particle experiences the
repulsive Coulomb interaction with the positi-
vely charged Z − 2 daughter nucleus. Thus our
model is a potential of the form

( )V r

22( 2)Z e


r

EE

rR b

0V
I II III

V (r) =


−V0 r < R

2(Z−2)e2

r r > R

Later on we will see that motion in the three-dimensional potential well with the orbital momentum
L = 0 can be reduced to the study of radial motion r ∈ (0,∞) which is (i) one-dimensional, and
(ii) described by the one-dimensional Schrödinger Equation with r ∈ (0,∞). Indeed, the radial
part of the Laplace operator is given by

∆r =
1

r2

d

dr
r2 d

dr
.

The Schrödinger Equation for the spherically symmetric L = 0 wavefunction written as ψ(r) =
u(r)/r is then [

− 1

2m

1

r2

d

dr
r2 d

dr
+ V (r)

]
u(r)

r
= E

u(r)

r
.

After performing the differentiation

1

r2

d

dr
r2 d

dr

u(r)

r
=

1

r2

d

dr
(ru′ − u) =

u′′

r
,

we arrive at [
− 1

2m

d2

dr2
+ V (r)

]
u(r) = Eu(r) .

So, the semiclassical analysis will be applied to u(r). The last remark is that m in this calculation
is the reduced mass, but since α-particle is much lighter than the relatively heavy daughter nucleus
we have m ≈ mα.

In three regions we have (N is the normalization constant)

uI = N sin kr k =
√

2m(E + V0) ,

uII = N
A√
κ(r)

exp

{∫ r

R
κ(r)dr

}
+N

B√
κ(r)

exp

{
−
∫ r

R
κ(r)dr

}
, κ(r) =

√
2m

(
2(Z − 2)e2

r
− E

)
,
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uIII = N
D√
p(r)

exp

{
i

∫ r

b
p(r)dr − iπ

4

}
p(r) =

√
2m

(
E − 2(Z − 2)e2

r

)
.

We may now proceed with the solution using matching conditions from left to the right. I will
present the derivation in two different ways, one will be based on calculating the particle flux out
of the well using uIII . The other will be based on the imaginary part (!) of the energy level in the
well.

Matching conditions ar r = R lead to (they are standard and not semiclassical because of the
potential jump)

sin kR =
A+B√
κ(R)

, k cos kR =
√
κ(R)(A−B) ,

A =

√
κ(R)

2

(
sin kR+

k

κ(R)
cos kR

)
, B =

√
κ(R)

2

(
sin kR− k

κ(R)
cos kR

)
Next, we rewrite uII identically as

uII =
AeC√
κ(r)

exp

{
−
∫ b

r
κ(r)dr

}
+
Be−C√
κ(r)

exp

{∫ b

r
κ(r)dr

}
,

and proceed with obtaining uIII using matching conditions at the turning point x = b (below we

use the same notation for the under-the-barrier integral C =
∫ b
R κ(x)dx

uIII =
2AeC√
p(r)

cos

(∫ r

b
p(r)dr − π

4

)
− Be−C√

p(r)
sin

(∫ r

b
p(r)dr − π

4

)
≡

AeC + iBe−C/2√
p(r)

exp

(
i

∫ r

b
p(r)dr − iπ

4

)
+
AeC − iBe−C/2√

p(r)
exp

(
−i
∫ r

b
p(r)dr + i

π

4

)
.

To ensure that we have only an outgoing wave we require that

A =
i

2
Be−2C .

This leads to

tan kR+
k

κ(R)
=
ie−2C

2

(
tan kR− k

κ(R)

)
. (19)

and

D = AeC + iBe−C/2 = iBe−C = i

√
κ(R)

2
cos(kR)

(
tan kR− k

κ(R)

)
e−C .

We notice that Eq. (19) depends on energy only and thus is supposed to give us the energy
spectrum, but we know that (i) any positive energy is allowed, and (ii) this equation is complex
and thus its solutions will also be complex. What is going on here? The proper answer is that
the boundary condition with an outgoing wave leads to the non-Hermitian energy operator (recall
that the Sturm-Liouville theory of second-order differential operators leads to Hermitian operators
only with the canonical boundary conditions). The outgoing wave is not one of them. The whole
setup then has to be understood as a physically appealing situation when the dynamic solution of
the Schrödinger Equation with initial condition corresponding to the particle localized on the En
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eigenstate of the potential well, starts leaking out of the well at t > 0. After some relatively short
transient time the wavefunction will establish a quasi-static profile over large distances r � b with
the outgoing wave. At this point the flux can be calculated in the vicinity of the well without even
bothering about properties of the wavefront. Over a much-much longer time scale the amplitude
of the quasi-static profile will actually slowly decay to zero.

Since e−2C is an exponentially small parameter, we compute everything by keeping only the
leading non-vanishing terms in this small parameter. Then, Eq. (19) solves as

k = kn +
ie−2C

R
ε , where tan knR = −kn/κ(R) . (20)

The value of kn is the same as one would obtain from the exact quantization rule for the non-
decaying potential well with Coulomb potential at r > R being replaced with the constant
2(Z − 2)e2/R, i.e. En = k2

n/2m− V0 is the exact energy level in the non-decaying well. For deep
wells kn/κ(R)� 1 and

kn ≈
πn

R

(
1− 1

Rκ(R)

)
.

To find the correction we write

tan kR ≈ tan knR+
ie−2Cε

cos2 knR
= − kn

κ(R)
+ i

1

cos2(knR)
e−2Cε ,

and substitute this expression to Eq. (19) to get

ε = −kn cos2(knR)

κ(R)
.

The value of the exponentially small coefficient D is determined by the leading term

D ≈ −i kn√
κ(R)

cos(kR) e−C .

An energy calculated as E = k2/2m− V0 contains then a small complex part

E = En − i
k2
n cos2(knR)

mRκ(R)
e−2C .

The time evolution of the state which is mostly localized in the well will then contain a decaying
exponential part

|ψ(x)e−iEt|2 = |ψ(x)|2 exp

{
−2k2

n cos2(knR)e−2C

mRκ(R)
t

}
.

This determines the decay rate

Γ =
2k2

n cos2(knR)

mRκ(R)
e−2C .

One may also proceed the other way and calculate the rate from the particle flux (below
p =
√

2mE)

Γ = 4πr2 1

2im

(
u∗(r)

r

d

dr

u(r)

r
− u(r)

r

d

dr

u∗(r)

r

)
= 4π|ND|2 p

pm
=
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4πN2k2
n cos2(kR)

mκ(R)
e−2C .

To complete the derivation we need to normalize the wave function in the well to unity. By
assuming that it is dominated by the inter-well part (which is the case within the semiclassical
approximation) we have

N24π

∫ R

0
sin2 knrdr = 2πN2 = 1 −→ N2 =

1

2πR
.

With this the result for the decay rate is

Γ =
2k2

n cos2(kR)

mRκ(R)
e−2C ≡ kn

mR

2knκ(R)

k2
n + κ2(R)

e−2C ,

in perfect agreement with the ’imaginary energy’ way of doing it. The interpretation of this
expression is ’transmission through the barrier’ times an ’attempt rate for escaping = number of
attempts per second to hit the wall’ ∼ v/R = kn/mR.

To complete our theory we have to evaluate C for the Coulomb potential when E = 2(Z −
2)e2/b:

2C = 2

∫ b

R

√
4m(Z − 2)e2(1/r − 1/b)dr = 4

√
m(Z − 2)e2b

∫ 1

R/b

√
1− r
r

dr =

4(Z − 2)e2

√
2m

E

[
π

2
− sin−1

√
R

b
−

√
R

b

(
1− R

b

) ]
.

Since typical values for R and b are such that R/b� 1 we may write it approximately as

2C ≈ 2π(Z − 2)e2

√
2m

E
.
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Exponential dependence of the de-
cay rate on energy is remarkable:
using isotopes of the same element
one can change the decay rate by
∼ 24 orders of magnitude (!) by
changing E roughly by a factor of
2.5 To the left you see the table of
thorium Z = 90 isotopes with their
α-decay lifetimes which range from
less than a fraction of a microsecond
to fifteen billion years.

A convenient way to check this formula is
to plot the logarithm of the decay time
τ = Γ−1

ln τ = ln

(
mRκ(R)

2k2
n cos2(kR)

)
+2π(Z−2)e2

√
2m

E
,

as a function of inverse square-root of
energy which is shown here for different
elements and their isotopes.

Problem 41. cosh-potential by semiclassical approximation
Apply the Bohr-Sommerfeld quantization rule to calculate the bound state energies of the potential

V (x) = − V0

cosh2(x/a)
.

a). Show that your results can be written in the form

En = −

(√
V0 −

[
n+

1

2

]√
1

2ma2

)2

.
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Hint: You might use the integral∫ A

0

√
A2 − u2

du

1 + u2
=
π

2

(√
1 +A2 − 1

)
.

b). If V0 � 1/2ma2, show that your result approximates the harmonic oscillator behavior at
the bottom of the well.

Problem 42. Exactly solvable α-decay problem
Consider a particle of mass m trapped at time t = 0 in the potential well

V (r) =


−V0 r < R

+V1 R < r < b

0 b < r

,

with positive V0 and V1.
a). Formulate the form of the solution in all three regions with the outgoing wave for the

outside region. Specify all relations between momenta in different regions and energy.
b). Solve for the unknown coefficients in terms of introduced momenta; check that your eigenvalue
equation has the form equivalent to

κ+ ik

κ− ik
= e2C κ sin k1R+ k1 cos k1R

κ sin k1R− k1 cos k1R
.

c). Assuming that e−C � 1 where C = κ(b−R) show that this leads to the quantization rule

tan k1R = −k1

κ
.

d). In the high barrier limit kn/κ� 1 show that this leads to a decay rate

Γ ≈ kn
mR

8kkn
κ2

e−2C .

e). Compare the result in part d) with the result

Γ ∼ v

R
e−2C ,

expected from the semiclassical approximation.

Problem 43. Potential with an angle by two methods
Given one-dimensional potential V (x) = f |x| with f > 0, find approximate values for the two
lowest levels by
a). the semiclassical approximation method and
b). the variational method, using a Gaussian trial function with one variable parameter and mi-
nimizing 〈Ĥ〉 with respect to it.
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