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We propose one of the first models of “product framing” and pricing. Product framing refers to the way

consumer choice is influenced by how the products are framed, or displayed. We present a model where a set

of products are displayed, or framed, into a set of virtual web pages. We assume that consumers consider only

products in the top pages, with different consumers willing to see a different number of pages. Consumers

select a product, if any, from these pages following a general choice model. We show that the product framing

problem is NP-hard. We derive algorithms with guaranteed performance relative to an optimal algorithm

under reasonable assumptions. Our algorithms are fast, easy to implement, and dominate the best known

performance bounds. We also present structural results for pricing under framing effects. At optimality,

products are sorted in descending order of quality, and prices are shown to be page dependent, with higher

prices associated with products on pages seen by fewer consumers, so products in the first page are of the

highest quality and have the lowest prices.

1. Introduction

In this paper, we propose one of the first models of product framing and pricing. Framing refers to

the way in which the choice among available alternatives is influenced by how the alternatives are

framed, or displayed (Tversky and Kahneman 1986). For example, empirical works by Agarwal,

Hosanagar and Smith (2009) and Ghose and Yang (2009) in online advertising show that ads that

are placed higher on a webpage attract more clicks from consumers. Johnson, Moe, Fader, Bellman

and Lohse (2004) examine the average number of websites, sorted by product categories, that are
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actively visited by households each month. They observe that in a typical search session, consumers

search from fewer than two stores. Their data shows that 70% of the CD shoppers, 70% of the

book shoppers, and 42% of travel shoppers are loyal to just one site. Brynjolfsson, Dick, and Smith

(2010) find on a website that catalogs price and product information from multiple retailers, that

only 9% of users select offers that are listed beyond the first page. In related search contexts, Baye,

Gatti, Kattuman and Morgan (2009) have found that a consumer’s likelihood of visiting a firm

and purchasing from it is strongly related to the order in which the firm is listed on a webpage by

a search engine. They find that a firm receives about 17% fewer clicks for every competitor listed

above it on the screen, all other things being equal.

This well-documented framing effect is a natural outcome of the cognitive burden of processing

larger and larger assortments. During online shopping, it is cognitively harder for a typical consumer

to visit sellers who are listed at the bottom of a web page, before or in addition to visiting those

who are listed at the top (Animesh, Viswanathan and Agarwal 2011). In the context of online

retailing, it has been observed that consumers’ attention to a display decreases exponentially with

the display’s distance to the top (Feng, Bhargava, and Pennock 2007). Thus, positioning a brand

or product at a top position on a listing can improve both consumer attention to the brand, and

consequently, consumer selection of the brand (Chandon, Hutchinson, Bradlow, and Young 2009).

1.1. Model overview

Despite substantial evidence suggesting the impact of framing on consumers’ choice outcome, there

are very few models that have attempted to capture these effects. In this paper, we introduce one

of the first models for product framing and the first one for pricing that account explicitly for these

effects.

We base our model on the notion of consideration set. A consideration set is a set of products

over which a consumer will make utility comparisons before arriving at the final purchase decision.

Consideration sets have gained considerable acceptance since their introduction in the seminal

work of Howard and Sheth (1969). A widely used approach to modeling choice in psychology and
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marketing is to assume that a consumer will first form a consideration set. Then he will choose

from among the alternatives in the set. Consideration sets explain, behaviorally, consumers’ limited

ability to process or acquire information (Manrai and Andrews 1998). Methodologically, it has

been shown that ignoring consideration sets may lead to biased parameter estimates (Chiang, Chib

and Narasimhan 1999), whereas including consideration sets improve the predictability of choice

models (Hauser and Gaskin 1984, Silk and Urban 1978). As an example, Hauser (1978) finds that

a disproportionate 78% of the explainable uncertainty in consumer choices can be accounted for by

consideration sets, whereas the Multinomial Logit Model (MNL) can only capture the remaining

22%.

We capture the effect of framing on the formation of consideration sets as follows. Products are

organized into virtual pages. Each page can hold a finite number, say p, of products. A consumer

will examine only the first X pages, where X is a random variable that may be personalized to

the consumer’s profile. The consumer forms a consideration set consisting of only products in the

examined pages. From this consideration set, the consumer makes a choice to purchase a product,

if any, according to a general choice model. Thus, products that are placed in earlier pages are

more likely to be considered, and therefore purchased, than those that are placed in later pages.

In addition, we capture two other effects that come into play after the consideration sets have

been formed. We call these effect location preference. Location preference works as follows. First,

given that a collection of pages enters into a consumer’s consideration set, products that are

displayed higher on a page are more likely to be chosen than those displayed lower on the same

page, all other factors being equal. Second, products that are listed in earlier pages are more likely

to be chosen than products that are listed in later pages, all other factors being equal. With location

preference, we require that the choice model be the MNL model. We capture the effect of location

on choice by using location-dependent preference weights, which we will describe in greater detail

in Section 7.

Given the above effects, we study two problems that are faced by an e-retailer who is managing

n different products in a particular product category. The retailer’s product framing problem is how
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to determine an assortment and a distribution of the products in the assortment into the different

pages in order to maximize expected revenue. The retailer’s price framing problem looks into both

framing and pricing to maximize expected revenues.

1.2. Results and Implications for Brick-and-Mortar Retailers

Our contributions in this paper are the followings:

• We propose one of the first models of framing effects. Our model is more general than those

proposed earlier, allowing for a general choice model and a more general framing structure.

• We prove that the product framing problem is NP-hard, even when there are just 2 pages and

the choice model is the MNL model.

• We propose fast, easy-to-implement algorithms with worst-case performance guarantees. Our

algorithms are significantly simpler than existing algorithms and offer much better performance

bounds. The ease and simplicity of the algorithms mean that they can be personalized on-line for

each arriving consumer.

• We prove new structural results for pricing under framing effects. We show that given a

fixed placement of products, at optimality, each page is filled with products until all products are

displayed. All products on the same page have the same page-level price. When the ordering of

the products is endogenized, then higher quality products are given priority. This implies that the

optimal price is higher for less attractive products, which is contrary to the findings of Arbatskaya

(2007). They argue that sellers lower on a list will charge lower prices; thus, consumers with lower

search costs will search longer and obtain better deals. In contrast, our results show that consumers

with lower search costs will see less desirable products with higher prices.

We remark that our model, although tailored to e-commerce and virtual pages, can also be used

to model brick-and-mortar retailers, with a suitable interpretation of what consumers are willing

to look at. Some consumers, for example, would only look at the most prominent displays, while

others may enter the store and look at some isles or the rest of the store. Our location preference

model can also serve in brick-and-mortar settings to signify the value of having products at eye
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level versus waist level, versus shoe level, and the value of end-of-isle locations. Our pricing results

also have implications for brick-and-mortar retailers. The most prominent displays should have the

highest quality products at the lowest prices.

1.3. Relation to assortment planning

Our paper falls within the literature on assortment planning, which is currently a very active area of

research. Assortment planning began with a stylized model introduced by van Ryzin and Mahajan

(1999). Van Ryzin and Mahajan (1999) show that under the MNL model, an optimal assortment

consists of a certain number of highest-utility products when the products are equally profitable.

When the products’ prices are given exogenously and the choice model is the MNL, Talluri and

van Ryzin (2004) prove that an optimal assortment includes a certain number of products with

the highest revenues.

The assortment-planning problem is easy to solve for the MNL model over a given consideration

set. Davis, Gallego and Topaloglu (2013) show that this problem can be formulated as a linear

program with totally unimodular constraints. Davis, Gallego and Topaloglu (2014) also propose

that under the nested logit (NL) model, the assortment-planning problem can be solved by a

linear program when the nest dissimilarity parameters of the choice model are less than one, and a

consumer always makes a purchase within the selected nest. Relaxing either of these assumptions

renders the problem NP-hard.

The assortment-planning problem over a single consideration set is NP-hard for general choice

models. Indeed, Bront et al. (2009) show that under the mixed multinomial logit (MMNL) choice

model, the assortment-planning problem with a fixed number of mixtures is NP-hard. Desir and

Goyal (2013) show that this problem is even NP-hard to approximate within factor O(n1−ε), for

any fixed ε > 0. They give approximation schemes that tradeoff running time with solution quality,

but the running time for their approach grows exponentially with the number of mixtures.

Assortment planning with search costs has been studied by a number of authors. Cachon (2005)

shows that ignoring consumer search will lead to less assortment variety, since in equilibrium, the
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seller needs a larger assortment to attract more consumers. Sahin and Wang (2015) also study the

assortment-optimization problem with search costs. They assume consumers are homogeneous and

their search sequence is predetermined by all the products’ expected utilities, which are known.

A few papers have studied assortment planning with location effects, but ignoring consideration

sets. Davis, Gallego and Topaloglu (2013) model location effects by introducing location-dependent

item weights to the MNL model. The resulting assortment-optimization problem is polynomial

time solvable because of its totally unimodular constraints. Feldman and Topaloglu (2015) study

a model in which consumers choose products according to the MNL model, but consumers of

different types have different consideration sets, and the sets are fixed and nested. They devise a

fully polynomial-time approximation scheme for this problem.

To our knowledge, there are only two papers that model a framing-dependent formation of con-

sideration sets. Davis, Topaloglu and Williamson (2015) study a problem in which a firm must

sequentially add products to its assortment over time, thereby monotonically increasing consumers’

consideration sets. They provide an algorithm with constant relative performance. The decision

space for this problem is much more constrained than ours and the application context is very

specific. Aouad and Segev (2016) consider a special case of our model, where the number of prod-

ucts that can be displayed on each page is one and the choice model is the MNL. Their require

more restrictive assumptions than ours, their algorithms are more complex, and their bounds are

significantly weaker.

1.4. Relation to assortment pricing

Our work also falls within the area of assortment pricing. Hanson and Martin (1996) are among

the first to notice that the expected revenue function fails to be concave in pricing problems, even

under the MNL model. Song and Xue (2007) show that by changing the decision variables and

reformulating the expected revenue as a concave function with respect to the market shares. Under

the MNL model with uniform price-sensitivity parameter, the markup, defined as price minus cost,

has been shown to be constant across all products at optimality (Anderson, de Palma and Thisse
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1992, Hopp and Xu 2005, and Gallego and Stefanescu 2011). By assuming that the price sensitivities

of the products are constant within each nest and the nest dissimilarity parameters are restricted to

the unit interval, Li and Huh (2011) extend the concavity result to the NL model. Gallego and Wang

(2014) consider the general NL model with product-differentiated price-sensitivity parameters and

arbitrary nest coefficients. They find that the adjusted nest-level markup is also constant across

all the nests.

We extend the assortment-pricing literature to model framing effects. Under the MNL revenue

(profit) maximization model, we find that the constant price (markup) property still holds at the

page level. We also show that the price is higher for less attractive products, which is contrary to

the findings of Arbatskaya (2007).

2. Product-Framing Problem

Consider n products. Product i has revenue ri, i ∈N = {1, . . . , n}. The revenue can be the profit

contribution net of costs in some applications. Products are organized into virtual pages. Each

page can hold up to p products. Potentially all of the products may be offered, but offering all of

the products is not a hard requirement. Consumers who arrive at the system have consideration

sets that are governed by a random variable X taking values in a set M that consists of all the

positive integers, or is of the form {1, . . . ,m} for some positive integer m. Let λ(x) = P[X = x], and

Λ(x) = P[X ≥ x] for all x∈M. A consumer who draws X = x∈M has consideration set {1, . . . , x}.

From this consideration set, the consumer purchases at most one product according to a general

choice model.

The product-framing problem is to distribute the products among the pages to maximize the

expected revenue that can be obtained from an arriving consumer. We assume that we do not know

the number of pages that a consumer is willing to view when he arrives into the system. We assume,

however, that the distribution of X is known and is independent of the framing of the products.

Knowledge of X can be acquired from observing click data and by computing the frequency of

consumers who examine x∈M pages. By the law of large numbers, these frequencies converge to
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the probability distribution of X. We call this multi-page assortment-optimization problem, the

product-framing problem. Although we will refer to a single random variable X, it is easy to see

that X can be personalized to heterogeneous consumer types based on available information about

the distribution of pages they are willing to see. Information that may change the distribution of

X includes, but is not limited to, prior purchases, zip code, age, and gender.

The product-framing problem can be formulated in terms of the decision variables yij ∈ {0,1}, i∈

N , j ∈M, where yij = 1 if item i is displayed on page j and is zero otherwise. Let P (i,S) denote

the purchase probability of item i when the consideration set is S ⊆N , with P (i,S) = 0 if i 6∈ S.

The formulation in terms of the variables yij is given by

OPT =max
yij

∑
x∈M

λ(x)
n∑
i=1

riP (i,{k ∈N :
x∑
l=1

ykl = 1})

s.t.
∑
j∈M

yij ≤ 1, ∀i∈N

n∑
i=1

yij ≤ p, ∀j ∈M

yij ∈ {0,1}, ∀i∈N , j ∈M.

(1)

We will show that problem (1) is NP-hard. Therefore, to derive performance bounds for our

algorithms, we will first find an upper bound of (1), which can be easily computed.

3. Upper Bound on Optimal Revenue for Product Framing

Consider the following assortment-optimization problem, which constrains the number of products

in an assortment to be at most c.

G(c) = max
S⊆N

∑
i∈S

riP (i,S)

s.t. |S| ≤ c.

(2)

Let R(x) =G(x · p) be the optimal expected revenue from consumers who see x ∈M pages. Let

S(x)⊂N be an optimal solution associated with problem R(x). If we had the luxury of knowing
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the number of pages x ∈M upon the arrival of a consumer, we would offer him assortment S(x),

and would earn expected revenue

E[R(X)] =
∑
x∈M

λ(x)R(x). (3)

The following result shows that this E[R(X)] is an upper bound on the expected value V OPT of

OPT .

Theorem 1. E[R(X)]≥ V OPT .

Proof. Suppose y∗ is an optimal solution to (1). We must have, for any x∈M,

R(x)≥
n∑
i=1

riP (i,{k ∈N :
x∑
l=1

y∗kl = 1})

=⇒
∑
x∈M

λ(x)R(x)≥ V OPT .

�

4. Hardness of Framing Problem

We show that problem (1) is NP-hard even in the special case that m= 2 and the choice model is

the MNL model. We do this by reducing the well-known 2-PARTITION problem to a special case

of our model. The 2-PARTITION problem is defined as follows

Definition 1 (2-PARTITION). Given a set of n non-negative numbers w1,w2, ...,wn, determine

whether there is a set S ⊆ {1,2, ..., n} such that
∑

i∈S wi =
∑

i 6∈S wi.

Our reduction works as follows. Starting with any instance of 2-PARTITION, we design a sequence

of instances of problem (1). We show that the sequence of solutions to the continuous relaxation

of these problems converge to a solution of the 2-PARTITION problem.

Theorem 2. Problem (1) is NP-hard even when the choice model is MNL.
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5. Assumptions for Analysis of Algorithms

Given that the product framing problem is NP-hard, one of our goals will be to propose algo-

rithms with guaranteed performance ratios relative to OPT . Towards this goal, we will make three

innocuous assumptions:

Assumption 1.

R(x)/x is decreasing in x∈M.

Assumption 2. In polynomial time, we can obtain a solution with expected revenue Ḡ(c) to prob-

lem (2) such that Ḡ(c)≥ (1− ε)G(c) for some constant ε∈ (0,1].

Assumption 3. X has increasing failure rate (IFR) distribution.

Assumption 1 holds very generally. Indeed, Davis, Topaloglu and Williamson (2015) have shown

that if the choice model P (i,S) satisfies

P (i,S)≥ P (i, T ) for all i∈ S, and S ⊆ T ⊆N , (4)

then Assumption 1 holds. Notice that condition (4) holds for all random utility models. Assump-

tion 2 states that we can approximately solve the capacity-constrained problem (2) within a

constant approximation ratio. For the MNL and Nested Logit models, the capacity-constrained

problem can be solved exactly in polynomial time (ε = 0) (Gallego and Topaloglu 2014 ). The

Mixed Multinomial Logit model with a constant number of mixtures can also be solved within any

given error ε > 0 in polynomial time (Mittal and Schulz 2013, Desir and Goyal 2013). For ease of

exposition, in the rest of the paper we will just assume that ε= 0, but all of our algorithms and

bounds can be easily extended to the case of ε > 0 by replacing the revenue function R(x) with an

approximate value, and scaling the corresponding bound by (1− ε). Let h(x) = λ(x)

Λ(x)
for all x ∈M

for which Λ(x)> 0. Assumption 3 is equivalent to h(x) increasing in x∈M. Assumption 3 implies

that the probability that a consumer will view the next page is decreasing in the number of pages

he or she has viewed.
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The function R(x) is in general not concave, so we will not assume concavity except where noted.

We now briefly investigate conditions for the concavity of R(x) under the MNL. We will obtain

stronger bounds under the assumption that R(x) is concave. We remark that these stronger bounds

do not assume an MNL choice model.

Let V (x) =
∑

j∈S(x) vj be the sum of the attraction values of the products in S(x) when the

choice model is MNL. A sufficient condition for R(x) to be concave under the MNL is given by the

following proposition.

Proposition 1. If the choice model is MNL and V (x) is increasing, then R(x) is concave.

A sufficient condition for this property, in the profit maximization MNL model, is that the net

profit contribution rj is ordered the same way as the attractiveness vj. For the MNL, prices are

typically set at pj = cj + θ resulting in net profit contributions equal to rj = θ. In this case we get

trivially rj and vj = exp(aj −β(cj + θ)) in the same order after sorting the products in decreasing

order of vj. The same is true if the “utility at cost” aj − βcj is in the same order of the quality

component aj and prices are quality-consistent, so higher quality implies higher prices. Even in

the absence of these reasonable conditions, it is quite likely that V (x) is increasing in x when p is

large as then S(x) includes p more products than S(x− 1), and it is unlikely that adding so many

products would result in a decrease in value, i.e., V (x)< V (x− 1), or equivalently, an increase in

the probability that the customer would not make a purchase. In other words, it is unlikely that

the probability of sale is lower for a consumer willing to see one more page when the number of

products per page is large.

Since any random utility model can be approximated by a mixture of MNLs, our result for

the MNL has implications for the mixture of MNL, and therefore for any random utility model.

Indeed, if S(x) is the optimal set for the mixture model for customers willing to see x pages,

and Vk(x) =
∑

j∈S(x) vkj is the sum of the attraction values for consumers of type k, and Vk(x) is

increasing in x for each k, then the revenue function for the mixture model is also concave. Of

course, for the mixture model this is a condition that is harder to verify because it is NP-hard to

find the sets S(x), x∈M.
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6. Algorithms with Constant Performance Bounds for Product Framing

We now propose algorithms for problem (1), which have guaranteed constant performance ratio

relative to OPT under Assumptions 1, 2, and 3. Stronger bounds will be obtained when concavity

of R(x) is also assumed. All of our performance guarantees in this section are tight relative to the

upper bound (3) in the sense that our proofs exhibit a way to construct instances in which the

bounds are achieved by our algorithms.

Our first algorithms, called NEST, start by truncating the number of pages to an arbitrary

integer y, and by selecting an optimal assortment, say S(y), for the first y pages. Then they select

an optimal assortment for the first y− 1 pages, say S(y− 1), by looking only at the products in

S(y). This procedure continues until the content of all pages have been determined. With a little

bit abuse of notations, we let R(S) denote the expected revenue when a consumer considers all the

products in set S.

NEST(y) Algorithms:

• Let y be an integer and let S(y) be the set of products with revenue R(y). Without loss of

generality, we assume that |S(y)|> (y−1)p. In other words, a minimum of y pages are required to

hold all products in S(y). If this fails, then we can select a smaller value of y until this assumption

holds.

• For x= y− 1 down to 1, let S(x) = arg max
S⊂S(x+1), |S|=xp

R(S) and let R̃(x) =R(S(x)).

• Use any heuristic to fill in pages x> y such that the total expected revenue of products in the

first x> y pages is at least R(y). As a default, we can leave pages x> y blank.

By Assumption 1, R̃(x)/x≥ R̃(y)/y=R(y)/y.

6.1. Constant bound with IFR Assumption

Let NEST =NEST (y) be an algorithm in the above class with

y= max arg max
x∈M

R(x)

x
E[min(X,x)].

We will show that NEST achieves at least 6/π2 of the optimal expected revenue.
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The idea of the proof is as follows. We first show that R(y)

y
E[min(X,y)] is a lower bound on

the expected revenue V NEST of NEST . We will minimize the quantity R(y)

y
E[min(X,y)] over all

functions R(·) satisfying Assumption 1, and over all distributions X satisfying Assumption 3. We

will scale R(·) without loss of generality so E[R(X)] = 1. We will then show that the smallest value

of R(y)

y
E[min(X,y)] is at least 6/π2 = 0.607921 . . .

Lemma 1. Let y = maxarg max
x∈M

R(x)

x
E[min(X,x)], then R(y)

y
E[min(X,y)] is a lower bound on the

expected revenue V NEST of NEST .

Proof. V NEST ≥
∑y−1

x=1 R̃(x)λ(x)+R(y)Λ(y)≥ R(y)

y

∑y−1

x=1 xλ(x)+ R(y)

y
yΛ(y) = R(y)

y
E[min(X,y)].

�

Proving that NEST guarantees at least 6/π2 of the optimal expected revenue can be achieved

by proving the same lower bound on the following optimization problem:

γ = min
R, Λ

max
x∈M

R(x)

x
E[min(X,x)], (5)

s.t. 1 = Λ(1)≥Λ(2)≥ · · · ≥ 0

Λ(x+ 1)Λ(x− 1)≤Λ(x)2, x≥ 2

R(x)≤R(x+ 1), x≥ 1,

R(x)

x
≥ R(x+ 1)

x+ 1
, x≥ 1,∑

x∈M

λ(x)R(x) = 1

R(x)≥ 0 x∈M.

The first constraint ensures that Λ corresponds to a valid tail distribution. The second constraint

ensures that Λ has the IFR property. The third and fourth constraint ensure that R is increasing

and satisfies Assumption 1. The fifth constraint normalizes E[R(X)] to 1, and the last ensures that

R is non-negative.

To uncover the structure an optimal solution to (5) we will first characterize the functions R(·)

and Λ(·) in the worst case. We would then show that γ = 6/π2. In the process of establishing the
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bounds, we will not use special notation, say γ∗,R∗(·) or Λ∗(·) to denote the optimal solution to

program (5). This comes at a small cost of ambiguity, but makes the exposition a bit cleaner.

Let y= maxarg max
x∈M

R(x)

x
E[min(X,x)] and γ = R(y)

y
E[min(X,y)]. We next show worst case struc-

ture for R(x) for all x∈M.

Lemma 2. R(x) = γ x
E[min(X,x)]

for all x∈M.

The lemma implies that in the worst case, all values of x∈M are maximizers of R(x)

x
E[min(X,x)].

Proof. We first show the sequence R(x)

x
E[min(X,x)] cannot decrease. Suppose there is a small-

est x > 1 such that R(x−1)

x−1
E[min(X,x − 1)] > R(x)

x
E[min(X,x)], then we can increase the value

of R(x′) for x′ = x,x + 1, x + 2... such that R(x′) = R(x), and reduce the rest of R(x′)’s, while

maintaining the constraint E[R(X)] = 1. The rescaling is valid because R(x−1)

x−1
E[min(X,x− 1)]>

R(x)

x
E[min(X,x)] implies R(x−1)

x−1
> R(x)

x
. Consequently, Assumption 1 will not be violated. The pro-

posed adjustment contradicts the optimality of Problem (5) because it reduces γ. We now show

that the sequence R(x)

x
E[min(X,x)] cannot increase either. Suppose there is a smallest x> 1 such

that R(x−1)

x−1
E[min(X,x− 1)] < R(x)

x
E[min(X,x)], then we can increase the value of R(x′) for all

x′ < x, and reduce R(x′), x′ ≥ x, while maintaining the constraint E[R(X)] = 1. The rescaling is

valid because R(x−1)

x−1
E[min(X,x− 1)] < R(x)

x
E[min(X,x)] implies R(x− 1) < R(x). Consequently,

the condition R(·) being increasing will not be violated. The proposed adjustment contradicts the

optimality of Problem (5) because it reduces γ. �

For R(x) of the form given by Lemma 2, we next show how γ depends on the distribution of X,

by using the fact that E[R(X)] = 1.

Theorem 3. Let Y be a random variable, independent of X, with the same distribution as X.

Then

1

γ
= max

X,Y
E

[
X

E[min(X,Y )|X]

]
. (6)

Proof. By Lemma 2, R(x) = γ x
E[min(Y,x)]

, where Y is a random variable with the same distribu-

tion as the worst case X. Then

1 =E[R(X)] = γ
∑
x∈M

x

E[min(Y,x)]
λ(x) = γE

[
X

E[min(X,Y )|X]

]
.
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The result follows after dividing by γ. �

Our next goal is to show that E[ X
E[min(X,Y )|X]

]≤ π2/6 among all non-negative, IFR distributions.

In our analysis, we will allow for continuous distributions to obtain the bound. We will later show

that there is a discrete distribution that in the limit achieves the bound.

Lemma 3. If X is non-negative with mean µ and IFR, and Z is exponential with the same mean,

then X ≤icx Z in the increasing convex ordering.

Proof. Let F̄X denote the CCDF of X and F̄Z denote the CCDF of Z. Proving X ≤icx Z is

equivalent to proving
∫∞
a
F̄X(v)dv≤

∫∞
a
F̄Z(v)dv= µe−a/µ for any a≥ 0. Since X has IFR, we have

E(X − t|X > t)≡
∫∞
t F̄X (v)dv

F̄X (t)
≤ µ for all t≥ 0, indicating

F̄X(t)∫∞
t
F̄X(v)dv

≥ 1

µ

We integrate both sides over t ∈ [0, a], and notice that the left hand side can be written as

−dln
∫∞
t
F̄X(v)dv. We have

ln

∫ ∞
0

F̄X(v)dv− ln

∫ ∞
a

F̄X(v)dv≥ a

µ

Since ln
∫∞

0
F̄X(v)dv= lnE(X) = lnµ, the above reduces to the desired expression:∫ ∞

a

F̄X(v)dv≤ µe−a/µ =

∫ ∞
a

F̄Z(v)dv.

�

Corollary 1. If Y is non-negative, IFR random variable with mean µ, and Z is exponential with

the same mean, then E[min(Y,x)]≥E[min(Z,x)] for all x≥ 0.

Proof. Applying the Lemma 3 to Y and Z, we see that E[(Y − x)+] ≤ E[(Z − x)+], so

E[min(Y,x)] =E[Y ]−E[(Y −x)+]≥E[Z]−E[(Z −x)+] =E[min(Z,x)]. �

Corollary 2. For any independently and identically distributed X and Y with IFR and mean

µ, E [X/E[min(X,Y )|X]]≤E [W/E[min(Z,W )|W ]], where Z and W are independent exponentials

with mean µ
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Proof. From Corollary 1, x/E[min(Y,x)] ≤ x/E[min(Z,x)] = G(x). Since G(x) is increasing

convex, and X ≤icxW , it follows from the Lemma 3, that

E[G(X)]≤E[G(W )].

�

We are now ready to present the bound of our algorithm.

Theorem 4. The expected revenue V NEST is at least 6
π2
V OPT .

Proof. By Lemma 2, R(x) = γ x
E[min(X,x)]

, and by Theorem 3, and Corollary 2 , 1/γ =

E
[

W
E[min(Z,W )|W ]

]
, where W and Z are independent exponential distributions random variables with

the same mean, say µ. We will now show that E [Z/E[min(Z,W )|W ]] = π2/6, which is independent

of µ. This will imply that

V NEST

V OPT
≥ γ = 6/π2

completing the proof.

Since W is exponential with mean µ, we have E[min(Z,W )|Z] = µ(1−exp(−Z/µ)). Substituting

this expression into the denominator, we obtain

E

[
Z

µ(1− exp(−Z/µ))

]
=

∫ ∞
0

z/µ exp(−z/µ)

1− exp(−z/µ)
dz/µ=

∫ ∞
0

ue−u

1− e−u
du=

∞∑
x=1

1

x2
=
π2

6
,

where the first equality follows from the distribution of Z, the second from the transformation

u= z/µ, the third equality is a well know result from calculus, and the last equality is an important

problem in number theory, posed by Mengoli in 1644. This problem remained open for 90 years

until Euler solved it in 1734 at the age of 28. �

Our results show that the bound for Problem (5) is tight for the exponential distribution. The

reader may wonder whether there is a discrete distribution over the non-negative integers such that

the bound for Problem (5) is also tight. The following corollary asserts that this is indeed the case.

Corollary 3. The performance ratio 6/π2 with respect to the upper bound (3) is attained when

X and Y have geometric distributions with mean 1/(1− p) as p ↑ 1.
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Proof. Let X, Y be geometrically distributed with mean 1
1−p . That is, P [X = x] = P [Y = x] =

px−1(1− p). Then we can write

E

[
X

E[min(X,Y )|X]

]
=

∞∑
y=1

py−1(1− p)2y

1− py
.

For p < 1, we have

∞∑
y=1

py−1(1− p)2y

1− py
= (1− p)2

∞∑
y=1

y

p

py

1− py

= (1− p)2

∞∑
y=1

y

p

∞∑
n=1

pyn

=
(1− p)2

p

∞∑
n=1

pn
∞∑
y=1

y(pn)y−1

=
(1− p)2

p

∞∑
n=1

pn
d

dpn
1

1− pn

=
(1− p)2

p

∞∑
n=1

pn
1

(1− pn)2

=
∞∑
n=1

pn−1 (1− p)2

(1− pn)2
.

The above series is an increasing function of p. It is maximized both locally and globally

at p = 1. To find the limit at p = 1, we use two applications of L’Hopital’s rule to obtain

limp→1

∑∞
n=1 p

n−1 (1−p)2

(1−pn)2
=
∑∞

n=1
1
n2

= π2

6
. �

6.2. Constant bound under concavity of R(x)

If R(x) is concave, then we can improve the bound from 6/π2 = 0.607921 to (e− 1)/e= 0.63212.

Theorem 5. Assume that X has a continuous distribution, E[X] = µ is integral, and R(x) is

concave. Then under Assumptions 1, 2, and 3, the expected revenue V NEST is at least e−1
e
V OPT .

Proof As in the proof of Theorem 4,

V NEST ≥ max
y∈M

R(y)

y
E[min(X,y)]

≥ R(µ)

µ
E[min(X,µ)]

≥ R(µ)

µ
µ(1− exp(−µ/µ))

= R(µ)(1− e−1).
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where the first inequality results from ignoring the revenue of pages x> y, the second from selecting

µ, which is not necesarily optimal, and the third inequality follows from Corollary 2. From the

concavity of R(·), we have E[R(X)]≤R(µ), and consequently

V NEST

E[R(X)]
≥ R(µ)(1− e−1)

R(µ)
≥ e− 1

e
.

�

For discrete distributions µ is unlikely to be an integer, so the bounds obtain for the concave case

should be considered a continuous approximation to the performance of the NESTED heuristic.

6.3. Improvement to the algorithms

We can refine the Nested Algorithms by extending the algorithms to pages beyond y. In particular,

let R̃(x) be the performance of the Nested Algorithms described above for all x≤ y. Set x= y+ 1

and solve the x-page problem subject to the constraint that the first y pages are composed of S(y).

Then select the products for page x= y+ 1 by solving the problem for page x among all products

in the complement of S(y). For higher values of x continue the procedure fixing the pages for all

z < x and selecting page x among the complement of the products used in pages 1, . . . , x− 1. Let

NEST + (y) be an algorithm in this improved class. When y is chosen as

y= maxarg max
x∈M

R(x)

x
E[min(X,x)]

then we call NEST + (y) as NEST+. Note that NEST+ continues to have a worst-case perfor-

mance bound of 6
π2

as we have proved in Section 6.1.

Corollary 4. If the capacitated assortment problem G(c) has the nested solution, i.e, S(1) ⊆

S(2)⊆ ...⊆ S(|N |), where S(c) is the optimal assortment for G(c), then NEST + (y) can return

an optimal frame.

In general, we can choose other values for y in NEST + (y). In the following theorem, we use

y = µ to obtain a lower bound bound for NEST+. To express our result more succinctly, we let

a=R(µ)/µ and b= (R(m)−R(µ))/(m−µ). Notice that a≥ b≥ 0.
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Theorem 6. Assume that X has a continuous distribution, E[X] = µ is integral, R(x) is concave,

and the optimal assortment S(y)⊂ S(m). Then under Assumptions 1, 2, and 3,

V NEST+

V OPT
≥ V NEST+(µ)

V OPT
≥ e− 1

e
+

b

ae
.

Our worst case result for NEST (µ) makes the conservative assumption that b= 0.

7. Product Framing with Location Preferences

In online retail, consumers may be more likely to choose products that are displayed at the top

of search results, since consumers tend to associate high valuation with products displayed earlier

(Chandon, Hutchinson, Bradlow, and Young 2009). In this section, we augment our model to

capture the phenomenon that a consumer is more likely to buy an product that is displayed

earlier, even if the consumer has determined his consideration set. We model this phenomenon by

introducing the location-dependent preference weights to all products. We use νixq to denote the

preference weight of product i when this product is displayed at location q of page x. Without

loss of generality, we assume that there are as many possible locations as the number of products

so that we can offer all products at once. If the number of possible locations is smaller than the

number of products, then we can define additional locations with νixq = 0 for all i ∈ N for each

additional location (x, q), in which case, using one of these additional locations for a product is

equivalent to not displaying the product at all. To capture the product-framing decisions, we use

y = {yixq : i ∈N , x ∈M, q ∈ P} ∈ {0,1}n×m×p, where yixq = 1 if we offer product i in location q of

page x, otherwise yixq = 0. If the product offer decisions are given by y, then we obtain an expected

revenue of Rx(y) =
∑n

i=1

∑x
j=1

∑p
q=1 yijqνijqri

1+
∑n

i=1

∑x
j=1

∑p
q=1 yijqνijq

from consumers who only view the first x pages.

Recall that we can obtain the upper bound of the problem without location preference by

E(R(X))≡
∑m

x=1 λ(x)R(x), where R(x)≡G(x · p) is the highest expected revenue from consumer

who is willing to view x pages. Under the MNL choice model, for the problem with location prefer-

ence, the problem G(x · p) is still polynomially solvable. This is because the problem is formulated

as

maxy

∑n
i=1

∑x
j=1

∑p
q=1 yijqνijqri

1+
∑n

i=1

∑x
j=1

∑p
q=1 yijqνijq
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s.t.
∑

i∈N yijq ≤ 1 ∀j = 1, ..., x, q ∈P;∑x

j=1

∑
q∈P yijq ≤ 1 ∀i∈N ;

yijq ∈ {0,1} ∀i∈N , j = 1, ..., x, q ∈P;

where the first set of constraints ensures that each product is offered in at most one location and the

second set of constraints ensure that each location is used by at most one product. The constraint

matrix is that of an assignment problem, which is totally unimodular; see Corollary 2.9 in Chapter

III.1 of Nemhauser and Wolsey (1988). With the linear fractional objective function, we know the

problem is easily solvable; see Davis, Gallego and Topaloglu (2013).

We prove the following generalization of Assumption 1:

Lemma 4. Assume that νixq ≤ νix′q′ if (x− 1)× p+ q > (x′− 1)× p+ q′ for all products i∈N , i.e,

the preference weight will decrease if the item is displayed further in the rear, then R(x)

x
≤ R(x′)

x′ for

any x,x′ ∈M and x> x′.

Proof. Let us present the value of R(x) by the following equilibrium:

R(x) = max
y

n∑
i=1

x∑
j=1

p∑
q=1

(ri−R(x))νijqyijq

Under the optimal configuration of the R(x) problem, we can pick x′× p products which give the

highest (ri−R(x))νijq. Let us denote this set of products by S. Then it must be true that

∑
i∈S

x∑
j=1

p∑
q=1

(ri−R(x))νijqyijq ≥ x′
R(x)

x

If any item i ∈ S is displayed in some page later than x, for example at position jq, then we can

move it forward to position j′q′ such that j′ ≤ x and the original item displayed at j′q′ is not in

the set S, then νij′q′ ≥ νijq by assumption. Under the updated configuration y′ it must be

∑
i∈S

x′∑
j=1

p∑
q=1

(ri−R(x))νijqy
′
ijq ≥ x′

R(x)

x

Since x′ <x, we have R(x′)≤R(x), therefore

R(x′)≥
∑
i∈S

x′∑
j=1

p∑
q=1

(ri−R(x′))νijqy
′
ijq ≥ x′

R(x)

x
,
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which implies that

R(x′)

x′
≥ R(x)

x
.

�

With Lemma 4 and the increasing-failure-rate property, we can show that the 6
π2

performance

bound still holds.

Theorem 7. Assume that νixq ≤ νix′q′ if (x− 1)× p+ q > (x′− 1)× p+ q′ for all products i ∈N .

Then then all bounds proved in Sections 6 continue to hold for the model with location preference.

8. Price Framing Problem

In reality the retailer cares about not only how to display the products, but also how to price

them to maximize the revenue. In this section we first consider the case where the products are

framed and the only issue is to find optimal prices. More precisely, we assume that an allocation

of products to pages is given, where yij ∈ {0,1}, and yij = 1 if and only if item i is displayed on

page j. Naturally
∑

j yij = 1 and
∑

i yij ≤ 1.

Similar to the model of Section 2, each consumer will only consider products on the first x pages

with probability λ(x), x= 1, . . . ,m. The decision variables are the price vector r= (r1, ..., rn)∈Rn
+,

where ri denotes the price of item i. The consumer choice process is similar to the one in Section

2. Given the price ri for item i, the attractiveness of item i is vi = exp(ai− βri), where ai can be

considered as the price-independent quality of item i and β > 0 is the price sensitivity parameter.

By convention, the attractiveness of the no-purchase option is v0 = exp(0) ≡ 1. This formulation

assumes a linear utility structure commonly used in Economics, Marketing and Psychology (Berry,

Levinsohn and Pakes 1995; Fader and Hardie 1996; Shugan 1980).

Let Sx = {i : yix = 1} be the set of products displayed on page x. Then Sx = ∪xj=1Sj is the

consideration set of a consumer who views x pages. Assuming that the sets Sx, ∀x= 1, ...,m are

fixed, we can express the pricing problem as the following:

Rpricing = maxr R(r|S)≡
∑m

x=1 λ(x)Rx(r|Sx) (7)
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Where Rx(r|Sx) =
∑

i∈Sx riP (i,Sx) is the expected profit from consumer x, and P (i,Sx) is the

probability that consumer x purchases item i:

P (i,Sx) =


exp(ai−βri)

1+
∑

j∈Sx exp(aj−βrj)
, i∈ Sx,

0, otherwise.

We prove the following structural results:

Theorem 8. Assume that the configuration of products on m pages is given. At optimality, all

products on the same page have a same price. That is, there are page-dependent invariant parame-

ters θ= (θ1, ..., θm) such that ri = rk = θx if both products i and k are displayed on page x. Moreover

θ1 < θ2 < ... < θm.

This result extends the traditional assortment-pricing result under the MNL model. It is known

that the optimal prices under the MNL have a constant markup (see for example, Anderson, de

Palma and Thisse (1992), Hopp and Xu (2005) and Gallego and Stefanescu (2011)). We set the

costs to zero as we are looking into the revenue maximization problem, which is more relevant

when the costs are sunk. However, the structure still applies when the costs are nonzero as we are

maximizing the profit. Although the price under our model is no longer constant, we show that it

is page-dependent.

Therefore we can reduce the decision variables from n prices, one for each item, to m prices, one

for each page. The resulting problem in terms of θj, j = 1, . . . ,m is given by:

Rpricing = max
θ

R(θ|S)≡
m∑
x=1

λ(x)Rx(θ|Sx)≡
m∑
x=1

λ(x)

∑x

j=1 θj
∑

i∈Sj
exp (ai−βθj)

1 +
∑x

j=1

∑
i∈Sj

exp (ai−βθj)

The first order condition gives a system of equations:

∂R(θ|S)

∂θx
=

m∑
j=x

λ(j)P (Sx,Sj)(1−βθx +βRj(θ|Sj)) = 0 ∀x= 1 ...m

which is equivalent to

θx =
1

β
+

∑m

j=x λ(j)P (Sx,Sj)Rj(θ|Sj)∑m

j=x λ(j)P (Sx,Sj)
=

1

β
+

∑m

j=x λ(j)/V (Sj)Rj(θ|Sj)∑m

j=x λ(j)/V (Sj)
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In other words, the price for page t’s products is a constant plus the weighted average of the

expected profit from the consumers who will view and therefore consider the products. And notice

that the ratio of weights is invariant for all consumer types.

In general, the expected profit R(θ|S) may not be jointly concave in the θ vector.

Example 1. Two products to be displayed on two pages. Therefore there are outcomes for the

number of pages viewed, one and two, with probability 56% and 44%, respectively. Product one

has quality a1 = 4 and item two has a2 = 2. Price sensitivity is equal to one. The graph below shows

how the expected profit changes with respect to the price. As we can see, the expected profit is

not jointly concave on the price vector.

Figure 1 Pricing Example

With the above optimal pricing structure, we now look into the problem of how we should order

the products linearly. A related question is whether all products should be displayed. We first
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consider products that are differentiated only by their quality parameters ai, i= 1, ..., n. Without

loss of generality, we will assume that the products are ordered in decreasing quality, so that

a1 ≥ a2 ≥ ...≥ an.

Theorem 9. Assume that products differ in their quality parameters ai, i= 1, ..., n. At optimality,

each page is filled with products until all products are displayed. The products are displayed in order

of their indices, so that higher quality products are displayed earlier.

In essence, the combination of Theorems 8 and 9 tell us that higher-quality products should be

displayed first and with a lower price. This may be a bit unintuitive, and requires some explanation.

The prices are of the form ri = θx(i), where x(i) is the index of the page for product i, with

θ1 . . .≤ θm. Thus products seen by fewer people have a higher price, with the lowest price enjoyed

by products in page 1, which are seen by everybody. Interestingly, the price θ1, levied on the

highest quality products that appear in the first page is higher than the optimal price, that would

result if P (X ≤ 1) = 1; the price θm, levied on the lowest quality products that appear in the last

page is lower than the optimal price, that would result if P (X ≥m) = 1. In essence, consumers

are penalized for not being willing to see all products and are compensated for being willing to

see more products. Another way to understanding the result is that lower-quality products are

charged higher prices and serve to steer consumers to the higher-quality products, while earning

large prices should the consumer decide to purchase them. This result is in sharp contrast with the

results for pricing in an oligopoly market, where several firms are deciding prices.

Corollary 5. Under optimal pricing and display configuration, the expected profit Rx(r|Sx) for

a consumer who views x pages is increasing and concave with respect to x.

This result is intuitive as the objective function is increasing in the number of products and

consumers who look at more pages also look at more products.

The optimal analytical structure can also be extended to the profit maximization problem.

Interestingly, products now should be ordered by their net value, defined as the quality minus price

sensitivity times price, which is first introduced by Gallego, Li and Beltran (2016).
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Corollary 6. For the profit maximization problem, at optimality, products are displayed in

decreasing order of their net values ṽi ≡ αi − βci, and they are priced with page-level constant

markups, i.e, ri− ci = θx(i).

This can be easily seen by replacing αi with the net value αi−βci.

9. Computational Experiments

In this section, we first numerically test the performance of the following framing algorithms:

• The NESTED (NEST) algorithm introduced in Section 6.

• The enhanced version NESTED+ (NEST+) introduced in Section 6.3, which is designed to

improve practical performance.

• A heuristic, SORT1, which sorts and displays products in increasing order of price.

• A heuristic, SORT2, which sorts and displays products in decreasing order of attractiveness.

Then we compare the performance of NEST+ with Price Framing algorithm( P+F ) and see how

much improvement can be achieved if we are able to jointly optimize over frame and prices.

9.1. Experimental Setup

We proceed by describing the instances being tested in our experiments. In all of our test problems,

we assume that customer choices are governed by the Multinomial Logit model. The MNL associates

the attractiveness {vi : i∈N} with products. If the set of products S(x) is displayed at the first x

pages, then conditional on consumer type x’s arrival, he will buy product i∈ S(x) with probability

vi
1 +

∑
i′∈S(x) vi′

.

By convention, vi = eai−βri , where ai is the product quality. In the tests, we independently draw

every ri from a uniform distribution over [70,80]. We set β = 1.02 and ai = ri + εi, where εi ∈

[−0.3,0.3] is a noise added to the quality of product i.

For all test cases of the framing algorithms, we use n= 300 and m= 20 . We test three different

distributions of X: geometric, uniform and Poisson. We also differentiate the simulation scenarios
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by the expectation of X: Small (E(X) = 2), Median (E(X) = 4), and Large (E(X) = 8). We also

vary the number p of products in each page.

For the comparison between the NEST+ and the P+F algorithms, we set the test cases as n= 20

and m= 2; P (X = 1) = P (X = 2) = 0.5. Number of products p in each page varies. We simulate

a’s and r’s values as previously stated, and input them into the NEST+ algorithm. We compare

the expected revenue with the one returned by the P+F algorithm, which optimally frames the

products in decreasing order of a and can jointly optimize the r.

For each test case, we simulate 1,000 replicates and report the average gaps between the heuristics

and the upper bound, the maximum gaps found in all replicates, and the estimated chances that

the relative gaps falls within 0.01% and 0.2%.

9.2. Experimental Result

9.2.1. Results of Framing Algorithms Refer to Tables 1 to 9. In all scenarios and according

to our metrics, SORT2 out performs SORT1, and expectedly, NST+ outperforms NST . NST+

dominates both SORT1 and SORT2 heuristics, with average and maximum optimality gap of

just 0.25% and 0.84% in the worst case, compared to 5.8% and 7.44% for SORT2, respectively.

The optimality gaps SORT1 and SORT2 are relatively uniform across different scenarios, whereas

the optimality gaps for NST and NST+ tend to be larger for the geometric and exponential

distributions, which we have shown to be worst-case distributions for these algorithms.

Table 1 Performance of NESTED when E[X] = 2 and X follows a geometric distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 11.94% 0.24% 17.68% 1.82% 12.63% 0.72% 30.13% 3.93% 0.022 0.448

3 5.67% 0.02% 14.31% 4.10% 6.06% 0.27% 21.91% 5.49% 0.666 0.996

9 9.56% 0.00% 11.85% 5.69% 10.01% 0.05% 15.84% 6.87% 0.925 1

15 6.22% 0.00% 10.85% 5.79% 6.52% 0.02% 12.51% 7.13% 0.986 1
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Table 2 Performance of NESTED when E[X] = 4 and X follows a geometric distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 9.95% 0.17% 15.45% 3.35% 10.61% 0.68% 24.58% 4.83% 0.011 0.713

3 7.29% 0.01% 12.80% 5.04% 7.86% 0.20% 17.91% 6.53% 0.621 0.999

9 5.76% 0.00% 10.67% 5.52% 6.11% 0.04% 12.46% 6.55% 0.943 1

15 10.49% 0.00% 9.53% 5.22% 11.07% 0.02% 10.65% 6.30% 0.983 1

Table 3 Performance of NESTED when E[X] = 8 and X follows a geometric distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 10.58% 0.08% 13.76% 4.53% 11.01% 0.30% 19.94% 5.96% 0.013 0.982

3 8.55% 0.01% 11.64% 5.42% 9.01% 0.12% 14.08% 6.40% 0.707 1

9 8.87% 0.00% 9.30% 4.99% 9.37% 0.02% 10.62% 5.86% 0.986 1

15 5.16% 0.00% 7.66% 4.36% 5.66% 0.01% 8.51% 5.08% 0.998 1

Table 4 Performance of NESTED when E[X] = 2 and X follows a uniform distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 0.24% 0.24% 17.44% 1.70% 0.83% 0.83% 32.26% 3.93% 0.051 0.425

3 4.92% 0.01% 14.20% 4.33% 5.21% 0.19% 23.00% 5.70% 0.656 1

9 11.65% 0.00% 11.72% 5.86% 12.04% 0.06% 14.32% 7.11% 0.89 1

15 7.70% 0.00% 10.70% 5.84% 8.08% 0.04% 12.23% 7.29% 0.96 1

9.2.2. Results of NEST+ Vs. P+F Refer to Tables 10. Obviously, in all scenarios, P+F out

performs NEST+. When 6 products are to be assigned to two pages, the two algorithm’s average

performance gap can be as high as 44.9%. The gap decreases as the number of products p held in

each page increases. This is because the Price Framing algorithms tends to steer all customers to
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Table 5 Performance of NESTED when E[X] = 4 and X follows a uniform distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 3.63% 0.10% 15.21% 3.47% 4.02% 0.44% 24.72% 5.00% 0.016 0.935

3 7.91% 0.01% 12.60% 5.44% 8.26% 0.14% 16.40% 6.61% 0.706 1

9 6.91% 0.00% 10.51% 5.63% 7.29% 0.03% 12.08% 6.82% 0.973 1

15 4.27% 0.00% 9.44% 5.18% 4.66% 0.01% 10.52% 6.21% 0.999 1

Table 6 Performance of NESTED when E[X] = 8 and X follows a uniform distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 6.18% 0.05% 13.47% 4.89% 8.05% 0.25% 18.49% 6.27% 0.025 0.998

3 6.73% 0.01% 11.27% 5.68% 7.06% 0.04% 13.40% 6.97% 0.797 1

9 5.81% 0.00% 9.02% 4.92% 6.25% 0.02% 9.90% 5.71% 0.995 1

15 4.01% 0.00% 7.28% 4.11% 6.16% 0.01% 7.91% 4.89% 1 1

Table 7 Performance of NESTED when E[X] = 2 and X follows a Poisson distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 9.62% 0.17% 17.30% 1.72% 10.11% 0.54% 30.90% 4.28% 0.035 0.638

3 4.82% 0.01% 14.21% 4.29% 5.10% 0.22% 22.14% 5.66% 0.654 0.999

9 11.12% 0.00% 11.73% 5.82% 11.53% 0.05% 14.56% 7.01% 0.879 1

15 7.33% 0.00% 10.75% 5.84% 7.72% 0.05% 12.41% 7.00% 0.972 1

the first page, therefore the revenue contribution of the second page will be less prominent as the

p increases.
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Table 8 Performance of NESTED when E[X] = 4 and X follows a Poisson distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 6.30% 0.05% 15.22% 3.40% 6.61% 0.22% 24.14% 5.46% 0.041 0.998

3 6.96% 0.00% 12.60% 5.57% 7.25% 0.06% 16.67% 6.97% 0.841 1

9 7.01% 0.00% 10.41% 5.74% 7.44% 0.04% 11.59% 6.97% 0.974 1

15 4.38% 0.00% 9.39% 5.22% 4.67% 0.01% 10.17% 6.27% 0.999 1

Table 9 Performance of NESTED when E[X] = 8 and X follows a Poisson distribution.

Avg gap Max gap P (gap≤ 0.01%) P (gap≤ 0.2%)

p NST NST+ SORT1 SORT2 NST NST+ SORT1 SORT2 NST+ NST+

1 5.53% 0.01% 13.33% 5.04% 5.78% 0.07% 20.20% 6.44% 0.797 1

3 3.87% 0.00% 11.08% 5.99% 4.09% 0.03% 13.28% 7.26% 0.987 1

9 2.29% 0.00% 8.92% 4.95% 2.51% 0.00% 9.57% 6.16% 1 1

15 1.94% 0.00% 7.25% 4.05% 2.23% 0.00% 8.17% 4.94% 1 1

Table 10 Performance improvement of P+F over NEST+

p Avg gap Max gap

3 44.9% 48.3%

6 30.2% 33.1%

9 23.3% 26.2%

10. Conclusion and Future Work

In this work, we propose one of the first models of “framing effects” for pricing and assortment

optimization. We introduce a model in which a set of products must be organized sequentially

into a set of virtual pages and priced appropriately. Each consumers will only consider a random

number of pages, and will select a item, if any, from these pages following a general choice model.

We show that this product-framing problem is NP-hard. We derive algorithms with guaranteed
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relative performance. Our algorithms are fast, easy to implement, and dominate the best known

performance bounds. We also show new structural results for pricing under framing effects. In the

future, it is worthwhile to endogenize the pages’ viewing probability λ(·)’s. So far we assume that

they are independent of the display. In the context of dynamic search, it is more practical to assume

the λ(·)’s and the framing are correlated.

11. Appendix

Proof of Theorem 2.

Proof. Fix any instance of a 2-PARTITION problem with d numbers w1,w2, ...,wd. We reduce

this instance to a special case of our model with m= 2, k= 100d2 and n= 200d2 + 2d. The attrac-

tiveness of the ‘no-purchase’ option is 1. The prices and attractiveness of the n products are as

follows:

• Each of the first d products corresponds to a number in the two-partition problem. For i=

1,2, ..., d, we set R(i) = 7 and νi =M+εwi, where ε is some small value which we will define shortly,

and M is determined by ε via

2d ·M + ε
d∑
i=1

wi = 2
√

6.

• For i= d+ 1, d+ 2, ...,2d, we set R(i) = 7 and νi =M .

• For i= 2d+ 1,2d+ 2, ...,3d, we set R(i) = 12 and νi = 2δ where

δ≡ 1

100d2
.

• For i= 3d+ 1,3d+ 2, ..., n, we set R(i) = 12 and νi = δ.

It is easy to check that, if the first 2d products with price 7 were not there, the optimal solution

would be to put those d products with attractiveness 2δ in the first page, and fill in the rest of the

two pages using other products. The resulting expected revenue would be ≈ 6 for a consumer who

only views one page, and ≈ 8 for a consumer who views two pages. Thus, when we consider all

the products, the first 2d products with price 7 must not be put just in the second page, because

otherwise we can remove these products with price 7 from the second page to raise the expected

total revenue.
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Let S ⊆ {1,2, ...,2d} denote the set of products with price 7 that are put in the first page. We

set λ(1) = λ(2) = 0.5. It is easy to check that the expected revenue under decision S is

R(S) = 0.5
12(1− (|S| − d)δ) + 7

∑
i∈S νi

2− (|S| − d)δ+
∑

i∈S νi
+ 0.5

12(2− (|S| − d)δ) + 7
∑

i∈S νi

3− (|S| − d)δ+
∑

i∈S νi
. (8)

Now consider the following function defined for l= 1,2, ...,2d

f(l)≡ 0.5
12(1− (l− d)δ) + 7 l

d

√
6

2− (l− d)δ+ l
d

√
6

+ 0.5
12(2− (l− d)δ) + 7 l

d

√
6

3− (l− d)δ+ l
d

√
6

= 0.5
12(1− l−d

100d2
) + 7 l

d

√
6

2− l−d
100d2

+ l
d

√
6

+ 0.5
12(2− l−d

100d2
) + 7 l

d

√
6

3− l−d
100d2

+ l
d

√
6

.

We can see that limε→0R(S) = f(|S|). Moreover, it is easy to check that l= d is the only maximizer

of f(l). Therefore, there must exist an ε̄ > 0 such that for any ε∈ (0, ε̄), the optimal solution S∗ to

the problem (8) satisfies |S∗|= d. This is because R() has finite domain. When |S∗|= d, it is easy

to verify that

1. R(S∗)≤ f(d).

2. R(S∗) = f(d) if and only if
∑

i∈S∗ νi =
√

6.

We pick a very small ε and solve the two-page problem such that |S∗| = d. If we find that S∗

satisfies R(S∗) = f(d), then

∑
i∈S∗

νi =
√

6 =⇒
∑

i∈S∗∩{1,2,...,d}

wi =
1

2

d∑
i=1

wi.

In other words, the set S∗ ∩{1,2, ..., d} is a solution to the 2-PARTITION problem. On the other

hand, if there is a solution T ⊂ {1,2, ..., d} to the 2-PARTITION problem, let

S̃ ≡ T ∪{d+ 1, d+ 2, ...,2d− |T |}.

Then we have |S̃|= d= |S∗| and

∑
i∈S̃

νi = dM + ε
∑
i∈T

wi = dM +
1

2

d∑
i=1

wi =
√

6

=⇒R(S̃) = f(d)≥R(S∗).

In other words, S̃ is an optimal solution to the problem (8) that satisfies R(S̃) = f(d).

In sum, we have proved that R(S∗) = f(d) if and only if the 2-PARTITION problem has a

solution. This shows that the two-page problem is NP-hard. �
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Proof of Theorem 6.

Proof. It is clear that under our algorithm

R̃(x)−R(y)

x− y
≥ R(m)−R(y)

m− y
.

Consequently

V NEST+(y) ≥ R(y)

y
Emin(X,y) +

R(m)−R(y)

m− y
E[(X − y)+]

=
R(y)

y
E[X]−

(
R(y)

y
− R(m)−R(y)

m− y

)
E[(X − y)+].

Setting y= µ, and using the bound E[(X −µ)+]≤ µe−1 we obtain,

V NEST+(µ)

E[R(X)]
≥ aµ− (a− b)µe−1

aµ

≥ 1− (1− b

a
)e−1

=
e− 1

e
+

1

e

b

a
.

�

Proof of Theorem 8.

Proof. Given the sets Sx, ∀x= 1, ...,m fixed, we maximize solely over prices. That is, we want

to compute

max
r
R(r|S) =

m∑
x=1

λ(x)Rx(r|Sx) =
m∑
x=1

λ(x)
∑
i∈Sx

riP (i,Sx),

where Rx(r|Sx) is the expected profit from consumer who has consideration set Sx and P (i,Sx) =

exp(ai−βri)
1+

∑
k∈Sx exp(ak−βrk)

is the probability of choosing item i if i is in consumer x’s consideration set.

Taking partial derivative of P (i,Sx) with respect to product i’s and k’s prices ri and rk respectively,

we have the following formulas:

∂P (i,Sx)
∂ri

= βP (i,Sx)(P (i,Sx)− 1), and

∂P (i,Sx)
∂rk

= βP (i,Sx)P (k,Sx).
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Taking the first order derivative of the expected profit Rx(r) with respect to ri, we obtain

∂Rx(r|Sx)
∂ri

= P (i,Sx) + ri
∂P (i,Sx)

∂ri
+
∑
k 6=i

rk
∂P (k,Sx)

∂ri

= βP (i,Sx){
1

β
+
∑
k∈Sx

rkP (k,Sx)− ri}

= βP (i,Sx){
1

β
+Rx(r)− ri}.

Let x(i) ≡ {x : i ∈ Sx}. That is, x(i) denotes the page where item i is displayed. Taking partial

derivative of the total expected profit with respect to ri, we obtain

∂R(r|S)

∂ri
= β

m∑
j=x(i)

λ(j)P (i,Sj){
1

β
+Rj(r|Sj)− ri}. (9)

Equivalently,
m∑

j=x(i)

λ(j)P (i,Sj){
1

β
+Rj(r|Sj)}=

m∑
j=x(i)

λ(j)P (i,Sj)ri. (10)

Notice that equation (10) is satisfied either when P (i,Sj) = 0, ∀j = 1, ...,m, i.e, when ri = +∞

meaning item i is priced out of the market; or when

ri =

∑m

j=x(i) λ(j)P (i,Sj){ 1
β

+Rj(r|Sj)}∑m

j=x(i) λ(j)P (i,Sj)
(11)

It is easy to check that in the above equation (11), the right hand side is invariant for all i and k

such that x(i) = x(k), i.e, invariant for all products that are displayed on the same page. Thus, for

every finitely priced item i, there should be a page-level invariant price θx(i), such that ri = θx(i) at

optimality.

For the monotonicity of the page-level price, notice that equation (11) tells us that the price is

a weighted average of 1
β

+Rj(r|Sj), where Rj(r|Sj), the expected profit from consumer j, must be

increasing; otherwise we would just price the rest of the products out of the market. Also, according

to Theorem (9), all products should be introduced, so Rj(r|Sj) must be monotonically increasing

in j. Thus, the page-level price must be monotonically increasing in j.

To prove the optimal prices for all products are finite, we want to show two facts: (1) the optimal

price for all pages, i.e., θ1 ... θm are finite; and (2) supposing that at optimality, some products are

priced at infinity, then the item offering cannot be optimal.
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The first fact is equivalent to having θm < +∞, since we know that the page-level price θx

is monotonically increasing in x. The first-order condition given by page m implies θm = 1
β

+

Rm(θ|Sm), which proves the finiteness of θm.

Consider the second fact that we need to prove. Notice that having some prices equal to infinity

is equivalent to pricing the corresponding products out of the market, or not displaying them at all.

Equivalently, there is some page x displaying fewer than p products. Therefore we can introduce

one more item without increasing the total attractiveness of page x. This can be achieved by

increasing products’ prices on page x. In this situation, the expected profit from consumer segment

x′ = 1...x− 1 will not be affected, and the expected profit from segment x and larger will strictly

increase. That is, Rx′(r|Sx′), x′ = x...m, will become larger. Thus, the total expected profit will

strictly increase when we fill all pages with finitely priced products. �

Proof of Theorem 9.

Proof. Suppose that the page configuration Sx is fixed for all x = 1, ...,m. Given the quality

vector a= (a1, ..., an), we want to optimize with respect to prices. That is, we want to solve

R(a) = maxr R(r|S)≡
∑m

x=1 λ(x)Rx(r|Sx). (12)

Now, suppose we can change the vector a. We wish to determine how the optimal profit R(a) will

change. Let us take the partial derivative of R(a) with respect to ai.

∂R(a)

∂ai
=

m∑
j=x(i)

λ(j)
∂Rj(r(a)|Sj)

∂ai

=
m∑

j=x(i)

λ(j){ri(a)−Rj(r(a)|Sj)}P (i,Sj), (13)

where r(a) is the optimal price vector under quality vector a, which must satisfy the first-order

condition given by (11), i.e,
∑m

j=x(i) λ(j)P (i,Sj)ri(a) =
∑m

j=x(i) λ(j)P (i,Sj){ 1
β

+Rj(r(a)|Sj)}. Plug

this relationship into (13), we obtain

∂R(a)

∂ai
=

1

β

m∑
j=x(i)

λ(j)P (i,Sj). (14)
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From the above relationship, we can draw several conclusions. First, the optimal profit R(a) is

increasing in ai for all i = 1, ..., n. Second, suppose there are two item i and k with the same

quality ai = ak, but x(i)<x(k), in other words, i is displayed before k so it can be viewed by more

consumer. Equation (14) tells us ∂R(a)

∂ai
> ∂R(a)

∂ak
, so if we can increase ai or ak, it is always better to

increase ai. This indicates that products should be displayed in decreasing order of their quality.

To prove that all products should be displayed, notice that eliminating item i is equivalent to

letting its quality ai go to negative infinity. However, since ∂R(a)

∂ai
> 0 and it is always better to

put products with higher quality ahead of products with lower quality, we can conclude that at

optimality, all products should be displayed; and they are displayed in the order of their indices.

Each page is filled up with products until its capacity is saturated. �
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