April 15, Week 13

Today: Chapter 10, Torque

Homework Assignment \#10 - Due April 19.
Mastering Physics: 7 problems from chapter 9
Written Question: 10.86

Help sessions with Jonathan:
M: 1000-1100, RH 111
T: 1000-1100, RH 114
Th: 0900-1000, RH 114

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\|}$- component parallel to \vec{r} causes no torque

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\| \mid}$- component parallel to $\overrightarrow{\mathrm{r}}$ causes no torque

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\|}$- component parallel to $\overrightarrow{\mathbf{r}}$ -
causes no torque
F_{\perp} - component perpendicular to \vec{r}

- causes torque

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\| \mid}$- component parallel to $\overrightarrow{\mathbf{r}}$ causes no torque
F_{\perp} - component perpendicular to \vec{r}

- causes torque
$\tau=r F_{\perp}$

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\| \mid}$- component parallel to $\overrightarrow{\mathbf{r}}$ causes no torque
F_{\perp} - component perpendicular to \vec{r}

- causes torque
$\tau=r F_{\perp}$

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to $\overrightarrow{\mathrm{r}}$ causes torque.

$F_{\| \mid}$- component parallel to $\overrightarrow{\mathbf{r}}$ -
causes no torque
F_{\perp} - component perpendicular to \vec{r}

- causes torque

$$
\tau=r F_{\perp}=r F \sin \phi
$$

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

$F_{\| \|}$- component parallel to $\overrightarrow{\mathrm{r}}$ -
causes no torque
F_{\perp} - component perpendicular to \vec{r}

- causes torque
ϕ is angle between $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathbf{F}}$

$$
\tau=r F_{\perp}=r F \sin \phi
$$

General Torque Exercise

In which of the following cases would the torque have the maximum value?

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

(b)

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

(b)

(c)

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

(c)

(d) They each
cause no torque

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

(c)

(d) They each
cause no torque
(e) They each cause equal torque

General Torque Exercise

In which of the following cases would the torque have the maximum value?

(c)

$\tau_{3}=(2 m)(1 N) \sin 30^{\circ}=1 N \cdot m$
(d) They each
cause no torque
(e) They each cause equal torque

The Torque Vector

The direction of the torque vector is given by a cross product.

$$
\tau=r F \sin \phi
$$

The Torque Vector

The direction of the torque vector is given by a cross product.

$$
\tau=r F \sin \phi
$$

The Torque Vector

The direction of the torque vector is given by a cross product.

$$
\tau=r F \sin \phi
$$

The Torque Vector

The direction of the torque vector is given by a cross product.

$$
\tau=r F \sin \phi
$$

The Torque Vector

The direction of the torque vector is given by a cross product. counter-clockwise rotation

The Torque Vector

The direction of the torque vector is given by a cross product. counter-clockwise rotation

$$
\vec{\tau}=\odot
$$

$$
\tau=r F \sin \phi
$$

The Torque Vector

The direction of the torque vector is given by a cross product.

$$
\tau=r F \sin \phi
$$

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

For vertical forces:

$$
\tau=x F
$$

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Each particle has
$\tau_{i}=x_{i} w_{i}$

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Each particle has
$\tau_{i}=x_{i} w_{i}$
Center of gravity is at $x_{c g}$ where
$\sum_{i} \tau_{i}=x_{c g} w$

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

$$
\tau_{g}=x_{c g} w
$$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$
(c) $600 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$
(c) $600 \mathrm{~N} \cdot \mathrm{~m}$
(d) $900 \mathrm{~N} \cdot \mathrm{~m}$
(e) $1200 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$
(c) $600 \mathrm{~N} \cdot \mathrm{~m}$
(d) $900 \mathrm{~N} \cdot \mathrm{~m}$
(e) $1200 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?

$$
\begin{aligned}
& \text { Uniform } \Rightarrow \text { center of gravity at } \\
& \text { the center } \Rightarrow \tau_{g}=(2 \mathrm{~m})(300 \mathrm{~N})
\end{aligned}
$$

$$
\text { (c) } 600 \mathrm{~N} \cdot \mathrm{~m}
$$

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.
(a) 150 N

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.
(a) 150 N

(b) 200 N

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.
(a) 150 N

(b) 200 N
(c) 300 N

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.
(a) 150 N

(b) 200 N
(c) 300 N
(d) 400 N

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.
(a) 150 N

(b) 200 N
(c) 300 N
(d) 400 N
(e) 900 N

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.
(a) 150 N

(b) 200 N
(c) 300 N
(d) 400 N
(e) 900 N

Perpendicular Distance Exercise

What normal force must the wall exert on the bar at point A to keep it from rotating? Ignore any friction between the bar and the wall.
(a) 150 N

$$
\begin{aligned}
& \text { No rotation } \Rightarrow \tau_{\text {net }}=0 \\
& \Rightarrow \tau_{N}-\tau_{g}=0 \\
& \Rightarrow \tau_{N}=\tau_{g}=600 N \cdot m \\
& \tau_{N}=(3 m)\left(N_{A}\right)
\end{aligned}
$$

(b) 200 N
(c) 300 N
(d) 400 N
(e) 900 N

Newton's Second Law for Rotation

Newton's Second law can be modified for rotation.

Newton's Second Law for Rotation

Newton's Second law can be modified for rotation.

Original Version: $\sum \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}$

Newton's Second Law for Rotation

Newton's Second law can be modified for rotation.

Original Version: $\sum \overrightarrow{\mathbf{F}}=M \overrightarrow{\mathbf{a}}$
Rotational Version: $\sum \overrightarrow{\boldsymbol{\tau}}=$?

Newton's Second Law for Rotation

Newton's Second law can be modified for rotation.

Rotational Version: $\sum \overrightarrow{\boldsymbol{\tau}}=$?

Newton's Second Law for Rotation

Newton's Second law can be modified for rotation.

Newton's Second Law for Rotation

Newton's Second law can be modified for rotation.

Newton's Second Law for Rotation

Newton's Second law can be modified for rotation.

Newton's Second Law for Rotation: $\sum \vec{\tau}=I \vec{\alpha}$

