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*Proof of all statements may be found in the online lecture notes*

Section 0: Sets, Quantifiers, Mappings &
Functions, Complex Numbers

Basic set notation:
B={xeN:x25} OR B={xeN|x=>5}
Read as: “the set of all elements x in N such that x > 5"

Definition 2. Let A and B be two sets. A is said to be a subset of B if every element of A is also
an element of B; we write this as A c B.

Ex: Every element of N is also an element of R, i.e. N is a subset of R, and we can therefore write
NcR

Definition 3: Let S and T be sets. We denote by S n T the set of all elements which are both in' S
and in T. We call S nT the intersection of the sets Sand T .

Definition 4: Let S and T be sets. We denote by S U T the set of all elements which are in either
S or T or both. We call S U T the union of the setsSand T.

Definition 5: Let S and T be sets. We denote by S\ T the set of all elements of S which are not
in T. We call S\ T the set difference of the sets S and T (in that order).

Definition 6: Let S and T be sets. We denote by S x T the set of all pairs of the form (s, t) where
seSandteT.Wecall S xT the Cartesian product of the sets Sand T

Ex: Let A=1{0, 1,2, 3}, B=1{2, 3,4, 5}, and C = {5, 6, 7}, then we can write:

Intersection Union Difference
AnB={2 3}, AUB=1{01,2, 3, 4,5} A\B ={0, 1},
BnC={5} BuC=1{273475,6,7} B\A ={4,5},
AnC=9 AuC={01,2 356, 7} A\NC=A
C\A=C

Cartesian Product: E = {0,1,2}, F = {4,5}

E x E={(0, 0),(0, 1,0, 2),(1,0),(1, 1).,(1, 2),2, 0),(2, 1),(2, 2)},
E x F={0, 4)(0,5)(1,4).(1, 5).2, 4).(2 5)}
F x E={(4,0)(5, 0)4, 1),5, 1).4, 2.5, 2}
Fx F={4, 4).4,)5)05, 4).05,5)






Section 1: Systems of Linear Equations

A system of linear equations (with real coefficients), is a set of equations of the form:

ai1X1 + A12Xy + -+ A1 nXn = b1
(E) ay1X1 + Ay2Xyp + -+ AonXn = bz

Am1X1 + QX + o+ QnXn = by
where a;jam,..,amazi, ...,ami, ams, ..., amn and by, ..., b, are given real numbers and we are trying to
solve for the real numbers x,, ..., x,. The solution to the system of equations will take the form

(xz, x2, ..., Xn).

Systems of equations will either have a unique solution, no solution or infinitely many solutions.
Note: m is the number of equations and » is the number of unknowns.

Section 2: Real Vector Spaces

Definition 12: Let V be a set, with two operations defined on it:

u o,

(i) An operation denoted by “+" and called addition, defined formally as a mapping
+:V x V = V which maps a pair (v, w) in V x V to the element v + w of V

(i) An operation denoted by “-" and called scalar multiplication, defined formally as
a mapping - : R x V = V which maps a pair (o,v) in R x V (i.,e. « € R and vVEV) to
the element a-v of R

Definition: For V to be a Real Vector Space, it must satisfy these 8 conditions:

"u o

1. Operation “+" is associative meaning Vx, y, z € V we have:
X+(y+z)=Kx+y)+z
2. There exists an element in V, the zero vector denoted by 0, such that Vx&V we have:
X+0=0+x=x
3. There exists an element in V, denoted by —x (and is the opposite or inverse of x)
such that VxeV we have:
X+(-x)=(-x)+x=0
4. Operation "+" is commutative meaning Vx, yEV we have:
X+y=y+X
5. VY a, B € R (for any real scalars) and Yx&V we have:
a-(B-x) = (af) - x
6. Va€eRandVx y€V we have:
a-(x+y)=o-x+a-y
7. Vo,B€eRandvx €V we have:
(@+P)-x=a-x +p-x
8. Vx €V we have:

1 X = X ispt



Note: We can denote this vector space by (V,+,) or simply V.

Note: Every element of V (v € V) is a vector.

Section 3: Vector Subspaces

Definition 13: Let (V, +, -) be a real vector space, and let W be a subset of V (W c V). W is said
to be a vector subspace of (V, +, ) if the following properties hold:

(i) The zero element 0 of Vis alsoin W, 0 € W.
(i) vx, y €W, we have x+y € W (elements in W added together are also in W)
(iii) Vo€ R and vYx € W, we have ax € W (element in W multiplied by a scalar is also in
W)
In order to prove that something is a vector subspace, simply show that all three properties hold
FOR ALL elements in W (vw € W) and ALL scalars (Vva&€ R). If one or more properties do not
hold, then it can be concluded that W is not a vector subspace.

Theorem 3: Let (V,+,") be a real vector space, and let W, c V and W, c V be two vector
subspaces of V; then their intersection W, n' W, is also a vector subspace of V.

Remark 1: If (V, +, -) is a real vector space and W,, W, two vector subspaces of V, then their
union W, U W, is in general not a vector subspace of V.

Problem 3a, 2015 Final Exam

3. Consider the vector space (W3, +, -) with
Wi ={(z,4,2) : z,y,z€ Randz >0,y >0,z > 0}

under the following addition and scalar multiplication operations:

— Addition: For any (21, v, 21) and (22, ys, 22) in Wiy,

(21,91, 21) + (T2, Y2, 20) = (2122, Y112, 2122).
— Scalar multiplication: For any scalar o € R and (z,y, 2) in W,
a-(z,y,z) = (2% y% 2%).
Let X3 be a subset of W3 given by
Xy ={(z,y,2) €« Wy : xy=1}.

(a) Show that Xj is a vector subspace of (W3, +,). (3 pts)



Solution: We need to verify that the 3 properties of a vector subspace hold:

1. The zero vector Ows of W5 must be in Xs:
If we denote the zero vector as Ows = (X',y’,z), we need to find this vector such that
V(xYy,2)EWs, (xy.2) + (X\y'.Z) = (XY.2)
Addition gives: (xxyy',zz") = (xy,2)
Thus clearly, Ows = (xy',z") = (1,1,1)
To see if Ow3E X3, check the property of X3 that xy = 1. Evidently 1-1 = 1, therefore the
zero vector of W3 is in Xs.
2. Y(X1,¥1,21),(X2,Y2,22) EX3, we must have that (x1,y1,z1)+(X2,y2,22) E Xa:
Letting (x1,y1,21),(X2,y2,22) EX3, we know that x1y1=1 and xay,=1. Therefore y,=1/x; and
y2=1/X2 so we can write:
(x1uynz1)+(Xay2,z2) = (X1, 1/x1, 1)+ (%2, 1/X2, 22) = (xax2, 1/x11/x2, 2122)
Now to check if xy="1: (x1x2)(1/x11/%2) = (x1/%1)(x2/%2) = 1, thus the condition holds and
(X1,y1,21)+ (X2,y2,22) EXs.
3. Va€&R and Y(x,y,z) €Xs we must have that a(x,y,z) EXa:
Letting a &R and (x,y,z) €Xs3, we know that (x,y,z) = (x, 1/%, z). We have that:
alxy,z) = ax, 1/x, x) = (X% (1/x)¢, 2%
Now to check if xy=1: (x*)(1/x%) = x¥ x* = 1, thus the condition holds and
a(x,y,z) EXs.

All three conditions hold, therefore X is a vector subspace of Ws. ]

Section 4: Linear Combinations & Span
Definition 14: Let (V,+,) be a real vector space, and let v;, ..., v, be a finite number of elements
of V (with p > 1). We call the expression

QuVy + 0V, +.t ALV, with ay, .., 0, € R

a linear combination of the vectors v,, ..., v, or “the linear combination of the vectors vy, ..., v

with respective scalar coefficients ay, ..., o,".

p

If an element v of V can be written as
V= 0gVy 0V, et OV,

where a, ..., &, are all real numbers, then we say that v is a linear combination of the vectors

Vi, oo Ve

Notation: Denote Sy, v», vp the set of all linear combinations of the vectors vy, v, ..., v;;

p*

ey

S(v1,v2, et vp) = { (X1V1 + (X2V2 +...+ (Xpr | G1, (er eeey (XPER}



Definition 15: The vector subspace Sw;,v,, ., v, Of V is called the linear span of the vectors v;, v,,
..V O the subspace of V generated by the vectors vy, v,, ..., v,. What this means is that any

vector v € V can be created from a linear combination of the vectors v,, v,, ..., V!

Vv €V, there exists real numbers o, ..., a, such that we can write v = o;v; + 0V, +...+ 0V,

Problem 1d), 2016 Midterm 1

Consider the real vector space (R? +,-), and let v, = (1,1), v, = (2,2). Using the definition of linear

span, prove whether or not Sy, v») = R

Solution: The definition tells us that the span of v, and v, is the set of all linear combinations of
vy and v, Swqvp = { gy + oV, | oy, 0, ER}
= {a,(1,1) + o,(2,2)| a4, o, ER } which we can simplify to
= { (o + 20, a; + 20,) | o, AL, ER }
The vector (a, + 20, o, + 2a,) will always have the same values in both entries (be of the form

(x,X)). Thus, all vectors with distinct entries (of the form (x,y)) cannot be created. For example we
know that (0,1)ER?, however (0,1) = (o, + 20, a; + 2a,) has no solution as no such scalars o, a,

exist. Thus, the span of v, and v, cannot create any vector R? Therefore Sy, v, # R®.
O

Section 5: Linear Dependence & Independence

Note: The scalar multiple of a vector is simply the multiplication of each entry by the same
scalar:
Ex. '2(4,12) = (Y24, V/2:12) = (2,6)

Definition 16: Let (V,+,)) be a real vector space, and let S = { v,, v,, ..., v, } be a finite subset of V.

(i) The subset S is said to be linearly independent if for any o, ..., a.E R, the relation
uVy + 0LV, +..+ Vv, = 0implies that oy = .. =, = 0
(i) The subset S is said to be linearly dependent if it is not linearly independent (if there
exist real numbers a, .., o, not all 0, but for which ov; + apv, +..+ oV, = 0)

Theorem 4: Let (V,+,") be a real vector space, and let S = {v;, v,, ..., v, } be a finite subset of V.
Then:

(i) If Sis alinearly dependent subset of V, then at least one of the elements of S can be
written as a linear combination of the other elements of S. This means that there



exists an element v; € S such that v, = aqv; +...+ Q4 4Viq + OqViyg +..t v, where 1 <
<panday, a, .., o, are real numbers not all zero (this is simply rearranging the
equation v, + 0V, +..+ oV, = 0)

(i) If at least one of the elements of S can be written as a linear combination of the
other elements of S, then S is a linearly dependent subset of V.

Lemma 4: Let (V, +, -) be a real vector space, and S, T two finite subsets of V such that Sc T . If S
is linearly dependent, then T is also linearly dependent.

Problem 2d), 2014 Final Exam

2. Let (V,+,-) beareal vector space.

(d) Suppose now {v1,Va,V3s,V4} isasubset of V such that the subsets{v,,v,} and {vs,Vv4}
are each linearly independent; suppose furthermore that there exists a non-zero vector
e € V such that e € S, v,) NS,y (i€ € isbothin the linear span of {v,,Vv,} and
in the linear span of {v3,Vv4}). Determine whether or not the subset {vi,Vv,,V3,V4} iS
linearly independent. (5 pts)

Solution: Since e is in the linear span of {vi, v2}, there exist a1, %2 & R such that e = ayvi + o Va.
Since ez0y it follows that a4, o cannot both be zero. Similarly, since e is in the linear span of {vs,
v4}, there exist as, auE R such that e = aszvs + oyva. Since ez0y it follows that as, oy cannot both
be zero. We thus have e = aiv1 + 02 V2 = O3vs + 0uvs, therefore vy + o vz - azvs - ouvs = Ov.

We then have that because a1,z a3, 04 are not all zero it follows that { vi, v, v3, va} is a linearly
dependent subset of V. O

Section 6: Relating Linear Combinations to Linear
Independence

Theorem 5: Let (V,+,") be a real vector space, and let S = {v,, v,, ..., v, } be a finite subset of V.
Let v €V be in the linear span of v;, v,, ..., v,,. If S is a linearly independent subset of V, then v can
be expressed only in a unique way as a linear combination of v;, v,, ..., v,; i.e,, the values of (a,
oo Op) of real numbers will be unique such that:

V= 0gVy OV, et OV,

Theorem 6: Let (V,+,") be a real vector space, and let S = { v, v,, ..., v, } be a finite subset of V.



Assume that any v € V that is in the linear span of vy, v,, ..., v, can be expressed only in a unique

way as a linear combination of v;, v,, ..., v,; i.e., for any v € Sw,v,, .. v there is a unique p-tuple

ey

(0, s Q) of real numbers such that:
V=04Vt 0V, et AV,

Then, S is a linearly independent subset of V.

Section 7: Matrices of Systems of Equations
Definition 17: Consider the system of m linear equations and n unknowns given by
ay1%1 + Q1% + 00 QX = by

A1X1 + Ay2X; + 0 AypXy = by

Am1X1 + AmaXy + 00 AppXy = by

The augmented matrix of this system is the table of real numbers with m rows and n + 1

columns given by
( a1 412 Tt A1 | by w
az1 dz2 o azn | b

Am1  Am2 t Amn | b

Definition 18: The augmented matrix is said to be in row-echelon form if the following two
conditions are met:

1. Each row with all entries equal to 0 is below every row having at least one nonzero
entry

2. The leftmost non-zero entry on each row is to the right of the leftmost non-zero
entry of the preceding row

2 1 15 1 5 6 2
[0 1 3 2| RowEchelon [2 0 1 0| Not Row Echelon
0 0 3 0 1 0 3 1




Rules for Row Echelon: DO NOT:

e Add/subtract rows
e Multiplication by a non-zero scalar
e Exchange two rows

e Multiply two rows together
e Exchange two columns

¢ Do anything that is not
e Any combination of the above listed to the left <

Gaussian Elimination Steps:
Step 1: Write down the augmented matrix of the system of linear equations;

Step 2: Transform the augmented matrix in row-echelon form through a sequence of elementary
row operations;

Step 3: Solve the system corresponding to the row-echelon augmented matrix obtained in Step
2 by back-substitution.

Problem 1, 2015 Final Exam




1. Given a real number a, consider the system of linear equations given by:

Ty + a2+ 2y = a,
Ty — Ty + 2.’1’4 = 2,
21y~ Ty + 0wy +x4 = 0,

Ty + Ty — 2.‘133 = 2._
where we wish to solve for the quadruple (zy, 29, 23, x4) of real numbers.

(a) Write the augmented matrix for this system. (4 pts)

(b) Transform the augmented matrix to row-echelon form using a sequence of elementary
row operations (clearly indicate which operation you perform at each step). (6 pts)

(c) Using (b), determine all the values of a for which the system has no solution. (2 pts)
(d) Using (b), determine all the values of a for which the system has a solution. (2 pts)

(e) For those values of a obtained in (d) for which the system has a solution, determine the
set of all solutions to the original system of linear equations. (6 pts)

Solution:

(a) The augmented matrix for this system is given by:

1 1 0 2|a
1 -1 0 2|2
-2 —1 5 110
1 1 =2 012
(b) Exchanging rows 1 and 4 (R1 <> R4) yields: Adding —1x row 1 to row 2 (—R1 + R2 — R2) yields
1 1 -2 02 1 1 -2 0|2
1 -1 0 2|2 0 -2 2 20
2 -1 510 2 1 510
1 1 0 2a 1 1 0 2|a

Adding twice row 1 to row 3 (2R1+ R3 — R3) yields  Adding $x row 2 to row 3 (3R2 + R3 — R3) yields

1 1 -2 0]2 11 -2 0]2
0 -2 2 210 0 -2 2 2]0
0 1 1 1/4 0 0 224
1 1 02a 11 02fa



Adding —1x row 3 to row 4 (—R3 + R4 — R4) yields
Adding —1x row 1 to row 4 (—=R1 + R4 — R4) yields

1 1 =20 2
1 1 =220 2 0 -2 22 0
0 -2 22 0 0o 0 22 4
0 0 2 2 4 0 0 O0O0ja—6
0 0 2 2{a-2

The above matrix is now in row-echelon form.

(c) It can be seen from the last row of the augmented matrix in row echelon form that the given
system of linear equations has no solution if and only if a— 6 # 0, that is, if and only if a # 6.

d) Similarly it can be seen from part (c) that the system of linear equations has a solution if and
only if a =6.

(e) For a = 6, the augmented matrix in row-echelon form is given by

11 -2 0 2
0 -2 2 2] O
0 0 2 2 4

0 0 0 O0'la-—6

The system of linear equation corresponding to this augmented matrix in row echelon form is
given by:

x1+x2—2x3=2
_Z.XZ+2.X3+2.X4 =0
Z.X3+2x4:4'

Solving for x3 using the last equation we get: x3 = 2 — x4

Substituting this into the second equation we find: x, = 2

Then finally substituting what we found for x2 and xz into the first equation we get: x; = 4-2x4
We can now state that when we have a=6, the system of equations has infinitely many solutions

given by the set S, where S = {(x1,X2,x3,Xa) ER*| X1 = 4-2x4, X2=2, X3=2-Xa}.

Or we could write (X1,X2,X3,X4) = (4-2X4, 2, 2- X4, X4) Where X4 is a real number.

Section 8: Generating Sets & Bases

Definition 20: Let (V, +, -) be a real vector space, and let S = {v,, v,, ..., v, } be a finite subset of
V.S is said to be a generating set for the vector space V if any v € V can be written as a linear
combination of vy, vy, ..., V,,.
Ex: {[1,0,0], [0,1,0], [0,0,1]} is a generating set for R 3.

Theorem 11: Let (V, +, -) be a real vector space, and let S = {vy, v, .., v, } be a finite subset of V
such that:

(i) S is a generating set for V

10



(i) S is linearly independent
Then, any element v € V can be expressed in a unique way as a linear combination of elements
of S.
Definition 21: Let (V, +, -) be a real vector space, and let v, v,, .., v, € V. The p-tuple (v;, vy, ...,
V) is said to be a basis of V if

0} { V1, Vo ... v, } is @ generating set for V, and

(i) The vectors (vy, v,, ..., V,) are linearly independent.
Ex: {[1,0,0], [0,1,0], [0,0,1]} is a basis set for R 3.

Note: A basis for a vector space is not unique. {[1,1,0], [0,5,1], [0,0,1]} is also a basis for R 3.

Definition 22: Let (V, +, ) be a real vector space, let B = (vy, v,, ..., V) be a basis of V, and let v €
V. The p-tuple (o, ay, ..., &) of real numbers is called the component vector or coordinate
vector of v with respect to the basis B if we have:

V= 0qVy 0V, et OV,

Problem 2b), 2015 Midterm 2
(b) Consider the real vector space (W3, +,+) with

W; ={(z,y,2) : z,y,z€ Rand z >0,y >0,z > 0}

under the following addition and scalar multiplication operations:

*x Addition: For any (z1,y1,21) and (22, Y2, 22) in W3,
(51/'17 Y1, 21) + (51/'27 Y2, 22) = (51/‘151524, hny2, 2122)~
* Scalar multiplication: For any scalar « € R and (z,y, z) in W3,
a-(z,y,2) = (%9 2%).

Recall that the zero vector 0 of W3 is given by 0 = (1,1,1). Consider the following
vectors in W3: vi = (e,1,1), va = (1,e,1) and vy = (1,1,e) where e = 2.718--- is

Euler’s number. Show that (vq,va,vs) is a basis for Wj. [5 pts]

Solution: To show that (v1,v2,v3) is a basis for W3, we must show two properties:

D) (v1,v2,v3) is a generating set.
For any vector v = (x, y, z) in W3, we need to show that there exist properly chosen
scalars oy, o and oz such that v = ayvy + aeve + aizva. Thus we need to solve for oy, oo
and oz in
xyz=a-(e1,1)+o-(1,e1)+az-(1,1,e).
Thus

11



(X, Y, Z) — (eoﬂl 10(1 , 10(1 ) + (10(2, eO(ZI 10{2) + (10{3 , 1 0(3' eot3) — (eoﬂ , e0(2 ) ecx3)
Therefore,
X = e‘“, y = e°‘2, 7 = @B
Taking the natural log of both sides of the above equations gives:
a1 = In(x), oz = In(y), oz = In(z)
Substituting these values of a back into our original equation gives:
xy,2)=Inx)-(e 1,1+ Iny)-(1,e, 1) +1In(z)- (1,1, €)
Which implies that (v4, v2, v3) is a generating set for W3
1)) (v1,v2,v3) is linearly independent
We must show that for the equation
Bi-(e 1, M) +B(le, N +Bs-(1,1,8=(1,11
B1, B2, B3, must all be zero. Thus
P efeP)y=01,11
B1=1In(1)=0,B2=1In(1)=0,Bs=1In(1) =0
Thus, (v1,v2,v3) is linearly independent.

Therefore (v1,v2,v3) is a basis for Ws. O

Section 9: Finite Dimensional Vector Spaces

Definition 23: Let (V, +, -) be a real vector space.

« Vis said to be finite-dimensional if there exists an integer N > 0 such that any subset
of V containing N + 1 elements is linearly dependent. The smallest integer N for which
this holds is then called the dimension of V (equivalently, V is said to have dimension N).

* V is said to be infinite-dimensional if it is not finite-dimensional.
Examples:

e The vector spaces R, R?, R3, ... R" are all finite-dimensional
e The vector space R[x], i.e. the vector space of polynomial functions of one variable, is
infinite-dimensional.

Theorem 12: Let (V, +, -) be a finite-dimensional real vector space of dimension N. Let { v, v,, ...,
v, } be a finite subset of V containing p vectors. If { v;, v,, .., v, } is a linearly independent subset
of Vthenp < N.

Theorem 13: Let (V, +, -) be a finite-dimensional real vector space of dimension N. Let { v, v,, ...,
v, } be a finite subset of V containing p vectors. If { v;, v,, .., v, } is a generating set for V of V
thenp > N.

12



Theorem 14: Let (V, +, ) be a finite-dimensional real vector space of dimension N. Let B = (v,,
Vy .., V) be a basis for V (i.e. linearly independent and a generating set). Then, according to
Theorem 12 and Theorem 13, p < N and p > N, so we must have p = N.

To compute the dimension of a real vector space, it is enough to find a basis for that vector
space. The dimension of the vector space is then equal to the number of elements of that basis.

Problem 1, 2017 Midterm 2

Problem 1

Let (M22(R),+,) denote the real vector space of real 2 x 2 matrices, endowed with the usual addition
and multiplication by scalars operations that we have defined for real matrices.

(a) Find a basis for M32(R) and use it to compute the dimension of M32(R). [56 pts]
(b) Let sl3(R) = {( Z; Z;z ) € Maa(R) | a1 +azn = o} (i.e. sla(R) is the subset of Maa(R)
consisting of all re’al 2 ><’ 2 matrices with the diagonal entries adding up to 0). Show that
sla(R) is a vector subspace of My 3 (R). [5 pts]
(c) Find a basis for sl3(R) and use it to compute the dimension of sl3(R). [5 pts]
SOLUTION:

(a) Any matrix ( Z;’i Z;’z ) in M32(R) can be written (under the operations of M3z 2(R)) as follows

a1 a2 \ _ 10+ 01+ 00+ 00
a1 a2 =Sl 0 0 @12\ o o @21\ 1 o a2{ o9 1 )

Thus, setting
10 01 00 00
Al—(o 0),A2_(0 0>3A3_<1 0)7A4_(0 1):

we have shown that {A;, Aa, A3, A4} is a generating set for My 2(R). We next show that {A;, Ag, A3, As}
is a linearly independent subset of Mj»(R): for scalars a4, @y, a3 and a4, we have that

a1A; + agAs + azAz + Ay =0 = ap a2 \ _ (00
a3 o4 00

=4 a1=a2=a3=a4=0

and thus {A;, A, A3, A4} is linearly independent. Since {A;, A2, A3, A4} is both a generating set for
M3 2(R) and is linearly independent, we thus conclude that (A1, A2, A3, A4) is a basis for M2 2(R).
Finally, since the above basis have four components, we deduce that the dimension of Mj2(R) is
4. O

13



SOLUTION:

(b) We will show that sl2(R) satisfies the three properties of the vector subspace to conclude that slz(R)
is a vector subspace of M3 o(R).

— Zero vector property of sla(R): The zero vector of Mj3(R) is given by 0 = ( g g ) Since

011+ 022 = 0+ 0 = 0 (with 0;; denoting the entry of 0 on row 1 and column 1, and 052
denoting the entry of 0 on row 2 and column 2), it follows that the zero vector 0 is an element
of slo(R). Hence, we can write 0 € sla(R).

— Closure property of sla(R) under addition: Let

a1 @12 and b1 b2
az1 G2 bo1 bog

be two elements of sl3(R). Thus we have that a;; +az2 =0 and b1 + b2 = 0. Now

( a;) a2 ) + ( by b2 ) _ ( a1 +biy are+bip )
a1 a2 ba1 boo a1 +ba1 ag2+bop )’

and since
(@11 +b11) + (az2+b2o) = (a11+a22)+ (b1 +boy2)
0+0=0,
it follows that ( a1 612 ) + ( bia biz ) € sly(R).
a1 @2 ba1 ba2p

— Closure property of sla(R) under scalar multiplication: Let a € R be a scalar and let

( a1 a1,2 ) GSIQ(R)

a1 Q22

14



— Closure property of sla(R) under scalar multiplication: Let a € R be a scalar and let

( e ) € shy(R).

az1 0G22

Thus we have that a;; + az2 = 0. Now
L T
az1 22 aayy aazy )’

aay )+ aazs = ala; +az2) = a(0) =0,

and since

it follows that a - ( “hi i ) € sla(R).
az1 Q22

We conclude: sl2(R) is a vector subspace of M22(R).
a1 a1.2

a1 Q22
therefore we can write

a1 @12 \ _ 1 0 01 00
(ag'l am)"‘“'l(o —1)“1*2(0 o)+a2-1(1 0)'
1 0 0 1 0 0
Bl_(o _1>’BZ—(0 0)1B3_(1 O)!

we have shown that {B;, By, B3} is a generating set for slz(R). We next show that {Bi, By, B3} is
also linearly independent: for scalars 3;, B2 and 33, we have that

BiBi+mBr+pB=0 — (B 2 (0 0)

= Pr=PB=p3=0

(c) For any matrix ( ) in slz(R), we have that a1 1 + az2 = 0, and hence az2 = —a;,1., and

Thus, setting

and thus {Bj, By, B3} is linearly independent. Since {Bj, Bs, B3} is both a generating set for sl3(R)
and is linearly independent, we conclude that (B;, B2, B3) is a basis for sly(R). Therefore, the
dimension of sl3(R) is 3. O

O

Section 10: Linear Transformations, Dimension, &

Kernel

Note: A mapping, function, and transformation are equivalent terms.

Definition 24: Let V and W be two real vector spaces, and let L : V - W be a mapping from V
W. L is said to be a linear mapping if the following two properties hold:

1. Foranyv,, v, €V, L(v; + Vv,) = L(v;) + L(v,)
2. Foranya €Randanyv eV, Lav) = aL(v)

Problem 3c), 2015 Final Exam (uses the same “Weird Space” W3 as in Problem 3a in

to
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Section 2)
(¢) Consider the following mapping L : X3 — R? given by
L{(z,y,z)) = (In(z),1n(yz)) V(z,y. z) € Xs,

where In(-) denotes the natural logarithm and (R?, +) is the vector space of real-valued
ordered pairs under the traditional (component-wise) addition and scalar multiplication
operations.

Determine whether or not the mapping L is linear. (6 pts)

Solution:
(c) Recall that in order to show that the mapping L : X3 — R? is linear we have to show the
following two properties:

(i) For any (z1,y1,21) and (x2, Y2, 29) in Xa,
L((z1,y1,21) + (02,92, 22)) = L((21, 91, 21)) + L((22, 92, 22))-
(ii) For any (z,y,z) € X3 and any scalar o € R,
Lia(z,y, 2)) = aL((z,y, 2)).

Let us separately examine each of the above linearity properties:

(i) For any (z1,y1,21) = <x17 3711721) and (z9, Yo, 22) = <$27 0712722) in X3, by properly using the
operations of W3 and R?, we have the following

1 1
L((w1,y1,21) + (22,92, 22)) = L <<$17>Zl> + <$27,2’2>>
I )

On the other hand,

L((z1,y1,21)) + L((22, Y2, 20)) =
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Comparing the above expressions, we directly get that

L((z1, 91, 21) + (22, Y2, 22)) = L((21,91, 21)) + L((22, Y2, 22))
and hence this property holds.

1

x?

(ii) For any (z,y,2) = (z, z) € X3 and scalar o € R, again by properly using the operations of
W3 and R?, we have the following

L(a(z,y,2))

— (ami).aln (%))

aL((z,y,2)) = aL<(xiz>>
_ a(ln(m),ln (%))
- (ozln(.r),ozln(%))

Comparing the above expressions, we directly get that

On the other hand,

L(a(w,y,2)) = aL((z,y,2))
and hence this property holds.
We conclude that the mapping L is linear.

Theorem 15: Let V and W be real vector spaces; let Ov denote the zero vector of V, and let Ow
denote the zero vector of W. Let L : V=W be a linear mapping. Then, we have:

L(Ov) = Ow

Note: Use this fact to prove a mapping is not linear if the zero vector of V does not map to the
zero vector of W. You cannot use this fact to prove that a mapping is linear.

Theorem 16: Let V, W, and Z be real vector spaces, and let L1 : V - W and L, : W—Z be linear
mappings. Then, the mapping Lz° L : V—=Z (called the composition) is also linear.

Note: L, ° Li(v) = Lo(L1(v)), which means that we apply L1 to v and then apply L, to this result.

Definition: Let V and W be two real vector spaces, and let L : V — W be a mapping from V to W.
The Kernel or Null Space of L (denoted ker(L)) is the set of all vectors in V that map to the zero
vector of W.

17



ker(L) ={v eV |LVv) =0w}

Theorem 17: Let V and W be real vector spaces, and let L : V — W be a linear mapping. Then,
the kernel ker(L) of L is a vector subspace of V.

Definition (from section 0): Let /: S — T be a mapping from V to W. f is said to be injective (or
one-to-one) if Vx, y €S, x # y implies that f(x) = f(y).

R ~
e S va N
/ A \\ / 1 \ A
\ 1
/ \\ / \ f
/ B \\\ (/ 2 \ B 2

w

\ c / \ | '

\ / \ ! / ‘ ‘ 4
\ D 4 \\ 5 // 5
\‘\»_,// \\\, = 4 ’

Theorem 18: Let L: V — W be a linear mapping from the real vector space V to the real vector
space W. Then L is injective if and only if the kernel, ker(L), of L is equal to {0v}, i.e. ker(L) = {0v}.

s

Definition: Let V and W be two real vector spaces, and let L : V = W be a mapping from V to W.
The Range or Image of L (denoted Im(L)) is the set of values in W that L maps to.

Im(L) = {LV) EW | v EV}

Definition (from section 0): Let /: S — T be a mapping from S to T. f is said to be surjective (or
onto) if vxeT,A3yeS:x=fly).ie Im{f)=T.

Theorem 19: Let V and W be real vector spaces, and let L: V — W be a linear mapping. Then,
the range Im(L) of L is a vector subspace of W.

Definition 25: Let V, W be real vector spaces, assume V is finite-dimensional, and letL:V - W
be a linear mapping.

18



(i) The rank of L, denoted by rank(L), is defined to be the dimension of Im(L). (This is the
number of elements in a basis of the Image)

(i) The nullity of L, denoted by nullity(L), is defined to be the dimension of ker(L). (This
is the number of elements in a basis of the Kernel)

Theorem 20 (Rank-Nullity Theorem): Let V, W be real vector spaces, and letL:V - W be a
linear mapping. Assume V is finite-dimensional, and let N denote the dimension of V. Then:

rank(L) + nullity(L) = N

Section 11: Matrices & Linear Transformations

Definition 26: Let m and n be integers > 1. A real matrix with m rows and n columns (also
called a real m X n matrix) is a table (or array) of the form:

a1 A12 — A1n
az1 Qz2 — Az n
Anmi1 Am2 — — Amn

This can be used to represent a linear mapping from R"to R™ (IR #of columns) tq [R (*# ofrows) ),

e Addition: Two m X n matrices can be added together if and only if m; = m, andn; =
n, (i.e. same size).

G tbiy apt+b 1+ byg

a,1+b a,,+b a,,+b
A+B=| ®21Th21 A2zt Dap . 2 ban
am1 + bm,l Ao + bm,2 amn + bm,n

e Scalar Multiplication: When multiplying a matrix by a scalar a, multiply each entry of
the matrix by a.
a- b1,1 e a bl,n
a-B=| - :

A bpy 0 A by

Theorem 24: Let A be a real m X n matrix; the range Im(A) of the matrix A (i.e. the range of the
linear mapping La: R" = R ™) is the linear span of the column vectors A1, A, ..., A, of A.

Theorem 26: Let A € M n(R) (i.e. A is a real mxn matrix). We have ker(A) = {Og} if and only if the
column vectors of A are linearly independent.

Theorem 27: Let A € Mmn(R), then: rank(A) + nullity(A) = n.

i.e. rank(A) + nullity(A) is equal to the number of columns of A.

Theorem 28: Let A € M n(R) represent the linear map La: R" = R ™. We have the following:
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a) If, for each vector b € R™, there exists a unique v € R" which satisfies La(v) = b, then:
i. m=n
i.  The column vectors of A are linearly independent
b) Conversely, if m = n and the column vectors of A are linearly independent, then for each
b € R™, there exists a unique v € R" which satisfies La(v) = b.

Problem 1, 2012 Midterm 3

1 2 1
. . -1 -2 -1 .
1. (25 pts) For the real the matrix A given by A = 5 o0 ol do the following:
2 0 0

(a) Specify the linear transformation L4 that it defines. (5 pts)
(b) Specify its kernel ker(A) (i.e. ker(L4)) and find a basis for ker(A). (10 pts)
(c) Specify its range Im(A) (i.e. Im(L,)) and find a basis for Im(A). (10 pts)

d) Verify the Rank-Nullity Theorem for the linear mapping A

(a) The linear transformation L, defined by matrix A is the mapping from R3 (since A has 3
columns) to R* (since A has 4 rows) defined by:

Ly : Ra — R_l
T+2y+z

. * —r—2y—z
y | = La(l v |)= g
z z ’

2x
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T
(b) We have: ¥ | y | e R%:
z

—
"

2 z
y | €ker(La) & La(| y |)=0z =
» z

—~

cCc oo oo oo

——

e e

( r+2y+z
—r—2y—z
—5z

r
]
8

—

Hence, ker(L,) is given by:

ker(Ly) ={ eR®: 2=—2yand z =0}

o =

We now compute a basis for ker(L,); first, we try to find a generating set for ker(L,). Using
T
our characterization of ker(L,), we can write: V| y | € R?,

Z
xr — 9
g cker(Ly) < {i;o Y
T 0 0
= v )= Yy =y 1
z —2y -2
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e

0 %
Letting v; € R? be defined by v, = 1 , we have therefore shown that, V| y | € R3
—9 z
C T
y | €ker(Ly) & | y | =y V1.
z z

This shows that any element in ker(L,) is in the linear span of v,, and, conversely, any
element in the linear span of v, is in ker(L,4); in other words, the linear span S,y of vy is
equal to ker(L,4). Hence, {v,} is a generating set for ker(L4). Furthermore, since v; # Ogs,
it follows that {v,} is a linearly independent subset of ker(L4). Hence, (v;) is a basis for
ker(L,4). (Note that since this basis has one element, it follows that ker(L,) has dimension
1).

Recall that Im(L,) is the linear span of the column vectors of A. Let A4, A, Ay € R? be
the first, second, and third column vectors of A, respectively: i.e., we have:

| 2 1
-1 -2 -1

A, = A= A=
1 _5 ) 2 0 ) 3 0
2 0 0

Writing that Im(L,) is the linear span of A.;, A, A3, and then using the definition of linear
span, we have:

Im(La) = Sa,,44,45) = {ag-Ag+ay-As+ay-Az € R* : ay, s, a3 € R},
and noting that A, = 2+ A3, we obtain:

Im(Ly) = {a-Ap+2a3-Az+az-Az€ R | 1, 00,03 € R}
= {(11'A;1+(2(12+(13)'A;3€R4 | (11,02,(!3€R}
= {a-A1+B-A3€R* |, €R}
= 8

(A;3.A.3)

which shows that {A.;, A3} is a generating set for Im(L,4). Let us now prove that the subset
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{A., A3} of Im(L4) is also linearly independent. We have, Va, 8 € R:

1 1 0
-1 —1 0
a-Ay+ 8- As3=0;, & - _ + 3 i =
- -5 0 0
2 0 0
o+ 0
o —x — :'} 0
—bay - 0
2y 0

& a+f=0anda=0

= a==0.

This proves that {A., A3} is a linearly independent subset of Im(L4). Hence, (A., A.3) is
a basis for Im(L,). (Note that since this basis has 2 elements, it follows that Im(L,4) has

dimension 2).

d) dim(V) = rank(L) + nullity(L)
3=2+1
3=3

Matrix Multiplication:

When multiplying two matrices together, consider the following:
A - B
33 3-2
In order to multiply matrices A and B, the number of columns in the first matrix must match the
number of rows of the second. See in the example above, A has 3 columns, and B has 3 rows,
therefore the multiplication A - B is possible. However, B - A is not possible since B has 2 columns
and A has 3 rows.

Exercise:
2 1 0 5 2
A=[0 2 3],B= 1 0]|. Compute A-B
3 0 4 0 3
11 4
Solution: AeB = [2 9]
15 18

Theorem 29: Matrix multiplication satisfies the following properties:

(i) Let m, n, p, q be integers > 1. VA € Mnn(R), VB € M, p(R), and VC € My 4(R), we have:
(AB)C = A(BCQ), i.e. matrix multiplication is associative.
(i) Let m, n, p be integers > 1. VA € My (R), VB, C € M, (R), we have:
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AB + C) = AB + AC

(iii) Let m, n, p be integers > 1. VA, B € M (R), VC € My, (R), we have:
(A + B)C=AC + BC
(iv) Let m, n, p be integers > 1. VA € My (R), VB € My, (R), V a € R, we have:

A(a B) = (a A)B = o (AB).

Section 12: Invertible Square Matrices

Definition 30: Let A € M (R) be a real n x n matrix. A is said to be invertible if there exists a
real n X n matrix B such that AB = BA = I, where I (shown below) is then X n identity matrix.
This matrix be is called the inverse of A, or A™

1 0 .. 0
=9 0
00 . 1
Note:
(i) The definition of invertible matrices applies only to square matrices.
(ii) It does not make any sense to talk about invertibility of an mxn matrix with m # n.

Theorem 31: Let A € My(R) be a real n X n matrix. We have that A is invertible if and only if
the column vectors of A are linearly independent. Equivalently, A is invertible if and only if A has
rank n.

Definition 33: Let A € My (R) be a square n X n real matrix. The determinant, denoted det(A), of
A is the real number defined as follows:

0} If n=1,i.e. A= (a) for some real number a, then det(A) = a;
(i) If n > 1, then det(A) is recursively defined as follows:

det(4) = Z(—u“fal,,-det ([A4],)
j=1

Where [A]1;is the matrix A without the i'th row and j'th column. (*note that it doesn’t have to be
the first row, it can be any row or any column).

a b

Note: For a 2x2 matrix: det (C d) = ad — bc

Theorem 32: Let A € My(R) be a real n x n matrix. We have that A is invertible if and only if
det(A) # 0.

Definition 34: Let M € Mmn(R) be a real m x n matrix. The transpose of M, denoted M", is the n
x m real matrix defined by: (M");; = (M);;, forall 1 < i < nand 1 < j < m, where by the notation
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(C)ap we mean the entry of matrix C on row a and column b. (ie: flip the matrix along the
diagonal)

Theorem 34: Let A € M(R) be a real n x n matrix. We have: det(A) = det(A").
Theorem 35: Let A, B € Mn(R) be real n x n matrices. We have: det(AB) = det(A) det(B)

Note: For a diagonal, upper triangular, or lower triangular matrix, the determinant is the product
of the entries on the diagonal.

0 1 1
Example: Compute the determinant of [3 3 0]
1 2 9

0 1 1

Solution: det(]3 3 0

1 2 9

)= 0—1*det(i 8)+det(i 3): —127) + (3) = —24

Theorem 38: VA € My (R), Va € R, we have: det(aA) = a n det(A).

Problem 6, 2015 Final Exam

6. Answer the following questions.

(a) Suppose that A and B are invertible n x n matrices. Is AB invertible? (Provide an
argument if your answer is yes, and a counterexample if your answer is no.) (5 pts)

Let A and B be the matrices

. g =1
A= ( :) - 1 ) and B = 1 —4
-3 3 -

(b) Are either of A or B invertible matrices? (Be sure to give reasons). (2 pts)
(¢) Compute the product AB. (4 pts)
(d) Is AB an invertible matrix? (4 pts)

Solution:
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(a) For these two n x n matrices, if A is invertible with inverse A~! and B is invertible with
inverse B~!, then by associativity of matrix multiplication and the property of the identity
matrix I,, (of size n X n), we have

(B'A™NYAB)=B YA 'A)B=B"',B=B"'B=1,.

Similarly,
(AB)(B™'A™") = A(BB™)A™' = AILA™' = AA™' = I,

Thus AB is invertible and its inverse is given by

(AB)™' =p7tAa™l

(b) Since invertibility is defined only for square matrices, noting that A and B are both rectangular
matrices (with sizes 2 x 3 and 3 x 2, respectively), we directly conclude that both A and B
are not invertible.

(¢) The product AB is given by:
_ B 3
(25 D)2 3)
-2 1
(d) AB is invertible iff its determinant is non-zero. We have

det(AB) = ((5)(=9) = (6)(=5)) = =15 # 0.

Thus AB is invertible.

Problem 5, 2016 Final Exam
Problem 5

Consider the real 3 x 3 malrix A given by

-1 -2 =1
A= 2 1 5.
4 -3 7
(a) Determine invertibility of A by examining the column vectors of A. [5 ptsl
(b) Determine invertibility of A by computing the determinant det(A) of A. [6 pts]
(c) Compute A? (i.e. AA). [6 pts]
(d) Compute det(A?). [5 pts]

This is a good problem because it directly makes use of the theorems stated above.

a) Theorem 31 above states “A is invertible if and only if the column vectors of A
are linearly independent.”
Write o; A + 3 A, +x3A43=0
-1 -2 -1
;| 2 |+, 1 )+o5({ 5 |=0
4 -3 7



i) —0— 2 6 — X3= 0
ii) 2 ++ 503=0
iii) 4 xX;—3 X+ 7 x3=10
Last equation gives
3 xy=4 0+ 7 X3
7 4

Substitute this into equation 2 to get
7
10 22
. —

o= —? X3

Substitute this into equation 1 to get o¢;= o, = 3= 0
Therefore, by Theorem 31, since the column vectors of A are linearly
independent, A is invertible.

b)

det(A)

1 5 2 5 2 1
—ldet(_3 7)+2det(4 7)—1det’.(4 _3)

= —22-12410=-24,
Since det(A)#0, A is invertible (Theorem 32 above)

-1 -2 -1\/-1 -2 -1 -7 3 —-16
by AA=| 2 1 5 2 1 5 |=120 -18 38
4 -3 7 4 -3 7 18 -32 30

c) det(A?) = (det(A))? =576 (Theorem 35 above)

Section 13: Eigenvalues & Eigenvectors

Definition 35: Let v € V with v # 0 (i.e. v is not the zero vector of V); v is said to be an
eigenvector of the linear transformation L if there exists a real number A such that:

L(v) = Av.
The real number A in the above relation is called an eigenvalue of L. We then say that v is an

eigenvector of L associated to the eigenvalue A.

Theorem 41: Let A € My(R) be a real n x n matrix. Let A € R. We have A is an eigenvalue of A if
and only if det(Al - A) = 0 (where again | denotes the n x n identity matrix). This theorem gives
us a systematic way of computing eigenvalues.

Theorem 42: Let A € My(R) be a real n x n matrix. Then 0 is an eigenvalue of A if and only if A'is
not invertible.
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Steps for Finding Eigenvalues/Vectors

1.

Determine characteristic polynomial by calculating det(Al-A) for a matrix A. For example,
if

1 2 2 A—1 =2 -2
A=[0 3 1| finddet(| 0 A—=3 =1
0 0 2 0 0 A—2

Once all of the eigenvalues are found (in this case they are 1,2,3), find the corresponding
eigenvectors for each eigenvalue. In order to do this, find the ker(Al-A). Continuing the
above example, choosing 2 as our eigenvalue, take (21-A)v = 0 to find an eigenvector.

1 -2 =2
This is equivalent to finding a vector in ker(|0 —1 —1[). This gives the eigenvector [0,-
0 O 0

1,1].

Problem 5, 2015 Final Exam

1 0 1
5. Let v = 2 |, ve= 1 |, and vy = —1 |. and let
2 2 -3

)

(a) Say what it means for a vector v to be an eigenvector of A. (That is, give the definition

Hy
i
P
|
[ IR
(=2
(SR

-5
—9

of “v is an eigenvector of A”.) (3 pts)
(b) Compute Av,, Ava, and Avy. (3 pts)
(¢} Your computations in (b) should show that each of vy, va, and vy are eigenvectors of A.
What are their eigenvalues? (3 pts)
(d) What is A'vy? (i.e., the result of putting vy through A four times.) (4 pts)
5}
(e) Write the vector w = ( 1 ) as a linear combination of vy, v,, and vs. (4 pts)
-1

(f) For a given integer i > 1, give a formula for A”w in terms of the cigenvalues of A. (3 pts)

Solution:
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(a) We say that v is an eigenvector of A if v is not equal to the zero vector and there exists a

real number A such that

Av = Av.

In this case A is called the eigenvalue of A associated with v.

(b) We have
AV1 =
AV2 =
and
)
AV3 = 2
-2
(¢) Indeed,

AVlz(

and hence the eigenvalue
and hence the eigenvalue

and hence the eigenvalue

5 —6 3 1 -1
2 =5 3 =1 -2 |,
-2 =2 2 2 -2
5 —6 3
2 =5 3 1 ]1=11
-2 =2 2 2
-6 3 1 2
-5 3 -1 =1 -2].
-2 2 -3 —6
-1 1
2 == 2 | =1w
-2 2
of vy is Ay = —1. Also,
0 0
Avo=1 1 | =) 1 | =(1)vy
2 2

of v, is Ay = 1. Finally,

2 1
.’1\-’;3 = =2 = (2} -1 = {E}VH_
—6 -3

of Vi 15 )‘-_'.; =2,

(d) Using the fact that Av,; = Ayv, repeatedly, we have

.’1-1 V_‘; — .‘1:; |: .’1.'0"_*} — :"l:l [.—'\L_';V_'.; l‘l — .i“'\_'.; .’12 [_ .‘1 V_';}

— ,p‘-'l,_-.; ,-'A!_.g {_ )‘._'.; V_{} = )l‘i ;"l [;’1\"_{} = )lfz]- |:_ )"‘-_'-; V.l}

1
= .v"'._-.: Vi
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Thus

1 16
Alvg=Npvs=(2* [ 1L | = 16
-3 —48
5
(e) To write the vector w = 4 as a linear combination of vy, vo, and vy, we need to find
—1
scalars a, J and 7 such that
avy+ vy + vy =w
or equivalently
1 0 1 5
& : + 1 + —1 = 1
2 2 -3 -1

In other words, we have to solve the following system of linear equations:
a+vy=5
20+ —v=4
200428 — 3y =—1
Solving the above system via the Gaussian elimination method, we obtain a unique solution
given by:
(Oé, 57 7) = (47 _37 ]-)
Thus
w = 4V1 — 3V2 + V3.

(f) Given integer n > 1, we deduce that for any eigenvector v with eigenvalue \,
A'v = \'v.

In other words, if A is an eigenvalue of A, then A" is an eigenvalue of A™. This can be shown
iteratively on n using the same procedure as in (d). Thus, using the above fact and the results
in (e) and (c), we have

Atw = A"(4vy — 3vy +v3)
= 4(A™) — 3(A"vy) + (A"v3)
= 4(A'v1) = 3(Ajva) + (A5vs)
= 4(=1)"vy = 3(1)"va + (2)"v3
= 4(—=1)"vi — 3vy + (2)"v3.
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Problem 3, 2016 Final Exam

Problem 3

Consider the following real vector space (Wa, |,-) with
W, ={(z,y) | z,y € Rand z > 0,y > 0}
under the following addition and scalar multiplication operations:

e Addition: For any (21,y;) and (z2,y2) in Wa,
(#1,91) + (22, 42) = (2122, Y12)-
e Scalar multiplication: For any scalar « € R and (z,y) € Wa,
a-(z,y) = (@%y%).
Let now L : Wy — Wy be the mapping defined by:
L((z,y)) = (e*,9°), ¥(z,y) € Wa.
(a) Show that L is a linear mapping. [4 pts]

(b) Show that 2 is an eigenvalue of L, and determine a corresponding eigenvector. [3 pts]

(c) Show that 3 is an eigenvalue of L, and determine a corresponding eigenvector. [3 pts]

Solution:

a) To check linearity need to check:
i) L(vi+v2) = L(v1) + L(v2)
i) L(av) = aL(v)

First, L(x1,y1 + X2,y2) = L(xixz, y1y2) = [(x1%2)% (y1y2)’] = (%1% x2%y’y2")
Lixayn) + Lixay2) = (xi%yr’) + (x2%y2°) = (a2’ y’y2’)

Therefore L(vi+Vva2) = L(v1) + L(v2)

Second, L(a*(xy)) = Le¢Y?) = (x*2y*®) = aL(xy)

L satisfies both conditions of a linear map, therefore it is a linear map

(b) We have: L((2,1)) = (22,1%) = (4,1) = 2- (2,1), and since (2,1) is not equal to the zero vector of
W (which is equal to (1,1)), it follows that the real number 2 is an eigenvalue of L, and that (2, 1)
is a corresponding eigenvector.

(c) We have: L((1,2)) = (1%,2%) = (1,8) = 3 (1,2), and since (1,2) is not equal to the zero vector of
Wy (which is equal to (1,1)), it follows that the real number 3 is an eigenvalue of L, and that (1,2)
is a corresponding eigenvector.

Alternative solution to b and c:
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b) M(L) = (

(2) g) since these are the scalar multiples we “multiply” x and y by respectively.

Since this is a diagonal matrix, 2 is an eigenvalue.

Eigenvector satisfies Av = Av. .. we must have (Al — A)v = 0, which is equivalent to

Ab

(o 2DGE)=6)
(Vi) (v2)° = 1

V) e(v)'=1> (V) =1 Dva=1.

finding a vectorv € ker([g

Therefore vq = any real number > 0, #1, v = 1. An eigenvector is [2,1]. Note vi # 1
because otherwise (vi, v2) = (1,1) which is not an eigenvector because eigenvectors must not be
the zero vector. (Definition 35)

Again, since M(L) is a diagonal matrix, 3 is clearly an eigenvalue. Eigenvector satisfies Av
= Av. . we must have (Al — A)v = 0, which is equivalent to finding a vector v €

ker([(l) 8])

(o oG =()
V) e (v2)°=1>(v)' =1 Dvi=1
(v1)? e (v2)° = 1

Therefore vq = 1, v» = any real number > 0, # 1. An eigenvector is [1,2]. Note vo# 1
because this would mean (vi, v2) = (1,1) which is not an eigenvector because eigenvectors must
not be the zero vector. (Definition 35)
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