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*Proof of all statements may be found in the online lecture notes* 

Section 0: Sets, Quantifiers, Mappings & 

Functions, Complex Numbers 
Basic set notation: 

B = {x ∈ ℕ : x ≥ 5}      OR       B = {x ∈ ℕ | x ≥ 5} 

    Read as: “the set of all elements x in N such that x ≥ 5” 

Definition 2. Let A and B be two sets. A is said to be a subset of B if every element of A is also 

an element of B; we write this as A ⊂ B. 

Ex: Every element of N is also an element of ℝ, i.e. ℕ is a subset of ℝ, and we can therefore write 

ℕ ⊂ ℝ 

Definition 3: Let S and T be sets. We denote by S ∩ T the set of all elements which are both in S 

and in T. We call S ∩T the intersection of the sets S and T . 

Definition 4: Let S and T be sets. We denote by S ∪ T the set of all elements which are in either 

S or T or both. We call S ∪ T the union of the sets S and T . 

Definition 5: Let S and T be sets. We denote by S \ T the set of all elements of S which are not 

in T. We call S \ T the set difference of the sets S and T (in that order). 

Definition 6: Let S and T be sets. We denote by S × T the set of all pairs of the form (s, t) where 

s ∈ S and t ∈ T . We call S × T the Cartesian product of the sets S and T 

Ex: Let A = {0, 1, 2, 3}, B = {2, 3, 4, 5}, and C = {5, 6, 7}, then we can write:  

Intersection Union Difference 

A ∩ B = {2, 3}, 

 B ∩ C = {5}, 

 A ∩ C = ∅ 

 

A ∪ B = {0, 1, 2, 3, 4, 5},  

B ∪ C = {2, 3, 4, 5, 6, 7},  

A ∪ C = {0, 1, 2, 3, 5, 6, 7}. 

A \ B = {0, 1}, 

 B \ A = {4, 5},  

A \ C = A, 

 C \ A = C 

 

Cartesian Product: E = {0,1,2}, F = {4,5} 

E × E = {(0, 0),(0, 1),(0, 2),(1, 0),(1, 1),(1, 2),(2, 0),(2, 1),(2, 2)},  

E × F = {(0, 4),(0, 5),(1, 4),(1, 5),(2, 4),(2, 5)},  

F × E = {(4, 0),(5, 0),(4, 1),(5, 1),(4, 2),(5, 2)},  

F × F = {(4, 4),(4, 5),(5, 4),(5, 5)}. 
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Section 1: Systems of Linear Equations 
A system of linear equations (with real coefficients), is a set of equations of the form:  

(𝐸){

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮                         ⋯                           ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 

where a11,a12,..,a1n,a21,…,am1,am2,…, amn and b1,…, bm are given real numbers and we are trying to 

solve for the real numbers x1,…, xn. The solution to the system of equations will take the form 

(x1, x2,…, xn). 

 

Systems of equations will either have a unique solution, no solution or infinitely many solutions. 

Note: m is the number of equations and n is the number of unknowns.  

Section 2: Real Vector Spaces 
Definition 12: Let V be a set, with two operations defined on it:  

(i) An operation denoted by “+” and called addition, defined formally as a mapping              

+ : V × V → V which maps a pair (v, w) in V × V to the element v + w of V   

(ii) An operation denoted by “·” and called scalar multiplication, defined formally as 

a mapping · : ℝ × V → V which maps a pair (α,v) in ℝ × V (i.e. α ∈ ℝ and v∈V) to 

the element α·v of ℝ 

Definition: For V to be a Real Vector Space, it must satisfy these 8 conditions: 

1. Operation “+” is associative meaning ∀x, y, z  ∈ V we have: 

x + (y + z) = (x + y) + z   

2. There exists an element in V, the zero vector denoted by 0, such that ∀x∈V we have: 

x + 0 = 0 + x = x 

3. There exists an element in V, denoted by –x (and is the opposite or inverse of x) 

such that ∀x∈V we have: 

x + (-x) = (-x) + x = 0 

4. Operation “+” is commutative meaning ∀x, y∈V we have: 

x + y = y + x 

5. ∀ α, β ∈ ℝ (for any real scalars) and ∀x∈V we have: 

α · (β · x) = (αβ) · x 

6. ∀ α ∈ ℝ and ∀x, y ∈ V we have: 

α · (x + y) = α · x + α · y 

7. ∀ α, β ∈ ℝ and ∀x ∈ V we have: 

(α + β) · x = α · x  + β · x 

8. ∀x ∈ V we have: 

1 · x = x  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Note: We can denote this vector space by (V,+,·) or simply V. 

Note: Every element of V (v ∈ V) is a vector. 

Section 3: Vector Subspaces 
Definition 13: Let (V, +, ·) be a real vector space, and let W be a subset of V (W ⊂ V). W is said 

to be a vector subspace of (V, +, ·) if the following properties hold:  

(i) The zero element 0 of V is also in W, 0 ∈ W.  

(ii) ∀x, y ∈ W, we have x+y ∈ W (elements in W added together are also in W) 

(iii) ∀α∈ ℝ and ∀x ∈ W, we have αx ∈ W (element in W multiplied by a scalar is also in 

W) 

In order to prove that something is a vector subspace, simply show that all three properties hold 

FOR ALL elements in W (∀w ∈ W) and ALL scalars (∀α∈ ℝ). If one or more properties do not 

hold, then it can be concluded that W is not a vector subspace. 

Theorem 3: Let (V,+,·) be a real vector space, and let W1 ⊂ V and W2 ⊂ V be two vector 

subspaces of V; then their intersection W1 ∩ W2 is also a vector subspace of V.  

Remark 1: If (V, +, ·) is a real vector space and W1, W2 two vector subspaces of V, then their 

union W1 ∪ W2 is in general not a vector subspace of V. 

Problem 3a, 2015 Final Exam 
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Solution: We need to verify that the 3 properties of a vector subspace hold: 

1. The zero vector 0W3 of W3 must be in X3: 

If we denote the zero vector as 0W3 = (x’,y’,z’), we need to find this vector such that 

∀(x,y,z)∈W3 , (x,y,z) + (x’,y’,z’) = (x,y,z) 

Addition gives:          (xx’,yy’,zz’) = (x,y,z) 

Thus clearly, 0W3 = (x’,y’,z’) = (1,1,1) 

To see if 0W3∈X3, check the property of X3 that xy = 1. Evidently 1·1 = 1, therefore the 

zero vector of W3 is in X3. 

2. ∀(x1,y1,z1),(x2,y2,z2)∈X3, we must have that (x1,y1,z1)+(x2,y2,z2)∈X3: 

Letting (x1,y1,z1),(x2,y2,z2)∈X3, we know that x1y1=1 and x2y2=1. Therefore y1=1/x1 and 

y2=1/x2 so we can write: 

(x1,y1,z1)+(x2,y2,z2) = (x1, 1/x1, z1)+(x2, 1/x2, z2) = (x1x2, 1/x11/x2, z1z2) 

Now to check if xy=1: (x1x2)(1/x11/x2) = (x1/x1)(x2/x2) = 1, thus the condition holds and 

(x1,y1,z1)+(x2,y2,z2)∈X3. 

3. ∀α∈R and ∀(x,y,z)∈X3 we must have that α(x,y,z)∈X3: 

Letting α∈R and (x,y,z)∈X3, we know that (x,y,z) = (x, 1/x, z). We have that: 

α(x,y,z) = α(x, 1/x, x) = (xα, (1/x)α, zα) 

Now to check if xy=1:  (xα)(1/xα) = xα/ xα = 1, thus the condition holds and 

α(x,y,z)∈X3. 

All three conditions hold, therefore X3 is a vector subspace of W3.     ☐ 

Section 4: Linear Combinations & Span 
Definition 14: Let (V,+,·) be a real vector space, and let v1, …, vp be a finite number of elements 

of V (with p ≥ 1). We call the expression 

α1v1 + α2v2  +…+ αpvp,  with α1, …, αp∈ ℝ   

a linear combination of the vectors v1, …, vp or “the linear combination of the vectors v1, …, vp 

with respective scalar coefficients α1, …, αp”.  

If an element v of V can be written as  

v = α1v1 + α2v2  +…+ αpvp, 

where α1, …, αp are all real numbers, then we say that v is a linear combination of the vectors 

v1, …, vp. 

Notation: Denote S(v1, v2, …, vp) the set of all linear combinations of the vectors v1, v2, …, vp: 

S(v1, v2, …, vp) =  { α1v1 + α2v2  +…+ αpvp | α1, α2, …, αp∈R } 
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Definition 15: The vector subspace S(v1, v2, …, vp) of V is called the linear span of the vectors v1, v2, 

…, vp, or the subspace of V generated by the vectors v1, v2, …, vp.  What this means is that any 

vector v ∈ V can be created from a linear combination of the vectors v1, v2, …, vp: 

∀v ∈ V, there exists real numbers α1, …, αp such that we can write v = α1v1 + α2v2  +…+ αpvp 

 

 

Problem 1d), 2016 Midterm 1 

Consider the real vector space (R2, +,·), and let v1 = (1,1), v2 = (2,2). Using the definition of linear 

span, prove whether or not S(v1, v2) = R2. 

Solution: The definition tells us that the span of v1 and v2 is the set of all linear combinations of 

v1 and v2 S(v1, v2) = { α1v1 + α2v2 | α1, α2∈R } 

= { α1(1,1) + α2(2,2)| α1, α2∈R } which we can simplify to 

= { (α1 + 2α2, α1 + 2α2) | α1, α2∈R } 

The vector (α1 + 2α2, α1 + 2α2) will always have the same values in both entries (be of the form 

(x,x)). Thus, all vectors with distinct entries (of the form (x,y)) cannot be created. For example we 

know that (0,1)∈R2 , however (0,1) = (α1 + 2α2, α1 + 2α2) has no solution as no such scalars α1, α2 

exist. Thus, the span of v1 and v2 cannot create any vector R2. Therefore S(v1, v2) ≠ R2.   

  ☐ 

Section 5: Linear Dependence & Independence 
Note: The scalar multiple of a vector is simply the multiplication of each entry by the same 

scalar: 

Ex. ½(4,12) = (½·4, ½·12) = (2,6) 

 

Definition 16: Let (V,+,·) be a real vector space, and let S = { v1, v2, …, vp } be a finite subset of V.  

(i) The subset S is said to be linearly independent if for any α1, …, αp∈ ℝ, the relation  

α1v1 + α2v2  +…+ αpvp = 0 implies that α1 = … = αp = 0 

(ii) The subset S is said to be linearly dependent if it is not linearly independent (if there 

exist real numbers α1, …, αp not all 0, but for which α1v1 + α2v2  +…+ αpvp = 0) 

Theorem 4: Let (V,+,·) be a real vector space, and let S = { v1, v2, …, vp } be a finite subset of V . 

Then:  

(i) If S is a linearly dependent subset of V, then at least one of the elements of S can be 

written as a linear combination of the other elements of S. This means that there 
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exists an element vi ∈ S such that vi = α1v1 +…+ αi-1vi-1 + αi+1vi+1 +…+ αpvp where 1 ≤ i 

≤ p and α1, α2, …, αp are real numbers not all zero (this is simply rearranging the 

equation α1v1 + α2v2  +…+ αpvp = 0) 

(ii) If at least one of the elements of S can be written as a linear combination of the 

other elements of S, then S is a linearly dependent subset of V. 

Lemma 4: Let (V, +, ·) be a real vector space, and S, T two finite subsets of V such that S ⊂ T . If S 

is linearly dependent, then T is also linearly dependent. 

 

 

 

Problem 2d), 2014 Final Exam 

 

 

Solution: Since e is in the linear span of {v1, v2}, there exist α1, α2∈ R such that e = α1v1 + α2 v2. 

Since e≠0V it follows that α1, α2 cannot both be zero. Similarly, since e is in the linear span of {v3, 

v4}, there exist α3, α4∈ R such that e = α3v3 + α4v4. Since e≠0V it follows that α3, α4 cannot both 

be zero. We thus have  e = α1v1 + α2 v2 = α3v3 + α4v4, therefore α1v1 + α2 v2 - α3v3 - α4v4 = 0V.  

We then have that because α1,α2, α3, α4 are not all zero it follows that { v1, v2, v3, v4} is a linearly 

dependent subset of V.           ☐ 

Section 6: Relating Linear Combinations to Linear 

Independence 
Theorem 5: Let (V,+,·) be a real vector space, and let S = { v1, v2, …, vp } be a finite subset of V. 

Let v ∈ V be in the linear span of v1, v2, …, vp. If S is a linearly independent subset of V, then v can 

be expressed only in a unique way as a linear combination of v1, v2, …, vp; i.e., the values of (α1, 

…, αp) of real numbers will be unique such that:  

v = α1v1 + α2v2  +…+ αpvp 

Theorem 6: Let (V,+,·) be a real vector space, and let S = { v1, v2, …, vp } be a finite subset of V. 

STUDENT NUMBER: Sect ion: 3 of 11

2. Let (V , + , ·) be a real vector space.

(a) Let { v1, v2, · · · , vp} be a subset of V ; say what it means (i.e. give the definit ion) for

{ v1, v2, · · · , vp} to be linearly independent. (2 pt s)

(b) Show that if { v1, v2, · · · , vp} is a linearly dependent subset of V , then there exists a

vector in { v1, v2, · · · , vp} which can be expressed as a linear combinat ion of the other

vectors in that set. (4 pt s)

(c) Show that if { v1, v2, · · · , vp} is a generat ing set for V and vp is in the linear span of

v1, · · · , vp− 1, then { v1, v2, · · · , vp− 1} is a generat ing set for V . (4 pt s)

(d) Suppose now { v1, v2, v3, v4} is a subset of V such that the subsets { v1, v2} and { v3, v4}

are each linearly independent; suppose furthermore that there exists a non-zero vector

e ∈ V such that e ∈ S(v 1 ,v 2) ∩S(v 3 ,v 4) (i.e. e is both in the linear span of { v1, v2} and

in the linear span of { v3, v4} ). Determine whether or not the subset { v1, v2, v3, v4} is

linearly independent. (5 pt s)

(e) Let now (W , + , ·) be another real vector space, and let L : V → W be a linear mapping;

show that if S is a generat ing set for V and Im(L) = W , then the subset

{ L(v1), L(v2), · · · , L(vp)} is a generat ing set for W . (5 pt s)

(a) The subset { v1, v2, · · · , vp} of V is linearly independent if the only solut ion to the vector

equat ion

α1v1 + α2v2 + ···+ αpvp = 0V (5)

with α1, . . . , αp ∈ R is

α1 = α2 = ··· = αp = 0. (6)

(b) Assume{ v1, v2, · · · , vp} of V isa linearly dependent subset of V . Then, thereexist α1, α2, · · · , αp ∈

R, not all zero, such that

α1v1 + α2v2 + ···+ αpvp = 0V . (7)

Since the α1, α2, · · · , αp ∈ R are not all zero, there is at least one of them, say αk , which is

non-zero (with 1 ≤ k ≤ p). The above relat ion gives

αkvk = −α1v1− α2v2 − ·· · − αk− 1vk− 1 − αk+ 1vk+ 1 − ··· − αpvp, (8)

and since αk ̸= 0, we can divide both sides by αk , obtaining
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Assume that any v ∈ V that is in the linear span of  v1, v2, …, vp can be expressed only in a unique 

way as a linear combination of v1, v2, …, vp; i.e., for any v ∈ S(v1, v2, …, vp) there is a unique p−tuple 

(α1, …, αp) of real numbers such that:  

v = α1v1 + α2v2  +…+ αpvp  

Then, S is a linearly independent subset of V.  

Section 7: Matrices of Systems of Equations 
Definition 17: Consider the system of 𝑚 linear equations and 𝑛 unknowns given by 

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + ∙ ∙ ∙  𝑎1,𝑛𝑥𝑛 = 𝑏1  

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + ∙ ∙ ∙  𝑎2,𝑛𝑥𝑛 = 𝑏2 

⋮ 

𝑎𝑚,1𝑥1 + 𝑎𝑚,2𝑥2 + ∙ ∙ ∙  𝑎𝑚,𝑛𝑥𝑛 = 𝑏𝑚 

The augmented matrix of this system is the table of real numbers with 𝑚 rows and 𝑛 + 1 

columns given by 

(

 
 

𝑎1,1      𝑎1,2         ∙ ∙ ∙      𝑎1,𝑛      |      𝑏1

𝑎2,1      𝑎2,2         ∙ ∙ ∙      𝑎2,𝑛      |      𝑏2

⋮  
 𝑎𝑚,1     𝑎𝑚,2        ∙ ∙ ∙      𝑎𝑚,𝑛    |     𝑏𝑚 )

 
 

 

  

Definition 18: The augmented matrix is said to be in row-echelon form if the following two 

conditions are met: 

1. Each row with all entries equal to 0 is below every row having at least one nonzero 

entry  

2. The leftmost non-zero entry on each row is to the right of the leftmost non-zero 

entry of the preceding row 

[
𝟐 𝟏 𝟏
𝟎 𝟏 𝟑
𝟎 𝟎 𝟑

    
𝟓
𝟐
𝟎
]  𝑹𝒐𝒘 𝑬𝒄𝒉𝒆𝒍𝒐𝒏                     [

𝟏 𝟓 𝟔
𝟐 𝟎 𝟏
𝟏 𝟎 𝟑

    
𝟐
𝟎
𝟏
]  𝑵𝒐𝒕 𝑹𝒐𝒘 𝑬𝒄𝒉𝒆𝒍𝒐𝒏 
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Rules for Row Echelon: 

• Add/subtract rows 

• Multiplication by a non-zero scalar 

• Exchange two rows 

• Any combination of the above 

 

Gaussian Elimination Steps: 

Step 1: Write down the augmented matrix of the system of linear equations;  

Step 2: Transform the augmented matrix in row-echelon form through a sequence of elementary 

row operations; 

Step 3: Solve the system corresponding to the row-echelon augmented matrix obtained in Step 

2 by back-substitution. 

 

 

 

 

 

Problem 1, 2015 Final Exam 

DO NOT: 

• Multiply two rows together 

• Exchange two columns 

• Do anything that is not 

listed to the left   
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Solution: 
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(c) It can be seen from the last row of the augmented matrix in row echelon form that the given 

system of linear equations has no solution if and only if a – 6 ≠ 0, that is, if and only if a ≠ 6.  

d)  Similarly it can be seen from part (c) that the system of linear equations has a solution if and 

only if   a = 6.   

(e)  For a = 6, the augmented matrix in row-echelon form is given by   

(

1 1 −2 0
0
0
0

−2 2 2
0 2 2
0 0 0

 | 

2
0
4

𝑎 − 6

) 

The system of linear equation corresponding to this augmented matrix in row echelon form is 

given by:   

{

𝑥1 + 𝑥2 − 2𝑥3 = 2
−2𝑥2 + 2𝑥3 + 2𝑥4 = 0

2𝑥3 + 2𝑥4 = 4
 

Solving for x3 using the last equation we get: x3 = 2 – x4 

Substituting this into the second equation we find: x2 = 2 

Then finally substituting what we found for x2 and x3 into the first equation we get: x1 = 4-2x4 

We can now state that when we have a=6, the system of equations has infinitely many solutions 

given by the set S, where S = {(x1,x2,x3,x4) ∈R4 | x1 = 4-2x4, x2=2, x3=2-x4}.  

Or we could write (x1,x2,x3,x4) = (4-2x4, 2, 2- x4, x4) where x4 is a real number. 

Section 8: Generating Sets & Bases 
Definition 20: Let (V, +, ·) be a real vector space, and let S = { v1, v2, …, vp } be a finite subset of 

V. S is said to be a generating set for the vector space V if any v ∈ V can be written as a linear 

combination of v1, v2, …, vp. 

Ex: {[1,0,0], [0,1,0], [0,0,1]} is a generating set for ℝ 3 . 

Theorem 11: Let (V, +, ·) be a real vector space, and let S = { v1, v2, …, vp } be a finite subset of V 

such that: 

(i) S is a generating set for V 
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(ii) S is linearly independent  

Then, any element v ∈ V can be expressed in a unique way as a linear combination of elements 

of S. 

Definition 21: Let (V, +, ·) be a real vector space, and let v1, v2, …, vp ∈ V. The p−tuple (v1, v2, …, 

vp) is said to be a basis of V if  

(i) { v1, v2, …, vp } is a generating set for V, and  

(ii) The vectors (v1, v2, …, vp) are linearly independent. 

Ex: {[1,0,0], [0,1,0], [0,0,1]} is a basis set for ℝ 3 .  

Note: A basis for a vector space is not unique.  {[1,1,0], [0,5,1], [0,0,1]} is also a basis for ℝ 3 .  

Definition 22: Let (V, +, ·) be a real vector space, let B = (v1, v2, …, vp) be a basis of V, and let v ∈ 

V. The p−tuple (α1, α2, …, αp) of real numbers is called the component vector or coordinate 

vector of v with respect to the basis B if we have:  

v = α1v1 + α2v2 +…+ αpvp 

Problem 2b), 2015 Midterm 2 

 

 

Solution: To show that (v1,v2,v3) is a basis for W3, we must show two properties: 

I) (v1,v2,v3)  is a generating set.  

For any vector v = (x, y, z) in W3, we need to show that there exist properly chosen 

scalars α1, α2 and α3 such that v = α1v1 + α2v2 + α3v3. Thus we need to solve for α1, α2 

and α3 in  

(x, y, z) = α1 · (e, 1, 1) + α2 · (1, e, 1) + α3 · (1, 1, e). 

Thus  
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(x, y, z) = (eα1, 1α1 , 1α1 ) + (1α2 , eα2 , 1α2 ) + (1α3 , 1 α3, eα3 ) = (eα1 , eα2 , eα3 ) 

Therefore,  

x = eα1, y = eα2, z = eα3 

Taking the natural log of both sides of the above equations gives: 

α1 = ln(x), α2 = ln(y), α3 = ln(z) 

Substituting these values of α back into our original equation gives: 

(x, y, z) = ln(x) · (e, 1, 1) +  ln(y) · (1, e, 1) + ln(z) · (1, 1, e) 

Which implies that (v1, v2, v3) is a generating set for W3 

II) (v1,v2,v3) is linearly independent 

We must show that for the equation 

β1 · (e, 1, 1) + β2 · (1, e, 1) + β3 · (1, 1, e) = (1, 1, 1) 

β1, β2, β3, must all be zero. Thus 

(e β1, e β2, e β3) = (1, 1, 1) 

β1 = ln(1) = 0, β2 = ln(1) = 0, β3 = ln(1) = 0 

Thus, (v1,v2,v3) is linearly independent. 

Therefore (v1,v2,v3) is a basis for W3.         ☐ 

Section 9: Finite Dimensional Vector Spaces 
Definition 23: Let (V, +, ·) be a real vector space.  

• V is said to be finite-dimensional if there exists an integer N ≥ 0 such that any subset 

of V containing N + 1 elements is linearly dependent. The smallest integer N for which 

this holds is then called the dimension of V (equivalently, V is said to have dimension N).  

• V is said to be infinite-dimensional if it is not finite-dimensional. 

Examples: 

• The vector spaces  ℝ, ℝ2, ℝ3, … ℝ𝑛 are all finite-dimensional 

• The vector space ℝ[𝑥], i.e. the vector space of polynomial functions of one variable, is 

infinite-dimensional.  

Theorem 12: Let (V, +, ·) be a finite-dimensional real vector space of dimension N. Let { v1, v2, …, 

vp } be a finite subset of V containing p vectors. If { v1, v2, …, vp } is a linearly independent subset 

of V then p ≤ N. 

Theorem 13: Let (V, +, ·) be a finite-dimensional real vector space of dimension N. Let { v1, v2, …, 

vp } be a finite subset of V containing p vectors. If { v1, v2, …, vp } is a generating set for V of V 

then p ≥ N. 
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Theorem 14: Let (V, +, ·) be a finite-dimensional real vector space of dimension N. Let B = (v1, 

v2, …, vp)  be a basis for V (i.e. linearly independent and a generating set). Then, according to 

Theorem 12 and Theorem 13, p ≤ N and p ≥ N, so we must have p = N. 

To compute the dimension of a real vector space, it is enough to find a basis for that vector 

space. The dimension of the vector space is then equal to the number of elements of that basis. 

Problem 1, 2017 Midterm 2 
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Section 10: Linear Transformations, Dimension, & 

Kernel 
Note: A mapping, function, and transformation are equivalent terms. 

Definition 24: Let V and W be two real vector spaces, and let L : V → W be a mapping from V to 

W. L is said to be a linear mapping if the following two properties hold:  

1. For any v1, v2 ∈ V, L(v1 + v2) = L(v1) + L(v2) 

2. For any α ∈ R and any v ∈ V, L(αv) = αL(v) 

Problem 3c), 2015 Final Exam   (uses the same “Weird Space” W3 as in Problem 3a in 
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Section 2) 

 

Solution: 

 

 



17 

 

 

 

Theorem 15: Let V and W be real vector spaces; let 0V denote the zero vector of V, and let 0W 

denote the zero vector of W. Let L : V→W be a linear mapping. Then, we have:  

L(0V) = 0W 

Note: Use this fact to prove a mapping is not linear if the zero vector of V does not map to the 

zero vector of W. You cannot use this fact to prove that a mapping is linear. 

Theorem 16: Let V, W, and Z be real vector spaces, and let L1 : V → W and L2 : W→Z be linear 

mappings. Then, the mapping L2 ◦ L1 : V→Z (called the composition) is also linear.  

Note: L2 ◦ L1(v) = L2(L1(v)), which means that we apply L1 to v and then apply L2 to this result. 

Definition: Let V and W be two real vector spaces, and let L : V → W be a mapping from V to W. 

The Kernel or Null Space of L (denoted ker(L)) is the set of all vectors in V that map to the zero 

vector of W. 
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ker(L) = { v ∈ V | L(v) = 0W } 

Theorem 17: Let V and W be real vector spaces, and let L : V → W be a linear mapping. Then, 

the kernel ker(L) of L is a vector subspace of V.  

Definition (from section 0): Let f: S → T be a mapping from V to W. f is said to be injective (or 

one-to-one) if ∀x, y ∈ S, x ≠ y implies that f(x) ≠ f(y). 

 

Injective mapping 

Theorem 18: Let L : V → W be a linear mapping from the real vector space V to the real vector 

space W. Then L is injective if and only if the kernel, ker(L), of L is equal to {0V}, i.e. ker(L) = {0V}.  

Definition: Let V and W be two real vector spaces, and let L : V → W be a mapping from V to W. 

The Range or Image of L (denoted Im(L)) is the set of values in W that L maps to. 

Im(L) = {L(v) ∈ W | v ∈ V } 

Definition (from section 0): Let f: S → T be a mapping from S to T. f is said to be surjective (or 

onto) if ∀x ∈ T, ∃ y ∈ S : x = f(y). i.e.  Im(f) = T. 

 

Surjective mapping 

 

Theorem 19: Let V and W be real vector spaces, and let L : V → W be a linear mapping. Then, 

the range Im(L) of L is a vector subspace of W.  

Definition 25: Let V, W be real vector spaces, assume V is finite-dimensional, and let L : V → W 

be a linear mapping.  

Figure 1: Not injective mapping 

Not surjective mapping 
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(i) The rank of L, denoted by rank(L), is defined to be the dimension of Im(L). (This is the 

number of elements in a basis of the Image) 

(ii) The nullity of L, denoted by nullity(L), is defined to be the dimension of ker(L). (This 

is the number of elements in a basis of the Kernel) 

Theorem 20 (Rank-Nullity Theorem): Let V, W be real vector spaces, and let L : V → W be a 

linear mapping. Assume V is finite-dimensional, and let N denote the dimension of V. Then:  

rank(L) + nullity(L) = N 

Section 11: Matrices & Linear Transformations 
Definition 26: Let m and n be integers ≥ 1. A real matrix with 𝑚 rows and 𝑛 columns (also 

called a real 𝑚 ×  𝑛 matrix) is a table (or array) of the form: 

[

𝑎1,1     𝑎1,2     − −     𝑎1,𝑛

𝑎2,1     𝑎2,2     − −     𝑎2,𝑛

|             |      − −         |
  𝑎𝑚,1    𝑎𝑚,2    − −      𝑎𝑚,𝑛

] 

This can be used to represent a linear mapping from ℝ n to ℝ m (ℝ (#of columns) to ℝ (# of rows) ). 

• Addition: Two 𝑚 ×  𝑛 matrices can be added together if and only if 𝑚1  =  𝑚2 and 𝑛1  =

 𝑛2 (i.e. same size). 

 𝐴 + 𝐵 =

[
 
 
 

𝑎1,1 + 𝑏1,1 𝑎1,2 + 𝑏1,2

𝑎2,1 + 𝑏2,1 𝑎2,2 + 𝑏2,2
⋯⋯

𝑎1,𝑛 + 𝑏1,𝑛

𝑎2,𝑛 + 𝑏2,𝑛

⋮ ⋱ ⋮
𝑎𝑚,1 + 𝑏𝑚,1 𝑎𝑚,2 + 𝑏𝑚,2 ⋯ 𝑎𝑚,𝑛 + 𝑏𝑚,𝑛]

 
 
 
 

• Scalar Multiplication: When multiplying a matrix by a scalar α, multiply each entry of 

the matrix by α. 

𝛼 ∙ 𝐵 =  [

𝛼 ∙ 𝑏1,1 ⋯ 𝛼 ∙ 𝑏1,𝑛

⋮ ⋱ ⋮
𝛼 ∙ 𝑏𝑚,1 ⋯ 𝛼 ∙ 𝑏𝑚,𝑛

] 

Theorem 24: Let A be a real 𝑚 ×  𝑛 matrix; the range Im(A) of the matrix A (i.e. the range of the 

linear mapping LA : ℝ n → ℝ m) is the linear span of the column vectors A1, A2, …, An of A. 

Theorem 26: Let A ∈ Mm,n(ℝ) (i.e. A is a real m×n matrix). We have ker(A) = {0R} if and only if the 

column vectors of A are linearly independent.  

Theorem 27: Let A ∈ Mm,n(ℝ), then: rank(A) + nullity(A) = n. 

 i.e. rank(A) + nullity(A) is equal to the number of columns of A. 

Theorem 28: Let A ∈ Mm,n(ℝ) represent the linear map LA : ℝ n → ℝ m . We have the following: 
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a) If, for each vector 𝑏 ∈ ℝm, there exists a unique v ∈ ℝn which satisfies LA(v)  = 𝑏, then: 

i. m = n 

ii. The column vectors of A are linearly independent 

b) Conversely, if m = n and the column vectors of A are linearly independent, then for each 

𝑏 ∈ ℝm, there exists a unique v ∈ ℝn which satisfies LA(v) = 𝑏. 

 

Problem 1, 2012 Midterm 3 

 

 

d) Verify the Rank-Nullity Theorem for the linear mapping A 
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d) dim(V) = rank(L) + nullity(L) 

3 = 2 + 1 

3 =3  

Matrix Multiplication: 

When multiplying two matrices together, consider the following: 

𝐴    ∙     𝐵
3 ∙ 𝟑       𝟑 ∙ 2

 

In order to multiply matrices A and B, the number of columns in the first matrix must match the 

number of rows of the second. See in the example above, A has 3 columns, and B has 3 rows, 

therefore the multiplication A · B is possible. However, B · A is not possible since B has 2 columns 

and A has 3 rows.  

Exercise:  

𝐴 = [
2
0

1 0
2 3

3 0 4
] , 𝐵 = [

5 2
1 0
0 3

].  Compute A·B 

Solution: A•B = [
11 4
2 9
15 18

]    

Theorem 29: Matrix multiplication satisfies the following properties:  

(i) Let m, n, p, q be integers ≥ 1. ∀A ∈ Mm,n(ℝ), ∀B ∈ Mn,p(ℝ), and ∀C ∈ Mp,q(ℝ), we have: 

(AB)C = A(BC), i.e. matrix multiplication is associative.  

(ii)  Let m, n, p be integers ≥ 1. ∀A ∈ Mm,n (ℝ), ∀B, C ∈ Mn,p (ℝ), we have: 
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 A(B + C) = AB + AC  

(iii)  Let m, n, p be integers ≥ 1. ∀A, B ∈ Mm,n (ℝ), ∀C ∈ Mn,p (ℝ), we have: 

 (A + B)C = AC + BC  

(iv)  Let m, n, p be integers ≥ 1. ∀A ∈ Mm,n (ℝ), ∀B ∈ Mn,p (R), ∀ α ∈ ℝ, we have:  

A(α B) = (α A)B = α (AB). 

Section 12: Invertible Square Matrices 
Definition 30: Let A ∈ Mn(ℝ) be a real 𝑛 × 𝑛 matrix. A is said to be invertible if there exists a 

real 𝑛 ×  𝑛 matrix B such that AB = BA = 𝐼, where 𝐼 (shown below) is the 𝑛 ×  𝑛 identity matrix. 

This matrix be is called the inverse of A, or A-1 

𝐼 =  [

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

] 

Note:  

(i) The definition of invertible matrices applies only to square matrices. 

(ii) It does not make any sense to talk about invertibility of an m×n matrix with m ≠ n. 

Theorem 31: Let A ∈ Mn(ℝ) be a real 𝑛 ×  𝑛 matrix. We have that A is invertible if and only if 

the column vectors of A are linearly independent. Equivalently, A is invertible if and only if A has 

rank n. 

Definition 33: Let A ∈ Mn(ℝ) be a square 𝑛 × 𝑛 real matrix. The determinant, denoted det(A), of 

A is the real number defined as follows: 

(i) If n = 1, i.e. A = (a) for some real number a, then det(A) = a; 

(ii) If n > 1, then det(A) is recursively defined as follows:  

det(𝐴) = ∑(−1)1+𝑗𝑎1,𝑗det ([𝐴]1,𝑗)

𝑛

𝑗=1

 

Where [A]1,j is the matrix A without the i’th row and j’th column. (*note that it doesn’t have to be 

the first row, it can be any row or any column). 

Note: For a 2x2 matrix: 𝑑𝑒𝑡 (
𝑎 𝑏
𝑐 𝑑

) = 𝑎𝑑 − 𝑏𝑐 

Theorem 32: Let A ∈ Mn(ℝ) be a real n × n matrix. We have that A is invertible if and only if 

det(A) ≠ 0. 

Definition 34: Let M ∈ Mm,n(ℝ) be a real m × n matrix. The transpose of M, denoted MT , is the n 

× m real matrix defined by: (MT )i,j = (M)j,i, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, where by the notation 
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(C)a,b we mean the entry of matrix C on row a and column b. (ie: flip the matrix along the 

diagonal) 

Theorem 34: Let A ∈ Mn(ℝ) be a real n × n matrix. We have:  det(A) = det(AT). 

Theorem 35: Let A, B ∈ Mn(ℝ) be real n × n matrices. We have: det(AB) = det(A) det(B) 

Note: For a diagonal, upper triangular, or lower triangular matrix, the determinant is the product 

of the entries on the diagonal.  

Example: Compute the determinant of [
0 1 1
3 3 0
1 2 9

] 

Solution: 𝑑𝑒𝑡([
0 1 1
3 3 0
1 2 9

]) =  0 − 1 ∗ det (
3 0
1 9

) + det (
3 3
1 2

) =  −1(27) + (3) =  −24 

Theorem 38: ∀A ∈ Mn(ℝ), ∀α ∈ ℝ, we have: det(αA) = α n det(A). 

Problem 6, 2015 Final Exam 

Solution: 
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Problem 5, 2016 Final Exam

 

This is a good problem because it directly makes use of the theorems stated above. 

a) Theorem 31 above states “A is invertible if and only if the column vectors of A 

are linearly independent.” 

Write    ∝1 𝐴;1 + ∝2 𝐴;2 + ∝3 𝐴;3 = 𝟎 

∝1 (
−1
2
4

) + ∝2 (
−2
1

−3
) + ∝3 (

−1
5
7

) = 𝟎 
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i) −∝1− 2 ∝2− ∝3= 0 

ii) 2 ∝1 + ∝2+  5 ∝3= 0 

iii) 4 ∝1− 3 ∝2+ 7 ∝3= 0 

Last equation gives  

3 ∝2= 4 ∝1+ 7 ∝3 

∝2=
7

3
∝3+

4

3
∝1 

Substitute this into equation 2 to get  

2 ∝1+ 4 ∝1+
7

3
∝3+ 5 ∝3= 0 

10

3
∝1= −

22

3
∝3 

∝1= −
11

5
∝3 

Substitute this into equation 1 to get ∝1= ∝2= ∝3= 0 

Therefore, by Theorem 31, since the column vectors of A are linearly 

independent, A is invertible. 

 

b) 

 

 
Since det(A)≠0, A is invertible (Theorem 32 above) 

b) AA = (
−𝟏 −𝟐 −𝟏
𝟐 𝟏 𝟓
𝟒 −𝟑 𝟕

)(
−𝟏 −𝟐 −𝟏
𝟐 𝟏 𝟓
𝟒 −𝟑 𝟕

) =  (
−𝟕 𝟑 −𝟏𝟔
𝟐𝟎 −𝟏𝟖 𝟑𝟖
𝟏𝟖 −𝟑𝟐 𝟑𝟎

) 

c) 𝑑𝑒𝑡(𝐴2) = (𝑑𝑒𝑡(𝐴))2 = 576  (Theorem 35 above) 

Section 13: Eigenvalues & Eigenvectors  
Definition 35: Let v ∈ V with v ≠ 0 (i.e. v is not the zero vector of V); v is said to be an 

eigenvector of the linear transformation L if there exists a real number λ such that:  

L(v) = λv. 

The real number λ in the above relation is called an eigenvalue of L. We then say that v is an 

eigenvector of L associated to the eigenvalue λ. 

Theorem 41: Let A ∈ Mn(ℝ) be a real n × n matrix. Let λ ∈ ℝ. We have λ is an eigenvalue of A if 

and only if det(λI − A) = 0 (where again I denotes the n × n identity matrix). This theorem gives 

us a systematic way of computing eigenvalues. 

Theorem 42: Let A ∈ Mn(ℝ) be a real n × n matrix. Then 0 is an eigenvalue of A if and only if A is 

not invertible. 
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Steps for Finding Eigenvalues/Vectors 

1. Determine characteristic polynomial by calculating det(λI-A) for a matrix A. For example, 

if  

A=[
1 2 2
0 3 1
0 0 2

], find det([
λ − 1 −2 −2

0 λ − 3 −1
0 0 λ − 2

]) 

2. Once all of the eigenvalues are found (in this case they are 1,2,3), find the corresponding 

eigenvectors for each eigenvalue. In order to do this, find the ker(λI-A). Continuing the 

above example, choosing 2 as our eigenvalue, take (2I-A)v = 0 to find an eigenvector. 

This is equivalent to finding a vector in ker([
1 −2 −2
0 −1 −1
0 0 0

]). This gives the eigenvector [0,-

1,1]. 

Problem 5, 2015 Final Exam

 

Solution: 
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Solution: 

a) To check linearity need to check: 

i) L(v1+v2) = L(v1) + L(v2) 

ii) L(av) = aL(v) 

First, L(x1,y1 + x2,y2) = L(x1x2, y1y2) = [(x1x2)
2,(y1y2)

3] = (x1
2
 x2

2,y1
3y2

3) 

L(x1,y1) + L(x2,y2) = (x1
2,y1

3) + (x2
2,y2

3) = (x1
2
 x2

2,y1
3y2

3)      

Therefore L(v1+v2) = L(v1) + L(v2) 

Second, L(a•(x,y)) = L(xa,ya) = (x2a,y3a) = aL(x,y)  

L satisfies both conditions of a linear map, therefore it is a linear map 

 

Alternative solution to b and c: 

 

Problem 3, 2016 Final Exam 
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b) 𝑀(𝐿) =  (
2 0
0 3

) since these are the scalar multiples we “multiply” x and y by respectively. 

Since this is a diagonal matrix, 2 is an eigenvalue.  

Eigenvector satisfies Av = λv. ∴ we must have (λI − A)v = 𝟎, which is equivalent to 

finding a vector v ∈ ker([
0 0
0 −1

]). 

([
0 0
0 −1

]) (
𝑣1

𝑣2
) = (

1
1
)  

(v1)
0 • (v2)

0 = 1 

(v1)
0 • (v2)

-1 = 1 → (v2)
-1 = 1 → v2 = 1.  

 

Therefore v1 = any real number > 0, ≠ 1 , v2 = 1. An eigenvector is [2,1]. Note v1 ≠ 1 

because otherwise (v1, v2) = (1,1) which is not an eigenvector because eigenvectors must not be 

the zero vector. (Definition 35) 

 

c) Again, since M(L) is a diagonal matrix, 3 is clearly an eigenvalue. Eigenvector satisfies Av 

= λv. ∴ we must have (λI − A)v = 𝟎, which is equivalent to finding a vector v ∈ 

ker([
1 0
0 0

]). 

([
1 0
0 0

]) (
𝑣1

𝑣2
) = (

1
1
)  

(v1)
1 • (v2)

0 = 1 → (v1)
1 = 1  → v1 = 1 

(v1)
0 • (v2)

0 = 1 

 

Therefore v1 = 1, v2 = any real number > 0, ≠ 1. An eigenvector is [1,2]. Note v2 ≠ 1 

because this would mean (v1, v2) = (1,1) which is not an eigenvector because eigenvectors must 

not be the zero vector. (Definition 35) 

 

 

 

 


