APS: Adaptive Packet Sizing for Efficient
End-to-End Network Transmission

Feixue Han*!, Qing Lif, Jianer Zhou!’, Hong Xu®, Yong Jiang*f
*Tsinghua Shenzhen International Graduate school, Shenzhen, China
TPeng Cheng Laboratory, Shenzhen, China
Southern University of Science and Technology, Shenzhen, China
§The Chinese University of Hong Kong, Hong Kong, China

Abstract—Much effort has been devoted to improving the
performance of network transmission. Yet, the impact of packet
size which is limited by the 1500-byte maximum transmission
unit (MTU) has not received adequate attention. Through com-
prehensive experiments, we find that jumbo frames which are
commonly used as an alternate do not always yield the best
performance under different transmission situations.

In this paper, we elaborate on the limitations of the regular
and jumbo frames and analyze how packet sizes affect network
performance. Based on these, we present Adaptively Packet
Sizing (APS), a dynamic packet size adjustment method that can
be easily integrated into existing window-based congestion control
algorithms. APS utilizes a machine learning method to predict
the optimal packet size, which can minimize flow completion time
(FCT) according to the instantaneous network condition. Besides,
a packet size based priority mechanism is proposed to further
improve the performance. We implement APS in both simulation
and testbed environments. APS reduces the FCT by up to 50%
and gains better performance in scenarios with various loss rates.

I. INTRODUCTION

Much effort has been devoted to improving the perfor-
mance of data transmission, ranging from flow scheduling
[1-3], congestion control [4-9], load balancing at various
layers [10-12], to network stack optimization and re-design
[13, 14]. Though many aspects of network transmission have
been investigated, packet size receives little attention as it is
bounded by the maximum transmission unit (MTU) setting
in the link layer. The MTU is set to 1500 bytes according
to the Ethernet standards [15], which was stipulated in 1981
based on the network properties (e.g. scale, propagation delay,
forwarding delay, etc.) at that time. Since then, computer
networks have undergone tremendous changes and one of the
most notable changes is the explosive growth of data. As a
result, the number of packets with 1500B MTU has increased
dramatically, posing a great challenge to network devices [16].

On the other hand, most networking devices support jumbo
frames that are larger than the standard 1500B (typically
up to 9000B) [17]. Prior work has demonstrated that they
achieve better throughput and lower flow completion times
(FCTs) [16, 18-20]. Although promising, jumbo frames have

Corresponding Author: Qing Li, lig@pcl.ac.cn

978-1-6654-6824-4/22/$31.00 ©2022 IEEE

certain limitations. 1) A 9000-byte jumbo frame takes six times
longer to serialize than a standard frame. The serialization
latency, which refers to the time needed to place the data on
the physical wire, delays the acknowledgment (ACK) for the
jumbo frame and impedes the congestion window growth. This
can directly affect mice flows’ FCTs which typically last just
a few RTTs. 2) The cost of re-transmitting jumbo frames and
the jitter are both higher [18]. These issues and their effects
have not been thoroughly analyzed thus far.

The limitations of both standard and jumbo frames motivate
us to find the optimal packet size for the best performance.
We simulate the transmission process of flows under various
network configurations and different packet sizes. Using FCT
as the metric, the experiment result shows that the optimal
packet size varies as the flow size or propagation delay
changes. This confirms our intuition and reveals that the packet
size should adapt to the transmission scenario.

Therefore, we introduce Adaptive Packet Sizing (APS),
where packet size is dynamically adjusted during the trans-
mission process of each (TCP) flow. To obtain the optimal
packet size, we ought to consider various factors, however,
some factors such as packet loss and their impact on FCT
is difficult to quantify. Therefore, APS leverages the machine
learning method to find the relationship between packet size
and FCT under certain network status, and predict the optimal
packet size (ops). APS also combines the priority mechanism
with packet sizing to approximate the Shortest Remaining
Processing Time (SRPT) discipline [21] and ensure fairness.
Thereby, APS achieves lower FCT, especially for mice flows.
Note that the packet size modification is independent of
the congestion control mechanism. We make three technical
contributions to building APS.

« Analytical characterization: We elaborate on the limita-
tions of both the standard and jumbo frames, and analyze
how packet sizes affect latency, rate growth, and packet loss
in detail.

e Ops prediction and dynamic adjustment: With training
data generated from the measurement of the sample flows in
both simulation and testbed environments, we screen out the
features with high impact factors and train an ops prediction
model. To adapt to the real-time network situations, we
continuously monitor the network status and adjust the

packet size every few RTTs.

o Packet size based priority mechanism: We specify the
priority of each packet based on its size. Flows with few
remaining bytes should be assigned with higher priorities
according to the SRPT principle, and as our experiment
result shows, they perform better with smaller packets.
Hence, we assign higher priorities for smaller packets.

We implement APS in both the Linux kernel and ns3 sim-
ulation environments. In our experiments, APS is integrated
with three CC algorithms: NewReno, Cubic, and DCTCP. We
evaluate their performance under different network scenarios
and workloads. The experiment result shows that compared
to employing the standard 1500B packets, APS reduces the
average FCT of overall flows and achieves a prominent opti-
mization, especially for mice flows. When combined with the
priority mechanism, APS yields a lower FCT by up to 50%.
Besides, APS shows performance advantages even in scenarios
with various loss rates.

II. MOTIVATION AND BACKGROUND

To observe the influence of the packet size on FCT under
different network environments, we run four flows in ns3
simulator. The topology is a simple dumbbell topology and
the link bandwidth is 10Gbps. Different packet sizes and
propagation latency configurations are adopted in different
transmissions. Fig. 1 shows the FCTs of the flows, which are
normalized to the value of 400B in each group, and the ops
is marked with dots.

In the following, we will present the applicable scenarios
for the standard frames and the jumbo frames according to the
experiment results, and analyze their limitations separately.

A. Limitations of the standard frames

1) Poor performance on elephant flows: In Fig. 1(a), the
FCT shows a decreasing trend as the packet size grows. When
the per-hop latency is 20/40us, the minimal FCT appears at
9000B, with about 20% FCT optimization. Fig. 1(a) and Fig.
1(b) both show that for an elephant flow, transmitting data with
larger packets can evidently reduce the FCT compared to the
standard ones. This proves that the standard packets cannot
guarantee the best performance for all the flow sizes.

2) Packet number explosion: With the advancement of
Ethernet technology, the data transfer rate has been upgrading
from 10Mbps in 1985 to 400Gbps in 2017. However, the
maximum length of an IP packet from the network layer sent
over Ethernet remains untouched as 1500 bytes. This indicates
that an IP packet with more than 1500 bytes is fragmented
into several fragments, which leads to explosive growth in
the number of data packets and thus damages the network
performance: 1) CPU overhead: To receive the packets, there
are hard and soft CPU interruptions introduced in the kernel.
The hard interruption happens when the NIC receives the
packets, and the soft interruption happens when the kernel
deals with the packets. Those interruptions bring tremendous
CPU overhead. 2) Power consumption: Power consumption

1.0009 | — sus

Y 10us

09751 20us
I

5 0950

=
3 0.925
g

2 0.900

Normalized FCT
°
©
38

£ 0.875

\\
z A
0.850 \/(-
adnd
0.825 ‘o

0 1500 3000 4500 6000 7500 9000 0
Packet Size

1500 3000 4500 6000 7500 9000
Packet Size

(a) Flowsize: 18.5MB

1.00{
0.98 \
\\,

(b) Flowsize: 3.6MB

I
£ 096
4
< 0.94
3
2
= 092
& 0.90

— 5us
10us

20us.
086 40us.

0.88

0 1500 3000 4500 6000 7500 9000 0

1500 3000 4500 6000 7500 9000
Packet Size S

(c) Flowsize: 173KB (d) Flowsize: 60KB

Fig. 1. FCTs with different packet sizes under different per-hop latencies

has been one of the main concerns for operators and is
expected to become the main limiting factor for scaling the
current network architectures [22]. Routers and switches are
major contributors to network energy consumption. Published
measurement-based studies [23-25] to date have shown that
the power consumption of a switch increases fairly linearly
from idle power (i.e., under zero load) to maximum power.
(i.e., under full load). These prove that the reduction of the
packet number can save CPU capacity and energy. Therefore,
supporting the transmission of larger packets in the link is
necessary.

B. Limitations of the jumbo frames

1) Limited performance on mice flows: From Figure. 1(d),
we can see that with a flow size of 60KB and a per-hop latency
of Sus, using 1500B packets can reduce the average FCT by
about 15% over 9000B packets. In the range from 1500 bytes
to 7300 bytes, the FCT continues to increase as the packet
size grows, which indicates that not all the network scenarios
and flows require jumbo packets.

2) Limited analysis for jumbo frames: Many researchers
have made efforts in evaluating the performance of jumbo
frames under different network configurations. Shaneel
Narayan et al. [26] and Abhijit Das et al. [19] evaluated the
performance of jumbo frames in both IPv4 and IPv6 networks.
Their results both show that jumbo frames yield a throughput
increase. Murray et al. [16] shows that jumbo frames have
better resistance to packet loss and can gain faster TCP growth.
JFEPM [20] aggregates the standard Ethernet frames as jumbo
frames at the Top of Rack (TOR) switches and shows that the
average FCT decreases as the packet size increases.

These works all elaborate the superiority of jumbo frames.
However, as shown in Fig. 1(d), not all the scenarios match
their conclusion, because their experiments have certain lim-
itations: 1) The different initial cwnd (larger initial cwnd
for a 9000B MTU connection according to RFC 5681 [27])
is a non-negligible factor that contributes to the outstanding

performance of jumbo frames. 2) Their analysis is based on the
average FCT without distinguishing between the elephant and
mice flows. 3) Their experiments usually run in high-speed,
lossless networks, however, the experiment result may become
different in links with low bandwidth and high error rates.

C. The optimal packet size changes

The above two subsections show that both the standard
and jumbo frames have their own limitations, and the ops
can be any value within the valid range. Comparing the four
sub-graphs in Fig. 1, we can make a preliminary supposition
on the changing pattern of ops. Under the same network
configuration, the ops increases as the flow size rises, and
when the flow size is determined, the best packet size tends to
increase as the propagation delay grows. The intrinsic reasons
for this phenomenon will be analyzed in Section III.

Supposing that we have already known how to select the
ops, just determining the ops at the start of the transmission
is insufficient. Because networks are complicated for their
numerous applications and dynamic structures. Some of them
have unstable links and connections (e.g. wireless sensor
networks). They may frequently switch between the stable and
unstable states for a limited number of consecutive packets
[28]. This directly results in frequent changes in the RTT and
loss rate of the network. Therefore, it’s of great significance
to constantly detect the network and make timely adjustments.

III. WHY PACKET SIZES INFLUENCE PERFORMANCE

A. Influence on data transmission

When a flow runs at a stable rate, regardless of the packet
loss, the impact of packet sizes is reflected in two aspects.

TABLE I
COMPARE OF DIFFERENT FRAME SIZES

Packet Serialization Delay (us) Store-forward Delay (us) Efficiency
Size 100M| 1G 10G | 100G | 100M 1G 10G 100G | IPv4 | IPv6
1500 120 12 1.2 | 0.12 | 5779 | 4.335 | 1.956 | 1.050 | 94.3%| 93.6%
4500 | 360 36 3.6 | 036 | 6.018 | 4.661 1.972 | 1.054 | 98.1%| 97.8%
9000 | 720 72 72 | 072 | 5965 | 4678 | 1.899 | 1.051 | 99% | 98.9%

1) Transmission efficiency: Compared to the standard
frames, jumbo frames promote transmission efficiency (de-
noted as FE), since they carry more user data. Table I shows
that the effective payload of a 1500B frame only accounts for
94.3%, but 99% in a 9000B frame under IPv4. The prevalence
of IPv6 further expands this gap, because the transmission
overhead of the IPv6 packet header is exacerbated and the
transferable payload is reduced. This simple analysis on over-
head shows that 9000B frames can achieve an approximate
5%-6% throughput promotion than 1500B frames.

2) Store-forward delay: As Table I shows, with the rapid
growth of network speed, the serialization delay of a packet
reduces to microseconds, and the gap of the serialization
delay among different packet sizes is significantly narrowed.
We measure the store-forward delay in iDetTrans510 switch
interfaces with different rates. The result shows that the store-
forward delay decreases sharply with the increase of port

4 3.5
—— 0KB, 1.5KB /

—— OKB, 1.5KB

-- OKB, 9.0KB -- OKB, 9.0KB

w

i —— 9KB, 1.5KB w25 9KB, 1.5KB
& -~ 9KB, 9.0KB & 9KB, 9.0KB
Q2 18KB, 1.5KB <) 18KB, 1.5KB
oy 18KB, 9.0KB g L5 18KB, 9.0KB
s s 3
&1 -4
. 0.5 =
0F== — 0 |m—
200 400 600 800 200 400 600 800

Time (us) Time (us)

(a) Different initial cwnd (b) The same initial cwnd

Fig. 2. The delivery rate changes with time. The first value in the legend
refers to the queue length at the host and the second value is the packet size.

bandwidth, however, is hardly affected by the packet size.
Considering that IPv6 is more computationally expensive,
cutting down the packet number can significantly reduce the
total processing delay.

B. Influence on rate growth

We take the Reno algorithm as an example to demonstrate
the effect of packet size on rate growth. In Reno, the cwnd
grows in two phases: the slow start phase and congestion
avoidance phase.

In the slow start phase, the swnd is limited by the cwnd.
Considering that the cwnd grows exponentially over time, with
the RTT of a single packet 77 and initial cwnd I., the amount
of data that the host can send within time ¢ is:

Dy = I.{277 — 1} (1)

The instantaneous sending rate is the ratio of the data sent
in an infinitely short time to the passed time, hence we have:
Dy — D,
v1 = F lim Tt ich

h—0
h+t t
2 T — 2T
T e— @)
h—0 h2T71
t

271
=In2l. E{——
)

According to Equation 2, the sending rate is proportional to
E but decreases as T grows. To present the impact of packet
size on transmission rate more intuitively and prove that the
I, affects the performance, we plot the sending rate over time
during the slow start phase with diverse packet sizes and NIC
queue lengths. In Figure 2(a), refer to Google’s standard, the
1. is set to 10 segments. Under this circumstance, the 9000B
packets outperform 1500B packets because of the larger I..
However, from a fair perspective, as Figure 2(b) shows, when
adopting the same I. (9000 bytes), the rate grows faster with
a packet size of 1500B.

Then, during congestion avoidance, the cwnd increases by
a single segment in each RTT, that is, the sending rate grows
linearly and the rate grows faster with the 9000B packets:

wzmun+mE¢%%} 3)

Although the analysis is based on the Reno algorithm, the
impact of E and T can also provide a reference to other
window-based CC algorithms.

C. Influence on packet loss and throughput

Packet loss due to drop-tail queuing and Random Early
Detection (RED) [29] can cause great degradation in network
performance [30]. With different packet sizes, the packet
loss probability and the cost of re-transmission varies. The
following analysis is based on the same bit error rate.

1) Loss rate: For all SACK-based TCPs, multiple losses in
one RTT are treated as a single congestion signal. Therefore,
dropping a 9000B packet or six consecutive 1500B packets
has the same impact.The difference is that jumbo packets can
hardly utilize the limited remaining space in the queue. For
example, if there are only 8K bytes left in a drop-tail queue,
a 9000B packet will be dropped, however, several 1500B
packets can still be accommodated. Similarly, under the RED
mechanism, the large packet is more likely to exceed the min-
threshold and the max-threshold. Besides, the polynomial that
was selected for the CRC32 algorithm has been tuned for
frame sizes up to 1500B, which makes it less effective for
larger frames and results in a greater latency before the error
is detected. When an error is detected, re-transmitting jumbo
packets will waste more occupied resources and re-transmit
more bytes.

2) Throughput: Let p denote the number of congestion
signals per ACK. The throughput is bounded by [30]:

MSS, 1

TP < {05y 1
RV

(C)]

MSS means the packet size minus the length of TCP/IP
header. This equation shows that the ratio of MSS and RTT
will limit the upper bound of throughput. The relationship
between the RTT and packet size is analyzed in Section III-A.
A flow enters the congestion avoidance phase after packet loss,
hence larger packets provide faster window growth.

IV. DESIGN OF APS

The key design of APS is to select the ops according to
the network and flow status. However, due to the compli-
cated network environment, predefined or empirical functions
can hardly represent the relationships between transmission
parameters and the ops. Therefore, we believe data-driven
methods are promising to predict ops precisely. In addition to
the learning-based ops prediction approach, this section also
discusses the dynamic adjustment and priority mechanisms,
which make APS complete and effective.

A. Selecting scope of packet sizes

The MTU on the data link layer is determined in the
first three-way handshake stage when establishing a TCP
connection. To minimize the modifications on the TCP stack,
we regulate the packet size on the transport layer instead of the
MTU. Nowadays, almost all the NICs at end-hosts and Gigabit
switches (e.g. Cisco) support 9000-byte jumbo frames (not

including the Ethernet header and CRC). Therefore, we set the
MTU to the largest value (9000-byte) and keep it unchanged.
During the transmission process of a single flow, we adjust
the packet size within the range of the settled MTU.
Although all the packet sizes within 9k bytes are available,
through our experiment, we find several sizes outperform
other choices. We test the throughput of a long FTP flow
using different MTUs with two identical computers connected
via a Gigabit switch. We set the MTUs in the servers and
the switch from 400-byte to 9000-byte in steps of 100-byte
in each transfer separately. The result shows that the peak
of throughput appears when the MTU is set to an integral
multiple of 1500-byte, that is, the set of (1.5k, 3k, 4.5k, 6k,
7.5k, 9k), denoted as set (. This results from that the network
stack, operating system, and driver behavior have been tuned
to expect 1500-byte packets over several years. Therefore, the
ops is selected from this set, and it can cover a certain range
of network scenarios (e.g. one-hop latency from Sus to 20us).

B. Learning-based optimal packet size selection

1) Features: We consider nine features that are read-
ily available or can be easily obtained, including avg_rtt,
base_rtt, lt_rtts, loss, dli_rate, cwnd, and re_bytes. The
avg_rtt embodies the general network state over a long
period. The [t_rtts means the latest three rtts, which can
reflect the severity and changing trend of network congestion.
In the first prediction, we fill these four values with the RTT
measured during the second handshake. We update the delivery
rate (dli_rate) with the ratio of data delivered and the time
elapsed within a prediction interval [4], and the line rate is
regarded as its initial value. We take each reduction of cwnd
as a packet loss and record the total packet loss times. The
ratio of lost packets is regarded as the [oss. The remaining
bytes (re_bytes) are the flow size minus the sent bytes and
the cwnd represents the real-time size of cwnd. The feature
set is 9 x N, where N is the total data number.

2) Data collection: We collect the running results of mil-
lions of flows to train the prediction model. The distribution
of the flow size is according to the CDF of the empirical
WebSearch workload [31]. We run five long-lived FTP flows
as the background traffic and select the packet size from the
set (. The collected features and the FCT are recorded as an
entry after each flow completion. In each network scenario,
we can collect six entries for each flow size (corresponding
to the six sizes in set s). We add the entry with the shortest
FCT into our training dataset. Note that the FCT is used for
data filtering, but not as a training feature. We adopt different
data sets for different CC algorithms. The ratio of training-set,
validation-set, and test-set is 7:1:2.

3) Model: A wide range of supervised classification tech-
niques can be used for the ops selection. We expect to build a
multi (six) classification model and adopt the ops as the label.
We select XGBoost as it is a massively parallel boosting tree
model with the advantages of high accuracy, fast convergence,
and fast inference. It introduces the regularized loss function to
avoid over-fitting. The weight of each new tree can be scaled

down by a given constant, which reduces the influence of a
single tree on the prediction result.

We choose softmax as the objective function and train
several XGBoost models with different sizes (i.e. the number
of trees). During the training process, we monitor the impor-
tance of the features to the score. We find that the impact
factor of min_rtt is 0, which means the feature is ineffective.
Therefore, only the rest eight features are applied to train the
final model.

C. Dynamic adjustment

From the perspective of network status, a growing number
of applications are based on the partition/aggregation workflow
pattern. In this pattern, flows usually arrive in a burst manner,
which can cause severe congestion at the bottleneck and sharp
fluctuation on RTTs. For the flows which cannot complete
in a single packet, especially the ones with long life cycles,
such fluctuation may happen several times during the whole
transmission process. Considering each flow itself, along with
the delivery of data, the remaining bytes gradually decrease
and the cwnd changes according to the CC algorithm. These
factors all can lead to the update of ops. For some specific
flows, if we only adjust the packet size at each flow’s arrival,
the adjustment may achieve no optimization and even cause
degradation to the FCT.

1) Workflow: Instead of adopting the pre-determined static
packet size, we dynamically adjust the sending size at set
intervals. At each flow’s arrival, we first collect the required
information for prediction and deliver the information to the
packet size selection module. While waiting for the prediction
result, the data is transmitted in 1500-byte packets. After
getting the prediction result, we update the packet size with
the prediction result and keep this size until receiving the next
prediction value. This indicates that the prediction process and
the transmission process are asynchronous.

2) Prediction frequency: In the workflow, it is crucial to
determine an appropriate adjustment (prediction) interval. On
the one hand, the computation expenses should be considered.
Frequent predictions can bring much burden on the computing
resources, and assuming that the network oscillates intensively
in a short period, it is difficult to bring much performance
improvement even if the adjustments are made in time. On
the other hand, the network status can be hardly reflected in
the packet size adjustment if the prediction interval is too long.
Besides, flows on diverse paths have different RTTs, thus,
they should adopt different adjustment intervals. For example,
suppose there are two flows, F, and Fj, starting from the
same sender. The RTTs for F, and F; are about 2ms and
50ms separately. Under this scenario, an interval of 50ms is
too long for Fj, and too short for F},.

Aiming at the above considerations, we associate the ad-
justment interval with the average RTT, which also acts as
a feature for prediction. We maintain the average RTT and
the last adjustment time for each flow. The average RTT is
updated at each ACK’s arrival and the adjustment time is
updated when receiving the prediction result. When the sender

receives an ACK, it checks whether «RTT's have passed
since the last update (« is a hyper-parameter, setting the « to
10 is comparatively appropriate according to our experiment
results). If so, the prediction module will be invoked.

D. Priority mechanism

APS performs well in reducing the average FCT under light
traffic load. However, as the link load increases, the packets
may get queued at the switches. Considering that a larger
packet occupies more transmission time on the link than a
smaller packet, it causes higher queuing time for the following
packets, especially in low-speed networks. Therefore, we
consider adopting multi queues with relative priorities and
assigning the different size packets with the corresponding
priority.

1) Assign priorities for packets: As shown in our previous
analysis, under the same network environment, mice flows
tend to choose smaller packet sizes in set (. This indicates
that the ops of a single flow decreases as the remaining bytes
decline. According to the principle of SRPT, flows with fewer
remaining bytes should be allocated with higher priorities. The
state-of-the-art SRPT-based designs priority of flows according
to the priority label on the packet headers or a set of pre-
defined thresholds. Considering the special characteristics of
APS, we can emulate the SRPT principle more simply.

We use six priority queues to correspond to the six packet
sizes in set (. The packets with less than 1500 bytes are placed
into the highest-priority queue and the packets with more than
7500 bytes are placed into the lowest one, that is, the smaller
the packet, the higher the priority. This design can guarantee
that the mice flows have the highest priority and the priority
of a flow gradually improves during the transmission process,
which provides a good approximation to SRPT.

2) Determine the sending probability: There are K (6 in
our experiments) priority queues @; (0 < i < K) where Qg
has the highest priority. We assign each priority queue with a
sending probability of p;. Let 6; be the percentage of bytes in
Q;. We use a discrete function F'(k) as the cumulative density
function to denote the probability that the lowest priority of a
flow is < Q. Let ay denote the probability that the lowest
priority of a flow is k. We have ay, = F(k) — F(k — 1)
(K > 1). We use T} to represent the average time spent in
Q;, if flow z; experiences the delays in different priorities
down to the j-th priority, the average FCT is:

J
T(z;) =Y Ty ®)
i=0

We aim to choose an optimal set of probabilities p; to
minimize the average FCT. The problem can be described as:

K m K K
min I'= Z(amZTi) = Z(Tm Zai)
pm m=0 =0 m=0 i=m
B ©)
st > pm=1p;>0,i=0,.. K
m=0

Assuming the M/M/1 priority queues, if the packets arrive
with a rate of A and the queue can consume p 1.5k-byte
packets per time unit, 7} can be expressed as:

1

) @

J

Since Zfim a; = Zfim F(am) — Fam—1), we can re-
express the equation 6 as:

K
1
in T = - (1- F(am-
min =30 g1 Flen)
. ®)
st. > pm=1,12p;>0,i=0,..,K
m=0

Since I is represented by a multivariate function and there
are many constraints, we use the sequential least-square pro-
gramming optimization algorithm in Scipy to get the optimal
priority set. Note that p; is the probability for queue ¢ to send
a 1.5KB packet, we need to convert it into the probability of
sending a packet in queue i. Therefore, the probabilities we
finally adopt is:

P = = ©)

Zi:O iiil

3) Multi-queue ECN marking mechanism: ECN is orig-
inally designed with a single queue in mind and is not
developed for multi-queue scenarios. Therefore, we design an
ECN marking mechanism for the priority queues adopted in
APS. Under the condition of multi queues and various packet
sizes, there are two intuitions.

The first intuition is that the proportion of the ECN marked
packets should not be affected by the packet size. Assuming
that there are two servers (with the same bandwidth) sending
1500-byte and 3000-byte packets separately and the packets
compete fairly, the ratio of the 1500-byte and 3000-byte
packets on the link is 2:1. When these packets get queued in
the switches and the queue length exceeds the threshold, the
marked ratio is also 2:1, that is, the marking proportion is not
disturbed by the packet size when the packets are congested
in the same link.

== Threshold = Marked " Unmarked

c. Different thresholds

a. The same thresholds b. Single threshold

Fig. 3. Different threshold settings for ECN marking

The second one is the timely delivery of the ECN marking
should not be affected by the different transmission probabil-
ities. As Fig. 3—a shows, if we mark the packets according
to the total length in the queues, the marked packets are
always the ones with the lowest priorities, which is unfair
to the large packets because they already have lower sending
probabilities. If we assign each queue with the same threshold,
as shown in Fig. 3-b, the ECN signals in the low-priority

queues may not be delivered in time due to the lower sending
probabilities, resulting in packet accumulation and even packet
loss. Therefore, we allocate distinct thresholds for the queues
following the principle of the lower the priority, the lower the
threshold (as Fig. 3—c shows). This can effectively limit the
queue length in the low-priority queues. Assuming the total
capacity of the queues is V' and « represents the proportion of
the unmarked packets, the threshold in @; is set to V' X a X p;.

V. EXPERIMENT SETUP AND IMPLEMENTATION

A. Experiment setup

1) Traffic loads: We simulate empirical workloads based
on observed distributions in production datacenters. In particu-
lar, we utilize two flow size distributions from the WebSearch
cluster [31] and Facebook’s Hadoop [32] cluster separately.
Mice flows account for a large proportion in the WebSearch
workload and the workload in the Hadoop production clusters
exhibits heavy-tailed characteristics.

The flows’ arrival times follow the Poisson process and the
source-destination hosts of each flow are randomly chosen
uniformly. We keep the utilization of the links at 50-80%.
ECMP is the default multi-path routing scheme.

2) Window-based CC selection: To observe whether APS
can well adapt to different algorithms, we integrate APS
with three window-based CC algorithms. Considering that our
previous analysis is based on Reno, we choose NewReno as
one of the adopted CC algorithms. Besides, to verify that APS
can well adapt to different cwnd adjustment mechanisms, we
also pick Cubic and DCTCP. Cubic is the default algorithm in
the current Linux kernel, which shapes the cwnd in line with
a cubic function, and DCTCP regulates the cwnd according to
the percentage of ECN-marked packets. We collect the data
of the flows running under these three algorithms.

3) Performance metrics:

Classification evaluation: We use the ratio between the num-
ber of correctly classified samples and the overall number of
samples as the prediction performance metric. This measure is
called accuracy, and it also works when labels are more than
two (multi-class case). Since it is critical to make predictions
within a time budget, we also pay attention to the inference
latency.

Network performance: We mainly focus on the optimization
of the average FCT, which is critical in improving the experi-
ence of users. We also try to verify whether the changing of
the ops during a flow’s transmission meets our expectations.
What’s more, we pay attention to the effectiveness of APS in
resisting packet loss.

4) Experiment parameters: We have trained several XG-
Boost models with different sizes and find that the best
configuration in our settings is using 50 trees with a max
depth of 6. According to our experiment results, setting the
« between 6 and 10 is comparatively appropriate. In our
implementation, we invoke the prediction workflow every 10
avg_rtts. The initial cwnd of TCP in Linux is 10 packets by
defualt. Predicting the ops at the beginning of flows is hard

to be accurate due to the limited information, so we set the
initial cwnd of all the flows to 9K bytes uniformly.

B. Testbed implementation

To evaluate the performance enhancement of APS, we have
implemented a prototype of APS and built a small testbed,
consisting of four servers and two switches. Three servers
act as the senders (one of them is used for generating the
background traffic) and the other one as the receiver. Each
server runs Ubuntu 16.04 with Linux kernel 4.4.0 and has
the following hardware specifications: CPU: Intel(R) Xeon(R)
Gold 5218, RAM: 32GB. The switches support 9018-byte
jumbo frames, however, they do not support priority queues.
Therefore, the experiments related to priority scheduling are
carried out in the simulation environment. All the servers
and switches are equipped with 10Gbps NICs. By default,
advanced NIC offload mechanisms are enabled to reduce
the CPU overhead. The base RTT of our testbed is around
150us and the MTUs of all the devices are set to 9k. In our
implementation, the main modification of APS on the TCP
stack can be divided into the following two parts.

The first part is the acquisition of the ops and the mod-
ification of the packet size in use, which is implemented in
the kernel space. We use a hot-pluggable kernel module to
control the enabling of APS, which provides great convenience
for the on and off switching of APS. Since the TCP stack
obtains the value through the communication between the
kernel modules, this module also acts as the postman of the
ops. After obtaining the ops, we compare the ops with the
current available MSS (denoted as mss_cache in the kernel)
and let mss_cache=min(ops, mss_cache), which is operated at
the point where the transmission layer passes the packets to the
IP layer. Two reasons motivate us to modify the mss_cache.
First, mss_cache does not interfere with the concrete CC de-
sign, thus different CC algorithms can be shifted easily while
retaining compatibility with APS. Second, to alleviate the CPU
overhead, most of the operating systems enable GSO/TSO

by default. The essence of GSO/TSO is to postpone the
fragmentation as much as possible until the data is transmitted
to the NIC. If the data block is less than 64KB, it will be sent
directly to the driver queue of the NIC. Then the NIC performs
the segmentation according to the preset mss_cache in the skb
of each flow.

The second part is the ops prediction logic, which is
an application in userspace. When the stack judges that
aRTTs have passed since the last prediction, it collects the
information required for the prediction (most recorded in the
tep_sock) and invokes the prediction application through the
call_usermodehelper function. This function regards the col-
lected information as the parameters and starts the prediction
application directly in the kernel.

GSO is based on software and TSO is implemented by hardware. The
segmentation is first postponed in the network stack by GSO technology. If
the NIC supports TSO, the fragmentation is performed in the NIC. Otherwise,
the packet will be segmented just before it is pushed into the NIC (before
calling the xmit() function).

Pr,i“liﬁi‘f’ & Application
‘u RTTS ~|ops
. - Ops Modify
min(ops, MS) | Model
MSS
TCP Layer
IP Layer
S Data Link Layer
K (Ethernet)
B
—Mss 1 Data Link Layer
(Device driver)
MSS
| Hardware

Fig. 4. Implementation of APS

Too much CPU resource will be consumed if the arrival of
each flow triggers the ops prediction. Therefore, when a flow
initiates a prediction request, we temporarily store the flow ID
and the features. We take a X base_rtts as a time slice and
integrate the N pieces of information collected in each time
slice into a 9 x N matrix as the input of the prediction model.
After each prediction, we distribute the results to the flows
according to their ID. In this way, we execute the prediction
process only once in each time slice and greatly reduce the
computational overhead.

Although the XGBoost model has the advantage of fast
inference, the prediction time is still unacceptable for latency-
sensitive applications. To minimize the impact on FCT, the
prediction application starts and runs asynchronously with the
kernel stack. That is, after calling the call_usermodehelper
function, the TCP stack does not track the progress of the
application anymore, and the packet size is modified when
the stack is informed with a new prediction value.

C. Simulation:

In datacenter, the volume of traffic which go out to WAN
is about 15% [32]. Despite the small fraction of WAN traffic,
its impact on datacenter traffic is significant when both types
of traffic are bottlenecked at the same switch [33]. To better
understand the performance of APS when datacenter commu-
nicates with WAN, we connect a simple WAN topology with
a datacenter topology. The loops in WAN and datacenter have
different RTTs, thus they may use diverse packet sizes.

The datacenter topology is a small leaf-spine network of
8 x 8 to simulate the real architecture of data centers. This
topology contains 8 leaf switches, 8 spine switches, and 128
hosts. We use 10Gbps point-to-point Ethernet links across our
entire datacenter network. Each leaf switch has 16 downlinks
to the hosts and 8 uplinks to the spine switches, forming
a 2:1 over-subscription network and there is a WAN switch
connecting to four hosts through 1Gbps links, which is also
connected to a border switch of datacenter. Three types of
workloads are generated in our simulation experiments: 1)
Datacenter/WAN mixture of inter- and intra-datacenter traffic
with the ratio of 1:5. 2) The simple WAN traffic. 3) Purely

datacenter traffic that reflects the most common cases in
previous researches. Note that DCTCP is only implemented
in the Datacenter environment.

We configure the intra-datacenter propagation and switching
delay to 2us and lus individually. Thus, the minimum RTT
between two servers in different pods of a datacenter is about
30us, and in WAN the base RTT is about 12ms. The initial
cwnd for all the flows is set to 9K bytes. The sending prob-
abilities of the priority queues are (0.6872, 0.1678, 0.0639,
0.03796, 0.02688, 0.01622). We set V' to 225KB and « to
0.65. Then the ECN marking thresholds are (42, 11, 4, 3, 2,
1) packets in each queue.

In our simulation experiments, to find a suitable adjustment
interval, we assess the performance of several o values (from
3 to 15). To monitor the change of the network status during
the transmission process, despite the FCT, we also track the
queuing length in the NICs, the dynamic RTTs, and the change
of the ops.

VI. EVALUATION
A. Prediction accuracy and time budget

Larger models often yield higher accuracy at the cost
of more memory and computation, and consequently, more
crucially, higher latency for inference. Therefore, there is a
trade-off between the model size and the prediction overhead.
We find that using 50 trees with a max depth of 6 can give
fast yet accurate results. The accuracy of the models trained
with the data collected in the simulation and the testbed
environment are shown in Table II.

TABLE II
ACCURACY OF THE XGBOOST CLASSIFICATION MODEL

Dataset | NewReno Cubic DCTCP
Env
Simulation 94 91 93
Testbed 89 84 -

The mean latency of XGBoost is 3.135us on the CPU and
1.896us on a 2080Ti GPU, which means the inference latency
can be driven down to a fraction of a prediction cycle. We
evaluate the computing resource overhead of the prediction
model in the use of CPU and GPU. When the model is
invoked every 1.5ms, the CPU occupation is about 1.6% and
the resource consumption on GPU is about 1/40 of the CPU.

B. FCT optimization

In the following analysis, we denote the experiment of
transmitting data using 9K-byte and 1.5K-byte packets as
Jumbo and Standard respectively. The APS and A&P (M
and M+P in Fig. 5 and Fig. 6) stand for the simple APS
mechanism and APS with priorities separately. Fig. 5 and Fig.
6 show the simulation performance of these four policies under
two different workloads (WebSearch and Hadoop) and three
CC algorithms (NewReno, Cubic, and DCTCP). We call the
statistical data of these four methods in the same scenario as

a group. There are four groups of data in each sub-figure and
the data in each group is normalized to the standard. The
labels in the x-axis show the types of flow and workload.
Overall means the average FCT of all the flows and Mice is
the average FCT of the mice flows smaller than 100KB. The
Mix, DC, and WAN represent whether the traffic is a DC/WAN
mixture, purely datacenter traffic, or purely WAN traffic. We
collect the FCTs of over 30K flows.

In general, A&P always achieves the best performance
under different workloads and algorithms and APS always
outperforms the Jumbo and the Standard. Despite the chosen
algorithm, APS and A&P have a relatively stable performance
improvement. These indicate that APS can well adapt to vari-
ous CC adjustment solutions. The Standard may behave better
or worse than the Jumbo as the network scenario changes.
This further confirms the conclusion that the ops alters as the
network fluctuates and the necessity of dynamic adjustment.
Besides, we can observe that A&P provides more evident
optimization for mice flows (compared to all the flows), which
reveals that prioritizing packets according to their size can
provide a good approximation to SRPT.

In more detail, APS achieves up to 30% lower FCT for all
the flows compared to the Standard, which is realized under
the DCTCP algorithm and 60% fabric load. In particular, the
benefits are more apparent in the average latencies of mice
flows ([0, 100KB)) for these two workloads. Under 40% fabric
load, APS can reduce the FCT of the mice flows by up to 40%.
In the datacenter environment, APS has a prominent behavior
as the FCT optimization is usually between 20% — 30%,
however, this optimization reduces to about 15% in WAN.
When there is no priority mechanism, the FCT optimization
mainly comes from the promotion of transmission efficiency
and the reduction of packet header processing time.

The ops is not only affected by the flow size but the
network status, so does the packet priority in A&P. Since the
packet size are obtained during the processing of the packet
header, no additional comparison and calculation is required
in the process of packet enqueuing. A&P further expands the
optimization for both Overall and Mice flows. Compared to
the Standard, A&P improves the average FCT by 30% to
50% under different scenarios. The maximum optimization is
obtained under the Cubic algorithm and Hadoop workload.
Observing the average FCT for the mice flows, we can
find that the optimization is more obvious in the Hadoop
workload because the elephant flows take a larger part in
the Hadoop workload and the priority mechanism provides
a good approximation of SRPT. Besides, Cubic and DCTCP
outperform NewReno, and DCTCP has a better behavior in
datacenter networks.

In the prototype implementation, since the switches do not
support priority queues, we only tested the performance of
Standard, Jumbo, and APS. We conduct our experiment with
the default TCP SACK algorithm in Linux. The result shows
that APS has a performance improvement of 19% and 15%
compared with Standard and Jumbo respectively, which is
not as good as the simulation performance. According to our

1.2 1.2

3

=

2

£os &
H d

z o)
06 x 2N

Overall_ Mix Overall_ DCOverall WAN Mice Mix

Normalized FCT

06 Gverall Mix Overall DC Overail WAN Mice Mix

(a) NewReno_WebSearch (b) NewReno_Hadoop

B M
S0 M+P

00
o)

Normalized FCT

X2
X%

SRS

20z
X5

06 Gverall Mix Overall DCOverall WAN Mice Mix ix Overall_ DCOverall WAN Mice Mix

(d) Cubic_Hadoop

(c) Cubic_WebSearch

Fig. 5. FCTs under different workloads and algorithms.

B M
=0 M+P

Normalized FCT

1150 e 15c
73 9
0.55 E

Overall DC

Overall DC Mice DC Mice DC

(a) DCTCP_WebSearch (b) DCTCP_Hadoop

Fig. 6. FCTs under DCTCP algorithms and datacenter environment.

analysis, this is due to the difference in implementation of the
network stack and the time overhead of the communication
between user and kernel space.

C. The ops changes in a flow life cycle

Fig. 7 shows the change of the network and the flow status
over a flow’s life cycle. Considering that there are a number
of flows running in the network simultaneously, to facilitate
our analysis, we choose an elephant flow as the representative
one.

As the orange line shows, the remaining size of the flow
gradually reduces during the sending process. The change of
the queue length at the sender server is shown in the green
line, which grows rapidly when a great number of flows arrive.
The red line represents the change of the ops (only selected
from the predefined set). What’s more, the blue bar is the
latest RTT when updating the size. The base RTT is around
20us. It embodies not only the fabric delay but also the host
delay, which can be observed from the effect of the queue
length on RTTs.

As shown in the figure, from 1135us to 1139us, with the
decreasing flow size and the low queue occupation, the sending
size gradually becomes smaller. At 1139us, the length of
the queue and the RTT sharply grows, which means flows
arrive at the host and congestion may occur at the network.
This leads to an increase in the sending size. After a period
of transmission, packets in queue are consumed and the
congestion is relieved, so the sending size is reduced again
until 1144us. Note that at 1148us, although the RTT increases
again, the sending size decreases because there are only a few
bytes left.

D. Performance with packet loss

To evaluate the effectiveness of APS under packet loss net-
work environment, we show the performance of the Standard,
Jumbo, and APS under gradually increased loss rates. Fig. 8
shows the variation of FCTs under different loss rates in a
10Gbps datacenter network. The values have been normalized

H
2

Size (KB)
=
A

Normailized FCT

10°

0 0.001

0.005 0.01 0.05

Time (ms) Loss Rate

Fig. 7. Ops varies in a flow life cycle. Fig. 8. Loss rate influences the FCT.

to FCT in Standard with no packet loss. According to the
figure, high loss rates have a huge impact on performance
since the FCT grows sharply as the loss rate increases, due to
the duration required to recover lost packets and rebuild the
TCP window.

With the same initial cwnd, Jumbo is more affected by
packet drops and has the worst performance from the loss rate
of 0.5%. The FCT is even 8-9x higher than the initial value at
a loss rate of 5%. Although the loss rate is treated as a feature
in the prediction model, APS still outperforms Standard until
the loss rate reaches 5%. While large packets occupy a certain
proportion in APS so that the cost of packet retransmission is
still relatively high, resulting in a worse performance.

VII. CONCLUSION

The data transfer rate of the Internet has increased many
folds. However, the packet size has been unchanged for many
years as it is limited by the 1500B MTU. In this paper,
we prove that 1500B MTU has become a limitation to data
transmission while adopting Jumbo frames does not always
achieve the best performance. Therefore, we propose that the
packet size should adapt to the real-time environment. By
leveraging the ops prediction model, we show that dynamic
packet size adjustment has an evident improvement on the
network performance. This method greatly optimizes the FCT
of the flows, especially for the mice ones. We envision that
this work will motivate further investigation on the influence
of packet sizes.

ACKNOWLEDGMENT

This work is supported by Guangdong Province Key
Area R&D Program under grant No. 2018B010113001, Na-
tional Natural Science Foundation of China under grant No.
61972189, the Shenzhen Key Lab of Software Defined Net-
working under grant No. ZDSYS20140509172959989, and
the Research Grants Council of Hong Kong (11209520) and
CUHK (4055138, 4937007, 4937008, 5501329, 5501517).

REFERENCES

[1] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity
data centers,” in USENIX NSDI, 2015, pp. 455-468.

[2] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal, “Fastpass: A centralized” zero-queue” datacen-
ter network,” in ACM SIGCOMM, 2014, pp. 307-318.

[3] M. Alizadeh, S. Yang, M. Sharif, S. Katti et al., “pFab-
ric: minimal near-optimal datacenter transport,” in ACM
SIGCOMM, 2013, pp. 435-446.

[4] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
and V. Jacobson, “BBR: congestion-based congestion
control,” COMMUN ACM, vol. 60, no. 2, pp. 58-66,
2017.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye et al.,
“Data center tcp (dctep),” in ACM SIGCOMM, 2010, pp.
63-74.

[6] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and
M. Schapira, “PCC: Re-architecting congestion control
for consistent high performance,” in USENIX NSDI,
2015, pp. 395-408.

[7] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout,
“Homa: A receiver-driven low-latency transport protocol
using network priorities,” in ACM SIGCOMM, 2018, pp.
221-235.

[8] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-
bounded congestion control for datacenters,” in ACM
SIGCOMM, 2017, pp. 239-252.

[9] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Rat-

nasamy, and S. Shenker, “phost: Distributed near-optimal

datacenter transport over commodity network fabric,” in

ACM SIGCOMM, 2015, pp. 1-12.

M. Mitzenmacher, “The power of two choices in ran-

domized load balancing,” IEEE TPDS, vol. 12, no. 10,

pp. 1094-1104, 2001.

Y. Lu, Q. Xie, G. Kliot, A. Geller et al., “Join-idle-

queue: A novel load balancing algorithm for dynamically

scalable web services,” Performance Evaluation, vol. 68,

no. 11, pp. 1056-1071, 2011.

[12] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall,
“Let it flow: Resilient asymmetric load balancing with
flowlet switching,” in USENIX NSDI, 2017, pp. 407-420.

[13] C. Guo, H. Wu, Z. Deng, G. Soni et al., “RDMA
over Commodity Ethernet at Scale,” in ACM SIGCOMM,
2016, p. 202-215.

[14] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Thm,
D. Han, and K. Park, “mtcp: a highly scalable user-level
TCP stack for multicore systems,” in USENIX NSDI,
2014, pp. 489-502.

[15] J. Postel, “Internet protocol—DARPA internet program

protocol specification, rfc 791,” The Internet Protocol,

1981.

D. Murray, T. Koziniec, K. Lee, and M. Dixon, “Large

MTUs and internet performance,” in IEEE HPSR, 2012,

pp. 82-87.

[10]

[11]

[16]

[17] E. Alliance and B. Kohl, “Ethernet jumbo frames,” 2009.
[18] S. Narayan and P. R. Lutui, “Network Performance
Evaluation of Jumbo Frames on a Network,” in IEEE
ICETET, 2013, pp. 69-72.
[19] A. Das and S. Debbarma, “Performance of Jumbo Sized
Data on Jumbo Frame and Ethernet Frame Using UDP
over IPv4/IPv6,” in IEEE ADCONS, 2013, pp. 204-207.
K. Sharma and V. Badarla, “Curtailing latency in data
center network by adopting Jumbo Frames,” in IEEE
ANTS, 2016, pp. 1-6.
[21] L. E. Schrage and L. W. Miller, “The queue M/G/1
with the shortest remaining processing time discipline,”
Operations Research, vol. 14, no. 4, pp. 670-684, 1966.
S. Aleksié, “Analysis of Power Consumption in Future
High-Capacity Network Nodes,” J. Opt. Commun. Netw.,
vol. 1, no. 3, pp. 245-258, 2009.
J. Chabarek, J. Sommers, P. Barford, C. Estan et al.,
“Power awareness in network design and routing,” in
IEEE INFOCOM, 2008, pp. 457-465.
H. Hlavacs, G. Da Costa, and J.-M. Pierson, “Energy
consumption of residential and professional switches,”
in IEEE CSE, 2009, pp. 240-246.
W. Van Heddeghem, F. Idzikowski, E. Le Rouzic, J. Y.
Mazeas et al., “Evaluation of power rating of core
network equipment in practical deployments,” in IEEE
GreenCom, 2012, pp. 126-132.
S. Narayan and P. R. Lutui, “Impact on network perfor-
mance of jumbo-frames on IPv4/IPv6 network infrastruc-
ture: An empirical test-bed analysis,” in IEEE IMSAA,
2010, pp. 1-4.
M. Allman and V. Paxson, “E. Blanton,” TCP Congestion
Control,” RFC 5681, September, Tech. Rep., 2009.
M. H. Alizai, O. Landsiedel, J. A. B. Link, S. Gotz, and
K. Wehrle, “Bursty traffic over bursty links,” in ACM
SenSys, 2009, pp. 71-84.
S. Floyd and V. Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Transactions
on networking, vol. 1, no. 4, pp. 397413, 1993.
M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The
macroscopic behavior of the TCP congestion avoidance
algorithm,” in ACM SIGCOMM, 1997, pp. 67-82.
A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula et al.,
“VL2: A scalable and flexible data center network,” in
ACM SIGCOMM, 2009, pp. 51-62.
A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren,
“Inside the social network’s (datacenter) network,” in
ACM SIGCOMM, 2015, pp. 123-137.
A. Saeed, V. Gupta, P. Goyal, M. Sharif et al., “Annulus:
A Dual Congestion Control Loop for Datacenter and
WAN Traffic Aggregates,” in ACM SIGCOMM, 2020,
pp. 735-749.

[20]

