

AQA Chemistry (Triple) Specification Checklists

Name: _____

Teacher: _____

Can you?	\odot	\bigcirc	$\overline{\mbox{\scriptsize (s)}}$
Paper 1 - 4.1 Atomic structure and the periodic table			
4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes			
use the names and symbols of the first 20 elements in the periodic table, the elements in Groups 1 and 7, and other elements in this specification			
name compounds of these elements from given formulae or symbol equations			
write word equations for the reactions in this specification			
write formulae and balanced chemical equations for the reactions in this specification			
describe, explain and give examples of the specified processes of separation			
suggest suitable separation and purification techniques for mixtures when given appropriate information			
why the new evidence from the scattering experiment led to a change in the atomic model			
the difference between the plum pudding model of the atom and the nuclear model of the atom			
use the nuclear model to describe atoms			
calculate the numbers of protons, neutrons and electrons in an atom or ion, given its atomic number and mass number			
relate size and scale of atoms to objects in the physical world			
calculate the relative atomic mass of an element given the percentage abundance of its isotopes			
represent the electronic structures of the first twenty elements of the periodic table in numbers or diagrams			
4.1.2 The periodic table			
explain how the position of an element in the periodic table is related to the arrangement of electrons in its atoms and hence to its atomic number			
predict possible reactions and probable reactivity of elements from their positions in the periodic table			
describe the steps in the development of the periodic table			
explain the differences between metals and non-metals on the basis of their characteristic physical and chemical properties			
explain how the atomic structure of metals and non-metals relates to their position in the periodic table			
explain how the reactions of elements are related to the arrangement of electrons in their atoms and hence to their atomic number			
explain how properties of the elements in Group 0 depend on the outer shell of electrons of the atoms			
predict properties from given trends down the group			
explain how properties of the elements in Group 1 depend on the outer shell of electrons of the atoms			
predict properties from given trends down the group			
explain how properties of the elements in Group 7 depend on the outer shell of electrons of the atoms			
predict properties from given trends down the group			
4.1.3 Properties of transition metals (chemistry only)			
describe the difference compared with Group 1 in melting points, densities, strength, hardness and reactivity with oxygen, water and halogens			
exemplify these general properties by reference to Cr, Mn, Fe, Co, Ni, Cu			
transition elements have ions with different charges, form coloured compounds and are useful as catalysts			
exemplify these general properties by reference to compounds of Cr, Mn, Fe, Co, Ni, Cu			

Can you?	\odot		$\overline{\mathbf{i}}$
Paper 1 - 4.2 Bonding, structure, and the properties of matter			•
4.2.1 Chemical bonds, ionic, covalent and metallic			
explain chemical bonding in terms of electrostatic forces and the transfer or sharing of electrons			
draw dot and cross diagrams for ionic compounds formed by metals in Groups 1 and 2 with non- metals in Groups 6 and 7			
work out the charge on the ions of metals and non-metals from the group number of the element, limited to the metals in Groups 1 and 2, and non-metals in Groups 6 and 7			
deduce that a compound is ionic from a diagram of its structure in one of the specified forms			
describe the limitations of using dot and cross, ball and stick, two and three-dimensional diagrams to represent a giant ionic structure			
work out the empirical formula of an ionic compound from a given model or diagram that shows the ions in the structure			
recognise common substances that consist of small molecules from their chemical formula			
draw dot and cross diagrams for the molecules of hydrogen, chlorine, oxygen, nitrogen, hydrogen chloride, water, ammonia and methane			
represent the covalent bonds in small molecules, in the repeating units of polymers and in part of giant covalent structures, using a line to represent a single bond			
describe the limitations of using dot and cross, ball and stick, two and three-dimensional diagrams to represent molecules or giant structures			
deduce the molecular formula of a substance from a given model or diagram in these forms showing the atoms and bonds in the molecule			
Recognise substances as metallic giant structures from diagrams showing their bonding			
4.2.2 How bonding and structure are related to the properties of substances	<u> </u>	I	
predict the states of substances at different temperatures given appropriate data			
explain the different temperatures at which changes of state occur in terms of energy transfers and types of bonding			
recognise that atoms themselves do not have the bulk properties of materials			
(HT only) explain the limitations of the particle theory in relation to changes of state when particles are represented by solid inelastic spheres which have no forces between them			
include appropriate state symbols in chemical equations for the reactions in this specification			
describe the bonding in ionic structures and link this bonding to melting and boiling points and conductivity			
describe the bonding in simple covalent structures and link this bonding to melting and boiling points and conductivity			
use the idea that intermolecular forces are weak compared with covalent bonds to explain the bulk properties of molecular substances			
recognise polymers from diagrams showing their bonding and structure			
4.2.3 Structure and bonding of carbon		1	I
Recognise giant covalent structures from diagrams showing their bonding and structure			
describe the bonding in giant covalent structures (diamond, graphite, graphene, fullerenes) and link this bonding to melting and boiling points and conductivity			
recognise graphene and fullerenes from diagrams and descriptions of their bonding and structure			
give examples of the uses of fullerenes, including carbon nanotubes			
explain why alloys are harder than pure metals in terms of distortion of the layers of atoms in the structure of a pure metal			
describe the bonding in metallic structures and link this bonding to melting and boiling points and conductivity			

4.2.4 Bulk and surface properties of matter including nanoparticles (chemistry only)		
compare 'nano' dimensions to typical dimensions of atoms and molecules		
given appropriate information, evaluate the use of nanoparticles for a specified purpose		
explain that there are possible risks associated with the use of nanoparticles		

Can you?	\odot		$\overline{\mathbf{S}}$
Paper 1 - 4.3 Quantitative chemistry			
4.3.1 Chemical measurements, conservation of mass and the quantitative interpretation of chemical	al equ	ations	;
understand the use of the multipliers in equations in normal script before a formula and in			
subscript within a formula			
calculate relative formula mass			
explain any observed changes in mass in non-enclosed systems during a chemical reaction given the			
balanced symbol equation for the reaction and explain these changes in terms of the particle mode			
represent the distribution of results and make estimations of uncertainty			
use the range of a set of measurements about the mean as a measure of uncertainty			I
4.3.2 Use of amount of substance in relation to masses of pure substances	1	1	
(HT) understand that the measurement of amounts in moles can apply to atoms, molecules, ions, electrons, formulae and equations, for example that in one mole of carbon (C) the number of atoms is the same as the number of molecules in one mole of carbon dioxide (CO2).			
(HT) use the relative formula mass of a substance to calculate the number of moles in a given mass of that substance and vice versa			
(HT) calculate the masses of substances shown in a balanced symbol equation			
(HT) calculate the masses of reactants and products from the balanced symbol equation and the			
mass of a given reactant or product			
(HT) balance an equation given the masses of reactants and products			
(HT) change the subject of a mathematical equation.			
(HT) explain the effect of a limiting quantity of a reactant on the amount of products it is possible to obtain in terms of amounts in moles or masses in grams			
calculate the mass of solute in a given volume of solution of known concentration in terms of mass per given volume of solution			
(HT only) explain how the mass of a solute and the volume of a solution is related to the concentration of the solution			
4.3.3 Yield and atom economy of chemical reactions (chemistry only)	1	1	1
calculate the percentage yield of a product from the actual yield of a reaction			
(HT only) calculate the theoretical mass of a product from a given mass of reactant and the balanced equation for the reaction			
calculate the atom economy of a reaction to form a desired product from the balanced equation			
(HT only) explain why a particular reaction pathway is chosen to produce a specified product			
given appropriate data such as atom economy (if not calculated), yield, rate, equilibrium position and usefulness of by-products			
4.3.4 Using concentrations of solutions in mol/dm3 (chemistry only) (HT only)		1	
explain how the concentration of a solution in mol/dm3 is related to the mass of the solute and the volume of the solution			
4.3.5 Use of amount of substance in relation to volumes of gases (chemistry only) (HT only)			
calculate the volume of a gas at room temperature and pressure from its mass and relative formula mass			
calculate volumes of gaseous reactants and products from a balanced equation and a given volume of a gaseous reactant or product			
change the subject of a mathematical equation			

Paper 1 - 4.4 Chemical changes 4.4.1 Reactivity of metals explain reduction and oxidation in terms of loss or gain of oxygen recall and describe the reactions, if any, of potassium, sodium, lithium, calcium, magnesium, zinc, iron and copper with water or dilute acids and where appropriate, to place these metals in order of reactivity of metals with water or dilute acids is related to the tendency of the metal to form its positive ion explain reductive control of a processes when given appropriate information Image: Control of Control Contro	Can you?	\odot	\odot	$\overline{\ensuremath{\mathfrak{S}}}$
explain reduction and oxidation in terms of loss or gain of oxygen Image: Comparison of Comparis	Paper 1 - 4.4 Chemical changes			
recall and describe the reactions, if any, of potassium, sodium, lithium, calcium, magnesium, zinc, iron and copper with water or dilute acids and where appropriate, to place these metals in order of reactivity explain how the reactivity of metals with water or dilute acids is related to the tendency of the metal to form its positive ion deduce an order of reactivity of metals based on experimental results interpret or evaluate specific metal extraction processes when given appropriate information identify the substances which are oxidised or reduced in terms of gain or loss of oxygen (HT) write ionic equations for displacement reactions (HT) dentify in a given reaction, symbol equation or half equation which species are oxidised and which are reduced 4.2.2 Reactions of acids (HT) identify which species are oxidised and which are reduced in given chemical equations predict products from given reactants for salt production use the formulae of common ions to deduce the formulae of salts describe how to make pure, dry samples of named soluble salts from information provided Required practical 1: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or corbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. describe the use of universal indicator or a wide range indicator to measure the approximate pH of a solution use the pH scale to identify acidic or alkaline solutions describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately (HT Only) calculate the chemical quantities in titrations involving concentrations of a strong acid and a strong alkali from the reacting volumes on of the solutions. in mol/dm3 and g/dm3 from the reacting volumes on of phe solutions in mol/dm3 and g/dm3 from the reacting volumes on a strong alkalis on the monentration of the concentration of one of the solution. (HT) describe neutrality and relative aci	4.4.1 Reactivity of metals			
iron and copper with water or dilute acids and where appropriate, to place these metals in order of reactivity of metals with water or dilute acids is related to the tendency of the metal to form its positive ion deduce an order of reactivity of metals based on experimental results interpret or evaluate specific metal extraction processes when given appropriate information (IT) interpret or evaluate specific metal extraction processes when given appropriate information (IT) identify the substances which are oxidised or reduced in terms of gain or loss of oxygen (IT) identify in given reaction, symbol equation or half equation which species are oxidised and which are reduced (IT) identify which species are oxidised and which are reduced in terms of gain or loss of electrons, that these are redox reactions (IT) identify which species are oxidised and which are reduced in given chemical equations predict products from given reactants for salt production use the formulae of common ions to deduce the formulae of salts describe how to make pure, dry samples of named soluble salts from an insoluble oxide or carbonate using a bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. (IT) of find the reacting volumes accurately (IT) Oxide (III) identify acidic or alkaline solutions describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately (IT) Oxide (III) of find the reacting volumes accurately (IT) Oxide (III) of find the reacting volumes and the known concentration of a strong acid and a strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes and the known concentration of the solutions in mol/dm3 and ing/dm3 from the reacting volumes on advising volumes of solutions of a strong acid and a strong alkali by three or the solution. (IT) only determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reactin	explain reduction and oxidation in terms of loss or gain of oxygen			
reactivity explain how the reactivity of metals with water or dilute acids is related to the tendency of the metal to form its positive ion deduce an order of reactivity of metals based on experimental results interpret or evaluate specific metal extraction processes when given appropriate information deduce an order of reactivity of metals based on experimental results interpret or evaluate specific metal extraction processes when given appropriate information deterity the substances which are oxidised or reduced in terms of gain or loss of oxygen determined in the results of displacement reactions (HT) identify in a given reaction, symbol equation or half equation which species are oxidised and which are reduced determined in terms of gain or loss of electrons, that these are redox reactions (HT) identify which species are oxidised and which are reduced in given chemical equations of predict products from given reactants for sall production use the formulae of common ions to deduce the formulae of salts describe how to make pure, dry samples of named soluble salts from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only to find the reacting volumes accurately (HT Only) calculate the chemical quantities in titrations involving concentration of a strong acid and a strong dikali by titration. (HT only) determination of the concentration of a strong acid and strong file entry of the reacting volumes and the known concentration of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the solutions. (HT only) determination of the econcentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the solutions in mol/dm3 and g/dm3 from the reacting volumes of solutions of a strong acid and a strong dikali by titration. (HT	recall and describe the reactions, if any, of potassium, sodium, lithium, calcium, magnesium, zinc,			
explain how the reactivity of metals with water or dilute acids is related to the tendency of the intermetal to form its positive ion deduce an order of reactivity of metals based on experimental results interpret or evaluate specific metal extraction processes when given appropriate information identify the substances which are oxidised or reduced in terms of gain or loss of oxygen interpret or evaluate specific metal extraction processes when given appropriate information (HT) write ionic equations for displacement reactions interpret or evaluate specific metal extraction processes when given appropriate information (HT) extription in a given reaction, symbol equation or half equation which species are oxidised and which are reduced in given chemical equations interms of gain or loss of electrons, that these are redox reactions (HT) extription for migron reactants for salt production use the formulae of common ions to deduce the formulae of salts uses the formulae of common ions to deduce the formulae of salts experiment to heat dilute acid and a water bath or electric heater to evaporate the solution. evaporate the solution. interpret or carboning strains and the reacting volumes accurately (HT) chertify thic interious alkaline solutions interpret or carboning and ing/dm3 from the reacting volumes of salusion of a strong acid and a strong alkalis only (sulfuric, hydrochloric and ning/dm3 and ing/dm3 from the reacting volumes of solutions of a strong or dida a strong and the known concentration of the concentration of the concentration of the concentration of the c				
metal to form its positive ion deduce an order of reactivity of metals based on experimental results i interpret or evaluate specific metal extraction processes when given appropriate information i identify the substances which are oxidised or reduced in terms of gain or loss of oxygen i (HT) write ionic equations for displacement reactions i (HT) identify in a given reaction, symbol equation or half equation which species are oxidised and which are reduced i 4.12. Reactions of acids i (HT) identify which species are oxidised and which are reduced in given chemical equations i 4.2.1 Reactions of gain or loss of electrons, that these are redox reactions i predict products from given reactants for salt production i use the formulae of common ions to deduce the formulae of salts i describe how to make pure, dry samples of named soluble salt from an insoluble oxide or corbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evoporate the solution. i use the pH scale to identify acidic or alkaline solutions i i describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately i (HT Ohly) calculate the chemical quantities in titrations involving concentration of one of the solution. i<				
deduce an order of reactivity of metals based on experimental results interpret or evaluate specific metal extraction processes when given appropriate information identify the substances which are oxidised or reduced in terms of gain or loss of oxygen image: comparison of comparison of diplacement reactions (HT) write ionic equations for diplacement reactions image: comparison of comparison comparison of comparison concentratore of comparison of comparison of comparison				
interpret or evaluate specific metal extraction processes when given appropriate information Identify the substances which are oxidised or reduced in terms of gain or loss of oxygen (HT) write ionic equations for displacement reactions Identify in a given reaction, symbol equation or half equation which species are oxidised and which are reduced 4.4.2 Reactions of acids Identify which species are oxidised and which are reduced in given chemical equations (HT) identify which species are oxidised and which are reduced in given chemical equations Identify which species are oxidised and which are reduced in given chemical equations Predict products from given reactants for salt production use the formulae of common ions to deduce the formulae of salts Identify which species are oxidised and which are reduced in given chemical equations Required practical 1: preparation of a pure, dry sample of a soluble salt from ninsoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Identify acidic or alkaline solutions use the pH scale to identify acidic or alkaline solutions Identify calculate the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3 Identify and g/dm3 from the reacting volumes and the known concentration of the other solution. use the pH scale to identify acidic up the chemical equations in mol/dm3 and in g/dm3 Identify the reacting volumes and the known concentration of the other solution. (HT) Nu calculate the chemical quantities in titrations involving conc				
Identify the substances which are oxidised or reduced in terms of gain or loss of oxygen Image: Content of the substances of the substance of the s			<u> </u>	
(HT) write ionic equations for displacement reactions Image: Comparison of the equation of the equation which species are oxidised and which are reduced 4.4.2 Reactions of acids Image: Comparison of the equation of the equation of the equations of the equation of the equation of the equations of the equation of the equation of the equation of the equation of the equations of the equation of the equations of the equation of the equation of a soluble salts from information provided Required practical 1: preparation of a pure, dry sample of a soluble salts from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Image: Comparison of the equations of the equation of a soluble salts from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Uses the plate to identify acidic or alkaline solutions Image: Comparison of a soluble salts on the equations of the equation of the equating strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only to find the reacting volumes accurately (HT Only) calculate the chemical quantities in titrations involving concentration of one of the solution. Image: Comparison of the equation of the ecocentration of a strong acid and a strong alkalis by titration. (HT only) determination of the concentration of a strong acid and a strong alkalis on the reacting volumes and the known concentration and the solution. (HT Only) calculate the chemical quantities in titratio			<u> </u>	
(HT) identify in a given reaction, symbol equation or half equation which species are oxidised and which are reduced 4.4.2 Reactions of acids (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (HT) explain in terms of gain or loss of electrons, that these are redox reactions (PT) explain in terms of a pure, dry sample of a soluble salts from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. describe the use of universal indicator or a wide range indicator to measure the approximate pH of a solution use the pH scale to identify acidic or alkaline solutions describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately (HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration and the rolution. (HT) use and explain the				
which are reduced 4.4.2 Reactions of acids (HT) explain in terms of gain or loss of electrons, that these are redox reactions Image: Comparison of the second s				
(HT) explain in terms of gain or loss of electrons, that these are redox reactions Image: Comparison of the compound of the comp				
(HT) identify which species are oxidised and which are reduced in given chemical equations Image: the formulae of common ions to deduce the formulae of salts gescribe how to make pure, dry samples of named soluble salts from information provided Image: the formulae of common ions to deduce the formulae of salts Required practical 1: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Image: the solution of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. describe the use of universal indicator or a wide range indicator to measure the approximate pH of a solution Image: the solution of a solution solutions of a strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately (HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3 Image: the solution of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solution. (HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration of the other solutions in relation to acids Image: the degree of ionisation in relation to acids (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: the degre: the degree of ionisation in relation to a	4.4.2 Reactions of acids		1	1
predict products from given reactants for salt production use the formulae of common ions to deduce the formulae of salts describe how to make pure, dry samples of named soluble salts from information provided Required practical 1; preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. describe the use of universal indicator or a wide range indicator to measure the approximate pH of a solution use the pH scale to identify acidic or alkaline solutions use the pH scale to identify acidic or alkaline solutions use the pH scale to identify acidic or alkaline solutions (HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3 Required practical 2: (chemistry only) determination of the caccing volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions. (HT Only) calculate the chemical quantities in titrations involving concentration of one of the solutions. use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong line three of ionisation) in relation to acids use the formula of pH (whole numbers only) (HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only) 4.4.3 Electrolysis, and may be required to complete and balance supplied half equations predict the products of the electrolysis of binary ionic compounds in the molten state <td>(HT) explain in terms of gain or loss of electrons, that these are redox reactions</td> <td></td> <td></td> <td></td>	(HT) explain in terms of gain or loss of electrons, that these are redox reactions			
use the formulae of common ions to deduce the formulae of salts	(HT) identify which species are oxidised and which are reduced in given chemical equations			
describe how to make pure, dry samples of named soluble salts from information provided Image: Comparison of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Image: Comparison of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Image: Comparison of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Image: Comparison of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately Image: Comparison of a strong alkali by itration. (HT Only) calculate the chemical quantities in titrations involving concentrations of a strong alkali by itration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and fing d/m3 from the reacting volumes and the known concentration of the solution. Image: Comparison of the electrolysis (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: Comparison of the electrolysis, and may be required to complete and balance supplied half equations (HT) write half equations for the reactions occurring at the electrodes du	predict products from given reactants for salt production			
Required practical 1: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Image: constraint of the solution of the solution of the solution of the solution of the reacting volumes and strong alkalis only (sulfuric, hydrochloric and nirg dm3 from the reacting volumes accurately Image: constraint of the solution of the reacting volumes of the solutions of the solution. Required practical 2: (chemistry only) determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solution. Image: constraint of the concentration of the solutions of the reacting volumes of a mole of the solution. (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: concentration of the solution of the reacting volumes of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only) 4.4.3 Electrolysis Image: constraint of the electrolysis of the reacting volumes are used solutions and pH mumerical value of the reacting volumes of the electrolysis, and may be required to complete and balance supplied half equations predict the products of the electrolysis of binary ionic compounds in the molten state Image: constraint of aluminium explain why the positive electrole must be continually replaced in the extraction of aluminium Image: constraint of alu	use the formulae of common ions to deduce the formulae of salts			
carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. describe the use of universal indicator or a wide range indicator to measure the approximate pH of a solution use the pH scale to identify acidic or alkaline solutions of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solution. use and strong alkali by titration. (HT only) determination of the solution to acids use the p	describe how to make pure, dry samples of named soluble salts from information provided			
evaporate the solution. Image: Comparison of the solution of the solution of the solution of the reacting volumes and the numerical value of the degree of ionisation in relation to acids Image: Comparison of the reacting volumes and the solution of the solutions of a strong alkali by titration. (HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3 Image: Comparison of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solution. Image: Comparison of the concentration of the concentration. (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: Comparison of the concentration of the concentration of the concentration of the concentration and the numerical value of pH (whole numbers only) 44.4.3 Electrolysis Comparison of the degree of ionisation in relation to acids (HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equations Image: Comparison of aluminium predict the products of the electrolyte in the extraction of aluminium Image: Comparison of aluminium Image: Comparison of aluminium explain why a mixture is used as the electrolyte	Required practical 1: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or			
describe the use of universal indicator or a wide range indicator to measure the approximate pH of a a solution use the pH scale to identify acidic or alkaline solutions a describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately a (HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3 a Required practical 2: (chemistry only) determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions. (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids a (HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only) a 4.4.3 Electrolysis a (HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equations a predict the products of the electrolysis of binary ionic compounds in the molten state a				
a solution use the pH scale to identify acidic or alkaline solutions idescribe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately idescribe how to carry out titrations is strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately idescribe how to carry out iterations is notice the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3 idescribe how to astrong acid and a strong gladili by titration. (HT only) determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution. idescribe neutration of the degree of ionisation) in relation to acids (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids idescribe neutrating and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only) 44.3 Electrolysis describe what happens during the process of electrolysis (HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equations idescribe what happens during the process of binary ionic compounds in the molten state idescribe electrolysis of binary ionic compounds in the extraction of aluminium idescribe electrolysis dis binary	evaporate the solution.			
use the pH scale to identify acidic or alkaline solutions Image: Content of the solution of the solution of the reacting volumes accurately (HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3 Image: Content of the solution of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution. Image: Content of the degree of ionisation in relation to acids (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: Content of the degree of ionisation in relation to acids (HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only) Image: Content of the degree of ionisation in relation to acids (HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equations Image: Content of aluminium predict the products of the electrolysis of binary ionic compounds in the molten state Image: Content of aluminium explain why a mixture is used as the electrolyte in the extraction of aluminium Image: Content of aluminium				
describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately Image: Content in the image:				
and nitric acids only) to find the reacting volumes accuratelyImage: Content acids and a second acid and a strong alkali by titration. (HT only) determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution.(HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acidsImage: Concentration and the numerical value of pH (whole numbers only)4.4.3 ElectrolysisImage: Concentrate acidity in terms of the electrolysis of the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equationsImage: Concentrate acid in the molten stateexplain why a mixture is used as the electrolyte in the extraction of aluminiumImage: Concentrate acid in the extraction of aluminiumImage: Concentration of aluminiumexplain why the positive electrode must be continually replaced in the extraction of aluminiumImage: Concentration of aluminiumImage: Concentration of aluminium				
(HT Only) calculate the chemical quantities in titrations involving concentrations in mol/dm3 and in g/dm3Image: Chemistry only) determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution.Image: Chemistry only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution.Image: Chemistry only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution.Image: Chemistry only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution.Image: Chemistry only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution.Image: Chemistry only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of substance), and weak and strong (in terms of the degree of ionisation) in relation to acidsImage: Chemistry one chemistry one(HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only)Image: Chemistry only one chemistry only one4.4.3 ElectrolysisImage: Chemistry only one compounds in the electrolysis, and may be required to complete and balance supplied half equations predict the products of the electrolysis of binary ionic compounds in the molten stateImag				
in g/dm3 Image: Content of the section of the section of the section of the solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution. Image: Content of the solution of the concentration of one of the solutions of the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: Content of the degree of ionisation of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only) 4.4.3 Electrolysis Image: Content of the electrolysis of electrolysis of electrolysis of the electrolysis, and may be required to complete and balance supplied half equations Image: Content of the electrolysis of binary ionic compounds in the molten state explain why a mixture is used as the electrolyte in the extraction of aluminium Image: Content of the electrolyte in the extraction of aluminium				
acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution. Image: Concentration of the concentration. (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: Concentration of the concentration of the concentration of the concentration of the concentration and the numerical value of pH (whole numbers only) 4.4.3 Electrolysis Image: Concentration of the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equations Image: Concentration of the concentration of aluminium predict the products of the electrolysis of binary ionic compounds in the molten state Image: Concentration of aluminium Image: Concentration of aluminium explain why the positive electrode must be continually replaced in the extraction of aluminium Image: Concentration of aluminium Image: Concentration of aluminium				
solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution. Image: Concentration of the other solution of the other solution. (HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acids Image: Concentration of the degree of ionisation) (HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only) Image: Concentration of the effect on hydrogen ion concentration of the describe what happens during the process of electrolysis Image: Concentration of the effect on hydrogen ion concentration of the describe what happens during the process of electrolysis Image: Concentration of the electrolysis of the electrolysis of the electrolysis of the electrolysis of binary ionic compounds in the molten state Image: Concentrate of the electrolyte in the extraction of aluminium predict the products of the electrolyte in the extraction of aluminium Image: Concentrate of the electrolyte in the extraction of aluminium Image: Concentrate of the electrolyte in the extraction of aluminium				
other solution.Image: content of the solution of the				
(HT) use and explain the terms dilute and concentrated (in terms of amount of substance), and weak and strong (in terms of the degree of ionisation) in relation to acidsImage: Concentration (HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only)Image: Concentration (HT) describe what happens during the process of electrolysisImage: Concentration (HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equationsImage: Concentration (HT) write half electrolysis of binary ionic compounds in the molten stateImage: Concentration (HT)explain why a mixture is used as the electrolyte in the extraction of aluminiumImage: Concentration (HT) explain why the positive electrode must be continually replaced in the extraction of aluminiumImage: Concentration (HT)				
weak and strong (in terms of the degree of ionisation) in relation to acidsImage: constraint of the degree of ionisation) in relation to acids(HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration and the numerical value of pH (whole numbers only)Image: constraint of the effect on hydrogen ion concentration4.4.3 ElectrolysisImage: constraint of the process of electrolysisImage: constraint of the electrolysis(HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equationsImage: constraint of the electrolysis of binary ionic compounds in the molten statepredict the products of the electrolysis of binary ionic compounds in the molten stateImage: constraint of aluminiumexplain why a mixture is used as the electrolyte in the extraction of aluminiumImage: constraint of aluminiumexplain why the positive electrode must be continually replaced in the extraction of aluminiumImage: constraint of aluminium				
and the numerical value of pH (whole numbers only)Image: Constraint of the section of the section of aluminium4.4.3 ElectrolysisImage: Constraint of the section of aluminiumdescribe what happens during the process of electrolysisImage: Constraint of the section of aluminium(HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equationsImage: Constraint of the section of aluminiumpredict the products of the electrolysis of binary ionic compounds in the molten stateImage: Constraint of the section of aluminiumexplain why a mixture is used as the electrolyte in the extraction of aluminiumImage: Constraint of the section of aluminiumexplain why the positive electrode must be continually replaced in the extraction of aluminiumImage: Constraint of aluminium				
4.4.3 Electrolysis describe what happens during the process of electrolysis (HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equations predict the products of the electrolysis of binary ionic compounds in the molten state explain why a mixture is used as the electrolyte in the extraction of aluminium explain why the positive electrode must be continually replaced in the extraction of aluminium	(HT) describe neutrality and relative acidity in terms of the effect on hydrogen ion concentration			
describe what happens during the process of electrolysis(HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equationspredict the products of the electrolysis of binary ionic compounds in the molten stateexplain why a mixture is used as the electrolyte in the extraction of aluminiumexplain why the positive electrode must be continually replaced in the extraction of aluminium	and the numerical value of pH (whole numbers only)			
(HT) write half equations for the reactions occurring at the electrodes during electrolysis, and may be required to complete and balance supplied half equationsImage: Complete and balance supplied half equationspredict the products of the electrolysis of binary ionic compounds in the molten stateImage: Complete and balance supplied half equationspredict the products of the electrolysis of binary ionic compounds in the molten stateImage: Complete and balance supplied half equationsexplain why a mixture is used as the electrolyte in the extraction of aluminiumImage: Complete and balance supplied half equationsexplain why the positive electrode must be continually replaced in the extraction of aluminiumImage: Complete and balance supplied half equations	4.4.3 Electrolysis			
may be required to complete and balance supplied half equationsImage: Composition of the statepredict the products of the electrolysis of binary ionic compounds in the molten stateImage: Composition of the stateexplain why a mixture is used as the electrolyte in the extraction of aluminiumImage: Composition of the stateexplain why the positive electrode must be continually replaced in the extraction of aluminiumImage: Composition of the state				
predict the products of the electrolysis of binary ionic compounds in the molten stateexplain why a mixture is used as the electrolyte in the extraction of aluminiumexplain why the positive electrode must be continually replaced in the extraction of aluminium				
explain why a mixture is used as the electrolyte in the extraction of aluminiumexplain why the positive electrode must be continually replaced in the extraction of aluminium				
explain why the positive electrode must be continually replaced in the extraction of aluminium		<u> </u>	<u> </u>	
		──	──	
predict the products of the electrolysis of adueous solutions containing a single ionic compound				
	predict the products of the electrolysis of aqueous solutions containing a single ionic compound			
Required practical 3: investigate what happens when aqueous solutions are electrolysed using inert electrodes. This should be an investigation involving developing a hypothesis				

Can you?	\odot	\bigcirc	$\overline{\mbox{\scriptsize (s)}}$
Paper 1 - 4.5 Energy changes			
4.5.1 Exothermic and endothermic reactions			
distinguish between exothermic and endothermic reactions on the basis of the temperature change of the surroundings			
evaluate uses and applications of exothermic and endothermic reactions given appropriate information			
Required practical 4: investigate the variables that affect temperature changes in reacting solutions such as, eg acid plus metals, acid plus carbonates, neutralisations, displacement of metals			
draw simple reaction profiles (energy level diagrams) for exothermic and endothermic reactions showing the relative energies of reactants and products, the activation energy and the overall energy change, with a curved line to show the energy as the reaction proceeds			
use reaction profiles to identify reactions as exothermic or endothermic			
explain that the activation energy is the energy needed for a reaction to occur			
(HT) calculate the energy transferred in chemical reactions using bond energies supplied			
4.5.2 Chemical cells and fuel cells (chemistry only)			
interpret data for relative reactivity of different metals and evaluate the use of cells			
evaluate the use of hydrogen fuel cells in comparison with rechargeable cells and batteries			
(HT only) write the half equations for the electrode reactions in the hydrogen fuel cell.			

Can you?	\odot	\odot	$\overline{\mathbf{O}}$
Paper 2 - 4.6 The rate and extent of chemical change	•		
4.6.1 Rate of reaction			
calculate the mean rate of a reaction from given information about the quantity of a reactant used or the quantity of a product formed and the time taken			
draw, and interpret, graphs showing the quantity of product formed or quantity of reactant used up against time			
draw tangents to the curves on these graphs and use the slope of the tangent as a measure of the rate of reaction			
(HT only) calculate the gradient of a tangent to the curve on these graphs as a measure of rate of reaction at a specific time			
recall how changing concentration, pressure, surface area, temperature and catalyst affects the rate of chemical reactions			
Required practical 5: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced and a method involving a change in colour or turbidity.			
predict and explain using collision theory the effects of changing conditions of concentration, pressure and temperature on the rate of a reaction			
predict and explain the effects of changes in the size of pieces of a reacting solid in terms of surface area to volume ratio			
use simple ideas about proportionality when using collision theory to explain the effect of a factor on the rate of a reaction			
identify catalysts in reactions from their effect on the rate of reaction and because they are not included in the chemical equation for the reaction			
explain catalytic action in terms of activation energy			
4.6.2 Reversible reactions and dynamic equilibrium			
explain what is meant by a reversible reaction and how we show this			
explain how reversible reactions and endothermic/exothermic reactions are linked			
describe what is meant by (dynamic) equilibrium			
(HT) make qualitative predictions about the effect of changes on systems at equilibrium when given appropriate information (le chatelier's principle)			
(HT) interpret appropriate given data to predict the effect of a change in concentration of a reactant or product on given reactions at equilibrium			
(HT) interpret appropriate given data to predict the effect of a change in temperature on given reactions at equilibrium			
(HT) interpret appropriate given data to predict the effect of pressure changes on given reactions at equilibrium			

Can you?	\odot		$\overline{\mathbf{O}}$
Paper 2 - 4.7 Organic chemistry			
4.7.1 Carbon compounds as fuels and feedstock			
recognise substances as alkanes given their written or drawn formulae for the first four alkanes			
explain how fractional distillation works in terms of evaporation and condensation			
recall how boiling point, viscosity and flammability change with increasing molecular size			
write balanced equations for the complete combustion of hydrocarbons with a given formula			
describe in general terms the conditions used for catalytic cracking and steam cracking			
recall the colour change when bromine water reacts with an alkene			
balance chemical equations as examples of cracking given the formulae of the reactants and products			
give examples to illustrate the usefulness of cracking. They should also be able to explain how			
modern life depends on the uses of hydrocarbons			
4.7.2 Reactions of alkenes and alcohols (chemistry only)			
recognise substances as alkanes given their written or drawn formulae for the first four alkenes			
describe the reactions and conditions for the addition of hydrogen, water and halogens to alkenes			
draw fully displayed structural formulae of the first four members of the alkenes and the products			
of their addition reactions with hydrogen, water, chlorine, bromine and iodine			
recognise substances as alkanes given their written or drawn formulae for the first four alcohols			
describe what happens when any of the first four alcohols react with sodium, burn in air, are added			
to water, react with an oxidising agent			
recall the main uses of these alcohols			
know the conditions used for fermentation of sugar using yeast			
recognise substances as alkanes given their written or drawn formulae for the first four carboxylic acids			
describe what happens when any of the first four carboxylic acids react with carbonates, dissolve in water, react with alcohols			
(HT only) explain why carboxylic acids are weak acids in terms of ionisation and pH			
do not need to know the names of esters other than ethyl ethanoate			
4.7.3 Synthetic and naturally occurring polymers (chemistry only)		1	
recognise addition polymers and monomers from diagrams in the forms shown and from the			
presence of the functional group C=C in the monomers			
draw diagrams to represent the formation of a polymer from a given alkene monomer			
relate the repeating unit to the monomer			
explain the basic principles of condensation polymerisation by reference to the functional groups in			
the monomers and the repeating units in the polymers			
(HT) describe what amino acids are and how they make proteins			
describe what DNA is and describe the structure			
name the types of monomers from which DNA, proteins, starch and cellulose are made			

Can you?	\odot	\bigcirc	: :
Paper 2 - 4.8 Chemical analysis			
4.8.1 Purity, formulations and chromatography		-	
use melting point and boiling point data to distinguish pure from impure substances			
identify formulations given appropriate information			
explain how paper chromatography separates mixtures			
suggest how chromatographic methods can be used for distinguishing pure substances from impure substances			

interpret chromatograms and determine Rf values from chromatograms		
provide answers to an appropriate number of significant figures		
Required practical 6: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should calculate Rf values		
4.8.2 Identification of common gases		
describe the tests for hydrogen, oxygen, carbon dioxide and chlorine		
4.8.3 Identification of ions by chemical and spectroscopic means (chemistry only)		
identify species from the results of flame tests		
write balanced equations for the reactions to produce the insoluble hydroxides		
describe the test (and positive test result) for a carbonate		
describe the test (and positive test result) for the halides		
describe the test (and positive test result) for a sulfate		
Required practical 7: use of chemical tests to identify the ions in unknown single ionic compounds		
state advantages of instrumental methods compared with the chemical tests in this specification		
interpret an instrumental result given appropriate data in chart or tabular form, when accompanied by a reference set in the same form, limited to flame emission spectroscopy		
	·	

Can you?	\odot		$\overline{\mathbf{S}}$
Paper 2 - 4.9 Chemistry of the atmosphere	<u>.</u>		
4.9.1 The composition and evolution of the Earth's atmosphere			
describe the proportions of different gases in the atmosphere			
interpret evidence and evaluate different theories about the Earth's early atmosphere			
describe how oxygen increased			
describe how carbon dioxide decreased			
4.9.2 Carbon dioxide and methane as greenhouse gases		•	
describe the greenhouse effect in terms of the interaction of short and long wavelength radiation with matter			
recall two human activities that increase the amounts of each of the greenhouse gases carbon dioxide and methane			
evaluate the quality of evidence in a report about global climate change given appropriate information			
describe uncertainties in the evidence base			
recognise the importance of peer review of results and of communicating results to a wide range of audiences			
describe briefly four potential effects of global climate change			
discuss the scale, risk and environmental implications of global climate change			
describe actions to reduce emissions of carbon dioxide and methane			
give reasons why actions may be limited			
4.9.3 Common atmospheric pollutants and their sources		•	
describe how carbon monoxide, soot (carbon particles), sulfur dioxide and oxides of nitrogen are produced by burning fuels			
predict the products of combustion of a fuel given appropriate information about the composition of the fuel and the conditions in which it is used			
describe and explain the problems caused by increased amounts of carbon monoxide, sulfur dioxide, nitrogen oxides and particulates in the air			

Can you?	\odot		$\overline{\mathbf{i}}$
Paper 2 - 4.10 Using resources			
4.10.1 Using the Earth's resources and obtaining potable water			
state examples of natural products that are supplemented or replaced by agricultural and synthetic products			
distinguish between finite and renewable resources given appropriate information			
extract and interpret information about resources from charts, graphs and tables			
use orders of magnitude to evaluate the significance of data			
distinguish between potable water and pure water			
describe the differences in treatment of ground water and salty water			
give reasons for the steps used to produce potable water			
Required practical 8: analysis and purification of water samples from different sources, including <i>pH</i> , dissolved solids and distillation			
comment on the relative ease of obtaining potable water from waste, ground and salt water			
(HT) evaluate alternative biological methods of metal extraction, given appropriate information			
4.10.2 Life cycle assessment and recycling		•	
carry out simple comparative LCAs for shopping bags made from plastic and paper			
evaluate ways of reducing the use of limited resources, given appropriate information			
4.10.3 Using materials (chemistry only)			
describe experiments and interpret results to show that both air and water are necessary for rusting			
explain sacrificial protection in terms of relative reactivity			
recall a use of each of the alloys specified (bronze, brass, jewellery gold, steels)			
interpret and evaluate the composition and uses of alloys other than those specified given appropriate information			
explain how low density and high density poly(ethene) are both produced from ethene			
explain the difference between thermosoftening and thermosetting polymers in terms of their structures			
recall some examples of composites			
compare quantitatively the physical properties of glass and clay ceramics, polymers, composites and metals			
explain how the properties of materials are related to their uses and select appropriate materials			
4.10.4 The Haber process and the use of NPK fertilisers (chemistry only)			
describe the Haber process			
(HT) interpret graphs of reaction conditions versus rate			
apply the principles of dynamic equilibrium to the Haber process			
explain the trade-off between rate of production and position of equilibrium			
explain how the commercially used conditions for the Haber process are related to the availability and cost of raw materials and energy supplies, control of equilibrium position and rate			
recall the names of the salts produced when phosphate rock is treated with nitric acid, sulfuric acid and phosphoric acid			
compare the industrial production of fertilisers with laboratory preparations of the same compounds, given appropriate information			