AQA

AQA Level 2 Certificate FURTHER MATHEMATICS

Level 2 (8360)
Mark Scheme
Worksheet 11
Sequences

Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the specification. We will also publish changes on our website. The definitive version of our specification will always be the one on our website, this may differ from printed versions.

You can get further copies of this Teacher Resource from:
The GCSE Mathematics Department
AQA
Devas Street
Manchester
M16 6EX

Or, you can download a copy from our All About Maths website (http://allaboutmaths.aqa.org.uk/).

Copyright © 2012 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, registered centres for AQA are permitted to copy material from this specification booklet for their own internal use.

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Glossary for Mark Schemes

These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
M Dep A method mark dependent on a previous method mark being awarded.

B Dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

11 Sequences

For the nth terms of quadratic sequences two methods are shown (see example 2).
Other valid methods may be used.

Question	Answer	Mark	Comments
$\mathbf{1}$	$-4 n$	M1	
	$254-4 n$	A1	
	$254-4 n<0$	M1	oe
	64 th	A1	

2	Method A $\begin{array}{llllllll} 8 & & 9 & & 14 & & 23 & 36 \\ & 1 & & 5 & & 9 & & 13 \end{array}$ Subtract $2 n^{2}$ from sequence 6 1 -4 nth term of this sequence is $11-5 n$ Giving $\quad 2 n^{2}-5 n+11$	M1 A1 M1 A1	
Alt 2	Method B Using $a n^{2}+b n+c$ $\begin{aligned} & a+b+c=8 \\ & 4 a+2 b+c=9 \\ & 9 a+3 b+c=14 \end{aligned}$ $3 a+b=1$ $5 a+b=5$ $a=2$ and $b=-5$ Giving $2 n^{2}-5 n+11$	M1 M1 A1 A1	oe

Question	Answer	Mark	Comments
3(a)	Use Method A or B from Q2	3 marks	or any other valid method
3(b)(i)	$n^{2}+3 n+1$	B1	
3(b)(ii)	$n^{2}+4 n$	B1	

4(a)	$3 n+1$	B1	
4(b)	$(3 n+1)^{2}$	B1	oe
4(c)	$49 \times 169=7^{2} \times 13^{2}$ 30 th is 91^{2} $=(7 \times 13)^{2}$ $=7^{2} \times 13^{2}$	B1	oe 8281
	A1	oe 8281	

5	nth term of lengths is $n+3$	M1				
	nth term of widths is $n+2$					
Area is $(n+3)(n+2)$						
$n^{2}+3 n+2 n+6$						
$=n^{2}+5 n+6$				\quad M1		
:---	:---					
Alt 5 5	nth term of $12 \quad 20 \quad 30$ by Method A or Method B					

6(a)	$\begin{aligned} & a+9 b=35 \\ & a+15 b=59 \\ & 6 b=24 \\ & b=4 \\ & a=-1 \end{aligned}$			M1 M1 A1 A1 ft	oe
6(b)	$\begin{array}{cc} 3 & 11 \\ 8 n-5 \end{array}$		\cdots	$\mathrm{B} 1 \mathrm{ft}$ B1 ft	

Question	Answer	Mark	Comments
7(a)	$\begin{aligned} & \frac{3 n+1}{n}-\frac{3(n+1)+1}{n+1} \\ & \frac{(3 n+1)(n+1)-n(3 n+4)}{n(n+1)} \\ & \frac{3 n^{2}+n+3 n+1-3 n^{2}-4 n}{n(n+1)} \\ & =\frac{1}{n(n+1)} \end{aligned}$	M1 M1 A1	oe eg subtracts in different order oe
Alt 7(a)	$\begin{aligned} & \frac{3 n+1}{n}=3+\frac{1}{n} \\ & \left(3+\frac{1}{n}\right)-\left(3+\frac{1}{n+1}\right) \\ & \frac{n+1-n}{n(n+1)} \\ & =\frac{1}{n(n+1)} \end{aligned}$	M1 M1 A1	oe eg subtracts in different order oe
7(b)	Any substitution and evaluation for $1 \leqslant n \leqslant 10$ eg $\frac{1}{9 \times 10}=\frac{1}{90}$ or $\frac{1}{10 \times 11}=\frac{1}{110}$ 10th and 11th	M1 A1	oe eg $1<0.01 n^{2}+0.01 n$ and attempt to solve
7(c)	3	B1	

Question	Answer	Mark	Comments			
8	$\begin{aligned} & \frac{5 n+2}{2 n}=\frac{5 n}{2 n}+\frac{2}{2 n} \\ & \left(\frac{5}{2}+\frac{1}{n}\right) \\ & \frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty \quad S=\frac{5}{2}(=2.5) \end{aligned}$	M1 A1	oe			
9	Odd number is $2 n+1$ or $2 n-1$ $2 n-1$ and $2 n+1$ Sequence is $(2 n-1)(2 n+1)$ $\left(=4 n^{2}-1\right)$	M1 M1 A1				
Alt 9	Using Method A or Method B giving $4 n^{2}-1$	3 marks	or any other valid method eg			
10(a)	$\begin{aligned} & \mathrm{T}_{1}=\frac{1}{5} \\ & \mathrm{~T}_{2}=\frac{7}{14} \\ & \left(=\frac{1}{2}\right) \\ & \frac{5}{10}-\frac{2}{10}=\frac{3}{10} \end{aligned}$	B1 B1 B1	oe oe			
10(b)	$\frac{2}{3}$	B1				

